UNIVERSITY OF CALIFORNIA, LOS ANGELES
OCTOBER 1, 2021

Bioengineering
Chemical & Biomolecular
Civil & Environmental
Computer Science
Electrical & Computer
Materials Science
Mechanical & Aerospace
Master of Engineering (MEng)
Master of Science in Engineering Online
ANNOUNCEMENT 2021-22

HENRY SAMUELI SCHOOL OF ENGINEERING AND APPLIED SCIENCE

UNIVERSITY OF CALIFORNIA, LOS ANGELES
OCTOBER 1, 2021
A Message from the Dean

The UCLA Henry Samueli School of Engineering and Applied Science has a legacy of excellence in education and research. We work on the most pressing problems facing our society: designing sustainable and resilient communities, developing personalized medicine, advancing artificial intelligence, paving the way for quantum technologies, and unearthing insights from big data. As we enter our 76th year, we welcome a new generation of engineers—with diverse backgrounds from around the world—to join us as we tackle these and many more difficult challenges.

Engineering change that will improve our quality of life requires not only skills and innovation but also empathy and equity. UCLA Samueli classes are taught by faculty members who are among the best in the world in their respective fields. We are proud to cultivate creative and motivated students of all backgrounds who bring an exemplary work ethic and integrity to their studies. The school offers a rigorous curriculum that pairs strong fundamentals with practical, hands-on experience. Beyond the core curriculum, UCLA Samueli offers three pivotal advantages.

First, UCLA Samueli is an integral part of one of the world’s most innovative cities and offers unparalleled access to highly sought-after internships and careers. Many leading firms in aerospace, semiconductors, biotechnology, and other impactful fields are headquartered in Southern California. The region is also home to a major startup scene in which our alumni are deeply involved. In fact, some founded their first startup while at UCLA. Second, in addition to paving the way for careers in the engineering industry, UCLA Samueli offers unique research opportunities for its students. They play an active role in our labs, with some research earning course credit. The school features a 9,000-square-foot makerspace where students can work on independent projects and hold group activities such as hack-a-thons. Third, UCLA Engineering students get to connect with other brilliant minds across campus. Our students often collaborate with fellow Bruins and faculty from the David Geffen School of Medicine at UCLA and other campus units as they pursue new approaches and breakthroughs. The raw talent, outside-the-box thinking, and collaborative, can-do energy at UCLA are unmatched. For students interested in exploring fields outside their major, UCLA Samueli also offers more than 40 engineering clubs focused on a wide range of activities.

At UCLA Samueli, we are committed to an equitable, diverse and inclusive culture, and we want everyone to feel welcome in our community. I am grateful for our problem-solving engineers who are resilient, resourceful, and compassionate. As we navigate the COVID-19 pandemic, we are focused on providing the very best possible education to all our students. We continue to reach for new heights, expanding state-of-the-art research labs and increasing student and faculty recruitment. There are plenty of new opportunities to make a positive impact on our society and the world, and I invite you to be part of the journey.

Jayathi Y. Murthy
Ronald and Valerie Sugar Dean of UCLA Engineering
Henry Samueli School of Engineering and Applied Science

Administrative Officers

Jayathi Y. Murthy, PhD, Professor and Dean, Henry Samueli School of Engineering and Applied Science
Bruce S. Dunn, PhD, Professor and Associate Dean, Research and Physical Resources
Jia-Ming Liu, PhD, Professor and Associate Dean, Academic Personnel
Veronica J. Santos, PhD, Professor and Associate Dean, Diversity and Inclusion
Richard D. Wesel, PhD, Professor and Associate Dean, Academic and Student Affairs
Jenn-Ming Yang, PhD, Professor and Associate Dean, International Initiatives and Online Education
Jeffrey Goldman, PhD, Assistant Dean, Chief Financial Officer
Christine Wei-li Lee, MS, Assistant Dean, Chief Marketing Communications Officer
Panagiotis D. Christofides, PhD, Professor and Chair, Chemical and Biomolecular Engineering Department
Timothy S. Fisher, PhD, Professor and Chair, Mechanical and Aerospace Engineering Department
Eliezer M. Gafni, PhD, Professor and Chair, Computer Science Department
Yu Huang, PhD, Professor and Chair, Materials Science and Engineering Department
Song Li, PhD, Professor and Chair, Bioengineering Department
Ertugrul Taciroglu, PhD, Professor and Chair, Civil and Environmental Engineering Department
C.-K. Ken Yang, PhD, Professor and Chair, Electrical and Computer Engineering Department

The School

The College of Engineering (as it was known then) was established in 1943 when California Governor Earl Warren signed a bill to provide instruction in engineering at the UCLA campus. It welcomed its first students in 1945, and was renamed the Henry Samuel School of Engineering and Applied Science in 2000.

Counted among the faculty are three dozen National Academy of Engineering members, and nearly 80 recipients of the National Science Foundation’s early career award. While no ranking can fully capture the success of a leading public research university, the school is consistently ranked in the top 10 among U.S. public engineering schools, and the online master’s program has consistently been ranked first or second nationally.

The goal of UCLA Samuei is to enable as much positive change as possible through the impact that engineers can have on society. As part of its academic program, the school focuses on research that targets today’s greatest societal challenges, education that empowers students to become future change agents, access for the graduates to succeed in engineering careers, and innovation that helps bring great ideas to the market.

The school has identified six critical areas of research where it can have the greatest positive impact in the years and decades to come. These include robotics and cyberphysical systems; sustainable and resilient urban systems; engineering in medicine; big data, artificial intelligence, and machine learning; cybersecurity and future Internet; and advanced materials and manufacturing.

UCLA Samueli is well known for the research advances its laboratories and alumni have brought to the world. By defining these critical areas of research for the twenty-first century, the school is able to offer its resources and create a relevant educational structure for its students to galvanize the next generation of global leaders.

The school offers 40 academic and professional degree programs. The Bachelor of Science degree is offered in Aerospace Engineering, Bioengineering, Chemical Engineering, Civil Engineering, Computer Engineering, Computer Science, Computer Science and Engineering, Electrical Engineering, Materials Engineering, and Mechanical Engineering.

The undergraduate curricula leading to these degrees offer students a solid foundation in engineering and applied science, and prepare graduates for immediate practice of the profession as well as advanced studies. In addition to engineering courses, students complete about one year of study in the humanities, social sciences, or fine arts.

Master of Science and Doctor of Philosophy degrees are offered in Aerospace Engineering, Bioengineering, Chemical Engineering, Civil Engineering, Computer Science, Electrical and Computer Engineering, Manufacturing Engineering, Materials Science and Engineering, and Mechanical Engineering.

The schoolwide online Master of Science in Engineering degree program includes 11 individual degrees. The Engineer degree is more advanced than the regular master’s, but does not require the research effort and orientation involved in a doctoral dissertation.
Endowed Chairs

Endowed professorships or chairs, funded by gifts from individuals or corporations, support the research and educational activities of distinguished faculty members. The following endowed chairs have been established in the Henry Samueli School of Engineering and Applied Science.

L.M.K. Boelter Chair in Engineering
Collins Aerospace Term Chair for Excellence
Collins Aerospace Term Chair for Innovation
Vijay K. Dhir Chair in Engineering
Englebright Presidential Endowed Chair in Structural Engineering
Traugott and Dorothea Frederking
Norman E. Friedmann Chair in Knowledge Sciences
Armond and Elena Hairapetian Chair in Engineering and Medicine
Leonard Kleinrock Chair in Computer Science
Evelyn Knight Chair in Engineering
Levi James Knight, Jr. Chair in Engineering
Levi James Knight, Jr. Term Chair in Excellence
Fang Lu Endowed Chair in Engineering
Richard G. Newman AECOM Endowed Chair in Civil Engineering
Nippon Sheet Glass Company Chair in Materials Science
Northrop Grumman Chair in Electrical Engineering
Northrop Grumman Chair in Electrical Engineering/Electromagnetics
Northrop Grumman Opto-Electronic Chair in Electrical Engineering
Ralph M. Parsons Foundation Chair in Chemical Engineering
Jonathan B. Postel Chair in Computer Systems
Jonathan B. Postel Chair in Networking
Pritzker Chair in Sustainability
Raytheon Company Chair in Electrical Engineering
Raytheon Company Chair in Mechanical Engineering
Charles P. Reames Endowed Chair in Electrical Engineering
Ben Rich Lockheed Martin Chair in Aeronautics
John P. and Claudia H. Schauerman Endowed Chair in Engineering
William Frederick Seyer Chair in Materials Electrochemistry
Ronald and Valerie Sugar Dean of Henry Samueli School of Engineering and Applied Science
Ronald and Valerie Sugar Endowed Chair in Engineering

Symantec Term Chair in Computer Science
Carol and Lawrence E. Tannas, Jr., Endowed Chair in Engineering
Carol and Lawrence E. Tannas, Jr., Endowed Term Chair in Engineering
William D. Van Vorst Chair in Chemical Engineering Education
Volgenau Chair for Engineering Excellence
Volgenau Chair for Engineering Innovation
Volgenau Endowed Chair in Engineering
Wintek Endowed Chair in Electrical Engineering

Neria and Manizheh Yomtobian Endowed Chair in Cancer and Risk Sciences

The Engineering Profession

The following describes the challenging types of work UCLA Samueli graduates might perform based on their program of study.

Aerospace Engineering

Aerospace engineers conceive, design, develop, test, and supervise the construction of aerospace vehicle systems such as commercial and military aircraft, helicopters and other types of rotorcraft, and space vehicles and satellites, including launch systems. They are employed by aerospace companies, airframe and engine manufacturers, government agencies such as NASA and the military services, and research and development organizations.

Working in a high-technology industry, aerospace engineers are generally well versed in applied mathematics and the fundamental engineering sciences, particularly fluid mechanics and thermodynamics, dynamics and control, and structural and solid mechanics. Aerospace vehicles are complex systems. Proper design and construction involves the coordinated application of technical disciplines, including aerodynamics, structural analysis and design, stability and control, aeroelasticity, performance analysis, and propulsion systems technology.

Aerospace engineers use computer systems and programs extensively, and should have at least an elementary understanding of modern electronics. They work in a challenging and highly technical atmosphere and are likely to operate at the forefront of scientific discoveries, often stimulating these discoveries and providing the inspiration for the creation of new scientific concepts.

The BS program in Aerospace Engineering emphasizes fundamental disciplines and therefore provides a solid base for professional career development in industry and graduate study in aerospace engineering. Graduate education prepares students for careers at the forefront of aerospace technology. The PhD degree provides a strong background for employment by government laboratories, such as NASA, and industrial research laboratories supported by the major aerospace companies. It also provides the appropriate background for academic careers.

Bioengineering

At the interface of engineering, medicine, and basic sciences, bioengineering has emerged and established itself internationally as an engineering discipline in its own right. Such an interdisciplinary education is necessary to develop a quantitative engineering approach to tackle complex medical and biological problems, as well as to invent and improve the ever-evolving experimental and computational tools that are required in this engineering approach. UCLA has a long history of fostering interdisciplinary training and is a superb environment for bioengineers. UCLA boasts the top hospital in the western U.S., nationally ranked medical and engineering schools, and numerous nationally recognized programs in the basic sciences. Rigorously trained bioengineers are in demand in research institutions, academia, and industry. Their careers may follow a bioengineering concentration, but the ability of bioengineers to cut across traditional boundaries will facilitate their innovation in new areas.

Chemical and Biomolecular Engineering

Chemical and biomolecular engineers use their knowledge of mathematics, physics, chemistry, biology, and engineering to meet the needs of our technological society. They design, research, develop, operate, and manage within the biochemical and chemical industries and are leaders in the fields of energy and the environment, nanotechnology, and chemical and biomolecular engineering, and advanced materials processing. They are in charge of the chemical processes used by virtually all industries, including the pharmaceutical, biotechnology, biofuel, food, aerospace, automotive, water treatment, and semiconductor industries. Architectural, engineering, and construction firms employ chemical engineers for equipment and process design. It is also their mission to develop the clean and environmentally friendly technologies of the future.
Major areas of fundamental interest within chemical engineering are
- **Applied chemical kinetics**, which involves the design of chemical and biochemical reactors and processes and the creation of catalysts that accelerate reaction kinetics and modeling
- **Transport phenomena**, which involves the exchange of momentum, heat, and mass in physical and biological systems and has applications to the separation of valuable materials from mixtures, or of pollutants from gas and liquid streams
- **Thermodynamics**, which is fundamental to physical, chemical, and biological processes
- **Process design and synthesis**, which provide the overall framework and computing technology for integrating chemical engineering knowledge into industrial application and practice

Civil and Environmental Engineering

Civil engineers plan, design, construct, and manage a range of physical systems, such as buildings, bridges, dams and tunnels, transportation systems, water and wastewater treatment systems, coastal and ocean engineering facilities, and environmental engineering projects, related to public works and private enterprises. Thus, civil and environmental engineering embraces activities in traditional areas and in emerging problem areas associated with modern industrial and social development. The civil engineering profession demands rigorous scientific training and a capacity for creativity and growth into developing fields. In Southern California, besides employment in civil engineering firms and governmental agencies for public works, civil engineering graduates often choose other industries for assignments based on their engineering background. Graduates are also qualified for positions outside engineering where their broad engineering education is a valuable asset.

The curriculum leading to a BS in Civil Engineering provides an excellent foundation for entry into professional practice, as well as for graduate study in civil engineering and other related fields.

Computer Science and Engineering

Students specializing in the computer science and engineering undergraduate program are educated in a range of computer system concepts. As a result, students at the BS level are qualified for employment as applications programmers, systems programmers, digital system designers, digital system marketing engineers, and project engineers. Undergraduate students can major in the computer science and engineering program, the computer science program, or the computer engineering program. Graduate degree programs in computer science prepare students for leadership positions in the computer field. In addition, they prepare graduates to deal with the most difficult problems facing the computer science field. University or college teaching generally requires the graduate degree.

Electrical and Computer Engineering

The electrical and computer engineering discipline is concerned with the useful applications of electromagnetic phenomena (light, magnetism, electricity, information processing). Courses and research at UCLA span the entire stack from basic physics, electronic and photonic devices, antennas, integrated circuits, signal processing and machine learning, control, communications systems, to vast networks such as the electrical grid and the Internet. These are the main automated tools used by our society to sense, make decisions, and take action in the world using the data collected according to the priorities established by people. The Electrical and Computer Engineering Department is a recognized leader in education and research related to these subjects.

Manufacturing Engineering

Manufacturing engineering is an interdisciplinary field that integrates the basic knowledge of materials, design, processes, computers, and system analysis. The manufacturing engineering program is part of the Mechanical and Aerospace Engineering Department. Specialized areas are generally classified as manufacturing processes, manufacturing planning and control, and computer-aided manufacturing.

Manufacturing engineering as an engineering specialty requires the education and experience necessary to understand, apply, and control engineering procedures in manufacturing processes and production methods of industrial commodities and products. It involves the generation of manufacturing systems, the development of novel and specialized equipment, research into the phenomena of fabricating technologies, and manufacturing feasibility of new products.

Materials Engineering

Materials engineering is concerned with the structure and properties of materials used in modern technology. Advances in technology are often limited by available materials. Solutions to energy problems depend largely on new materials, such as solar cells or materials for batteries for electric cars.

Two programs within materials engineering are available at UCLA:
- In the materials engineering program, students become acquainted with metals, ceramics, polymers, and composites. Such expertise is highly sought by the aerospace and manufacturing industries. Materials engineers are responsible for the selection and testing of materials for specific applications. Traditional fields of metallurgy and ceramics have been merged in industry, and this program reflects the change.
- In the electronic materials option of the materials engineering program, students learn the basics of materials engineering with a concentration in electronic materials and processing. The optional program requires additional coursework, which includes five to eight electrical and computer engineering courses.

In order to enter a career in research and development of new materials (such as new energy devices), an MS or PhD degree is desirable.

Mechanical Engineering

Mechanical engineering is a broad discipline finding application in virtually all industries and manufactured products. The mechanical engineer applies principles of mechanics, dynamics, and energy transfer to the design, analysis, testing, and manufacture of consumer and industrial products. A mechanical engineer usually has specialized knowledge in areas such as design, materials, fluid dynamics, solid mechanics, heat transfer, thermodynamics, dynamics, control systems, manufacturing methods, and human factors. Applications of mechanical engineering include design of machines used in the manufacturing and processing industries, mechanical components of electronic and data processing
equipment, engines and power-generating equipment, components and vehicles for land, sea, air, and space, and artificial components for the human body. Mechanical engineers are employed throughout the engineering community as individual consultants in small firms providing specialized products or services, as designers and managers in large corporations, and as public officials in government agencies.

Mechanical engineers apply their knowledge to a wealth of systems, products, and processes, including energy generation, utilization and conservation, power and propulsion systems (power plants, engines), and commercial products found in the automotive, aerospace, chemical, or electronics industries. The BS program in Mechanical Engineering at UCLA provides excellent preparation for a career in mechanical engineering and a foundation for advanced graduate studies. Graduate studies in one of the specialized fields of mechanical engineering prepare students for a career at the forefront of technology. The PhD degree provides a strong background for employment by government laboratories, industrial research laboratories, and academia.
Calendars

Academic Calendar

<table>
<thead>
<tr>
<th>Event</th>
<th>Fall 2021</th>
<th>Winter 2022</th>
<th>Spring 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>First day for continuing students to check MyUCLA for assigned enrollment appointments</td>
<td>June 1</td>
<td>November 1</td>
<td>January 31</td>
</tr>
<tr>
<td>MyUCLA enrollment appointments begin</td>
<td>June 14</td>
<td>November 8</td>
<td>February 7</td>
</tr>
<tr>
<td>Quarter begins</td>
<td>September 20</td>
<td>January 3, 2022</td>
<td>March 23</td>
</tr>
<tr>
<td>Instruction begins</td>
<td>September 23</td>
<td>January 3</td>
<td>March 28</td>
</tr>
<tr>
<td>Registration fee payment deadline</td>
<td>September 26</td>
<td>January 5</td>
<td>March 24</td>
</tr>
<tr>
<td>Last day for undergraduates to add courses with per-course fee through MyUCLA</td>
<td>October 15</td>
<td>January 21</td>
<td>April 15</td>
</tr>
<tr>
<td>Last day for undergraduates to drop nonimpacted courses without transcript notation (with per-transaction fee through MyUCLA)</td>
<td>October 22</td>
<td>January 28</td>
<td>April 22</td>
</tr>
<tr>
<td>Last day for undergraduates to change grading basis (optional P/NP) with per-transaction fee through MyUCLA</td>
<td>November 26</td>
<td>February 11</td>
<td>May 6</td>
</tr>
<tr>
<td>Instruction ends</td>
<td>December 3</td>
<td>March 11</td>
<td>June 3</td>
</tr>
<tr>
<td>Final examinations</td>
<td>December 6–10</td>
<td>March 14–18</td>
<td>June 6–10</td>
</tr>
<tr>
<td>Quarter ends</td>
<td>December 10</td>
<td>March 18</td>
<td>June 10</td>
</tr>
<tr>
<td>Engineering Commencement</td>
<td>—</td>
<td>—</td>
<td>June TBD</td>
</tr>
<tr>
<td>Academic and administrative holidays</td>
<td>September 6</td>
<td>January 17</td>
<td>March 25</td>
</tr>
<tr>
<td></td>
<td>November 11</td>
<td>February 21</td>
<td>May 30</td>
</tr>
<tr>
<td></td>
<td>November 25-26</td>
<td>—</td>
<td>June 20</td>
</tr>
<tr>
<td></td>
<td>December 23-24</td>
<td>—</td>
<td>July 4</td>
</tr>
<tr>
<td></td>
<td>December 30-31</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Winter campus closure (tentative)</td>
<td>December 18, 2021-January 2, 2022</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Admission Calendar

<table>
<thead>
<tr>
<th>Event</th>
<th>Fall 2021</th>
<th>Winter 2022</th>
<th>Spring 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filing period for undergraduate applications: apply online at University of California Admissions</td>
<td>November 1–30, 2020</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Last day to file Application for Graduate Admission or readmission with complete credentials and application fee, online or with UCLA Graduate Diversity, Inclusion, and Admissions (DIA), 1248 Murphy Hall, Los Angeles, CA 90024-1419</td>
<td>Consult department</td>
<td>Consult department</td>
<td>Consult department</td>
</tr>
<tr>
<td>Last day to file Undergraduate Readmission Application (late applicants pay a late fee)</td>
<td>August 15</td>
<td>November 25</td>
<td>February 25</td>
</tr>
</tbody>
</table>

Dates are subject to change; see UCLA Registrar’s Office calendars for most current information.
Facilities and Services

Teaching and research facilities at UCLA Samueli are in Boelter Hall, Engineering IV, Engineering V, and Engineering VI, located in the southern part of the UCLA campus. Boelter Hall houses classrooms and laboratories for undergraduate and graduate instruction, the Office of Academic and Student Affairs, the SEASnet computer facility, specialized libraries, offices of faculty and administration, Shop Services Center, and the Student and Faculty Shop. The California NanoSystems Institute (CNSI) building hosts additional school collaborative research activities.

Library Facilities

University Library System

The UCLA Library, a campuswide network of libraries serving programs of study and research in many fields, is among the top 10 ranked research libraries in the U.S. Total collections number more than 12 million volumes, and over 112,000 serial titles are received regularly. Materials are available electronically through the UC Library Search, which contains records for all its holdings and other campus collections.

Science and Engineering Library

The combined Science and Engineering Library (SEL) collections contain more than half a million print volumes; subscriptions to nearly 5,400 print or electronic journals, many with full archival access; a large collection of online technical reports; and tens of thousands of e-books. The library offers access to online databases covering each discipline.

The SEL/Boelter location (formerly Engineering and Mathematical Sciences Collection), 8270 Boelter Hall, focuses on engineering, mathematics, statistics, astronomy, chemistry, physics, and atmospheric and oceanic sciences, and is the location of most librarian and staff offices. The library also offers laptop checkout, a group study room, two spaces for collaborative group work (the Learning Commons and the Research Commons), and quiet areas for study.

The SEL/Geology location, 4697 Geology Building, focuses on earth and space sciences with materials in geochemistry, geology, hydrology, tectonics, water resources, geophysics, and space physics. The William C. Putnam Map Room includes U.S. and international topographic and geologic maps.

The SEL website is the access point to all of the above resources. The site also supplies information on course reserves, laptop lending, interlibrary loan, document delivery, news and events, and a staff directory. Librarians are available for consultations and to provide course-related instruction on using electronic and print resources including journal article databases, the UC Library Search, Web search engines, research impact metrics, research data management and curation, scholarly communication, copyright, and open access publishing.

Services

Computing Resources

Nicodemus Wibowo, SEASnet Director

UCLA Samueli maintains an advanced computing facility and local-area network to support its education, research, and administrative activities. A total of 15 full-time positions and 10 lab consultants support the school’s computing needs.

A network of over 158 enterprise servers supply a wide array of critical services. Eight Network Appliance NFS servers supply reliable storage for users’ personal data and e-mail, and offer nearly instant recovery of deleted files through regular snapshots.

More than 100 Unix/Linux servers, including 20 virtual machines, supply both administrative and instructional support to ensure smooth operation of approximately 700 Linux and Windows workstations. The Unix servers handle back-end services such as DNS, authentication, virtualization, software licensing, web servers, interactive login, database, e-mail, class applications, and security monitoring.

Thirty Windows servers make up the backbone for all instructional computing labs, and allow students to work remotely with resource-intensive and computationally intensive applications. There are four computer labs and one instructional computer lab with 200 Windows workstations.

A high-speed network that links the entire infrastructure ensures latency-free operation for users from UCLA and around the world. It consists of dual fiber uplinks to a Cisco core router, which feeds and routes 20 networks and over 100 switches. The network serves over 8,000 users across four buildings.

For backup and disaster recovery, large-capacity LTO tapes are used to back up servers and selected user workstations regularly, and incremental backups are done to online disk storage. Tapes are sent to off-site storage monthly. The servers are protected by two high-capacity UPS units along with several racked UPS for short-term power outages. Campus emergency power keeps critical equipment running during extended downtime.

Faculty and staff have access to Microsoft Office software at no charge through the Microsoft Consolidated Campus Agreement (MCCA). Adobe software is also available to tenure-track faculty and staff. Microsoft Azure Dev Tools for Teaching, Autodesk, and Ansys programs offer additional software at no charge to all UCLA engineering students.

The school’s manufacturing engineering program operates a group of workstations dedicated to CAD/CAM instruction; and the Computer Science Department operates a network of SUN, Windows, and Macintosh workstations. The school is connected to the Internet through high-speed networks. Computing resources at the national supercomputer centers are also available.

Shop Services Center

The Shop Services Center is available to faculty, staff, and students for projects.

Continuing Education

UCLA Extension

10960 Wilshire Boulevard, Suite 1600
Digital Technology 310-206-6794
Engineering 310-825-4100

Engineering and Digital Technology Department

Varaz Shahmirian, PhD, Director
Vivian Taslakian, MBA, Program Director

The UCLA Extension Engineering and Digital Technology department offers one of the nation’s largest selections of engineering continuing education programs. A short-course program of 150 annual offerings draws participants from around the world for two- to four-day intensive programs. Many of these short courses are also offered on-site at companies and government agencies. The acclaimed Technica l Management Program has been offered for more than 60 years.

The Information Systems program offers over 200 courses annually in applications programming, data science, database management, coding boot camp, cybersecurity, systems analysis, and Web technology.

The Engineering program offers over 250 courses annually, including 10 certificate
programs in advanced plumbing systems design, agile project management, biotechnology engineering, communication systems, construction management, contract management, information technology management, government cost estimating and pricing, medical device engineering, project management, recycling and solid waste management, and supply chain management. In addition, the department offers EIT and PE review courses in mechanical engineering. All engineering and technical management courses are offered online.

Career Services

UCLA Career Center
501 Westwood Plaza, Strathmore Building
310-206-1915

The UCLA Career Center assists UCLA Samueli undergraduate and graduate students, and alumni, in exploring career possibilities, preparing for graduate and professional school, obtaining employment and internship leads, and developing skills for conducting a successful job search.

Services include individual career counseling, career assessments, workshops, industry-specific programming, employer information sessions, career fairs, and targeted networking opportunities. Annual engineering and technical fairs, held in fall and winter quarters, feature more than 100 top national and local employers. Using a Handshake account, students can discover internship and job opportunities, schedule career counseling appointments, access career resources, and register for events.

Career Center drop-in hours (Tuesday through Thursday from 10 a.m. to 2 p.m.) offer support with résumés, cover letters, and the job/internship search process. The center is open Monday through Friday from 9 a.m. to 5 p.m. An engineering-specific pop-up event is held once per quarter in 6288 Boelter Hall.

Health Services

Ashe Student Health and Wellness Center
221 Westwood Plaza
310-825-4073

The Ashe Student Health and Wellness Center is a full-service medical clinic available to all registered UCLA students. Most services are subsidized by registration fees, and a current BruinCard is required for service. Its clinical staff of physicians, nurse practitioners, and nurses is board certified. It offers primary care, specialty clinics, and physical therapy. The center has its own laboratory and radiology sections. It operates the Bruin Health Pharmacy and U.S. Centers for Disease Control and Prevention. Counseling and Psychological Services (CAPS) offers short-term personal counseling and psychotherapy. Psychologists, clinical social workers, and psychiatrists assist with situational stresses and emotional problems from the most mild to severe. Campus Assault Resources and Education (CARE) counselors provide information, support, and resources concerning assault and domestic violence. Service is confidential.

Mental Health Services

Counseling and Psychological Services
221 Wooden Center West
310-825-0768

Services for mental health range from routine counseling and psychotherapy to crisis counseling. Counseling and Psychological Services (CAPS) offers short-term personal counseling and psychotherapy. Psychologists, clinical social workers, and psychiatrists assist with situational stresses and emotional problems from the most mild to severe. Campus Assault Resources and Education (CARE) counselors provide information, support, and resources concerning assault and domestic violence. Service is confidential.

Services for Students with Disabilities

Center for Accessible Education
A255 Murphy Hall
310-825-1501

The Center for Accessible Education (CAE) offers academic support services to regularly enrolled students with documented permanent or temporary disabilities in compliance with Section 504 of the Rehabilitation Act of 1973, the Americans with Disabilities Act (ADA) of 1990, and UC and UCLA policies. Services include campus orientation and accessibility, notetakers, reader service, sign-language interpreters, registration assistance, test-taking facilitation, special parking assistance, real-time captioning, assistive listening devices, on-campus transportation, adaptive equipment, support groups and workshops, tutorial referral, special materials, housing appeals, referral to the Disabilities and Computing Program, and processing of California Department of Rehabilitation authorizations.

There is no fee for any of these services. All contacts and assistance are handled confidentially.

Disabilities and Computing Program
4909 Math Sciences
310-206-7133

The Disabilities and Computing Program (DCP) supplies adaptive technology and information-access support and services to students, faculty, and staff with disabilities. Applications include voice input, Braille, large print, screen-reading software, and learning disability software. Consulting and training for individuals and departments are available. The program also offers Web accessibility evaluations and guidelines.

International Student Services

Dashew Center for International Students and Scholars
106 Bradley International Hall
310-825-1681

The Dashew Center for International Students and Scholars assists students with questions about immigration, employment, government regulations, financial aid, academic and administrative procedures, cultural adjustment, and personal matters. The center seeks to improve student and community relationships; helps international students with language, housing, and personal concerns; and sponsors cultural, educational, and social programs. It also offers visa assistance for faculty members, researchers, and post-doctoral scholars.
Fees and Financial Support

Fees and Expenses
Annual UCLA student fees shown for 2021-22 are current as of publication. See the Registrar fees web page for fee breakdown by term.

Students who are not legal residents of California (out-of-state and international students) pay nonresident supplemental tuition. See the UCLA General Catalog appendix or the Registrar’s website for information on how to determine residence for tuition purposes. Inquiries may be directed to the Residence Deputy, UCLA Registrar’s Office, 1113 Murphy Hall, Los Angeles, CA 90024-1429.

In addition to the fees shown, students should be prepared to pay living expenses for the academic period.

Living Accommodations

UCLA Housing Services
360 De Neve Drive, Box 95383
Los Angeles, CA 90095-1383
310-206-7011

Housing in Los Angeles, both on and off campus, is in great demand. Students should make arrangements early. Newly admitted students should access the UCLA Housing website for information about costs, locations, and eligibility for both private and UCLA-sponsored housing.

Information about campus residence halls and suites, and applications for on-campus housing, are available from the UCLA Housing website.

Financial Aid

Financial Aid and Scholarships
A129J Murphy Hall
310-206-0400

Undergraduate Students

Financial aid at UCLA includes scholarships, grants, loans, and work-study programs. With the exception of certain scholarships, awards are based on need as determined by national financial aid criteria. California residents must file the Free Application for Federal Student Aid (FAFSA). Students who are not citizens or permanent residents but who are eligible for Assembly Bill 540 nonresident fee waivers may be eligible to qualify for scholarships, UCLA grant aid, and additional state aid if they complete a California Dream Act application. International students in their first year are ineligible for aid. Continuing undergraduate international students are asked to submit a separate Financial Aid Application for International Students.

Applications for each academic year are available in January. The priority application deadline for financial aid for the 2022-23 academic year is March 1, 2022.

Scholarships

All UCLA undergraduate scholarship awards are made on a competitive basis,

2021-22 ANNUAL UCLA UNDERGRADUATE AND GRADUATE STUDENT FEES

Fees subject to revision without notice.

<table>
<thead>
<tr>
<th>Fee Category</th>
<th>Undergraduate Student</th>
<th>Graduate Student</th>
<th>Academic Doctoral Student</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resident</td>
<td>Nonresident</td>
<td>Resident</td>
</tr>
<tr>
<td>Tuition</td>
<td>$11,442.00</td>
<td>$11,442.00</td>
<td>$11,442.00</td>
</tr>
<tr>
<td>Student Services Fee</td>
<td>1,128.00</td>
<td>1,128.00</td>
<td>1,128.00</td>
</tr>
<tr>
<td>Nonresident Supplemental Tuition (NRST)*</td>
<td>29,754.00</td>
<td>15,102.00</td>
<td>15,102.00</td>
</tr>
<tr>
<td>Ackerman Student Union Fee</td>
<td>69.00</td>
<td>69.00</td>
<td>69.00</td>
</tr>
<tr>
<td>Ackerman/Kerckhoff Seismic Fee</td>
<td>113.00</td>
<td>113.00</td>
<td>113.00</td>
</tr>
<tr>
<td>Arts Restoring Community Fee</td>
<td>5.42</td>
<td>5.42</td>
<td>5.42</td>
</tr>
<tr>
<td>Bruin Bash Fee</td>
<td>4.70</td>
<td>4.70</td>
<td>4.70</td>
</tr>
<tr>
<td>BruinGO Universal Access Transit Pass Fee</td>
<td>76.34</td>
<td>76.34</td>
<td>76.34</td>
</tr>
<tr>
<td>Course Materials and Services Fee</td>
<td>varies, see course listings</td>
<td>varies, see course listings</td>
<td>varies, see course listings</td>
</tr>
<tr>
<td>Good Clothes Good People Basic Needs Fee</td>
<td>1.01</td>
<td>1.01</td>
<td>1.01</td>
</tr>
<tr>
<td>Graduate Students Association Fee</td>
<td>38.25</td>
<td>38.25</td>
<td>38.25</td>
</tr>
<tr>
<td>Graduate Writing Center Fee</td>
<td>18.60</td>
<td>18.60</td>
<td>18.60</td>
</tr>
<tr>
<td>Instructional Enhancement Initiative (IEI) Fee</td>
<td>324.00</td>
<td>324.00</td>
<td>324.00</td>
</tr>
<tr>
<td>PLEDGE Fee</td>
<td>58.77</td>
<td>58.77</td>
<td>58.77</td>
</tr>
<tr>
<td>Student Health Insurance Plan (UCSHIP)</td>
<td>4,720.11</td>
<td>4,720.11</td>
<td>4,720.11</td>
</tr>
<tr>
<td>Student Programs, Activities, and Resources Complex (SPARC) Fee</td>
<td>114.00</td>
<td>114.00</td>
<td>114.00</td>
</tr>
<tr>
<td>Undergraduate Students Association Fee</td>
<td>270.39</td>
<td>270.39</td>
<td>270.39</td>
</tr>
<tr>
<td>Wooden Center Fee</td>
<td>37.00</td>
<td>37.00</td>
<td>37.00</td>
</tr>
<tr>
<td>Continuing student total mandatory fees</td>
<td>$16,380.69</td>
<td>$46,134.69</td>
<td>$17,756.30</td>
</tr>
<tr>
<td>Document Fee</td>
<td>165.00</td>
<td>165.00</td>
<td>165.00</td>
</tr>
<tr>
<td>New student total mandatory fees</td>
<td>$16,545.69</td>
<td>$46,299.69</td>
<td>$17,836.30</td>
</tr>
</tbody>
</table>

*Beginning with the first academic term following advancement to doctoral candidacy, nonresident supplemental tuition for graduate students is reduced by 100% for a maximum of three years including nonregistered time periods.
with consideration given to academic excellence, achievement, scholastic promise, and financial need. Scholarships are awarded to entering and continuing undergraduates. The term and amount of the award vary; students are expected to maintain academic excellence in their coursework.

Regents Scholarships are awarded to students with an outstanding academic record and a high degree of promise. Regents Scholars receive a yearly honorarium if they have no financial need. If financial need is established, other scholarships and/or grants are awarded to cover that need.

UCLA Samuei Scholarships are awarded to entering and continuing undergraduate students based on criteria including financial need, academic excellence, community service, extracurricular activities, and research achievement. The school works with alumni, industry, and individual donors to establish scholarships to benefit engineering students. In 2020-21, the school awarded 189 undergraduate scholarship awards totaling more than $1 million. The majority of these scholarships are publicized in the summer, with additional scholarships promoted throughout the academic year as applicable. For more information on all available scholarships, see the school undergraduate scholarships web page.

Grants

Cal Grants A and B are awarded by the California Student Aid Commission to entering and continuing undergraduate students who are U.S. citizens or eligible non-citizens and California residents, based on financial need and academic achievement. Cal Grant A awards are applied toward tuition and fees. Cal Grant B awards help with living expenses, books, supplies, and transportation costs.

Federal Pell Grants are federal aid awards designed to provide financial assistance to U.S. citizens or eligible noncitizens who are full-time students in degree programs in the school, the University also offers work-study and low-interest loans based on financial need exclusively. Need-based awards are administered by Financial Aid and Scholarships, A129J Murphy Hall. Financial aid applicants must file the Free Application for Federal Student Aid (FAFSA).

Continuing graduate students should contact Financial Aid and Scholarships in

Federal Family Education Loan Program

Student Loan Services and Collections
A227 Murphy Hall
310-825-9864

Federal loans are available to undergraduate or graduate students who are U.S. citizens or eligible noncitizens and who carry at least a half-time academic workload. Information on loan programs is available from Financial Aid and Scholarships. All loan recipients must complete an exit interview with Loan Services Office before leaving UCLA for any reason. This interview helps students understand their loan agreement and plan for loan repayment. Failure to complete an exit interview results in a hold being placed on all university services and records. In addition, if the campus-based loans become delinquent following separation from UCLA, all university services and records will be withheld. For more information concerning loan repayment, contact Student Loan Services and Collections.

Work-Study Programs

Under Federal Work-Study, the federal government pays a portion of the student’s wage and the employer pays the balance. When possible, work is related to student educational objectives. Hourly pay rates comply with minimum wage laws and vary with the nature of the work, experience, and capabilities. Employment may be on or off campus. To be eligible, undergraduate and graduate students must demonstrate financial need and be a U.S. citizen or eligible noncitizen. Submission of the FAFSA is required.

Students must be enrolled at least half-time (6 units for undergraduates, 4 for graduate students) and not be appointed at more than 50 percent time while employed at UCLA. Students not meeting these requirements are subject to Social Security and Medicare taxation.

Community Service is a component of the Federal Work-Study program. Students who secure a community service position are eligible to petition for an increase in work-study funds up to a total of $5,000 while at the same time reducing their Perkins and/or Stafford loan by the amount of the increase. Most community service positions are located off campus.

Graduate Students

A high percentage of UCLA Samuei graduate students receive departmental financial support.

Merit-Based Support

Three major types of merit-based support are available in the school:

1. Fellowships from University, private, or corporate funds
2. Employment as a teaching assistant
3. Employment as a graduate student researcher

Fellowships usually supply stipends competitive with those of other major universities, plus tuition and nonresident supplemental tuition (where applicable). These stipends may be supplemented by a teaching assistantship or graduate student researcher appointment. The awards are generally reserved for new students.

Teaching assistantships are awarded to students on the basis of scholarship and promise as teachers. Appointees serve under the supervision of regular faculty members.

Graduate student researcher (GSR) appointments are awarded to students on the basis of scholastic achievement and promise as creative scholars. Appointees perform research under the supervision of a faculty member in research work. Full-time employment in summer and inter-term breaks is possible, depending on the availability of research funds from contracts or grants.

Since a graduate student researcher appointment constitutes employment in the service of a particular faculty member who has a grant, students must take the initiative in obtaining desired positions.

GSR appointments are generally awarded after one year of study at UCLA.

Applications for departmental financial support must be accepted for admission to UCLA Samuei in order to be considered in the 2021-22 competition. Applicants should check the deadline for submitting the UCLA Application for Graduate Admission and the Fellowship Application for Entering Graduate Students with their preferred department.

Need-Based Aid

Unlike the awards above, which are based solely on merit and administered by the school, the University also offers work-study and low-interest loans based on financial need exclusively.

Need-based awards are administered by Financial Aid and Scholarships, A129J Murphy Hall. Financial aid applicants must file the Free Application for Federal Student Aid (FAFSA).
December 2021 for information on 2022-23 application procedures.

International graduate students are not eligible for need-based University financial aid or for long-term student loans.

School of Engineering Fellowships

Fellowship packages offered by the school may include fellowship contributions from the following sources:

- **Atlantic Richfield Company (ARCO) Fellowship.** Chemical and Biomolecular Engineering Department; supports study in chemical engineering
- **Balu and Mohini Balakrishnan Endowed Fellowship.** Supports doctoral study in any engineering department
- **William and Mary Beedle Fellowship.** Chemical and Biomolecular Engineering Department; supports study in chemical engineering
- **Boeing Fellowship.** Supports graduate study in mechanical and aerospace engineering
- **John J. and Clara C. Boelter Fellowship.** Supports study in engineering
- **Broadcom Fellowship.** Electrical and Computer Engineering Department; supports doctoral students who have passed the preliminary examination and are doing research that explores new possibilities in state-of-the-art 22-nm CMOS technology
- **Broadcom Foundation First Year Fellowship.** Supports first-year doctoral students in electrical engineering
- **Leon and Alyne Camp Fellowship.** Supports graduate study in electrical and/or mechanical engineering, must be U.S. citizen
- **Deutsch Company Fellowship.** Supports engineering research on problems that aid small business in Southern California
- **Electrical Engineering Graduate Fellowship.** Supports master’s or doctoral study in electrical engineering
- **Venky Harinarayan Fellowship.** Supports doctoral study in computer science
- **IBM Doctoral Fellowship.** Supports doctoral study in computer science
- **Intel Fellowship.** Computer Science Department; supports doctoral study in selected areas of computer science
- **The Kalosworks.org Fellowship.** Supports graduate students in electrical engineering who have a GPA of at least 3.0 and have demonstrated financial need
- **Les Knesel Scholarship Fund.** Materials Science and Engineering Department; supports master’s or doctoral study in ceramic engineering
- **Guru Krupa Foundation Fellowships in Electrical Engineering.** Multiple fellowships to support graduate study with preference for those conducting research in integrated circuits and embedded systems or signals and systems, and who have an undergraduate degree in electrical engineering from the Indian Institutes of Technology (IIT) or the Indian Institute of Science, Bangalore
- **T.H. Lin Graduate Fellowship.** Civil and Environmental Engineering Department; supports study by an international student in structural mechanics
- **Living Rocks Electrical Engineering Fellowship.** Supports graduate study with preference for students conducting research in the areas of integrated circuits and embedded systems or signals and systems, and who have an undergraduate degree in electrical engineering from National Taiwan University, National Tsing Hua University, or National Chiao Tung University in Taiwan
- **Living Spring Fellowship.** Electrical and Computer Engineering Department; supports graduate students with preference for those conducting research in integrated circuits and embedded systems or signals and systems, and who have an undergraduate degree in electrical engineering degrees from National Taiwan University, National Tsing Hua University, or National Chiao Tung University in Taiwan
- **Microsoft Fellowship.** Supports doctoral study in computer science
- **National Consortium for Graduate Degrees for Minorities in Engineering and Science (GEM) Fellowships.** Support study in engineering and science to highly qualified individuals from communities where human capital is virtually untapped
- **Northrop Grumman Fellowship.** Supports graduate study in mechanical and aerospace engineering
- **H.J. Orchard Memorial Fellowship.** Supports graduate study in electrical engineering
- **Qualcomm Innovation Fellowship.** Supports doctoral students across a broad range of technical research areas based on Qualcomm core values of innovation, execution, and teamwork
- **Raytheon Fellowship.** Supports graduate study in electrical engineering with preference for U.S. citizens
- **Martin Rubin Scholarship.** Supports two undergraduate and/or graduate students pursuing degrees in civil engineering with an interest in transportation engineering
- **Henry Samueli Fellowship.** Electrical and Computer Engineering Department; supports master’s and doctoral students
- **Henry Samueli Fellowship.** Mechanical and Aerospace Engineering Department; supports master’s and doctoral students
- **Texaco Scholarship.** Civil and Environmental Engineering Department; supports research in environmental engineering
- **Dr. Robert K. Williamson Graduate Fellowship.** Supports graduate study in mechanical and aerospace engineering

Many other companies in the area also make arrangements for their employees to work part-time and to study at UCLA for advanced degrees in engineering or computer science. In addition, the Graduate Division offers other fellowship packages including the Dissertation Year, Eugene V. Cota-Robles, and Graduate Opportunity Fellowships.

Special Programs, Activities, and Awards

Center for Excellence in Engineering and Diversity (CEED)

The UCLA Samueli Center for Excellence in Engineering and Diversity (CEED) seeks to create a community of collaborative and sustainable partnerships that offer academic and professional development support to disadvantaged and underrepresented engineering and computer science undergraduate and graduate students.CEED also supports precollege students in local middle and high schools who are interested in science, computer science, engineering, mathematics, and technology by offering opportunities to learn through hands-on projects.

Precollege Outreach Programs

MESA College Prep Program. Through CEED, UCLA Samueli partners with middle and high school principals to implement the MESA College Prep services program, which focus on outreach and student development in engineering, mathematics, science, and computer science. At individual school sites, four mathematics and science teachers serve as College Prep advisers and coordinate the activities and instruction for 1000 students. Advisers work as a team to deliver services that include SAT preparation. College Prep prepares students for local and regional engineering and science competitions and provides mathematics and science tutor-
ing, computer science workshops, college admission workshops, field trips, and exposure to high-tech careers. The goal of the MESA College Prep Program is to increase the numbers of urban and educationally underserved students who are competitively eligible for UC admission, particularly in engineering and computer science.

The UCLA MESA Center currently serves students in 22 middle and high schools in the Los Angeles, Inglewood, and Centinela Valley unified school districts.

Undergraduate Programs

CEED currently supports some 352 underrepresented and educationally disadvantaged engineering students. Components of the undergraduate program include

CEED Summer Bridge. A two-week intensive residential summer program, CEED Summer Bridge provides advanced preparation and exposure for fall quarter classes in mathematics, chemistry, and computer science.

Freshman Course. Designed to give CEED freshmen exposure to the engineering profession, “Engineering 87—Introduction to Engineering Disciplines” also teaches the principles of effective study and team/community-building skills, time management, and research experiences.

Academic Excellence Workshops (AEW). Providing an intensive mathematics/science approach to achieving mastery through collaborative learning and facilitated study groups, workshops meet twice a week for two hours and are facilitated by a PhD student.

Bridge Review for Enhancing Engineering Students (BREEES). Sponsored by the National Science Foundation (NSF). A 14-day intensive summer program designed to provide CEED students with the skills and knowledge to gain sufficient mastery, understanding, and problem solving skills in the core engineering courses. Current CEED students and incoming CEED transfer students take part in lectures and collaborative, problem-solving workshops facilitated by UCLA graduate students.

Academic Advising and Counseling. A CEED counselor assists in the selection of course combinations, professors, and course loads and meets regularly with students to assess progress and discuss individual concerns.

Structured Study Nights. Weekly tutoring sessions are provided for introductory mathematics, science, computer, and core engineering courses.

Career Development. Presentations by corporate representatives and field trips to major company locations are offered. Other services include summer and full-time job placement and assistance.

Cluster Systems. Common class sections that team students, Cluster Systems facilitate group study and successful academic excellence workshops.

Student Study Center. A study area open 24 hours a day, the Study Student Center also houses a computer room and is used for tutoring, presentations, and engineering student organizations.

Scholarships/Financial Aid

UCLA Samuei also participates in the NA-CME and CEM scholarships. The CEED Industry Advisory Board and alumni provide significant contributions to program services and scholarships. Information may be obtained from the CEED director.

Student Organizations

UCLA Samuei CEED supports student chapters of three engineering organizations: the American Indian Science and Engineering Society (AISES), the National Society of Black Engineers (NSBE), and the Society of Latino Engineers and Scientists (SOLES). The UCLA chapter of the Society of Hispanic Professional Engineers (SHPE). These organizations are vital elements of the program.

American Indian Science and Engineering Society (AISES)

AISES encourages American Indians to pursue careers as scientists and engineers while preserving their cultural heritage. The goal of AISES is to promote unity and cooperation and to provide a basis for the advancement of American Indians while providing financial assistance and educational opportunities. AISES devotes most of its energy to its outreach program where members conduct monthly science academies with elementary and precollege students from Indian reservations. Serving as mentors and role models for younger students enables UCLA AISES students to further develop professionalism and responsibility while maintaining a high level of academics and increasing cultural awareness.

National Society of Black Engineers (NSBE)

Chartered in 1980 to respond to the shortage of blacks in science and engineering fields and to promote academic excellence among black students in these disciplines, UCLA NSBE offers academic assistance, tutoring, and study groups while sponsoring ongoing activities such as guest speakers, company tours, and participation in UCLA events such as Career Day and Engineers Week. NSBE also assists students with employment. Through the various activities sponsored by NSBE, students develop leadership and interpersonal skills while enjoying the college experience. UCLA NSBE was recently named small chapter of the year by the national organization.

Society of Latino Engineers and Scientists (SOLES)

Recognized as the national chapter of the year five times over the past ten years by the Society of Hispanic Professional Engineers (SHPE), SOLES promotes engineering as a viable career option for Latino students. SOLES is committed to the advancement of Latinos in engineering and science through endeavors to stimulate intellectual pursuit through group studying, tutoring, and peer counseling for all members. This spirit is carried into the commu-
nity with active recruitment of high school students into the field of engineering.

SOLES also strives to familiarize the UCLA community with the richness and diversity of the Latino culture and the scientific accomplishments of Latinos. SOLES organizes cultural events such as Latinos in Science, Cinco de Mayo, and co-sponsors the Women in Science and Engineering (WISE) Day with AISES and NSBE. By participating in campus events such as Career Day and Engineers Week, the organization’s growing membership strives to fulfill the needs of the individual and the community.

Women in Engineering

Women make up about 36 percent of the UCLA Samueli undergraduate enrollment and 24 percent of the graduate enrollment. Today’s opportunities for women in engineering are excellent, as both employers and educators try to change the image of engineering as a males-only field. Women engineers are in great demand in all fields of engineering.

Society of Women Engineers (SWE)

The Society of Women Engineers (SWE), recognizing that women in engineering are still a minority, has established a UCLA student chapter that sponsors field trips and engineering-related speakers (often professional women) to introduce the various options available to women engineers. The UCLA chapter of SWE, in conjunction with other Los Angeles schools, also publishes an annual résumé book to help women students find jobs; and presents a career day for women high school students.

Student and Honorary Societies

Professionally related societies and activities at UCLA provide valuable experience in leadership, service, recreation, and personal satisfaction. The faculty of the school encourages students to participate in such societies and activities where they can learn more about the engineering profession in a more informal setting than the classroom. For more information, see student clubs and organizations.

- American Indian Science and Engineering Society (AISES)
- American Institute of Aeronautics and Astronautics (AIAA)
- American Institute of Chemical Engineers (AIChE)
- American Society of Civil Engineers (ASCE)
- American Society of Mechanical Engineers/ASME
- American Water Works Association (AWWA)
- Arab American Association of Engineers and Architects (AAAEAA)
- Association for Computing Machinery (ACM)
- Association for Computing Machinery—Women (ACM-W)
- Bioengineering Graduate Association (BGA)
- Biomedical Engineering Society (BMES)
- Blockchain at UCLA
- Bruin Consulting
- Bruin Entrepreneurs
- Bruin Home Solutions
- Bruin Space Group
- Building Engineers and Mentors (BEAM)
- California Geotechnical Engineers Association (CalGeo)
- Chi Epsilon (Civil engineering honor society)
- Design Create Solar
- Earthquake Engineering Research Institute (EERI)—Structural Engineers Association of Southern California (SEAOSC)
- Engineering Ambassador Program
- Engineering and Entrepreneurial Group at UCLA
- Engineering Graduate Students Association (ECSA)
- Engineering Society, University of California (ESUC) (Umbrella group bridges student body and administration, hosts major events)
- Engineers Without Borders (EWB)
- Eta Kappa Nu (Electrical engineering/computer science and engineering honor society)
- exploretech.la
- IEEE Electron Devices Society (EDS)
- IEEE Electronics Packaging Society (EPS)
- IEEE Women Advancing Technology through Teamwork (WATT)
- Institute of Electrical and Electronic Engineers (IEEE)
- Institute of Transportation Engineers (ITE)
- International Society for Pharmaceutical Engineering (ISPE)
- Korean-American Scientists and Engineers Association (BruinKSEA)
- LA Blueprint
- Linux Users Group (LUG)
- Materials Research Society (MRS)
- MentorSEAS
- National Society of Black Engineers (NSBE)
- NoCode
- Nova
- Phi Sigma Rho (Engineering social sorority)
- Pilipinos in Engineering and Science (PIES)
- Queers in STEM (QSTEM)
- Renewable Energy Association (REA)
- Rocket Project at UCLA
- SAE Baja
- SAE Formula—Bruin Racing
- SAE Supermileage Vehicle (SMV)
- Society of Asian Scientists and Engineers (SASE)
- Society of Automotive Engineers (SAE)
- Society of Latino Engineers and Scientists (SOLES)
- Society of Women Engineers (SWE)
- Tau Beta Pi (Engineering honor society)
- Theta Tau (Professional engineering fraternity)
- Triangle (Social fraternity of engineers, architects, and scientists)
- UCLA 3D4E
- UCLA DevX
- Upsilon Pi Epsilon (International computing and information honor society)

Prizes and Awards

Each year, outstanding students are recognized for their academic achievement and exemplary record of contributions to the school. Recipients are acknowledged in the UCLA Samueli annual commencement program as well as by campuswide announcement.

The Russell R. O’Neill Distinguished Service Award is presented annually to an upper-division student in good academic standing who has made outstanding contributions through service to the undergraduate student body, student organizations, the school, and to the advancement of the undergraduate engineering program, through service and participation in extracurricular activities.

The Harry M. Showman Engineering Prize is awarded to a UCLA engineering student or students who most effectively communicate the achievements, research results, or social significance of any aspect of engineering to a student audience, the engineering professions, or the general public.

The Engineering Achievement Award for Student Welfare is given to undergraduate and graduate engineering students who have made outstanding contributions to student welfare through participation in extracurricular activities and who have given outstanding service to the campus community.

Additional awards may be given to those degree candidates who have achieved academic excellence. Criteria may include such items as grade-point average, creativity, research, and community service.

Departmental Scholar Program

Exceptionally promising juniors or seniors may be nominated as Departmental Scholars to pursue engineering bachelor’s and master’s degree programs simultaneously.

Minimum qualifications include the completion of 24 courses (96 quarter units) at UCLA, or the equivalent at a similar institution; a minimum 3.7 grade-point average
(GPA) in the major field upper-division courses and a minimum 3.7 cumulative GPA; and the requirements in preparation for the major. To obtain both the bachelor’s and master’s degrees, Departmental Scholars fulfill the requirements for each program. Students may not use any one course to fulfill requirements for both degrees.

For eligibility criteria and application deadlines, see the Departmental Scholar Program web page.

Exceptional Student Admissions Program

There is an Exceptional Student Admissions Program (ESAP) for outstanding UCLA Samuels undergraduates who wish to enter the school graduate program upon completion of the B.S. degree. ESAP is an alternative to the Departmental Scholar Program. In contrast to that program, an ESAP-admitted student would be an enrolled graduate student and eligible for consideration of graduate fellowships and teaching assistant positions if available.

For eligibility criteria and graduate application deadlines, see the Exceptional Student Admissions Program web page.

Academic Policies

Student Representation

The student body takes an active part in shaping policies of the school through elected student representatives on the school Executive Committee.

Official Publications

This Announcement of the Henry Samueli School of Engineering and Applied Science contains detailed information about the school, areas of study, degree programs, and course listings. The UCLA General Catalog, however, is the official and binding document for the guidance of students. UCLA students are responsible for complying with all rules, regulations, policies, and procedures described in the Catalog.

For rules and regulations on graduate study, see the Graduate Division website.

Grades

Grading Policy

Instructors should announce their complete grading policy in writing at the beginning of the term, along with the syllabus and other course information, and make that policy available on the course website. Once the policy is announced, it should be applied consistently for the entire term.

Grade Disputes

A student who believes that a grade has been given unfairly should first discuss the issue with the instructor of the course. If the dispute cannot be resolved between the student and the instructor, the student may refer the issue to the Associate Dean for Academic and Student Affairs, 6426 Boelter Hall.

The associate dean may form an ad hoc committee to review the complaint. The ad hoc committee members are recommended by the appropriate department chair and the associate dean. The student receives a copy of the ad hoc committee report as well as a copy of the associate dean’s recommendation. The student file will contain no reference to the dispute.

The associate dean informs the students of their rights with respect to complaints and appeals at UCLA.

Nondiscrimination

The University of California, in accordance with applicable federal and state laws and University policies, does not discriminate on the basis of race, color, national origin, religion, sex, gender identity, pregnancy (including pregnancy, childbirth, and medical conditions related to pregnancy and childbirth), physical or mental disability, medical condition (cancer-related or genetic characteristics), ancestry, marital status, age, sexual orientation, citizenship, or service in the uniformed services (including membership, application for membership, performance of service, application for service, or obligation for service in the uniformed services). The University also prohibits sexual harassment and harassment on any of the above bases. This nondiscrimination policy covers admission, access, and treatment in University programs and activities.

Students may grieve any action that they believe discriminates against them on the ground of race, color, national or ethnic origin, alienage, sex, religion, age, sexual orientation, gender identity, marital status, veteran status, or perceived membership in any of these categories which results in injuries to the student by contacting the Dean of Students by e-mail, or in person at 1104 Murphy Hall. Refer to UCLA Procedure 230.1, also available in 1104 Murphy Hall, for more information and procedures.

Inquiries regarding the University student-related nondiscrimination policies may be directed to the Office of the Dean of Students by e-mail, in person at 1104 Murphy Hall, or by phone at 310-825-3871. An assistant dean is available at this office to support students who need information or assistance in filing a discrimination complaint.

In accordance with applicable federal and state laws and University policy, including Title II of the Americans with Disabilities Act, Section 504 of the Rehabilitation Act of 1973, and University of California policy PACOS-20 (Policy on Nondiscrimination), UCLA does not discriminate on the basis of physical or mental disability. Retaliation for participation in University procedures relating to complaints of discrimination is also prohibited. This nondiscrimination policy covers admission, access, and treatment in University programs and activities. UCLA is committed to prohibiting disability-based discrimination and harassment, and retaliation, performing a prompt and equitable investigation of complaints alleging discrimination, and properly remedying discrimination when it occurs. Examples of discrimination against students with disabilities include, but are not limited to: failure to engage with the student in a discussion of reasonable accommodations; failure to implement approved reasonable accommodations such as the provision of notes or extra time on tests; and exclusion of a qualified student from any course, course of study, or other educational program or activity because of the student’s disability. Disability-based harassment is conduct which is sufficiently severe, pervasive, or persistent so as to interfere with or limit an individual’s ability to participate in or benefit from the services, activities, or opportunities offered by the University.

UCLA has issued Procedure 230.2: Student Grievances Regarding Violations of Anti-Discrimination Laws or University Policies on Discrimination on Basis of Disability. Students may grieve any action that they believe discriminates against them on the basis of disability by contacting the Office of the Dean of Students by e-mail, or in person at 1104 Murphy Hall. Refer to UCLA Procedure 230.2 for more information and procedures.

Title IX prohibits sex discrimination, including sexual harassment and sexual violence, in any education program or activity receiving federal financial assistance. Inquiries regarding the application of Title IX may be directed to the Title IX Office, 2255 Murphy Hall, 310-206-3417, or the U.S. Department of Education Office for Civil Rights.
Harassment

Sexual Harassment

The University of California is committed to creating and maintaining a community where all persons who participate in University programs and activities can work and learn together in an atmosphere free from all forms of harassment, exploitation, or intimidation. Every member of the University community should be aware that the University is strongly opposed to sexual harassment and that such behavior is prohibited by both law and by the UC Policy on Sexual Violence and Sexual Harassment (PDF, hereafter referred to as the SVSH Policy). The University will respond promptly and effectively to reports of sexual harassment and will take appropriate action to prevent, correct and, if necessary, discipline behavior that violates the SVSH Policy. See the Title IX sexual harassment prevention website.

Definitions

For detailed definitions of sexual harassment, refer to the SVSH Policy.

Complaint Resolution

An individual who believes that they have been sexually harassed may contact the Title IX director Mohammed Cato, 2255 Murphy Hall, 310-206-3417. If a student reports sexual harassment or sexual violence to a responsible employee, as defined under the SVSH Policy, the responsible employee must report it to the Title IX Office. Responsible employees include academic personnel, faculty members, and most other employees who are not defined as a confidential resource under the SVSH Policy.

Title IX prohibits sex discrimination, including sexual harassment and sexual violence, in any education program or activity receiving federal financial assistance. Inquiries regarding Title IX may be directed to the Title IX Office, 2255 Murphy Hall, 310-206-3417, or the U.S. Department of Education Office for Civil Rights.

Other Forms of Harassment

The University strives to create an environment that fosters the values of mutual respect and tolerance and is free from discrimination based on race, ethnicity, sex, religion, sexual orientation, disability, age, and other personal characteristics. Certainly harassment, in its many forms, works against those values and often corrodes a person’s sense of worth and interferes with one’s ability to participate in University programs or activities. While the University is committed to the free exchange of ideas and the full protection of free expression, the University also recognizes that words can be used in such a way that they no longer express an idea, but rather injure and intimidate, thus undermining the ability of individuals to participate in the University community. The University of California Policies Applying to Campus Activities, Organizations, and Students (hereafter referred to as Policies) presently prohibit a variety of conduct by students which, in certain contexts, may be regarded as harassment or intimidation.

For example, harassing expression which is accompanied by physical abuse, threats of violence, or conduct that threatens the health or safety of any person on University property or in connection with official University functions may subject an opposing student to University discipline under the provisions of the Policies.

Similarly, harassing conduct, including symbolic expression, which also involves conduct resulting in damage to or destruction of any property of the University or property of others while on University premises may subject a student visitor to University discipline under the provisions of Section 102.04 of the Policies.

Further, under specific circumstances described in Section 102.11 of the Policies, students may be subject to University discipline for misconduct which may consist solely of expression. Copies of these Policies are available in the Office of Student Conduct, 1104 Murphy Hall.

Complaint Resolution

One of the necessary measures in our efforts to assure an atmosphere of civility and mutual respect is the establishment of procedures which provide effective informal and formal mechanisms for those who believe that they have been victims of any of the above misconduct.

Many incidents of harassment and intimidation can be effectively resolved through informal means. For example, an individual may wish to confront the alleged offender immediately and firmly. An individual who chooses not to confront the alleged offender and who wishes help, advice, or information is urged to contact the Office of Student Conduct.

In addition to providing support for those who believe they have been victims of harassment, the Office of Student Conduct can help students to consider which of the available options is the most useful for the particular circumstances.

With regard to the universitywide student conduct harassment policy, complainants should be aware that not all conduct which is offensive may be regarded as a violation of this policy and may, in fact, be protected expression. Thus, the application of formal institutional discipline to such protected expression may not be legally permissible. Nevertheless, the University is committed to reviewing any complaint of harassing or intimidating conduct by a student and intervening on behalf of the complainant to the extent possible.

Disclosure of Student Records

Pursuant to the Federal Family Educational Rights and Privacy Act (FERPA), the California Information Practices Act, and the University of California Policies Applying to the Disclosure of Information from Student Records, students at UCLA have the right to

1. inspect and review records pertaining to themselves in their capacity as students, except as the right may be waived or qualified under federal and state laws and University policy
2. have withheld from disclosure, absent their prior written consent for release, personally identifiable information from their student records, except as provided by federal and state laws and University policy
3. inspect records maintained by UCLA of disclosures of personally identifiable information from their student records
4. seek correction of their student records through a request to amend the records or, if such request is denied, through a hearing
5. file complaints with the U.S. Department of Education regarding alleged violations of the rights accorded them by FERPA

UCLA, in accordance with federal and state laws and University policies, has designated the following categories of personally identifiable information as public information that UCLA may release and publish without the student’s prior consent: name, e-mail address, telephone numbers, major field of study, dates of attendance, number of enrolled course units, degrees and honors received, the most recent previous educational institution attended, participation in officially recognized activities (including intercollegiate athletics), and the name, weight, and height of participants on intercollegiate athletic teams.

As a matter of practice, UCLA does not publish student telephone numbers in the campus online directory unless released by the student. The term public information in this policy is synonymous with the term directory information in FERPA.

Students who do not wish certain items (i.e., name, e-mail address, telephone...
numbers, major field of study, dates of attendance, number of course units in which enrolled, and degrees and honors received) of this public information released and published may so indicate through MyUCLA. To restrict the release and publication of additional items in the category of public information, complete the UCLA FERPA Restriction Request form available from the Registrar’s Office, 1113 Murphy Hall.

Student records that are the subject of federal and state laws and University policies may be maintained in a variety of offices, including the Registrar’s Office, Office of Student Conduct, Career Center, Graduate Division, External Affairs Department, and offices of a student’s College or school and major department. Students are referred to the UCLA Campus Directory, which lists all the offices that may maintain student records, together with each office campus address and telephone number. Students have the right to inspect their student records in any such office, subject to the terms of federal and state laws and University policies. Inspection of student records maintained by the Registrar’s Office is by appointment only and must be arranged three working days in advance. Call 310-825-1091, option 6; or inquire at the Registrar’s Office, 1113 Murphy Hall.

A copy of applicable federal and state laws and University policies may be requested from the Information Practices office by e-mail, or by calling 310-794-8741. Information concerning student hearing rights may be obtained from that office, and from the Office of Student Conduct, 1206 Murphy Hall.
Undergraduate Programs

The Henry Samueli School of Engineering and Applied Science offers 10 four-year curricula listed below (see the departmental listings for complete descriptions of the programs), in addition to undergraduate minors in Bioinformatics and in Environmental Engineering:

1. Bachelor of Science in Aerospace Engineering
2. Bachelor of Science in Bioengineering
3. Bachelor of Science in Chemical Engineering
4. Bachelor of Science in Civil Engineering
5. Bachelor of Science in Computer Engineering
6. Bachelor of Science in Computer Science
7. Bachelor of Science in Computer Science and Engineering
8. Bachelor of Science in Electrical Engineering
9. Bachelor of Science in Materials Engineering
10. Bachelor of Science in Mechanical Engineering

The aerospace engineering, bioengineering, chemical engineering, civil engineering, computer science and engineering, electrical engineering, materials engineering, and mechanical engineering programs are accredited by the Engineering Accreditation Commission of ABET. The computer science and computer science and engineering curricula are accredited by the Computing Accreditation Commission of ABET. The undergraduate program in computer engineering, established in fall 2017, will be submitted to ABET for accreditation during the next ABET visit in 2024.

Admission

Applicants to UCLA Samueli must satisfy the general UC admission requirements. See the [undergraduate admission website](https://www.undergradadmission.uc.edu/) for details. Applicants must apply directly to the school by selecting one of the majors within the school or the undeclared engineering option. In the selection process, many elements are considered, including grades and academic preparation.

Students applying as freshmen or transfers must submit their applications during the November 1 through 30 filing period. In addition, it is essential that official test scores be received no later than the date in January when the December test scores are normally reported.

Fulfilling the admission requirements, however, does not assure admission to the school. Limits have had to be set for the enrollment of new undergraduate students. Thus, not every applicant who meets the minimum requirements can be admitted.

Although applicants may qualify for admission to UCLA Samueli in freshman standing, many students take their first two years in engineering at a community college and apply to the school at the junior level. Students who begin their college work at a California community college are expected to remain at the community college to complete the lower-division requirements in chemistry, computer programming, English composition, mathematics, physics, and the recommended engineering courses before transferring to UCLA.

Admission as a Freshman

Freshman applicants must meet the UC subject and scholarship requirements described on the [undergraduate admission website](https://www.undergradadmission.uc.edu/). UC requirements specify a minimum of three years of mathematics, including the topics covered in elementary and advanced algebra and two- and three-dimensional geometry. Additional study in mathematics, concluding with calculus or precalculus in the senior year, is strongly recommended and typical for applicants to UCLA Samueli.

Credit for Advanced Placement Examinations

Students may fulfill part of the school requirements with credit allowed at the time of admission for College Board Advanced Placement (AP) Examinations with scores of 3, 4, or 5. Students with AP Examination credit may exceed the 213-unit maximum by the amount of this credit. AP Examination credit for freshmen entering fall quarter 2021 fulfills UCLA Samueli requirements as indicated in the [AP credit table](https://www.undergradadmission.uc.edu/). Students who have completed 36 quarter units after high school graduation at the time of the examination receive no AP Examination credit.

Admission as a Transfer Student

Admission as a junior-level transfer student is competitive. The University of California requires applicants to have completed a minimum of 60 transferable semester units (90 quarter units) and two transferable English courses prior to enrolling at UCLA. In addition, to be considered all applicants to UCLA Samueli majors must have at least a 3.4 grade-point average in their college work. Many of the majors in the school are impacted. Excellent grades, especially for courses in preparation for the major, are expected.

Completion of the required courses in preparation for the major is critical for admission. Articulation agreements between California community colleges and UCLA Samueli include college-specific course numbers for these requirements and can be found on the [ASSIST](https://www.assist.org/) website. Applicants who are lacking two or more of the courses are unlikely to be admitted.

Applicants should have completed the following lower-division minimum subject requirements:

1. Mathematics, including calculus I and II, calculus III (multivariable), differential equations, and linear algebra. The Aerospace Engineering and Mechanical Engineering majors do not require differential equations, but it is recommended
2. Calculus-based physics courses in mechanics, electricity and magnetism, and waves, sound, heat, optics, and modern physics
3. Chemistry, including two terms of general chemistry. Bioengineering and Chemical Engineering majors are also required to complete two terms of organic chemistry. The Computer Science and Computer Science and Engineering majors do not require chemistry. Electrical Engineering majors must complete only one term of chemistry
4. Computer programming: applicants to the Computer Science, Computer Science and Engineering, and Electrical Engineering majors may take any C++, C, or Java course to meet the admission requirement, but to be competitive the applicant must take a C++ course equivalent to UCLA Computer Science 31. Applicants to Chemical Engineering may take any C++, C, Java, or MATLAB course to satisfy the admission requirement, but lack of a MATLAB course equivalent to UCLA Mechanical and Aerospace Engineering M20 or Civil and Environmental Engineering M20 will delay time to graduation. Applicants to all other engineering majors may take any C++, C, Java, or MATLAB course to satisfy the admission requirement, but the MATLAB course equivalent to Mechanical and Aerospace Engineering M20 or Civil and Environmental Engineering M20 is preferred
5. One year of biology for applicants to the Bioengineering major is recommended
6. English composition courses, including one course equivalent to English Composition 3 at UCLA and a second UC-transferable English composition course
Advanced Placement (AP) Examination Credit

All units and course equivalents to AP examinations are lower division. If an AP examination has been given UCLA course equivalency (e.g., Economics 2), it may not be repeated at UCLA for units or grade points.

<table>
<thead>
<tr>
<th>AP EXAMINATION</th>
<th>SCORE</th>
<th>UCLA LOWER-DIVISION UNITS AND COURSE EQUIVALENTS</th>
<th>CREDIT ALLOWED FOR UNIVERSITY AND GE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art History</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Drawing Portfolio</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Two-Dimensional Design Portfolio</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Three-Dimensional Design Portfolio</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Biology</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Chemistry</td>
<td>3</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Computer Science A Test</td>
<td>3, 4, or 5</td>
<td>2 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Computer Science AB Test</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Computer Science Principles</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Macroeconomics</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Microeconomics</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>English</td>
<td>8 units maximum for both tests</td>
<td>8 units maximum for both tests</td>
<td>8 units maximum for both tests</td>
</tr>
<tr>
<td>Language and Composition</td>
<td>3</td>
<td>8 excess units</td>
<td>Satisfies Entry-Level Writing requirement</td>
</tr>
<tr>
<td>Literature and Composition</td>
<td>3</td>
<td>8 excess units</td>
<td>Satisfies Entry-Level Writing requirement</td>
</tr>
<tr>
<td>Environmental Science</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Geography, Human</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Comparative</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>United States</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>Satisfies American History and Institutions requirement</td>
</tr>
<tr>
<td>History</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Languages and Literatures</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Chinese Language and Culture</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>French Language</td>
<td>3</td>
<td>French 3 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>French Literature</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
</tbody>
</table>

(table continues next page)
UCLA SAMUELI ADVANCED PLACEMENT EXAMINATION SCORE-TO-CREDIT CONVERSION (CONTINUED)

<table>
<thead>
<tr>
<th>AP EXAMINATION</th>
<th>SCORE</th>
<th>UCLA LOWER-DIVISION UNITS AND COURSE EQUIVALENTS</th>
<th>CREDIT ALLOWED FOR UNIVERSITY AND GE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>German Language</td>
<td>3</td>
<td>German 3 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>German 4 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>German 5 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Japanese Language and Culture</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Latin Literature</td>
<td>3</td>
<td>Latin 1 (4 units)</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>Latin 3 (4 units)</td>
<td>No application</td>
</tr>
<tr>
<td>Spanish Language</td>
<td>3</td>
<td>Spanish 3 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Spanish 4 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Spanish 5 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Spanish Literature</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
<td>8 units maximum for both tests</td>
<td></td>
</tr>
<tr>
<td>Mathematics AB Test: Calculus</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4 units</td>
<td>May be applied toward Mathematics 31A</td>
</tr>
<tr>
<td>Mathematics BC Test: Calculus</td>
<td>3</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4 excess units plus 4 units</td>
<td>4 units may be applied toward Mathematics 31A</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8 units</td>
<td>Mathematics 31A plus 4 units that may be applied toward Mathematics 31B</td>
</tr>
<tr>
<td>Music Theory</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Physics 1</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Physics 2</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Physics B Test</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Physics C Test: Electricity and Magnetism</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Physics C Test: Mechanics</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>4 units</td>
<td>May be applied toward Physics 1A</td>
</tr>
<tr>
<td>Psychology</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>Psychology 10 (4 excess units)</td>
<td>No application</td>
</tr>
<tr>
<td>Statistics</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Mathematics 31B. Integration and Infinite Series (4 units)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics 32A, 32B. Calculus of Several Variables (4 units each)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics 33A. Linear Algebra and Applications (4 units)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics 33B. Differential Equations (4 units)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics 1A. Physics for Scientists and Engineers: Mechanics (5 units)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics 1B. Physics for Scientists and Engineers: Oscillations, Waves, Electric and Magnetic Fields (5 units)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics 1C. Physics for Scientists and Engineers: Electrodynamics, Optics, and Special Relativity (5 units)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics 4AL. Physics Laboratory for Scientists and Engineers: Mechanics (2 units)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics 4BL. Physics Laboratory for Scientists and Engineers: Electricity and Magnetism (2 units)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transfer applicants may complete courses in addition to those above that satisfy degree requirements. Engineering and computer science courses appropriate for each major may be found on the ASSIST website.

Lower-Division Courses in Other Departments

- Chemistry and Biochemistry 20A. Chemical Structure (4 units)
- Chemistry and Biochemistry 20B. Chemical Energetics and Change (4 units)
- Chemistry and Biochemistry 20L. General Chemistry Laboratory (3 units)
- English Composition 3. English Composition, Rhetoric, and Language (5 units)
- Mathematics 31A. Differential and Integral Calculus (4 units)
- Mathematics 31B. Integration and Infinite Series (4 units)
- Mathematics 32A, 32B. Calculus of Several Variables (4 units each)
- Mathematics 33A. Linear Algebra and Applications (4 units)
- Mathematics 33B. Differential Equations (4 units)
- Physics 1A. Physics for Scientists and Engineers: Mechanics (5 units)
- Physics 1B. Physics for Scientists and Engineers: Oscillations, Waves, Electric and Magnetic Fields (5 units)
- Physics 1C. Physics for Scientists and Engineers: Electrodynamics, Optics, and Special Relativity (5 units)
- Physics 4AL. Physics Laboratory for Scientists and Engineers: Mechanics (2 units)
- Physics 4BL. Physics Laboratory for Scientists and Engineers: Electricity and Magnetism (2 units)

The courses in chemistry, mathematics, and physics are those required as preparation for majors in these subjects. Transfer students should select equivalent courses required for engineering or physical sciences majors.

Requirements for BS Degrees

The Henry Samueli School of Engineering and Applied Science awards BS degrees to students who have satisfactorily completed four-year programs in engineering studies.
Students must meet University requirements, school requirements, and department requirements for the Bachelor of Science degree.

University Requirements
The University of California has two requirements that undergraduate students must satisfy in order to graduate: (1) Entry-Level Writing or English as a Second Language (ESL) requirement prior to completing the curriculum. A 2.0 minimum GPA in all upper-division courses offered in satisfaction of the subject and elective requirements of the curriculum. A 2.0 minimum GPA in upper-division mathematics, upper-division core courses, and the major field is also required for graduation. Grade-point averages are not rounded up.

Scholarship Requirement
In addition to the requirement of at least a 2.0 (C) grade-point average (GPA) in all courses taken at any UC campus, students must achieve at least a 2.0 GPA in all upper-division courses offered in satisfaction of the subject and elective requirements of the curriculum. A 2.0 minimum GPA in upper-division mathematics, upper-division core courses, and the major field is also required for graduation. Grade-point averages are not rounded up.

Academic Residence Requirement
Of the last 48 units completed for the BS degree, 36 must be earned in residence at UCLA Samuels on this campus. No more than 16 of the 36 units may be completed in Summer sessions at UCLA.

Writing Requirement
Students must complete the UC Entry-Level Writing or English as a Second Language (ESL) requirement prior to completing the school writing requirement.

Students admitted to the school are required to complete a two-term writing requirement—Writing I and engineering writing. Both courses must be taken for letter grades, and students must receive a C or better grade in each (a C– grade is not acceptable).

Writing I
The Writing I requirement must be satisfied by completing English Composition 3, 3D, 3DS, 3E, or 3SL with a C or better grade (a C– or Passed grade is not acceptable) by the end of the second year of enrollment. The Writing I requirement may also be satisfied by scoring 4 or 5 on one of the College Board Advanced Placement Examinations in English; a combination of a score of 720 or better on the SAT Reasoning Test, Writing section (last administered in January 2016) and superior performance on the English Composition 3 Proficiency Examination; completing a course equivalent to English Composition 3 with C or better grade (a C– or Passed grade is not acceptable) taken at another institution; or scoring 5, 6, or 7 on an International Baccalaureate Higher Level Examination.

Students whose native language is not English may need to take English Composition 1A, 1B, and 2I before enrolling in a Writing I course. All courses in the sequence must be passed with C or better grade (a C– or Passed grade is not acceptable).

Engineering Writing
The engineering writing requirement is satisfied by selecting one approved engineering writing (EW) course from the school writing course list or by selecting one approved Writing II (W) course. The course must be completed with a C or better grade (a C– or Passed grade is not acceptable). Writing II courses are published in the Schedule of Classes.

Writing courses also approved for general education credit may be applied toward the relevant general education foundational area.

Technical Breadth Requirement
The technical breadth requirement consists of a set of three courses providing sufficient breadth outside the student's core program. A list of school Faculty Executive Committee-approved technical breadth requirement courses is available online or in the Office of Academic and Student Affairs, and deviations from that list are subject to approval by the associate dean for Academic and Student Affairs. None of the technical breadth requirement courses selected by students can be used to satisfy other major course requirements.

Ethics Requirement
The ethics and professionalism requirement is satisfied by completing one course from Engineering 181EW, 182EW, 183EW, or 185EW with a C or better grade (a C– or Passed grade is not acceptable). The course may be applied toward the engineering writing requirement.

General Education Requirements
General education (GE) is more than a checklist of required courses. It is a program of study that reveals to students the ways that research scholars in the arts; humanities, social sciences, and natural sciences create and evaluate new knowledge; introduces students to the important ideas and themes of human cultures; fosters appreciation for the many perspectives and the diverse voices that may be heard in a democratic society; and develops the intellectual skills that give students the dexterity they need to function in a rapidly changing world.

This entails the ability to make critical and logical assessments of information, both traditional and digital; deliver reasoned and persuasive arguments; and identify, acquire, and use the knowledge necessary to solve problems.

Students may take one GE course per term on a Passed/Not Passed (P/NP) basis if they are in good academic standing and are additionally enrolled in nine letter-graded units. For details on P/NP grading, see Grades in the Academic Policies section of the UCLA General Catalog or consult with the Office of Academic and Student Affairs. GE courses used to satisfy the engineering writing and/or ethics requirements must be taken for a letter grade.

Foundations of Knowledge
General education courses are grouped into three foundational areas: Foundations of the Arts and Humanities, Foundations of Society and Culture, and Foundations of Scientific Inquiry.

Five courses (24 units minimum) are required. Engineering writing requirement courses also approved for GE credit may be applied toward the relevant GE foundational areas.

Students must meet with a counselor in the Office of Academic and Student Affairs to determine the applicability of GE cluster courses toward the engineering writing or GE requirements.
Courses listed in more than one category can fulfill GE requirements in only one of the categories.

Foundations of the Arts and Humanities

Two 5-unit courses selected from two different subgroups:
- Literary and Cultural Analysis
- Philosophical and Linguistic Analysis
- Visual and Performance Arts Analysis and Practice

Courses in this area supply perspectives and intellectual skills necessary to comprehend and think critically about our situation in the world as human beings. In particular, courses furnish the basic means to appreciate and evaluate the ongoing efforts of humans to explain, translate, and transform their diverse experiences of the world through such media as language, literature, philosophical systems, images, sounds, and performances. The courses introduce students to the historical development and fundamental intellectual and ethical issues associated with the arts and humanities and may also investigate the complex relations between artistic and humanistic expression and other facets of society and culture.

Foundations of Society and Culture

Two 5-unit courses, one from each subgroup:
- Historical Analysis
- Social Analysis

Courses in this area introduce students to the ways in which humans organize, structure, rationalize, and govern their diverse societies and cultures over time. The courses focus on a particular historical question, societal problem, or topic of political and economic concern in an effort to demonstrate how issues are objectified for study, how data is collected and analyzed, and how new understandings of social phenomena are achieved and evaluated.

Foundations of Scientific Inquiry

One course (4 units minimum) from the Life Sciences subgroup or one course from Bioengineering CM145/Chemical Engineering CM145, Chemistry and Biochemistry 153A, or Civil and Environmental Engineering M166/Environmental Health Sciences M166:
- Life Sciences

This requirement is automatically satisfied for Bioengineering and Chemical Engineering majors. The requirement is satisfied for Civil Engineering majors by the natural science requirement.

Courses in this area ensure that students gain a fundamental understanding of how scientists formulate and answer questions about the operation of both the physical and biological world. Courses also deal with some of the most important issues, developments, and methodologies in contemporary science, addressing such topics as the origin of the universe, environmental degradation, and the decoding of the human genome. Through lectures, laboratory experiences, writing, and intensive discussions, students consider the important roles played by the laws of physics and chemistry in society, biology, Earth and environmental sciences, and astrophysics and cosmology.

Foundations Course Lists

Creating and maintaining a general education curriculum is a dynamic process; consequently, courses are frequently added to the list. For the most current list of approved courses that satisfy the Foundations of Knowledge GE plan, consult with an academic counselor or see the GE Requirement web page.

Intersegmental General Education Transfer Curriculum

Transfer students from California community colleges have the option to fulfill UCLA lower-division GE requirements by completing the Intersegmental General Education Transfer Curriculum (IGETC) prior to transfer. The curriculum consists of a series of subject areas and types of courses that have been agreed on by the University of California and the California community colleges. Although GE or transfer core courses are degree requirements rather than admission requirements, students are advised to fulfill them prior to transfer. The IGETC significantly eases the transfer process, as all UCLA GE requirements are fulfilled when students complete the IGETC courses. Students who select the IGETC must complete it entirely before enrolling at UCLA. Otherwise, they must fulfill UCLA Samuei GE requirements. The school does not accept partial IGETC.

Department Requirements

UCLA Samueli departments generally set two types of requirements that must be satisfied for award of a degree: preparation for the major (lower-division courses) and the major (upper-division courses). Preparation for the major courses should be completed before beginning upper-division work.

Preparation for the Major

A major requires completion of a set of courses known as preparation for the major. Each department sets its own preparation for the major requirements; see the Departments and Programs chapter of this announcement.

The Major

Students must complete their major with a scholarship grade-point average of at least 2.0 (C) in all courses in order to remain in the major. Each course in the major department must be taken for a letter grade. See the Departments and Programs chapter of this announcement for details on each major.

Policies and Regulations

Degree requirements are subject to policies and regulations, including the following:

Student Responsibility

Students should take advantage of academic support resources, but they are ultimately responsible for keeping informed of and complying with the rules, regulations, and policies affecting their academic standing.

Study List

Study lists require approval of the dean of the school or a designated representative. It is the student’s responsibility to present a study list that reflects satisfactory progress toward the Bachelor of Science degree, according to standards set by the faculty. Study lists or programs of study that do not comply with these standards may result in enforced withdrawal from UCLA or other academic action.

Undergraduate students in the school are expected to enroll in at least 12 units each term. Students enrolling in fewer than 12 units must obtain approval by petition to the dean before enrolling in classes. The normal program is 16 units per term. Students may not enroll in more than 21 units per term unless an Excess Unit Petition is approved in advance by the dean.

Minimum Progress

Full-time UCLA Samueli undergraduate students must complete a minimum of 36 units in three consecutive terms in which they are registered.
Credit Limitations

Advanced Placement Examinations

Some portions of Advanced Placement (AP) Examination credit are evaluated by corresponding UCLA course number. If students take the equivalent UCLA course, a deduction of UCLA unit credit is made prior to graduation. See the AP credit table.

College Level Examination Program

Credit earned through the College Level Examination Program (CLEP) may not be applied toward the bachelor’s degree.

Community College/Lower Division Transfer Limitation

Effective for students admitted fall 2017 and later, after completing 105 lower-division quarter units toward the degree in all institutions attended, students are allowed no further unit credit for courses completed at a community college or for lower-division courses completed at any institution outside of the University of California. The University of California does not grant transfer credit for community college or lower-division courses beyond 105 quarter units, but students may still receive subject credit for this coursework to satisfy lower-division requirements. Units earned through Advanced Placement (AP), International Baccalaureate (IB), and/or A-Level examinations are not included in the limitation. Units earned at any UC campus (through extension, summer, cross-campus, UCEAP, Intercampus Visitor Program, and regular academic year enrollment) are not included in the limitation. To convert semester units into quarter units, multiply the semester units by 1.5; for example, 12 semester units x 1.5 = 18 quarter units. To convert quarter units into semester units, multiply the quarter units by .666; for example, 12 quarter units x .666 = 7.99 or 8 semester units.

Foreign Language

No credit is granted toward the bachelor’s degree for college foreign language courses equivalent to quarter levels one and two if the equivalent of level two of the same language was completed with satisfactory grades in high school.

Repetition of Courses

For undergraduate students who repeat a total of 16 or fewer units, only the most recently earned letter grades and grade points are computed in the grade-point average (GPA). After repeating 16 units, the GPA is based on all letter grades assigned and total units attempted. The grade assigned each time a course is taken is permanently recorded on the transcript.

1. To improve the GPA, students may repeat only those courses in which they receive a grade of C- or lower; NP or U grades may be repeated to gain unit credit. Courses in which a letter grade is received may not be repeated on a P/NP or S/U basis. Courses originally taken on a P/NP or S/U basis may be repeated on the same basis or for a letter grade.

2. Repetition of a course more than once requires the approval of the College or school or the dean of the Graduate Division and is granted only under extraordinary circumstances.

3. Degree credit for a course is given only once, but the grade assigned each time the course is taken is permanently recorded on the transcript.

4. There is no guarantee that in a later term a course can be repeated (such as in cases when a course is deleted or no longer offered). In these cases, students should consult with their academic counselor to determine if there is an alternate course that can be taken to satisfy a requirement. The alternate course would not count as a repeat of the original course.

Minors and Double Majors

UCLA Samueli students in good academic standing may be permitted to have a minor or double major. The second major must be outside the school (e.g., Electrical Engineering major and Economics major). If approved, no more than 20 upper-division units may be shared by both majors. UCLA Samueli students are not permitted to have a double major with two school majors (e.g., Chemical Engineering and Civil Engineering). Students may file an Undergraduate Request to Double Major or Add Minor form at the Office of Academic and Student Affairs, or online through the petition process web page. The school determines final approval of a minor or double major request; review is done on a case-by-case basis, and filing the request does not guarantee approval. Students interested in a minor or double major should schedule an appointment with an academic counselor online.

While minor or double major requests are considered, specializations are not considered.

Advising

It is mandatory for all students entering undergraduate programs to have their course of study approved by an academic counselor. After the first term, curricular and career advising is accomplished on a formal basis. First-year students are assigned a faculty adviser in their particular specialization.

In addition, undergraduate students are assigned, by major, to an academic counselor in the Office of Academic and Student Affairs who provides them with advice regarding general requirements for degrees, and UC, UCLA, and school regulations and procedures. It is the student’s responsibility to periodically meet with their academic counselor, as well as with their faculty adviser, to discuss curriculum requirements, programs of study, and any other academic matters of concern.

Curricula Planning Procedure

Students normally follow the curriculum in effect when they enter the school. California community college transfer students may also select the curriculum in the UCLA General Catalog in effect at the time they began their community college work in an engineering program, provided attendance has been continuous since that time.

Students admitted to UCLA in fall quarter 2012 and thereafter use the Degree Audit System, which can be accessed through MyUCLA.

UCLA Samueli undergraduate students following a Catalog year prior to fall quarter 2012 should schedule an appointment with their academic counselor online to review course credit and degree requirements and for program planning.

The student’s regular faculty adviser is available to assist in planning electives and for discussions regarding career objectives. Students should discuss their elective plan with the adviser and obtain the adviser’s approval.

Students should also see any member or members of the faculty specially qualified in their major for advice in working out a program of major courses.

Students are assigned to advisers by majors and major fields of interest. A specific adviser, or an adviser in a particular engineering department, may be requested by logging in to MyEngineering and clicking on the My Advisor’s link.

Academic counselors in the Office of Academic and Student Affairs assist students with UCLA procedures and answer questions related to general requirements.

Honors

Dean’s Honors List

Students following the engineering curricula are eligible to be named to the Dean’s
Honors List each term. Minimum requirements are a course load of at least 15 units (12 units of letter grade) with a grade-point average equal to or greater than 3.7. Students are not eligible for the Dean’s Honors List if they receive an Incomplete (I) or Not Passed (NP) grade or repeat a course. Only courses applicable to an undergraduate degree are considered toward eligibility for Dean’s Honors.

Latin Honors

Students who have achieved scholastic distinction may be awarded the bachelor’s degree with honors. Students eligible for 2021-22 honors at graduation must have completed 90 or more units for a letter grade at the University of California and must have attained a cumulative grade-point average (GPA) at graduation that places them in the top 20 percent of the school (GPA of 3.752 or better) for cum laude, the top 10 percent (GPA of 3.871 or better) for magna cum laude, and the top five percent (GPA of 3.934 or better) for summa cum laude. The minimum GPAs required are subject to change on an annual basis. Required GPAs in effect in the graduating year determine student eligibility.

Based on grades achieved in upper-division courses applied to a specific UCLA Samueli degree requirement, engineering students must also have a 3.752 GPA for cum laude, 3.871 for magna cum laude, and 3.934 for summa cum laude. For all designations of honors, students must have a minimum 3.25 GPA in their major field upper-division courses. Upper-division courses that are not applied to a specific school BS degree requirement are excluded from these upper-division averages.
Graduate Programs

The Henry Samueli School of Engineering and Applied Science offers courses leading to the Master of Science and Doctor of Philosophy degrees, Master of Science in Engineering online degree, Master of Engineering degree, and Engineer degree. The school is divided into seven departments that encompass the major engineering disciplines: aerospace engineering, bioengineering, chemical engineering, civil engineering, computer science, electrical and computer engineering, manufacturing engineering, materials science and engineering, and mechanical engineering. Graduate students are not required to limit their studies to a particular department and are encouraged to consider related offerings in several departments.

Also, a one-year program leading to a Certificate of Specialization is offered in various fields of engineering and applied science.

Graduate degree information is updated annually at Program Requirements for UCLA Graduate Degrees.

Master of Science Degrees

The Henry Samueli School of Engineering and Applied Science offers the MS degree in Aerospace Engineering, Bioengineering, Chemical Engineering, Civil Engineering, Computer Science, Electrical and Computer Engineering, Manufacturing Engineering, Materials Science and Engineering, and Mechanical Engineering. The thesis plan requires seven formal courses and a thesis, which may be written while the student is enrolled in two individual study courses. The comprehensive examination plan requires nine formal courses and a comprehensive examination. In some fields students may be allowed to use the PhD major field examination to satisfy the MS comprehensive examination requirement. Full-time students complete MS programs in an average of five terms of study (about a year and a half). To remain in good academic standing, an MS student must obtain an overall grade-point average of 3.0 GPA in graduate courses.

Concurrent Degree Program

A concurrent degree program between UCLA Samueli and the Anderson Graduate School of Management allows students to earn two master’s degrees simultaneously: the MBA and the MS in Computer Science. Contact the Office of Academic and Student Affairs for details.

Master of Science in Engineering Online Degree

The primary purpose of the Master of Science in Engineering Online self-supporting degree program is to enable employed engineers and computer scientists to augment their technical education beyond the Bachelor of Science degree and to enhance their value to the technical organizations in which they are employed.

The individual degrees include:
- Engineering (online MS)
- Engineering – Aerospace (online MS)
- Engineering – Computer Networking (online MS)
- Engineering – Electrical (online MS)
- Engineering – Electronic Materials (online MS)
- Engineering – Integrated Circuits (online MS)
- Engineering – Manufacturing and Design (online MS)
- Engineering – Materials Science (online MS)
- Engineering – Mechanical (online MS)
- Engineering – Signal Processing and Communications (online MS)
- Engineering – Structural Materials (online MS)

Doctorate Degrees

The PhD programs prepare students for advanced study and research in the major areas of engineering and computer science. To complete the PhD all candidates must fulfill the minimum requirements of the Graduate Division. Major and minor fields may have additional course and examination requirements. For more information, contact the individual departments. To remain in good academic standing, a PhD student must obtain an overall grade-point average of 3.25.

Established Fields of Study for the PhD

Students may propose other fields of study when the established fields do not meet their educational objectives.

Bioengineering Department

Biomedical data sciences
Biomedical devices and instrumentation
Biomedical image processing
Biosystems science and engineering
Molecular, cellular, and tissue engineering
Neuroengineering

Chemical and Biomolecular Engineering Department

Chemical engineering

Civil and Environmental Engineering Department

Civil engineering materials
Environmental engineering
Geotechnical engineering
Hydrology and water resources engineering
Structures (structural mechanics and earthquake engineering)
Transportation Engineering

Computer Science Department

Artificial intelligence
Computational systems biology
Computer networks
Computer science theory
Computer system architecture
Data science computing
Graphics and vision
Software systems

Electrical and Computer Engineering Department
- Circuits and embedded systems
- Physical and wave electronics
- Signals and systems

Materials Science and Engineering Department
- Ceramics and ceramic processing
- Electronic and optical materials
- Structural materials

Mechanical and Aerospace Engineering Department
- Applied mathematics (established minor field only)
- Applied plasma physics (minor field only)
- Design, robotics, and manufacturing (DROM)
- Fluid mechanics
- Micro-nano engineering
- Structural and solid mechanics

Systems and control
Thermal science and engineering
For more information on specific research areas, contact the individual faculty member in the field that most closely matches the area of interest.

Admission
Applications for admission are invited from graduates of recognized colleges and universities. Selection is based on promise of success in the work proposed, which is judged largely on the previous college record.

Candidates whose engineering background is judged to be deficient may be required to take additional coursework that may not be applied toward the degree. The adviser helps plan a program to remedy any such deficiencies, after students arrive at UCLA.

Entering students normally are expected to have completed the BS degree requirements with at least a 3.0 grade-point average in all coursework taken in the junior and senior years.

Students entering the Engineer/PhD program normally are expected to have completed the requirements for the master’s degree with at least a 3.25 grade-point average, and to have demonstrated creative ability. Normally the MS degree is required for admission to the PhD program. Exceptional students, however, can be admitted to the PhD program without having an MS degree.

For information on the proficiency in English requirements for international graduate students, see Graduate Admission in the Graduate Study section of the UCLA General Catalog.

To submit a graduate application, see the school graduate admissions web page. From there, connect to the site of the preferred department or program and go to the online graduate application.

Graduate Record Examination
Educational Testing Service
P.O. Box 6000, Princeton, NJ 08541-6000

Applicants to UCLA Samueli graduate programs are required to take the General Test of the Graduate Record Examination (GRE). Specific information about the GRE may be obtained from the department of interest.

Obtain applications for the GRE by contacting Educational Testing Service.
Departments and Programs of the School

Bioengineering

5121 Engineering V
Box 951600
Los Angeles, CA 90095-1600
310-267-4985
Department e-mail
Department website

Song Li, PhD, Chair
Dino Di Carlo, PhD, Graduate Vice Chair
Jacob J. Schmidt, PhD, Undergraduate Vice Chair

Faculty Roster

Professors
Denise R. Aberle, MD
Pei-Yu Chiou, PhD
Mark S. Cohen, PhD, in Residence
Linda L. Demer, MD, PhD
Timothy J. Deming, PhD
Dino Di Carlo, PhD (Armond and Elena Hairapetian Professor of Engineering and Medicine)
Robin L. Garrell, PhD
Tzung K. Hsiai, MD, PhD, in Residence
Bahram Jalali, PhD (Fang Lu Endowed Professor of Engineering)
Daniel T. Kamei, PhD
Andrea M. Kasko, PhD
H. Pirouz Kavehpour, PhD
Chang-Jin (GJ) Kim, PhD (Volgenau Endowed Professor of Engineering)
Debiao Li, PhD, in Residence
Song Li, PhD
Wentai Liu, PhD
Arash Naeim, PhD
Aydogan Ozcan, PhD (Volgenau Professor of Engineering Innovation)
Jacobo Rosen, PhD
Jacob J. Schmidt, PhD
 Vivek Shetty, DDS, DrMedDent
Kalyanam Shivkumar, MD, PhD, in Residence
Maie St. John, MD, PhD
Ren Sun, PhD
Yi Tang, PhD (Ralph M. Parsons Foundation Professor of Chemical Engineering)
Michael A. Teitel, PhD
Cun-Yu Wang, DDS, PhD
Paul S. Weiss, PhD (Presidential Professor of Chemistry)
Gerard C.L. Wong, PhD
Benjamin M. Wu, DDS, PhD
Yang Yang, PhD

Professors Emeriti
Chih-Ming Ho, PhD (Ben Rich Lockheed Martin Professor Emeritus of Aeronautics)
Edward R.B. McCabe, MD, PhD (Mattel Executive Endowed Professor Emeritus of Pediatrics)

Associate Professors
Corey W. Arnold, PhD, in Residence
Elisa Franco, PhD

William Hsu, PhD, in Residence
Dan Ruan, PhD, in Residence
Stephanie K. Seiditts, PhD
Holden H. Wu, PhD, in Residence

Assistant Professors
Jun Chen, PhD
Liang Gao, PhD
Aaron S. Meyer, PhD
Jennifer Wilson, PhD

Adjunct Professors
James C.Y. Dunn, MD, PhD
Zhen Gu, PhD

Adjunct Associate Professors
Sophia N. Barborie, PhD
Bill J. Tawil, MBA, PhD

Adjunct Assistant Professors
Chase Linsley, PhD
George N. Saddik, PhD

Affiliated Faculty

Professors
Peyman Benharash, MD (Cardiothoracic Surgery)
Marvin Bergsneider, MD, in Residence (Neurosurgery)
Douglas L. Black, PhD (Microbiology, Immunology, and Molecular Genetics)
Alex A.T. Bui, PhD (Radiological Sciences)
Gregory P. Carman, PhD (Materials Science and Engineering, Mechanical and Aerospace Engineering)
Yang Chen, PhD (Materials Science and Engineering, Mechanical and Aerospace Engineering)
Thomas Chou, PhD (Biomathematics, Mathematics)
Samson A. Chow, PhD (Molecular and Medical Pharmacology)
Joseph L. Demer, MD, PhD (Neurology, Ophthalmology)
Katrina M. Dipple, MD, PhD (Human Genetics, Pediatrics)
Joseph J. DiStefano III, PhD (Computer Science, Medicine)
Bruce S. Dunn, PhD (Materials Science and Engineering)
Jeffrey D. Eldredge, PhD (Mechanical and Aerospace Engineering)
Alan Garfinkel, PhD (Cardiology, Integrative Biology and Physiology)
Christopher C. Giza, PhD, in Residence (Neurosurgery, Surgery)
Thomas G. Graeber, PhD (Molecular and Medical Pharmacology)
Robert P. Gunsalus, PhD (Microbiology, Immunology, and Molecular Genetics)
Vijay Gupta, PhD (Materials Science and Engineering, Mechanical and Aerospace Engineering)
Y. Sungtaeg Ju, PhD (Mechanical and Aerospace Engineering)
H. Phillip Koeffler, MD, in Residence (Medicine)
Jody E. Kreiman, PhD, in Residence (Surgery)

Elliot M. Landau, MD, PhD (Biomathematics)
Min Lee, PhD (Dentistry)
Karen M. Lyons, PhD (Molecular, Cell, and Developmental Biology, Orthopaedic Surgery)
Dejan Markovic, PhD (Electrical and Computer Engineering)
Thomas G. Mason, PhD (Chemistry and Biochemistry, Physics and Astronomy)
Heather D. Maynard, PhD (Chemistry and Biochemistry)
Istvan Mody, PhD (Neurology, Physiology)
Harold G. Monbouquette, PhD (Chemical and Biomolecular Engineering)
Samuel S. Murray, MD, PhD, in Residence (Medicine)
Peter M. Narins, PhD (Ecology and Evolutionary Biology, Integrative Biology and Physiology)
Ichiro Nishimura, DDS, DMSc, DMD (Dentistry)
Matteo Pellegrini, PhD (Human Genetics, Molecular, Cell, and Developmental Biology)
Laurent Pilon, PhD (Mechanical and Aerospace Engineering)
ZhiLin Qu, PhD, in Residence (Cardiology, Medicine)

Dario L. Ringach, PhD (Neurobiology, Psychology)
Ke Sheng, PhD (Radiation Oncology)
Desmond Smith, PhD (Molecular and Medical Pharmacology)
Michael V. Sofroniew, MD, PhD (Neurobiology)
Chia B. Soo, MD (Plastic Surgery)
Igor Spigelman, PhD (Dentistry)
Ricky Taira, PhD, in Residence (Radiological Sciences)

Albert Thomas, PhD, in Residence (Radiological Sciences)
James G. Tidball, PhD (Integrative Biology and Physiology, Pathology and Laboratory Medicine)
Kang Ting, DMD, DMSc (Dentistry)
Hsian-Rong Tseng, PhD (Molecular and Medical Pharmacology)
Jack Van Horn, PhD (Neurology)
David Wong, PhD (Dentistry)
Lily Wu, PhD, MD (Molecular and Medical Pharmacology, Urology)
Xinshu Grace Xiao, PhD (Integrative Biology and Physiology)
Z. Hong Zhou, PhD (Microbiology, Immunology, and Molecular Genetics)

Professors Emeriti
Tony F. Chan, PhD (Mathematics)
V. Reggie Edgerton, PhD (Integrative Biology and Physiology)

Associate Professors
Aydin Babakhani, PhD (Electrical and Computer Engineering)
James W. Bisley, PhD (Neurobiology, Psychology)
Louis S. Bouchard, PhD (Chemistry and Biochemistry)
Robert N. Candler, PhD (Electrical and Computer Engineering, Mechanical and Aerospace Engineering)

Aydin Babakhani, PhD (Electrical and Computer Engineering)
James W. Bisley, PhD (Neurobiology, Psychology)
Louis S. Bouchard, PhD (Chemistry and Biochemistry)
Robert N. Candler, PhD (Electrical and Computer Engineering, Mechanical and Aerospace Engineering)
Benjamin M. Ellingson, PhD (Radiology)
Peng Hu, PhD (Radiology)
Jean-Pierre Hubschman, MD, in Residence (Ophthalmology)
Daniel S. Levi, PhD (Pediatrics)
Zili Liu, PhD (Psychology)
Nader Pouratian, PhD (Neurosurgery)
Amy C. Rowat, PhD (Integrative Biology and Physiology)
Veronica J. Santos, PhD (Mechanical and Aerospace Engineering)
Ladan Shams, PhD (Psychology)
Michael R. van Dam, PhD (Molecular and Medical Pharmacology)
Zhaoyan Zhang, PhD, in Residence (Head and Neck Surgery)

Assistant Professors
Sam Emaminejad, PhD (Electrical and Computer Engineering)
Zhaoyang Fan, PhD (Medicine)
Neema Jamshidi, PhD (Radiological Sciences)
Shantanu Joshi, PhD (Neurology)
Yen-Chih (Neil) Lin, PhD (Mechanical and Aerospace Engineering)
Sotiris C. Masmanidis, PhD (Neurobiology)
Behzad Sharif, PhD (Medicine)
Kyung Hyun Sung, PhD (Radiology)
Nanthia Suthana, PhD (Psychiatry and Biobehavioral Sciences)

Adjunct Professor
Robert D. Damoiseaux, PhD (Molecular and Medical Pharmacology)

Overview
The faculty members in the Department of Bioengineering have created state-of-the-art facilities for cutting-edge research and developed an innovative curriculum for the education of the next generation of bioengineers. The bioengineering program offers forward-looking courses dedicated to producing graduates who are well grounded in the fundamental sciences and highly proficient in rigorous analytical engineering tools necessary for lifelong success in the wide range of possible bioengineering careers. Combined with a strong emphasis on research, the program provides a unique engineering educational experience that responds to the growing needs and demands of bioengineering.

Department Mission
The mission of the Bioengineering Department is to perform cutting-edge research that benefits society and to train future leaders in the wide range of possible bioengineering careers by producing graduates who are well grounded in the fundamental sciences, adept at addressing open-ended problems, and highly proficient in rigorous analytical engineering tools necessary for lifelong success.

Undergraduate Study
Bioengineering BS
The bioengineering program is accredited by the Engineering Accreditation Commission of ABET.

Capstone Major
The Bioengineering major is a designated capstone major. Utilizing knowledge from previous courses and new skills learned from the capstone courses, undergraduate students work in teams to apply advanced knowledge of mathematics, science, and engineering principles to address problems at the interface of biology and engineering and to develop innovative bioengineering solutions to meet specific sets of design criteria. Coursework entails construction of student designs, project updates, presentation of projects in written and oral format, and team competition.

Educational Objectives
The goal of the bioengineering curriculum is to train future leaders by providing students with the fundamental scientific knowledge and engineering tools necessary for graduate study in engineering or scientific disciplines, continued education in professional schools, or employment in industry. There are five main program educational objectives: graduates (1) participate in graduate, professional, and continuing education activities that demonstrate an appreciation for lifelong learning; (2) demonstrate professional, ethical, societal, environmental, and economic responsibility (e.g., by active membership in professional organizations); (3) demonstrate the ability to identify, analyze, and solve complex, open-ended problems by creating and implementing appropriate designs; (4) work effectively in teams consisting of people of diverse disciplines and cultures; and (5) be effective written and oral communicators in their professions or graduate/professional schools.

Learning Outcomes
The Bioengineering major has the following learning outcomes:
- Application of advanced knowledge of mathematics, science, and engineering principles to address problems at the interface of biology and engineering
- Design of a system, component, or process to meet desired needs
- Function as a productive member of a multidisciplinary team
- Effective oral and written communication
- Identification, formulation, and solution of engineering problems

Preparation for the Major
Required: Bioengineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Civil and Environmental Engineering M20 or Computer Science 31 or Mechanical and Aerospace Engineering M20; Life Sciences 7A (satisfies GE life sciences requirement) and 7C; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL.

Bioengineering undergraduates seed cells to make 3D tissue constructs.
The Major

Students must complete the following courses:

1. Bioengineering 100, 110, 120, 167L, 175, 176, 180, Electrical and Computer Engineering 100, Engineering 181EW or 182EW or 183EW or 185EW; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; two capstone design courses (Bioengineering 177A, 177B)

2. Six additional major field elective courses (24 units) from Bioengineering C101, C102, C104, C105, C106, C107, C131, C139A, C139B, CM140, CM145, C147, M153, C155, CM178, C179, 180L, M182, C183, C185, CM186, CM187, 199 (8 units maximum)

Three of the major field elective courses and the three technical breadth courses may also be selected from one of the following tracks. Bioengineering majors cannot take bioengineering technical breadth courses to fulfill the technical breadth requirement.

Biomedical and Regenerative Medicine: Bioengineering C104, C105, CM140, C147, C183, C185, 199 (8 units maximum), Materials Science and Engineering 104, 110, C111, 120, 130, 132, 143A, 150, 151, 160, 161. The above materials science and engineering courses may be used to satisfy the technical breadth requirement.

Biomedical Devices: Bioengineering C131, M153, 199 (8 units maximum), Electrical and Computer Engineering 102, Mechanical and Aerospace Engineering C187L. The electrical and computer engineering or mechanical and aerospace engineering courses listed above may be used to satisfy the technical breadth requirement.

For Bioengineering 199 to fulfill a track requirement, the research project must fit within the scope of the track field, and the research project must be approved by the supervisor and vice chair.

For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 21 or the GE Requirement web page.

Graduate Study

For admission information, see Graduate Programs Admission on page 27.

The following introductory information is based on 2021-22 program requirements for UCLA graduate degrees. Complete program requirements are available at Program Requirements for UCLA Graduate Degrees. Students are subject to the detailed degree requirements as published in program requirements for the year in which they enter the program.

The Bioengineering Department offers Master of Science (MS) and Doctor of Philosophy (PhD) degrees in Bioengineering.

Bioengineering MS

Course Requirements

A minimum of 13 courses (44 units) is required.

For the comprehensive plan, at least 11 courses must be from the 200 series, three of which must be Bioengineering 299 courses. Students must also take one 495 course. One 100-series course may be applied toward the total course and unit requirement. No units of 500-series courses may be applied toward the minimum course requirements.

For the thesis plan, at least 10 of the 12 courses must be from the 200 series, three of which must be Bioengineering 299 courses. Students must also take two 598 courses involving work on the thesis and one 495 course.

To remain in good academic standing, MS students must maintain an overall grade-point average of 3.0 and a grade-point average of 3.0 in graduate courses.

Comprehensive Examination Plan

The comprehensive examination plan is available in all fields, and requirements vary for each field. Specific details are available from the graduate adviser. Students who fail the examination may repeat it once only, subject to the approval of the faculty examination committee. Students who fail the examination twice are not permitted to submit a thesis and are subject to termination.

Thesis Plan

Every master’s degree thesis plan requires the completion of an approved thesis that demonstrates student ability to perform original, independent research. New students who select this plan are expected to submit the name of the thesis adviser to the graduate adviser by the end of their first term in residence. The thesis adviser serves as chair of the thesis committee.

A research thesis (8 units of Bioengineering 598) is to be written on a bioengineering topic approved by the thesis adviser. The thesis committee consists of the thesis adviser and two other qualified faculty members who are selected from a current list of designated members for the graduate program.

Bioengineering PhD

Course Requirements

To complete the PhD degree, all students must fulfill minimum University requirements. Students must pass the University Oral Qualifying Examination and final oral examination, and complete the courses in Group I and Group II under Fields of Study below. Also see Course Requirements under Bioengineering MS. Students must maintain a grade-point average of 3.25 or better in all courses.

Written and Oral Qualifying Examinations

Academic Senate regulations require all doctoral students to complete and pass University written and oral qualifying examinations prior to doctoral advancement to candidacy. Under Senate regulations the University Oral Qualifying Examination is open only to students and appointed members of their doctoral committees. In addition to University requirements, some graduate programs have other precandidate examination requirements. What follows are the requirements for this doctoral program.

To remain in good standing in the program, PhD students are expected to take the University Oral Qualifying Examination within six academic quarters and two summer quarters (i.e., two years) following matriculation. The nature and content of the examination are at the discretion of the doctoral committee, but ordinarily include a broad inquiry into the student’s preparation for research. The doctoral committee also reviews the prospectus of the dissertation, the written component of the qualifying examination, prior to the oral qualifying examination.

A doctoral committee consists of a minimum of four qualified UCLA faculty members. All committee nominations and reconstitutions adhere to the Minimum Standards for Doctoral Committee Constitution.

A final oral examination (defense of the dissertation) is required of all students.

Fields of Study

Biomedical Data Sciences

The biomedical data sciences (BDS) field trains students to be experts in the use of computational, statistical, and machine learning tools for solving biomedical problems. BDS is intended for science and engineering students interested in how data science tools can operate alongside other areas of bioengineering to solve problems in areas including pattern recognition, prediction, control, measurement, and visual-
ization. Students are trained in the algorithmic and statistical fundamentals of the field. Directed interdisciplinary training prepare students to be practitioners in the application of data science to analyze clinical imaging, molecular and cellular systems, medical devices, electronic health record data, and the many other areas of biomedicine that routinely generate data. In parallel to learning fundamentals, students develop expertise in these application areas, providing them additional expertise in real-world problem solving. In total, this area fosters the development of students who go on to become data scientists with the unique ability to actively interface with practitioners in other areas of bioengineering and medicine.

Course Requirements

Students must select at least three courses from Group I: Core Bioengineering Courses, and at least six courses from Group II: Elective Courses. A course cannot be used to simultaneously satisfy Group I and Group II course requirements.

Group I: Core Bioengineering Courses. At least three courses selected from Bioengineering C201, C202, C204, C205, C206, C207, M219, M229, C239A, M239B, CM245, CM25, M260, C275, CM278, C283, C285, CM286, an approved topic of 298.

Biomedical Devices and Instrumentation

The biomedical devices and instrumentation (BDI) field is designed to train bioengineers interested in the applications and development of instrumentation used in medicine and biotechnology. Examples include the use of lasers in surgery and diagnostics, new microelectrical machines for surgery, sensors for detecting and monitoring of disease, microfluidic systems for cell-based diagnostics, new tool development for basic and applied life sciences research, and controlled drug delivery devices. The principles underlying each instrument and specific clinical or biological needs are emphasized. Graduates are targeted principally for employment in academia; government research laboratories; and the biotechnology, medical devices, and biomedical industries.

Course Requirements

Students must select at least three courses from Group I: Core Bioengineering Courses, and at least six courses from Group II: Elective Courses. A course cannot be used to simultaneously satisfy Group I and Group II course requirements.

Biomedical Image Processing

The biomedical imaging (BI) field consists of the following two subfields: biomedical imaging hardware development (BIHD) and biomedical signal and image processing (BSIP).

Biomedical Imaging Hardware Development (BIHD)

The BIHD subfield prepares students for a career in developing imaging hardware for medical diagnosis and intervention applications. Students learn the physical basis of biomedical imaging modalities such as optical imaging, CT, and MRI. The students will also be trained with hands-on experiences to build state-of-the-art imaging devices and test their performance in real-world medical imaging scenarios. Through the structured curriculum and lab activities, the students experience the excitement of cutting-edge hardware research, hone skills in analytical thinking and communications, and gain knowledge of imaging techniques that are used in the biomedical field.

Biomedical Signal and Image Processing (BSIP)

The BSIP subfield prepares students for a career in the acquisition and analysis of biomedical signals; and enables students to apply quantitative methods applied to extract meaningful information for both clinical and research applications. The BSIP program is premised on the fact that a core set of mathematical and statistical methods are held in common across signal acquisition and imaging modalities and across data analyses regardless of their dimensionality. These include signal transduction, characterization and analysis of noise, transform analysis, feature extraction from time series or images, quantitative image processing and imaging physics. Students in the BSIP program have the opportunity to focus their work over a broad range of modalities including electrophysiology; optical imaging methods; MRI, CT, PET, and other tomographic devices; and/or on the extraction of image features such as organ morphometry or neurofunctional signals, and detailed anatomic/functional feature extraction. The career opportunities for
BSIP trainees include medical instrumentation, engineering positions in medical imaging, and research in the application of advanced engineering skills to the study of anatomy and function.

Course Requirements

Students must select at least three courses from Group I: Core Bioengineering Courses, and at least six courses from Group II: Elective Courses. A course cannot be used to simultaneously satisfy Group I and Group II course requirements.

Molecular, Cellular, and Tissue Engineering

The molecular, cellular, and tissue engineering (MCTE) field covers novel therapeutic development across all biological length scales from molecules to cells to tissues. At the molecular and cellular levels, this research area encompasses the engineering of biomaterials, ligands, enzymes, protein-protein interactions, intracellular trafficking, biological signal transduction, genetic regulation, cellular metabolism, drug delivery vehicles, and cell-cell interactions, as well as the development of chemical/biological tools to achieve this.

At the tissue level, the field encompasses two subfields—biomaterials and tissue engineering. The properties of bone, muscles, and tissues, the replacement of natural materials with artificial compatible and functional materials such as polymers, composites, ceramics, and metals, and the complex interactions between implants and the body are studied at the tissue level. The research emphasis is on the fundamental basis for diagnosis, disease treatment, and redesign of molecular, cellular, and tissue functions. In addition to quantitative experiments required to obtain spatial and temporal information, quantitative and integrative modeling approaches at the molecular, cellular, and tissue levels are also included within this field. Although some of the research remains exclusively at one length scale, research that bridges any two or all three length scales is also an integral part of this field. Graduates are targeted principally for employment in academia, government research laboratories, and the biotechnology, pharmaceutical, and biomedical industries.

Course Requirements

Students must select at least three courses from Group I: Core Bioengineering Courses, and at least six courses from Group II: Elective Courses. A course cannot be used to simultaneously satisfy Group I and Group II course requirements.

Neuroengineering

The neuroengineering (NE) field is designed to enable students with a background in biological sciences to develop and execute projects that make use of state-of-the-art technology, including microelectromechanical systems (MEMS), signal processing, and photonics. Students with a background in engineering develop and execute projects that address problems that have a neuroscientific base, including locomotion and pattern generation, central control of movement, and the processing of sensory information. Trainees develop the capacity for the multidisciplinary teamwork, in intellectually and socially diverse settings, that is necessary for new scientific insights and dramatic technological progress in the twenty-first century. Students take a curriculum designed to encourage cross-fertilization of neuroscience and engineering. The goal is for neuroscientists and engineers to speak each others’ language and move comfortably among the intellectual domains of the two fields.

Course Requirements

Students must select at least three courses from Group I: Core Bioengineering Courses, and at least six courses from Group II: Elective Courses. A course cannot be used to simultaneously satisfy Group I and Group II course requirements.

Group I: Core Bioengineering Courses. At least three courses selected from Bioengineering C201, C202, C204, C205, C206, C207, M219, M229, C239A, C239B, CM245, CM255, M260, C275, CM278, C283, CM286, an approved topic of 298.

Group II: Elective Courses. At least three courses selected from Bioengineering C201, C202, C204, C205, C206, C207, M219, M229, C239A, C239B, CM245, CM255, M260, C275, CM278, C283, CM286, an approved topic of 298.
Faculty Areas of Thesis Guidance

Professors

Denise R. Aberle, MD (U. Kansas, 1979)
Medical imaging informatics: imaging-based clinical trials, medical data visualization

Pei-Yu Chiu, PhD (UC Berkeley, 2005)
Optofluorescence systems

Mark S. Cohen, PhD (Rockefeller, 1985)
Rapid methods of MR imaging, fusion of electrophysiology and fMRI, advanced approaches to MR data analysis, ultra-low field MRI using SQUID detection, low energy focused ultrasound for neurostimulation

Linda L. Demer, MD, PhD (Johns Hopkins, 1983)
Vascular biology, biomaterialization, vascular calcification, mesenchymal stem cells

Timothy J. Deming, PhD (UC Berkeley, 1993)
Polymer synthesis, polymer processing, supramolecular materials, organometallic catalysis, biomimetic materials, polypeptides

Dino Di Carlo, PhD (UC Berkeley, 2006)
Microfluidics, biomedical microdevices, cellular diagnostics, cell analysis and engineering

Tzung K. Hsiai, MD (U. Chicago, 1993), PhD (UCLA, 2001)
Cardiovascular mechanotransduction, MEMS and nanosensors, vascular endothelial dynamics, molecular imaging of atherosclerotic lesions, reactive nitrogen species (RNS) and reactive oxygen species (ROS)

Bahram Jalali, PhD (Columbia, 1989)
RF photonics, fiber-optic integrated circuits, integrated optics, microwave photonics

Daniel T. Kamei, PhD (MIT, 2001)
Molecular cell bioengineering, rational design of molecular therapeutics, systems-level analyses of cellular processes, drug delivery, diagnostics

Andrea M. Kaske, PhD (U. Akron, 2004)
Polymer synthesis, biomaterials, tissue engineering, cell-material interactions

H. Pirouz Kavehpour, PhD (MIT, 2003)
Microscale fluid mechanics, transport phenomena in biological systems, physics of contact line phenomena, complex fluids, non-isothermal flows, micro- and nano-heat guides, microbiology

Chang-Jin (CJ) Kim, PhD (UC Berkeley, 1991)
Microelectromechanical systems: micro/nano fabrication technologies, structures, actuators, devices, and systems; microfluidics involving surface tension (especially droplets)

Debiao Li, PhD (U. Virginia, 1992)
Development and clinical application of fast MR imaging techniques for the evaluation of the cardiovascular system

Song Li, PhD (UC San Diego, 1997)
Stern cell engineering, tissue engineering and vascular remodeling, mechanobiology/mechanotransduction

Wen-Tai Liu, PhD (U. Michigan, 1983)
Neural engineering

Arash Naeim, MD (UCLA, 1995), PhD (RAND Graduate School, 2002)
Remote monitoring, wearable sensors, big data analytics, clinical informatics, health care analytics

Aydogan Ozcan, PhD (Stanford, 2005)
Photonics, nano- and bio-technology

Jacob Rosen, PhD (Tel Aviv U., Israel, 1997)
Natural integration of a human arm/powered exoskeleton system

Jacob J. Schmidt, PhD (U. Minnesota, 1999)
Bioengineering and biophysics at micro and nanoscales, membrane protein engineering, biological-inorganic hybrid devices

Vivek Shetty, DDS, Dr.Med.Dent. (U. Regensburg, 1999)
Mobile health, biosensors, salivary diagnostics, value-based health care

Kalyanam Shivkumar, MD (U. Madras, India, 1990), PhD (UCLA, 1999)
Mechanisms of cardiac arrhythmias in humans, complex catheter ablation, medical technology for cardiovascular therapeutics

Maie St. John, MD, PhD (Yale, 1999)
Novel diagnostic and treatment modalities for head and neck cancer

Yi Tang, PhD (Caltech, 2002)
Biosynthesis of proteins/polypeptides with unnatural amino acids, synthesis of novel anti-biotics/anti-tumor products

Michael A. Teitel, MD (UCLA, 1993), PhD (UCLA, 1991)
Immune system development and cancer, regulation of gene expression in development and malignancy, linking RNA processing with mitochondrial homeostasis, metabolism and proliferation; nanoscale evaluation of malignant transformation

Molecular signaling (NF-KB and Wnt) tumor-invasive growth and metastasis, adult mesenchymal stem cells, dental stem cells and regenerative medicine, inflammation and innate immunity

Paul S. Weiss, PhD (UC Berkeley, 1986)
Atomic-scale surface chemistry and physics, molecular desorption, biophysics and neuroscience, nanometer-scale electronics and storage, surface interactions, surface motion, dynamics, and direct manipulation, extending capabilities of scanning tunneling microscope, molecular-scale control and measurement of composition and properties in membranes

Gerald L.C. Wong, PhD (UC Berkeley, 1994)
Antimicrobials and antibiotic-resistant pathogens, bacterial communities, cystic fibrosis, apoptosis proteins and cancer therapeutics, disinfection and water purification, self-assembly in biology and biotechnology, physical chemistry of solvation, soft condensed matter physics, biophysics

Benjamin M. Wu, DDS (U. Pacific, 1987), PhD (MIT, 1997)
Biomaterials, cell-material interactions, materials processing, tissue engineering, prothetic and regenerative dentistry

Yang Yang, PhD (U. Massachusetts Lowell, 1992)
Conjugated polymers and applications in optoelectronic devices such as light-emitting diodes, photodiodes, and field-effect transistors

Professors Emeriti

Chih-Ming Ho, PhD (Johns Hopkins, 1974)
Molecular fluidic phenomena, microelectromechanical systems (MEMS), bionano technologies, biomolecular sensor arrays, control of cellular complex systems, rapid search of combinatorial medicine

Edward R.B. McCabe, PhD (USC, 1972), MD (USC, 1974)
Stern cell identification, regenerative medicine, systems biology

Associate Professors

Corey W. Arnold, PhD (UCLA, 2009)
Machine learning, deep learning, medical imaging, radiology, pathology, electronic health records, mHealth

Elisa Franco, PhD (U. Trieste, Italy, 2007)
Convergence of structural biology, dynamics and controls using specialized biomolecular frameworks

William Ha, PhD (UCLA, 2009)
Deep and reinforcement learning, data integration, clinical data science, imaging informatics

Dan Ruan, PhD (U. Michigan Ann Arbor, 2008)
Signal and image processing, system modeling and optimization, time series, data science informatics

Stephanie K. Seidlits, PhD (U. Texas Austin, 2010)
Neural tissue engineering, spinal cord injury, gene therapy, hydrogels, cell-material interactions, high-throughput biological techniques, nervous system extracellular matrix, neural stem cells and development

Holden H. Wu, PhD (Stanford, 2009)
Signal and image processing, magnetic resonance imaging, MRI-guided interventions, nanotheranostics

Assistant Professors

Jun Chen, PhD (Georgia Tech, 2016)
Biomaterials, biomedical devices, wearable bioelectronics, smart textiles, nanogenerator, body area network

Liang Gao, PhD (Rice, 2011)
Biomedical optics, tissue imaging, ultra-fast optics, hyperspectral imaging

Aaron S. Meyer, PhD (MIT, 2014)
Molecular cell bioengineering, systems-level cellular signaling analysis, model-driven analysis and design, cancer and innate immune signaling
C102. Human Physiological Systems for Bioengineering (4). (Fortnightly, four hours; outside study, three hours; laboratory, two hours. Preparation: human molecular biology, biochemistry, and cell biology. Not open for credit to Physiological Science majors who received colloidal science activities, and organization of human body in system (organ tissue) to system basis, with particular emphasis on molecular basis. Modeling/simulation of functional aspects of biological systems studied, and platform demonstration of biomedical instruments, as well as visits to biomedical facilities. Concurrently scheduled with course C202. Letter grading. Ms. Seiditts (Sp).

C104. Physical Chemistry of Biomacromolecules. (4). (Lectures, three hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 20A, 20B, 30A, Life Sciences 7A. To understand biological materials and design synthetic replacements, it is imperative to understand their physical chemistry. Biomacromolecules such as protein or DNA can be analyzed and characterized by applying fundamentals of polymer physical chemistry. Investigation of polymer structure and conformation, bulk and solution thermodynamics and behavior, polymer networks, and viscoelasticity. Application of engineering principles to problems involving biomacromolecules such as protein conformation, solvation of charged species, and preparation of and characterization of biomacromolecules. Concurrently scheduled with course C204. Letter grading. Mr. Wong (F).

C105. Engineering of Bioconjugates. (4). (Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: Chemistry 20A, 20B, 20L. Highly recommended: one organic chemistry course. Bioconjugate chemistry is science of coupling biomolecules for wide range of applications. Oligonucleotides may be coupled to one surface in gene chip, or one protein may be coupled to one polymer to enhance its stability in serum. Wide variety of bioconjugates are used in delivery of pharmaceuticals, diagnostics, and in tissue engineering. Basic concepts of chemical ligation, including choice and design of conjugate linkers depending on type of biomolecule and desired application, such as degradable versus nondegradable linkers. Presentation and discussion of design and synthesis of synthetic bioconjugates for some sample applications. Concurrently scheduled with course C205. Letter grading. Mr. Deming (F).

C106. Topics in Bioelectricity for Bioengineers. (4). (Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: Chemistry 20B, Life Sciences 7A. Materials 33B, Physics 1C. Coverage be other physical processes associated with biological membranes and channel proteins, with specific emphasis on electrophysiology. Basic physical principles governing electrostatics in dielectric media, building on complexity to ultimately address action potentials and signal propagation in nerves. Topics include Nernst/Planck and Poisson/Boltzmann equations, Nernst potential, Donnan equilibrium, GHK equations, energy barriers in ion channels, cable equation, action potentials, Hodgkin/Huxley equations, impulse propagation, axon geometry and conduction, dendritic integration. Concurrently scheduled with course C206. Letter grading. Mr. Schmidt (F).

C107. Polymer Chemistry for Bioengineers. (4). (Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course C104 or C105. Fundamental concepts of polymer synthesis, including step-growth, chain growth (ionic, radical, metal catalyzed), and ring-opening, with focus on factors that can be used to control chain length, chain branching, macromonomers, functionality, chain copolymerization, and stereochemistry in polymerization. Presentation of applications of use of different polymerization techniques. Concepts of step-growth, ring-opening, and coordination polymerization, and effects of synthesis route on polymer properties. Lectures include both theory and practical issues demonstrated through examples. Concurrently scheduled with course C207. Letter grading. Mr. Deming (W).

C110. Biophysics. (4). (Lecture, four hours; discussion, one hour; laboratory, three hours. Enforced requisites: course 100, Mathematics 33B. Introduction to analysis of fluid flow, heat transfer, mass transfer, binding events, and interaction between proteins and DNA. Overview of biotechnological and bioengineering interests: bioengineers, including cells, tissues, organs, human body, extracellular devices, tissue engineering systems, and bioartificial organs. Introduction to pharmacokinetic and pharmacodynamic analysis. Letter grading. Mr. Kamei (Sp).

121. Introduction to Microcontrollers. (4). (Lecture, one hour; discussion, four hours; laboratory, three hours. Enforced requisites: Civil and Environmental Engineering M20 or Mechanical and Aerospace Engineering M20 or Computer Science 31, and Electrical and Computer Engineering 100, or equivalent. Project-based hands-on introduction to basic and advanced concepts involved in development of projects using microcontrollers for projects in robotics and motion, light and sound, sensing and data acquisition, signal amplification and processing, communication with specialty integrated circuits, and computer interface using Java-based processing language. Uses of Arduino platform to explore digital and analog input/output, SPI and I2C, interfacing, using and writing of software libraries, and other advanced topics. Students construct and analyze first-order passive filters, operational amplifier (op-amp) circuits, analog input/output, and material to embedded software and hardware projects, as well as develop their own instrument for subsequent laboratory or design work. Project-based homework has small theory component. Includes final design project. Letter grading. Mr. Schmidt (Sp).

C131. Nanopore Sensing. (4). (Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: B200, 100, 120, Life Sciences 7A, Physics 1A, 1B, 1C. Analysis based on measurements of fluctuating ionic conductance through artificial or protein nanopores. Physics of pore conductance. Applications to single molecule sequencing and DNA sequencing in current literature and technological applications. History and instrumentation of resistive pulse sensing, theory and instrumentation of electrical measurements in electrolytes, nanopore fabrication, ionic conductance through pores and GHK equation, patch clamp and single channel measurements and instrumentation, noise issues, protein engineering, molecular sensing, DNA sequencing, membrane engineering, and future directions of field. Concurrently scheduled with course C231. Letter grading. Mr. Schmidt (Not offered 2021-22).

C130A. Biomolecular Materials Science I. (4). (Lecture, four hours; discussion, one hour; outside study, seven hours. Overview of chemical and physical foundations of biomolecular materials science that concern materials aspects of molecular biology, cell biology, and bioengineering. Understanding of different types of interactions that exist between biomolecules, such as van der Waals interactions, entropically modulated electrostatic interactions, hydrophobic interactions, hydrogen bond interactions, protein-mediated interactions, and protein-mediated interactions, deple- tion interactions, molecular recognition, and others. Illustration of these ideas using examples from bioengineering and biomedical engineering. Students should be able to make simple calculations and estimates that allow them to explore these aspects of bioengineering problems, such as those in drug and...
C139B. Biomolecular Materials Science II. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced prerequisite: course 110. Introduction to Navier/Stokes equations, assumptions, and simplifications. Analytical framework for simple flows and numerical methods to solve and gain intuition for complex flows. Forces on particles in Stokes flow and finite-inertia flows. Flows induced around particles with and without impingement of particle-particle interactions. Secondary flows induced by structures and particles in confined flows. Particle separations by fluid dynamic forces: field-flow fractionation, inertial focusing, structure-induced separation, and self-assembly. Biological flows and separations for biotechnology. Helps students become sufficiently fluent with fluid mechanics vocabulary and techniques, design and model microfluidic systems to manipulate fluids, cells, and particles, and develop strong intuition for how fluid and particles behave in arbitrarily structured microchannels over range of Reynolds numbers. Concurrently scheduled with course C239B. Letter grading. Mr. Wong (W)

Emerging pathogens, and relation of self-assembly to engineering. Case study on current topics, including drug delivery, gene therapy, cancer therapeutics, emerging pathogens, and relation of self-assembly to disease states. May be taken independently for credit. Concurrently scheduled with course C239B. Letter grading. Mr. Wong (Sp)

CM140. Introduction to Biomechanics. (4) (Same as Mechanical and Aerospace Engineering CM140.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: Mechanical and Aerospace Engineering 101, 102, and 158A or 168A. Introduction to mechanical functions of human body, skeletal adaptations to optimize load transfer, mobility, and function. Dynamics and kinematics. Fluid mechanics applications, Heat and mass transfer processes. Power generation. Laboratory simulations and tests. Concurrently scheduled with course CM242. Letter grading. (W)

CM145. Molecular Biotechnology for Engineers. (4) (Same as Chemical Engineering CM145.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: Chemical Engineering 45. Selected topics in molecular biology that form foundation of biotechnology and biomedical industry today. Combination of DNA manipulation, molecular research tools, manipulation of gene expression, directed mutagenesis and protein engineering, DNA-based diagnostics and DNA microarrays, antibody and protein-based diagnostics, genomics and bioinformatics, isolation of human genes, gene therapy, and tissue engineering. Concurrently scheduled with course CM245. Letter grading. (F)

C147. Applied Tissue Engineering: Clinical and Industrial Perspective. Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: course CM102, Chemistry 20A, 20B, 20L, Life Sciences 7A. Overview of central topics of tissue engineering, with focus on how to build artificial tissues into clinical locally applicable products. Topics include biomaterials selection, cell source, delivery methods, FDA approval processes, and physical/chemical and biological testing. Case studies include skin and artificial skin, bone and cartilage, blood vessels, neurotrans tissue engineering, and liver, kidney, and other organs. Clinical and industrial perspectives of tissue engineering products. Manufacturing constraints, clinical limitations, and regulatory challenges in design and development of tissue-engineering devices. Concurrently scheduled with course C247. Letter grading. (Sp)

M153. Introduction to Microscale and Nanoscale Manufacturing Processes. (4) (Same as Chemical Engineering M153.) Lecture, three hours; laboratory, four hours; outside study, five hours. Enforced requisite: Chemistry 20A, Physics 1A, 1B, 1C, 4AL. Introduction to general manufacturing methods, mechanisms, constraints, and microfabrication and nanofabrication. Focus on conceptual foundations of various microfabrication fabrication and nanofabrication techniques that have been broadly applied in industry and academia, including various optical photolithography technologies, physical and chemical vapor deposition, and physical and chemical etching methods. Hands-on experience for fabricating microstructures and nanostructures in modern clean-room environment. Letter grading. (F)

C151. Fluid-Particle and Fluid-Structure Interactions in Bioengineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced prerequisite: course 110. Introduction to Navier/Stokes equations, assumptions, and simplifications. Analytical framework for simple flows and numerical methods to solve and gain intuition for complex flows. Forces on particles in Stokes flow and finite-inertia flows. Flows induced around particles with and without impingement of particle-particle interactions. Secondary flows induced by structures and particles in confined flows. Particle separations by fluid dynamic forces: field-flow fractionation, inertial focusing, structure-induced separation, and self-assembly. Biological flows and separations for biotechnology. Helps students become sufficiently fluent with fluid mechanics vocabulary and techniques, design and model microfluidic systems to manipulate fluids, cells, and particles, and develop strong intuition for how fluid and particles behave in arbitrarily structured microchannels over range of Reynolds numbers. Concurrently scheduled with course C239B. Letter grading. Mr. Di Carlo (W)

165EW. Bioengineering Ethics. (4) Lecture, four hours; discussion, three hours; outside study, five hours. All professions have ethical rules that derive from philosophical and religious beliefs. Philosophy of biomedicine has a unique ethical discipline that addresses ethical problems about life, such as when do fertilized eggs become people? Should ending of life ever be assisted? At what cost should it be maintained? Do bioengineers do not make these decisions in practice. Engineering ethics addresses ethical problems about producing devices from molecules to bridges, such as when do concerns about risk outweigh concerns about cost? When are weapons too dangerous to design? At what point does benefit of committing to building devices outweigh need to wait for more scientific confirmation of their effectiveness? Biomedical engineers must be aware of consequences of applying such devices to all living systems. Emphasis on research and writing within engineering environments. Satisfies engineering writing requirement. Letter grading. (Not offered 2021-22)

167L. Bioengineering Laboratory. (4) Lecture, two hours; laboratory, six hours; outside study, four hours. Enforced requisite: Chemistry 20L. Laboratory experiments in fluorescence microscopy, bioconjugation, soft lithography, and cell culture culminate in design of engineered surface for cell culture. Introduction to techniques used in laboratories and their underlying physical properties. Case studies connect laboratory techniques to current biomedical engineering research and reinforce experimental design skills. Letter grading. Mr. Chen, Mr. Meyer (Sp)

175. Machine Learning and Data-Driven Modeling in Bioengineering. (4) Formerly numbered C175L. Lecture, four hours; laboratory, two hours; outside study, six hours. Requisites: Civil Engineering 220 or Mechanical and Aerospace Engineering M20 or Computer Science 31, Mathematics 32B, 33A. Overview of foundational data analysis and machine learning methods in bioengineering, focusing on how these techniques are used and interpreted experimentally. Topics include probability distributions, cross-validation, analysis of variance, reproducible computational workflows, dimensionality reduction, regression, hidden Markov models, and clustering. Students gain theoretical and practical knowledge of data analysis and machine learning methods relevant to bioengineering. Application of the methods to current bioengineering studies. Students become sufficiently familiar with these techniques to design studies incorporating such analyses, execute analysis, and work in teams using engineering and mathematical software to ensure correctness of their results. Letter grading. (W)

176. Principles of Biocompatibility. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course 100, Mathematics 33B, Physics 1C. Biocompatibility at systemic, tissue, cellular, and molecular levels. Biomechanical compatibility, stress/strain constitutive equations, cardiovascular, respiratory, neuroscientific, biochemical and cellular compatibility, immune response. Letter grading. Mr. Wu (Sp)

177A. Bioengineering Capstone Design I. (4) Lecture, two hours; laboratory, six hours; outside study, four hours. Enforced requisite: course C139A. Lecture, seminars, and discussions on aspects of biomedical device and therapeutic design, including topics such as need finding, intellectual property, entrepreneurship, regulatory and commercial management. Working in teams, students develop innovative solutions to address current problems in medicine and biology. Letter grading. Mr. Gao, Ms. Seidellis (F)

177B. Bioengineering Capstone Design II. (4) Lecture, two hours; laboratory, six hours; outside study, four hours. Enforced requisite: course 177A. Lectures, seminars, and discussions on aspects of biomedical device and therapeutic design, including topics such as need finding, intellectual property, entrepreneurship, regulatory and commercial management. Working in teams, students develop innovative solutions to address current problems in medicine and biology. Letter grading. Mr. Gao, Ms. Seidellis (W)

CM178. Introduction to Biomaterials. (4) (Same as Material Science CM178.) Lecture, four hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 20A, 20B, and 20L, or Materials Science 104. Engineering materials used in medicine and dentistry for repair and/or restoration of damaged natural tissues. Topics include relationships between material properties, suitability to task, surface chemistry, processing and treatment methods, and biocompatibility. Concurrently scheduled with course CM180. Letter grading. Mr. Kasho (F)

C179. Biomaterials—Tissue Interactions. (4) Lecture, three hours; outside study, nine hours. Requisite: course CM178. In-depth exploration of host cell—tissue interaction to biomaterials: vascular response, interface, and clotting, biocompatibility, animal models, inflammation, infection, extracellular matrix, cell adhesion, and role of mechanical forces. Concurrently scheduled with course C279L. Letter grading. (Not offered 2021-22)

180L. System Integration in Biology, Engineering, and Medicine I Laboratory. (4) Lecture, one hour; laboratory, nine hours; outside study, three hours. Corequisite: course 180. Hands-on experimentation and clinical applications of selected medical therapeutic devices associated with cardiovascular and pulmonary disorders. Letter grading. (Sp)

M182. Dynamic Biosystem Modeling and Simulation Methodology. (4) (Same as Computer Science M182.) Lecture, four hours; discussion, one hour; laboratory, two hours; outside study, five hours. Enforced requisite: course 131B. Life Sciences 30A and 30B, or Mathematics 3A and 3B, or 31A and 31B. Recommended requisite or corequisite: Mathematics 3C, 32A, or 32T. For undergraduate studies in life sciences, bioengineering, and mathematical sciences. Active learning approach. Introduction to explicit modeling and simulation of dynamic biological systems. Basic methodology for transforming biology, biochemistry, and physiology into system diagrams, graphs, and mathematical expressions for studying their behavior.
Structural models, formulated from basic conservation and mass action laws, are further transformed into first-order differential equations, and implemented in simulation diagrams for quantifying and exploring biosystem properties. Examples of these explicit models are designed to gain clarity on nature of biosystem phenomena, and frame questions and explore new ideas for research. Letter grading. (FSp)

C153. Targeted Drug Delivery and Controlled Drug Release. (5) Lecture, four hours; discussion, three hours; outside study, seven hours. Requisites: Chemistry 20A, 20B, 20L. New therapies require comprehensive understanding of modern biology, physiology, and engineering. Targeted delivery of genes and drugs and their controlled release are important in treatment of challenging diseases and relevant to tissue engineering and regenerative medicine. Drug pharmacodynamics and clinical pharmacokinetics. Application of engineering principles (diffusion, transport, kinetics) to problems in drug formulation and delivery to establish rationale for design and development of novel drug delivery systems that can provide spatial and temporal control of drug release. Introduction to biomaterials with specialized structural and interfacial properties. Exploration of both chemistry of materials and physical presentation of devices for fabrication and delivery of drugs and macromolecules. Letter grading. Concurrently scheduled with course C283. Letter grading.

M184. Introduction to Computational and Systems Biology. (5) Same as Computational and Systems Biology M184 and Computer Science M184. Lecture, two hours; outside study, four hours. Enforced requisites: one course from Civil Engineering M20, Computer Science 31, Mechanical and Aerospace Engineering M20, or Program in Computing 10A; and Life Sciences 30B or Mathematics 3B or 31B. Survey course designed to introduce students to computational and systems modeling and computation in biology. Topics include metaflux analysis, signaling, flavor, culture, and cutting-edge contributions in computational biosciences and aiming for more informed basis for focused studies by students with computational and systems biology interests. Presentations by individual UCLA researchers discussing their active computational and systems biology research. P/NP grading.

C185. Introduction to Tissue Engineering. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: course CM102 or CM202, Chemistry 20A, 20B, 20L. Tissue engineering applies principles of biology and physical sciences with engineering approach to regenerate tissues and organs. Guiding principles for proper selection of three basic components for tissue engineering: cells, scaffolds, and molecular signals. Concurrently scheduled with course C285. Letter grading. Ms. Kasko (W)

CM186. Computational Systems Biology: Modeling and Simulation of Biological Systems. (5) Same as Computational and Systems Biology M186, Computer Science CM186, and Ecology and Evolutionary Biology M178.) Lecture, four hours; laboratory, two hours; discussion, one hour. Requisites: Life Sciences 30A, 30B, Mathematics 32A or M32T, 33A, and 33B, or 3B, and 30B, 32A or M32T, 33A, and 33B. Dynamic biosystem modeling and computer simulation methods for studying analyzing biological/biomedical processes and systems at multiple levels of organization. Intermediate linear and nonlinear control system, multicompartmental, epidemiological, pharmacokinetic, and other biomodeling methods applied to life sciences like human, animal, and population levels. Both theory- and data-driven modeling, with focus on translating biomodeling goals and data into dynamical mathematical models, and implementation, quality control, and analysis. Numerical simulation, optimization, and parameter identifiability and search algorithms, with model discrimination and analysis and software exercises in PC laboratory assignments. Concurrently scheduled with course CM286. Letter grading. (W)

CM187. Research Communication in Computational and Systems Biology. (4) Same as Computational and Systems Biology M187 and Computer Science CM187.) Lecture, four hours; outside study, eight hours. Requisites: course M182 or CM186 or Computational and Systems Biology 199, Computer and biological systems biology, or concurrent and equivalent. Likely topics include: the process of scientific discovery; re- search experience (course 199, Computational and Systems Biology 199, Computer Science 199, or equivalent). Closely directed, interactive, and real research experience in active quantitative systems biology research laboratory. Direction on how to focus on topics of current interest in scientific community, appropriate to student interests and capabilities. Critiques of oral presentations and written progress reports. Letter grading. Concurrently scheduled with course CM287. Letter grading. (Sp)

18S. Special Courses in Bioengineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Special topics in bioengineering for under-graduate students taught on experimental or temporal basis, such as those taught by resident and visiting faculty members. May be repeated for credit with topic or instructor change. Letter grading. (F, W, Sp)

18SB. Individual Studies for USIE Facilitators. (1) Tutorial, to be arranged. Enforced corequisite: course CM188SA. Limited to junior/senior USIE facilitators. Individual study in regularly scheduled meetings with faculty mentor while facilitating USIE 88S course. Individual contract with faculty mentor required. No repeatable. Letter grading.

18SC. Individual Studies for USIE Facilitators. (2) Tutorial, to be arranged. Enforced corequisite: course CM188SB. Limited to junior/senior USIE facilitators. Individual study in regularly scheduled meetings with faculty mentor while facilitating USIE 88S course. Individual contract with faculty mentor required. No repeatable. Letter grading.

194. Group Research Seminars: Bioengineering. (4) Seminar, three hours. Limited to bioengineering undergraduate students who are part of research group. Study and analysis of current topics in bioengineering. Discussion of research literature in research specialty of faculty member teaching course. Student presentation of projects in research specialty. May be repeated for credit. Letter grading.

195. Directed Research in Bioengineering. (2 to 6) Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation under guidance of faculty mentor. Culminating paper or project required. May be repeated for credit with approval. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading. (F, W, Sp)

C201. Engineering Principles for Drug Delivery. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: Mathematics 32B, Physics 1B. Application of engineering principles for designing and understanding delivery of therapeutic drugs. Basic concepts of transport and diffusion and their role in drug delivery. Basic principles of polymerization techniques. Concepts of drug pharmacodynamics and clinical pharmacokinetics. Letter grading. Mr. Karrel (F)

C202. Human Physiological Systems for Bioengineering 1. (4) Formerly known as basic physiology. (4) Lecture, three hours; laboratory, two hours. Preparation: human molecular biology, biochemistry, and cell biology. Not open for credit to Physiological Science majors. Overview of activities and organization of human body in system (organ/ tissue) to system basis, with particular emphasis on molecular basis. Modeling/simulation of functional biological system including demonstra- tion of biomedical instruments, as well as visits to biomedical facilities. Concurrently scheduled with course C102. Letter grading. Ms. Seidell (F)

C204. Physical Chemistry of Biomacromolecules. (4) Lecture, four hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 20A, 20B, 30A, Life Sciences 7A. To understand biological materials and design synthetic replacements, it is im- perative to understand their physical chemistry. Bio- macromolecules such as protein or DNA can be ana- lyzed and characterized by applying fundamentals of polymer physical chemistry, Investigation of polymer structure and conformation, bulk and solution ther- modynamics and phase behavior, polymer network and viscoelasticity. Application of engineering princi- ples to problems involving biomacromolecules such as protein conformation, solvation of charged spe- cies, and properties of macromolecular solutions. Biomacromolecules. Concurrently scheduled with course C104. Letter grading. Mr. Wong (F)

C205. Engineering of Bioconjugates. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Mathematics 20A, 20B, 20L. Highly recommended: one organic chem- istry course. Bioconjugate chemistry is science of coupling biomolecules for wide range of applications. Oligonucleotides may be coupled to one surface in gene chip, or one protein may be coupled to one polymer to enhance its stability in serum. Wide va- riety of bioconjugates are used in delivery of pharma- ceuticals, providing specific targeting, and in tissue engineering. Basic concepts of chemical liga- tion, including choice and design of conjugate linkers depending on type of biomolecule and desired appli- cation, such as degradable or nondegradable linkers. Presentation and discussion of design and synthesis of synthetic bioconjugates for some sample applications. Concurrently scheduled with course C105. Letter grading. Mr. Deming (F)

C206. Topics in Bioelectricity for Bioengineers. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: Chemistry 20B, Life Sciences 7A, Mathematics 33B, Physics 1C. Coverage in depth of physical principles associated with biological membranes and channel proteins, with specific emphasis on electrophysiology. Basic phys- ical principles governing electrostatics in dielectric media, including on complexity to ultimately understand action potentials and signal propagation in nerves. Topics include Nerst/Planck and Poisson/Boltz- mann equations, Nernst potential, Donnan equilib- rium, GHK equations, energy barriers in ion channels, cable equation, action potentials, Hodgkin/Huxley equations, impulse propagation, axon geometry and conduction, dendritic integration. Concurrently scheduled with course C106. Letter grading. Ms. Schmidt (F)

C207. Polymer Chemistry for Bioengineers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course C204 or C205. Fundamental concepts of polymer synthesis, in- cluding step-growth, chain growth (ionic, radical, metal catalyzed), and ring-opening, with focus on factors that can be used to control chain length, molecular weight, molecular weight distribution, chain conformation, chain topology, and polymerization and chain copolymerization, and stereochemistry in po- lymerizations. Presentation of applications of use of different polymerization techniques. Concepts of dynamic and static characteristics of polymer systems, coordi- nation polymerization, and effects of synthesis route on polymer properties. Lectures include both theory and practical issues demonstrated through exam- ples. Concurrently scheduled with course C107. Letter grading. Mr. Deming (W)
cine. (4) M209. Signal and Image Processing for Biomedi-
(4) M210. Bioseparations and Bioprocess Engineer-
(4) M212. Analysis of Independent Component Anas-
(4) M213. Bioinformatics and Biomedical Informatics.
(4) M215. Biomedical Reactor Engineering. (4)
(4) M219. Principles and Applications of Magnetic Reson-
(4) M220. Introduction to Medical Informatics. (2)
(4) M221. Human Anatomy and Physiology for Medical
(4) M222. Bioseparations and Bioprocess Engineer-
(4) M223A. Imaging Physics and Informatics. (4)
(4) M224A. Medical Decision Making. (4)
(4) M225. Advanced Topics in Magnetic Resonance Im-
(4) M228. Medical Decision Making. (4)
(4) M229. Advanced Topics in Magnetic Resonance Im-
(4) M231. Nanopore Sensing. (4)

Bioengineering Department / 37
noise issues, protein engineering, molecular sensing, DNA sequencing, design of new directions of field. Concurrently scheduled with course C131. Letter grading. Mr. Schmidt (F)

M233A. Medtech Innovation I: Entrepreneurial Opportunities in Medical Technology. (4) (Same as Management M271A). Lecture, three hours; outside study, nine hours. Designed for graduate and professional students in engineering, dentistry, design, law, management, and medicine. Focus on understanding how to identify unmet needs and client needs properly, filtering through these needs using various acceptance criteria, and selecting promising needs for which potential medtech solutions are explored. Students work in groups to conduct research and development processes to invent and implement new medtech devices that increase quality of clinical care and result in improved patient outcomes in hospital systems. Introduction to intelectual property basics and various medtech business models. Letter grading. Mr. Liu, Mr. Shivkumar (W)

M233B. Medtech Innovation II: Prototyping and New Venture Development. (4) (Same as Management M271B). Lecture, three hours; outside study, nine hours. Requisite: course M233A. Designed for graduate and professional students in engineering, dentistry, design, law, management, and medicine. Development of medtech devices that increase quality of clinical care and result in improved patient outcomes in hospital systems. Introduction to intelectual property basics and various medtech business models. Letter grading. Mr. Liu, Mr. Shivkumar, Mr. Wu (Sp)

C239A. Biomolecular Materials Science I. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Seven-hour course covers chemical and physical foundations of biomolecular materials science that concern materials aspects of molecular biology, cell biology, and bioengineering. Understanding of different types of existing and novel biomolecules, such as van der Waals interactions, entropically modulated electrostatic interactions, hydrophobic interactions, hydration and solvation interactions, polymer-mediated interactions, depletion interaction, molecular recognition, and others. Illustration of these ideas using examples from bioengineering and biomedical engineering. Students should be able to make simple calculations and estimates that broadly capture important aspects of bioengineering problems, such as those in drug and gene delivery and tissue engineering. May be taken independently for credit. Concurrently scheduled with course C239B. Letter grading. Mr. Liao (F)

C239B. Biomolecular Materials Science II. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Course C239A is not a prerequisite. Concurrently scheduled with course C239B. Letter grading. Mr. Liao (F)

CM240. Introduction to Biomechanics. (4) (Same as Mechanical and Aerospace Engineering CM240) Lecture, three hours; laboratory, one hour; discussion, two hours. Requires: Mechanical and Aerospace Engineering 101, 102, and 156A or 166A. Introduction to mechanical functions of human body; skeletal apparatus, load transfer and stability, and function. Dynamics and kinematics. Fluid mechanics applications. Heat and mass transfer. Power generation. Laboratory simulations and tests. Concurrently scheduled with course CM241. Letter grading. Mr. Gupta (W)

CM245. Molecular Biotechnology for Engineers. (4) (Same as Chemical Engineering CM245). Lecture, four hours; discussion, one hour; outside study, seven hours. Directed study of fundamental biology that form foundation of biotechnology and biomedical industry today. Topics include recombinant DNA technology, molecular research tools, manipulation of genes and gene vectors, directed mutation, protein engineering, DNA-based diagnostics and DNA microarrays, antibody and protein-based diagnostics, genomics and bioinformatics, isolation of human genes, genethrapy, and applications of biology. Concurrently scheduled with course CM145. Letter grading. Mr. Liao (F)

C247. Applied Tissue Engineering: Clinical and Industrial Perspective. (4) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: course CM202, Chemistry 20A, 20B, 20L, Life Sciences 7A. Overview of central topics of tissue engineering, with focus on how to build artificial tissues into regulated clinically viable products. Topics include biomaterials selection, cell source, delivery methods, FDA approval processes, and physical/chemical and biological testing. Case studies include skin and artificial skin, bone and cartilage, blood vessels, neurotissue engineering, and liver, kidney, and other organs. Clinical and industrial perspectives of tissue engineering products. Manufacturing contraints, clinical limitations, and regulatory challenges in design and development of tissue-engineering devices. Concurrently scheduled with course C147. Letter grading. Mr. Wu (Sp)

CM248. Introduction to Biological Imaging. (4) (Same as Pharmacology M248 and Physics and Biophysics M248). Lecture, three hours; laboratory, one hour; outside study, seven hours. Exploration of role of biological imaging in modern biology and bioengineering. Basic assumptions and approximations, image processing, and applications of imaging for range of modalities. Practical experience provided through series of imaging laboratories. Letter grading.

CM250B. Microelectromechanical Systems (MEMS). Fabrication. (4) (Same as Electrical and Computer Engineering M250B and Mechanical and Aerospace Engineering M250B). Lecture, three hours; discussion, one hour; outside study, seven hours. Introduction to modern topics in drug delivery devices. Students gain ability to identify advanced approaches for drug delivery mediated by devices in effective and safe manner; from systemic administration to site-specific release; design appropriate dosing devices, materials, and drug-delivering systems.国资委drug delivery devices to deliver different therapeutic agents to desired sites for treating variety of diseases; and propose methods and relevant experiments to validate efficacy of certain drug delivery devices. Letter grading. Mr. Liu (F)

M261A–M261B–M261C. Evaluation of Research Literature in Neuroengineering. (2–2–2) (Same as Electrical and Computer Engineering M261A–M261B–M261C). Lecture, four hours; laboratory, three hours; outside study, five hours. Requisites: Mathematics 32A, Physics 1B or 5C. Introduction to principles and technologies of bioelectricity and neural signal recording, processing, and stimulation. Topics include bioelectricity, electrophysiology (action potentials, local fields, potentials, EEG), extracellular recording, microelectrode technology, neural signal processing (neural signal frequency bands, filtering, spike detection, spike sorting, stimulation artifact removal), brain-computer interfaces, deep-brain stimulation, and prosthesis. Letter grading.

CM262. Anatomy of Central Nervous System. (4) (Same as Neuroscience M203). Lecture, 75 minutes; discussion/laboratory, two hours. Prior to first laboratory meeting, students must complete Biobio Pathogens training course through UCL A Environment, Health and Safety. Study of anatomical locations and relationships between ascending and descending sensory and motor systems from spinal cord to cerebral cortex. Covers cranial nerves and brainstem anatomy along with anatomy of vascular and vascular systems of brain. Subcortical forebrain areas covered in detail. Integrated anatomy laboratory includes brain dissections and overview of tools for MRI analysis. Letter grading.

C273. Micro- and Nanoscale Biosensing for Molecular Diagnostics. (4) (Same as Electrical and Computer Engineering M273) Lecture, four hours; discussion, one hour; outside study, seven hours. Covers state-of-art and emerging biosensors in context of molecular diagnostics. Students learn relevant biology and biochemistry pertinent to molecular diagnostics in biocompatible and transducer-on-a-chip formations. Course covers state-of-art and emerging biosensors in context of molecular diagnostics. Students learn relevant biology and biochemistry pertinent to molecular diagnostics in biocompatible and transducer-on-a-chip formations. Course covers state-of-art and emerging biosensors in context of molecular diagnostics. Students learn relevant biology and biochemistry pertinent to molecular diagnostics in biocompatible and transducer-on-a-chip formations. Course covers state-of-art and emerging biosensors in context of molecular diagnostics. Students learn relevant biology and biochemistry pertinent to molecular diagnostics in biocompatible and transducer-on-a-chip formations. Course covers state-of-art and emerging biosensors in context of molecular diagnostics. Students learn relevant biology and biochemistry pertinent to molecular diagnostics in biocompatible and transducer-on-a-chip formations. Course covers state-of-art and emerging biosensors in context of molecular diagnostics. Students learn relevant biology and biochemistry pertinent to molecular diagnostics in biocompatible and transducer-on-a-chip formations.
275. Machine Learning and Data-Driven Modeling in Bioengineering. (Formerly numbered C275.) Lecture, four hours; laboratory, two hours; outside study, six hours. Requisites: Civil Engineering M20 or Mechanical and Aerospace Engineering M20 or Computer Science and Engineering Mathematics 328, 33A. Overview of foundational data analysis and machine-learning methods in bioengineering, focusing on how these techniques can be applied to interpret experimental data. Topics include probability distributions, cross-validation, analysis of variance, reproducible computational workflows, dimensionality reduction, regression, hidden Markov models, and clustering. Students gain theoretical and practical knowledge of data analysis, and machine-learning methods relevant to bioengineering. Application of these methods to experimental data from bioengineering studies. Students become sufficiently familiar with fundamental concepts to design, implement, and interpret such analyses, execute analysis, and work in teams using similar approaches, and ensure correctness of their results. Letter grading.

CM278. Introduction to Biomaterials. (4) Same as Materials Science CM280D. Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 20A, 20B, and 20L, or Materials Science 104. Engineering materials used in medicine and dentistry: De/orthopedic devices and/or restorative and/or prosthetic devices and/or implants and/or modified natural tissues. Topics include relationships between material properties, suitability to task, surface chemistry, processing and treatment methods, and bioinertness. Concurrently scheduled with course CM178. Letter grading. Ms. Kasko (F).

CM280. Functional Neuroimaging: Techniques and Applications. (3) Same as Neuroscience M285. Physics and Biology in Medicine M285, Psychiatry M285, and Psychology M285. Lecture, two hours; outside study, six hours. In-depth examination of activation imaging, including MRI and electrophysiological methods, data acquisition and analysis, experimental design, and results obtained thus far. Students focus on understanding technologies, how to design activation imaging paradigms, and how to interpret results. Laboratory visits and design and implementation of functional imaging protocols. Concurrently scheduled with course CM285. Introduction to Tissue Engineering. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: course CM102 or CM202, Chemistry 20A, 20B, 20L. Tissue engineering applies principles of biology and physical sciences with engineering approach to regenerate tissues and organs. Guiding principles for proper selection of three basic components for tissue engineering: cells, scaffolds, and molecular signals. Concurrently scheduled with course C185. Letter grading. Ms. Kasko (W).

CM286. Computational Systems Biology: Modeling and Simulation of Biological Systems. (5) Same as Computer Science CM286. Lecture, four hours; laboratory, two hours; discussion, one hour. Requisites: Life Sciences 30A, 30B, Mathematics 32A or M32T, 33A, and 33B, or Mathematics 3A, 3B, and 3C, or Mathematics 31A, 31B, 32A or M32T, 33A, and 33B. Dynamic biosystem modeling and computer simulation methods for studying analyzing biological/biomedical processes and systems at multiple levels of organization. Intermediate linear and nonlinear control system, multicompartamental, epidemiological, pharmacokinetic, and other biomodeling methods applied to life sciences problems at molecular, cellular, population levels. Both theory- and data-driven modeling, with focus on translating modeling goals and data into dynamical mathematical models, and implementing them for simulation, quantification, and analysis. Numerical simulation, optimization, and parameter identifiability and search algorithms, with model discrimination and analysis and software exercises in PC laboratory assignments. Concurrently scheduled with course CM188. Letter grading. Mr. Wu (Not offered 2021-22)

281. Advanced Bioconjugate Design and Methods. (4) Lecture, four hours; outside study, eight hours. Requisite: course CM278. In-depth exploration of host cellular response to biomaterials: vascular response, interface, and clotting, biocompatibility of animal models, inflammation, infection, extracellular matrix, cell adhesion, and role of mechanical forces. Concurrently scheduled with course C278. Letter grading. Mr. Wu (Not offered 2021-22)

Bionanotechnology Research. (4) Lecture, three hours; discussion, two hours; outside study, nine hours. Requisite: course CM278. In-depth exploration of host cellular response to biomaterials: vascular response, interface, and clotting, biocompatibility and experience on special topics involving design and development of biomaterials. Concurrently scheduled with course CM178. Letter grading. Ms. Kasko (F).

CM287. Computational Communication in Computational and Systems Biology. (4) Same as Computer Science CM287. Lecture, four hours; outside study, eight hours. Requisite: course CM286. Three hours; laboratory, two hours; discussion, one hour. Requisites: Life Sciences 30A, 30B, Mathematics 32A or M32T, 33A, and 33B, or Mathematics 3A, 3B, and 3C, or Mathematics 31A, 31B, 32A or M32T, 33A, and 33B. Dynamic biosystem modeling and computer simulation methods for studying analyzing biological/biomedical processes and systems at multiple levels of organization. Intermediate linear and nonlinear control system, multicompartamental, epidemiological, pharmacokinetic, and other biomodeling methods applied to life sciences problems at molecular, cellular, population levels. Both theory- and data-driven modeling, with focus on translating modeling goals and data into dynamical mathematical models, and implementing them for simulation, quantification, and analysis. Numerical simulation, optimization, and parameter identifiability and search algorithms, with model discrimination and analysis and software exercises in PC laboratory assignments. Concurrently scheduled with course CM188. Letter grading. Mr. Wu (Not offered 2021-22)

CM288. Research Communication in Computational and Systems Biology. (4) Same as Computer Science CM288. Lecture, four hours; outside study, eight hours. Requisite: course CM286. Three hours; laboratory, two hours; discussion, one hour. Requisites: Life Sciences 30A, 30B, Mathematics 32A or M32T, 33A, and 33B, or Mathematics 3A, 3B, and 3C, or Mathematics 31A, 31B, 32A or M32T, 33A, and 33B. Dynamic biosystem modeling and computer simulation methods for studying analyzing biological/biomedical processes and systems at multiple levels of organization. Intermediate linear and nonlinear control system, multicompartamental, epidemiological, pharmacokinetic, and other biomodeling methods applied to life sciences problems at molecular, cellular, population levels. Both theory- and data-driven modeling, with focus on translating modeling goals and data into dynamical mathematical models, and implementing them for simulation, quantification, and analysis. Numerical simulation, optimization, and parameter identifiability and search algorithms, with model discrimination and analysis and software exercises in PC laboratory assignments. Concurrently scheduled with course CM188. Letter grading. Mr. Wu (Not offered 2021-22)

CM295A. Seminar in Bioengineering Topics. (2 each) Seminar, two hours; outside study, four hours. Designed for graduate bioengineering students. Seminar by leading academic and industrial bioengineers from UCLA or other universities. Designed for company such as Baxter, Amgen, Medtronic, and Guiduant on development and application of recent technological advances in discipline. Exploration of cutting-edge developments and challenges in wound healing, disease modeling, stem cell differentiation, signal transduction, gene therapy, CDNA microarray technology, bioartificial cultivation, nano- and microhybrid devices, scaffold engineering, and biomedical data. Letter grading. Mr. DiStefano (Sp)

CM295B. Biomaterials and Tissue Engineering Research. (2) Seminar, two hours; outside study, four hours. Designed for graduate bioengineering students. Seminar by leading academic and industrial bioengineers from UCLA or other universities. Designed for company such as Baxter, Amgen, Medtronic, and Guiduant on development and application of recent technological advances in discipline. Exploration of cutting-edge developments and challenges in wound healing, disease modeling, stem cell differentiation, signal transduction, gene therapy, CDNA microarray technology, bioartificial cultivation, nano- and microhybrid devices, scaffold engineering, and biomedical data. Letter grading. Mr. DiStefano (Sp)

CM295C. Biomaterial Research. (2) Seminar, two hours; outside study, four hours. Designed for graduate bioengineering students. Seminar by leading academic and industrial bioengineers from UCLA or other universities. Designed for company such as Baxter, Amgen, Medtronic, and Guiduant on development and application of recent technological advances in discipline. Exploration of cutting-edge developments and challenges in wound healing, disease modeling, stem cell differentiation, signal transduction, gene therapy, CDNA microarray technology, bioartificial cultivation, nano- and microhybrid devices, scaffold engineering, and biomedical data. Letter grading. Mr. DiStefano (Sp)

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: apprentice personnel employment as teaching assistant, associate, or fellow. Teach in apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading.
Chemical and Biomedical Engineering

5521 Boelter Hall
Box 951592
Los Angeles, CA 90095-1592
310-825-2046

Department e-mail
Department website
Panagiotis D. Christofides, PhD, Chair
Philippe Sautet, PhD, Vice Chair

Faculty Roster

Professors
Emily A. Carter, PhD
Jane P. Chang, PhD (William Frederick Seyer Professor of Materials Electrochemistry)
Panagiotis D. Christofides, PhD (William D. Van Vorst Professor of Chemical Engineering Education)
Yoram Cohen, PhD
James F. Davis, PhD
Vijay K. Dhir, PhD
Yujie Li, PhD
Vasilios I. Manousiouthakis, PhD
Harold G. Monbouquette, PhD
Stanley J. Osher, PhD
Philippe Sautet, PhD
Yi Tang, PhD (Ralph M. Parsons Foundation Professor of Chemical Engineering)

Professors Emeriti
Robert F. Hicks, PhD
Eldon L. Knuth, PhD
James C. Liao, PhD
Selim M. Senkan, PhD
Vincent L. Vilker, PhD
A.R. Frank Wazzan, PhD, Dean Emeritus

Associate Professors
Irene A. Chen, MD, PhD
Yvonne Y. Chen, PhD

Assistant Professors
Nasim Annabi, PhD
Carissa N. Eisler, PhD
Yuzhang Li, PhD
Carlos G. Morales-Guio, PhD
Junyong O. Park, PhD
Dante A. Simonetti, PhD
Samanvaya Srivastava, PhD
Thaiesha A. Wright, PhD

Overview

The Department of Chemical and Biomedical Engineering conducts undergraduate and graduate programs of teaching and research that focus on the areas of biomedical engineering, systems engineering, and advanced materials processing and span the general themes of energy/environment and nanoengineering. Aside from the fundamentals of chemical engineering (thermodynamics, transport phenomena, kinetics, reactor engineering and separations), particular emphasis is given to metabolic engineering, protein engineering, synthetic biology, bio-nano-technology, biomaterials, air pollution, environmental modeling, pollution prevention, molecular simulation, process systems engineering, membrane science, semiconductor processing, chemical vapor deposition, plasma processing, and polymer engineering.

Students are trained in the fundamental principles of these fields while acquiring sensitivity to society’s needs—a crucial combination needed to address the challenge of continued industrial growth and innovation in an era of economic, environmental, and energy constraints.

The undergraduate curriculum leads to a Bachelor of Science (BS) in Chemical Engineering and includes the standard core curriculum, as well as biomedical engineering, biomolecular engineering, environmental engineering, and semiconductor manufacturing engineering options. The department also offers graduate courses and research leading to Master of Science (MS) and Doctor of Philosophy (PhD) degrees. Both graduate and undergraduate programs closely relate teaching and research to important industrial problems.

Undergraduate Study

Chemical Engineering BS

The chemical engineering curricula provide a high quality, professionally oriented education in modern chemical engineering. The biomedical engineering, biomolecular engineering, environmental engineering, and semiconductor manufacturing engineering options provide students an opportunity for exposure to a subfield of chemical and biomolecular engineering. In all cases, balance is sought between engineering science and practice.

The chemical engineering program is accredited by the Engineering Accreditation Commission of ABET.

Capstone Major

The Chemical Engineering major is a designated capstone major. The capstone project requires students to first work individually and learn how to integrate chemical engineering fundamentals taught in prior required courses; they then work in groups to produce a paper design of a realistic chemical process using appropriate software tools. Graduates should be able to design a chemical or biological system, component, or process that meets technical
and economical design objectives, with consideration of environmental, social, and ethical issues, as well as sustainable development goals. In addition, they should be able to apply their knowledge of mathematics, physics, chemistry, biology, and chemical and biological engineering to analysis and design of chemical and biochemical processes and products; function on multidisciplinary teams; identify, formulate, and solve complex chemical and biological engineering problems; and communicate effectively, both orally and in writing.

Educational Objectives
The mission of the undergraduate program is to educate future leaders in chemical and biomolecular engineering who effectively combine their broad knowledge of physics, chemistry, biology, and mathematics with their engineering analysis and design skills for the creative solution of problems in chemical and biological technology and for the synthesis of innovative (bio)chemical processes and products. This goal is achieved by producing chemical and biomolecular engineering alumni who (1) draw readily on a rigorous education in mathematics, physics, chemistry, and biology in addition to the fundamentals of chemical engineering to creatively solve problems in chemical and biological technology; (2) incorporate social, ethical, environmental, and economical considerations, including the concept of sustainable development, into chemical and biomolecular engineering practice; (3) lead or participate successfully on multidisciplinary teams assembled to tackle complex, multifaceted problems that may require implementation of both experimental and computational approaches, and a broad array of analytical tools; and (4) pursue graduate study and achieve an MS or PhD degree in the sciences and engineering, and/or achieve success as professionals in chemical and biomolecular engineering as well as related fields, including business, medicine, and environmental protection.

Learning Outcomes
The Chemical Engineering major has the following learning outcomes:

• Application of knowledge of mathematics, physics, chemistry, biology, and chemical and biological engineering, especially to integration of molecular-to micro-scale information into macro-scale analysis and design of chemical and biochemical processes and products

• Design of a chemical or biological system, component, or process that meets technical and economical design objectives with consideration of environmental, social, and ethical issues, as well as sustainable development goals

• Identification, formulation, and solution of complex chemical and biological engineering problems

• Function as a productive member of a multidisciplinary team

• Effective oral and written communication

Chemical Engineering Core Option

Preparation for the Major
Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Civil and Environmental Engineering M20 or Mechanical and Aerospace Engineering M20; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL.

The Major
Required: Chemical Engineering 45, 100, 101A, 101B, 101C, 102A, 102B, 103, 104A, 104B, 106, 107, 109; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; two capstone analysis and design courses (Chemical Engineering 108A, 108B); and two elective courses (8 units) from Chemical Engineering 110, C111, C112, C113, C114, C115, C116, C118, C119, C121, C125, C128, C135, C140.

For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 21 or the GE Requirement web page.

Biomolecular Engineering Option

Preparation for the Major
Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Civil and Environmental Engineering M20 or Mechanical and Aerospace Engineering M20; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL.

The Major
Required: Chemical Engineering 45, 100, 101A, 101B, 101C, 102A, 102B, 104A, 104D, 107, 109, C115, C125, CM145; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; two capstone analysis and design courses (Chemical Engineering 108A, 108B); and one biomolecular elective course (4 units) from Bioengineering C105, C183, Chemical Engineering C112, Chemistry and Biochemistry C105, 153A, or C159 (another chemical engineering elective may be substituted with approval of the faculty adviser).

For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 21 or the GE Requirement web page.

Biomedical Engineering Option

Preparation for the Major
Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Civil and Environmental Engineering M20 or Mechanical and Aerospace Engineering M20; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL.

The Major
Required: Chemical Engineering 45, 100, 101A, 101B, 101C, 102A, 102B, 104A, 104D, 107, 109, C115, C125, CM145; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; two capstone analysis and design courses (Chemical Engineering 108A, 108B); and one biomolecular elective course (4 units) from Bioengineering C105, C183, Chemical Engineering C112, Chemistry and Biochemistry C105, 153A, or C159 (another chemical engineering-
ing elective may be substituted with approval of the faculty adviser).

For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 21 or the GE Requirement web page.

Environmental Engineering Option

Preparation for the Major

Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Civil and Environmental Engineering M20 or Mechanical and Aerospace Engineering M20; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL.

The Major

Required: Chemical Engineering 45, 100, 101A, 101B, 101C, 102A, 102B, 103, 104A, 104B, 106, 107, 109; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; two capstone analysis and design courses (Chemical Engineering 113, C118, C119, C121, C128, C135, C140 another chemical engineering elective may be substituted with approval of the faculty adviser).

For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 21 or the GE Requirement web page.

Semiconductor Manufacturing Engineering Option

Preparation for the Major

Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Civil and Environmental Engineering M20 or Mechanical and Aerospace Engineering M20; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL.

The Major

Required: Chemical Engineering 45, 100, 101A, 101B, 101C, 102A, 102B, 103, 104A, 104B, 106, 107, 109; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; two capstone analysis and design courses (Chemical Engineering 113, C118, C119, C121, C128, C135, C140 another chemical engineering elective may be substituted with approval of the faculty adviser).

For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 21 or the GE Requirement web page.

Graduate Study

For admission information, see Graduate Programs Admission on page 27.

For additional information regarding the BS, MS, and PhD in Chemical Engineering, refer to the Chemical and Biomolecular Engineering Department brochure.

The following introductory information is based on 2021-22 program requirements for UCLA graduate degrees. Complete program requirements are available at Program Requirements for UCLA Graduate Degrees. Students are subject to the detailed degree requirements as published in program requirements for the year in which they enter the program.

The Department of Chemical and Biomolecular Engineering offers Master of Science (MS) and Doctor of Philosophy (PhD) degrees in Chemical Engineering.

Chemical Engineering MS

Areas of Study

The semiconductor manufacturing specialization requires that students have advanced knowledge, assessed in a comprehensive examination, of processing semiconductor devices on the nanoscale.

Course Requirements

The requirements for the MS degree are a thesis, nine courses (36 units), and a minimum 3.0 grade-point average in the graduate courses. Chemical Engineering 200, 210, and 220 are required. Two other courses must be taken from regular offerings in the department, while two Chemical Engineering 598 courses involving work on the thesis may also be selected. The remaining two courses may be taken from those offered by the department or any other field in life sciences, physical sciences, mathematics, or engineering. At least 24 units must be in letter-graded 200-level courses.

All MS degree candidates are required to enroll in Chemical Engineering 299 during each term in residence.

Undergraduate Courses. No lower-division courses may be applied toward graduate degrees. In addition, the following upper-division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199, Civil and Environmental Engineering 108, 199, Computer Science M152A, M152B, 199, Electrical and Computer Engineering 100, 101A, 102, 110L, M116L, 133A, 199, Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 150, 160, 161L, 199, Mechanical and Aerospace Engineering 102, 103, 105A, 105D, 199.

Semiconductor Manufacturing Specialization

Students are required to complete 10 courses (44 units) with a minimum 3.0 grade-point average overall and in the graduate courses. A minimum of five 200-series courses (20 units) are required, including Chemical Engineering 270 and 270R. Students also are required to take courses 104C, 104CL, Electrical and Computer Engineering 123A, and Materials Science and Engineering 121. In addition, two departmental elective courses and two electrical and computer engineering or materials science and engineering electives must be selected, with a minimum of two at the 200 level. Approved elective courses include Chemical Engineering CM214, C218, C219, 223, C240, Electrical and Computer Engineering 221A, 221B, 223, 224, Materials Science and Engineering 210, 223.

Students in the specialization who have been undergraduates at or graduates of UCLA and who have already taken some of the required courses may substitute electives for those courses. However, courses taken by students not enrolled in the specialization may not be applied toward the 10-course requirement for the degree. A program of study that encompasses the course requirements must be submitted to the research adviser for approval before the end of the first term in residence and to the departmental Student Affairs Office for approval by Graduate Division before the end of the second term in residence.

Field Experience. Students are required to take Chemical Engineering 270R (directed research course) in the field, working at an industrial semiconductor fabrication facility. The proposed research must be approved by the graduate adviser for semiconductor manufacturing and the industrial sponsor of the research.

Comprehensive Examination Plan

The comprehensive examination plan is only for students in the semiconductor manufacturing specialization.

Students take Chemical Engineering 597A to prepare for the comprehensive examination, which tests for knowledge of the engineering principles of semiconductor manufacturing. In case of failure, the examination may be repeated once within one term with the consent of the graduate adviser. A second failure leads to a recommendation to the Graduate Division for termination of graduate study.

Thesis Plan

The thesis plan is for all MS degree students who are not in the semiconductor manufacturing specialization. Students must
complete a thesis and should consult the research adviser for details. Students nominate a three-member thesis committee that must meet University requirements and be approved by the Graduate Division.

Chemical Engineering PhD

Major Fields or Subdisciplines
Consult the department.

Course Requirements
All PhD students are required to take six letter graded, 200-level courses (24 units). They can select three chemical engineering core courses from 200, 210, 220, CM245, and a graduate engineering mathematics course. Two additional courses must be taken from those offered by the department. The final course can be selected from offerings in life sciences, physical sciences, mathematics, or engineering. Students are encouraged to take more courses in their field of specialization. The minor field courses should be selected in consultation with the research adviser. A minimum 3.33 grade-point average in graduate courses is required. A program of study to fulfill the course requirements must be submitted for approval to the departmental Student Affairs Office no later than one term after successful completion of the preliminary oral examination.
All PhD students are required to enroll in Chemical Engineering 299 during each term in residence.

Written and Oral Qualifying Examinations
Academic Senate regulations require all doctoral students to complete and pass University written and oral qualifying examinations prior to doctoral advancement to candidacy. Under Senate regulations the University Oral Qualifying Examination is open only to students and appointed members of their doctoral committees.
In addition to University requirements, some graduate programs have other precandidacy examination requirements. What follows are the requirements for this doctoral program.
All PhD students are required to pass the preliminary written examination (PWE) to demonstrate proficiency in at least three of the five core areas as follows.
Students must select the transport phenomena core area and either the thermodynamics core area or reaction engineering core area or both. If they select only one of thermodynamics or reaction engineering, they must also select either the biomolecular engineering or engineering mathematics core area. The PWE is offered at the end of winter quarter of each academic year and is graded by a faculty committee. Students must take the PWE in their first year. If they fail the PWE on the first attempt, they can retake it for a second time the following spring quarter. Students who fail both attempts are not allowed to continue in the PhD program.
After completion of the required courses for the degree and passing of the PWE, students must pass the written and oral qualifying examinations. These examinations focus on the dissertation research and are conducted by a doctoral committee consisting of at least four faculty members nominated by the department in accordance with University regulations. Three members, including the chair, are inside members and must hold faculty appointments in the department. The outside member must be a UCLA faculty member in another department. Students are required to have a minimum 3.33 grade-point average in graduate coursework to be eligible to take these examinations.
The written qualifying examination consists of a dissertation research proposal that provides a clear description of the problem(s) considered, a literature review of the current state of the art, and a detailed explanation of the research plan that is to be followed to solve the problem(s). Students normally submit their dissertation research proposals to their doctoral committees before the end of winter quarter of the second year in academic residence.
The University Oral Qualifying Examination consists of an oral defense of the dissertation research proposal and is administered by the doctoral committee. The written research proposal must be submitted to the committee at least two weeks prior to the oral examination to allow the members sufficient time to evaluate the work.

Facilities

Biomolecular Engineering Laboratories
The laboratories are equipped for cutting-edge genetic, biomolecular, and cellular engineering teaching and research. Facilities and equipment include bioreactors, fluorescence microscopy, real-time PCR thermocycler, UV-visible and fluorescence spectrophotometers, HPLC and LC-mass spectrometer, aerobic and anaerobic bioreactors, and protein purification facility. Analytical instruments include a quadrupole mass spectrometer (QMS) system to sample reactive systems with electron impact and photoionization capabilities; several fully computerized gas chromatograph/mass spectrometer (GC/MS) systems for gas analysis; a computerized gas chromatograph/sulfur chemiluminescence detector (GC/SCD) system for gas analysis of sulfur-containing compounds; and fully computerized array channel microreactors and plug-flow reactors for catalyst discovery and optimization.
The laboratory also presents a strong expertise in computational catalysis and surface chemistry. It is equipped with state-of-the-art atomic-scale modeling software used to understand the properties of solids and the catalytic reactivity of surfaces, nanoparticles, and clusters. Codes include VASP, CP2K, and SIESTA. Applications domains are linked with chemistry and energy for biochemical assays involving radiolabeled compounds.
Microbial cells are genetically and metabolically engineered to produce compounds that are used as fuel, chemicals, drugs, and food additives. Novel gene-metabolic circuits are designed and constructed in microbial cells to perform complex and non-native cellular behavior. These designer cells are cultured in bioreactors, and intracellular states are monitored. Such investigations are coupled with genomic and proteomic efforts, and mathematical modeling, to achieve system-wide understanding of the cell.

Chemical Kinetics, Catalysis, and Reaction Engineering Laboratory
The laboratory is equipped with advanced research tools for experimental and computational studies of chemical kinetics, reaction engineering, and catalytic and adsorptive materials. Analytical instruments include a quadrupole mass spectrometer (QMS) system to sample reactive systems with electron impact and photoionization capabilities; several fully computerized gas chromatograph/mass spectrometer (GC/MS) systems for gas analysis; a computerized gas chromatograph/sulfur chemiluminescence detector (GC/SCD) system for gas analysis of sulfur-containing compounds; and fully computerized array channel microreactors and plug-flow reactors for catalyst discovery and optimization.
The laboratory also presents a strong expertise in computational catalysis and surface chemistry. It is equipped with state-of-the-art atomic-scale modeling software used to understand the properties of solids and the catalytic reactivity of surfaces, nanoparticles, and clusters. Codes include VASP, CP2K, and SIESTA. Applications domains are linked with chemistry and energy for biochemical assays involving radiolabeled compounds.
Microbial cells are genetically and metabolically engineered to produce compounds that are used as fuel, chemicals, drugs, and food additives. Novel gene-metabolic circuits are designed and constructed in microbial cells to perform complex and non-native cellular behavior. These designer cells are cultured in bioreactors, and intracellular states are monitored. Such investigations are coupled with genomic and proteomic efforts, and mathematical modeling, to achieve system-wide understanding of the cell.

Protein engineering is being used to generate completely novel compounds that have important pharmaceutical value. Bacteria are being custom-designed to synthesize important therapeutic compounds that have anticancer, cholesterol-lowering, and/or antibiotic activities. Biosensors are being micromachined for detecting neurotransmitters in vivo. New biosensing schemes also are being invented for the detection of endocrine disrupting chemicals in the environment and for the high-throughput screening of drug candidates. Naturally occurring protein nanocapsules are being redesigned at the genetic level for applications in drug delivery and materials synthesis. Finally, the enzymology of extremely thermophilic microbes is being explored for applications in specialty chemical synthesis.
challenges and range from heterogeneous catalysis to photocatalysis, electrocatalysis, depollution, and electricity storage. Original simulation methods, developed by the researchers, are available for the modeling of electrocatalysis. A high-performance cluster is available for research and teaching. Campuswide computers are also available to laboratory researchers.

Electrochemical Engineering and Catalysis Laboratories

With instrumentation such as rotating ring-disk electrodes, electrochemical packed-bed flow reactors, gas chromatographs, potentiostats, and function generators, the laboratories are used to study metal, alloy, and semiconductor corrosion processes, electro-deposition and electrodeless deposition of metals, alloys, and semiconductors for GMR and MEMS applications, electrochemical energy conversion (fuel cells) and storage (batteries), and bioelectrochemical processes and biomedical systems. The electroorganic synthesis facility is for the development of electrochemical processes to transform biomass-derived organic compounds into useful chemicals, fuels, and pharmaceuticals. The catalysis facility is equipped to support various types of catalysis projects, including catalytic hydrosylation, and direct catalytic solid-gas reactions.

Materials and Plasma Chemistry Laboratory

The laboratory is equipped with state-of-the-art instruments for studying the molecular processes that occur during chemical vapor deposition (CVD) and plasma processing. CVD is a key technology for synthesizing advanced electronic and optical devices, including solid-state lasers, infrared, visible, and ultraviolet detectors and emitters, solar cells, heterojunction bipolar transistors, and high-electron mobility transistors. The laboratory houses a commercial CVD reactor for the synthesis of III-V compound semiconductors. This tool is interfaced to an ultrahigh vacuum system equipped with scanning tunneling microscopy, low-energy electron diffraction; infrared spectroscopy and X-ray photoelectron spectroscopy. This apparatus characterizes the atomic structure of compound semiconductor heterojunction interfaces and determines the kinetics of CVD reactions on these surfaces. The atmospheric plasma laboratory is equipped with multiple plasma sources and state-of-the-art diagnostic tools. The plasmas generate, at low temperature, beams of atoms and radicals well-suited for surface treatment, cleaning, etching, deposition, and sterilization. Applications are in the biomedical, electronics, and aerospace fields. The laboratory is unique in that it characterizes the reactive species generated in atmospheric plasmas and their chemical interactions with surfaces.

Electronic Materials Processing Laboratory

The laboratory focuses on the synthesis and patterning of multifunctional complex oxide films and nanostructures with tailored electronic, chemical, thermal, mechanical, and biological properties. Theoretical and experimental studies are combined to understand the process chemistry and surface kinetics in atomic layer deposition, plasma etching and deposition processes, gas-phase surface functionalization, and solution phase synthesis. Novel devices including advanced microelectronics, optoelectronics, chemical sensors, and energy storage devices are realized at nano-dimensions as the technologies become more enabling based on these fundamental studies. The laboratory is equipped with a state-of-the-art advanced rapid thermal processing facility with in-situ vapor phase processing and atomic layer deposition capabilities; advanced plasma processing tools including thin film deposition and etching; and diagnostics including optical emissions spectroscopy, Langmuir probe, and quadruple mass spectrometry; a surface analytical facility including X-ray photoelectron spectroscopy, Auger electron spectroscopy, ultra-violet photoelectron spectroscopy, reflection high energy electron diffraction, spectroscopic ellipsometry, photoluminescence, and infrared spectroscopy; and a complete set of processing tools available for microelectronics and MEMS fabrication in the Nanoelectronic Research Facility. With the combined material characterization and electronic device fabrication, the reaction kinetics including composition and morphology, and the electrical property of these materials can be realized for applications in the next generation electronic devices and chemical or biological MEMS.

Polymer and Separations Research Laboratory

The laboratory is equipped for research on membranes, water desalination, adsortion, chemical sensors, polymerization kinetics, surface engineering with polymers and the behavior of polymeric fluids in confined geometries. Instrumentation includes a high resolution multiprobe atomic force microscope (AFM) and a quartz crystal microbalance system for membrane and sensor development work. An atmospheric plasma surface structuring system is available for nano-structuring ceramic and polymeric surfaces for a variety of applications that include membrane performance enhancement and chemical sensor arrays. Analytical equipment for polymer characterization includes several high-pressure liquid chromatographs for size exclusion chromatography equipped with different detectors, including refractive index, UV photodiode array, conductivity, and a photodiode array laser light scattering detector. The laboratory has a research-grade FTIR with a TGA interface, a thermogravimetric analysis system, and a dual column

Nanoparticle Technology and Air Quality Engineering Laboratory

Modern particle technology focuses on particles in the nanometer (nm) size range with applications to air pollution control and commercial production of fine particles. Particles with diameters between 1 and 100 nm are of interest both as individual particles and in the form of aggregate structures. The laboratory is equipped with instrumentation for online measurement of aerosols, including optical particle counters, electrical aerosol analyzers, and condensation particle counters. A novel low-pressure impactor designed in the laboratory is used to fractionate particles for morphological analysis in size ranges down to 50 nm (0.05 micron). Also available is a high-volumetric flow rate impactor suitable for collecting particulate matter for chemical analysis. Several types of specially designed aerosol generators are also available, including a laser ablation chamber, tube furnaces, and a specially designed aerosol microreactor.

Concern with nanoscale phenomena requires the use of advanced systems for particle observation and manipulation. Students have direct access to modern facilities for transmission and scanning electron microscopy. Located near the laboratory, the Electron Microscopy facilities staff provide instruction and assistance in the use of these instruments. Advanced electron microscopy has recently been used in the laboratory to make the first systematic studies of atmospheric nanoparticle chain aggregates. Such aggregate structures have been linked to public health effects and to the absorption of solar radiation. A novel nanostructure manipulation device, designed and built in the laboratory, makes it possible to probe the behavior of nanoparticle chain aggregates of a type produced commercially for use in nanocomposite materials; these aggregates are also released by sources of pollution such as diesel engines and incinerators.
Process Systems Engineering Laboratory

The laboratory is equipped with state-of-the-art computer hardware and software used for the simulation, design, optimization, control, and integration of chemical processes. Several personal computers and workstations, as well as an 8-node dual-processor cluster, are available for teaching and research. SEASnet and campuswide computational facilities are also available to laboratory members. Software for simulation and optimization of general systems includes MINOS, GAMS, MATLAB, CPLEX, and LINDO. Software for simulation of chemical engineering systems includes HYSYS for process simulation and CACHE-FUJITSU for molecular calculations. UCLADeveloped software for heat/power integration and reactor network attainable region construction is also available.

Faculty Areas of Thesis Guidance

Professors

Jane P. Chang, PhD (MIT, 1998)
Materials processing, gas-phase and surface reaction, plasma enhanced chemistries, atomic layer deposition, chemical microelectromechanical systems, and computational surface chemistry

Panagiota D. Christofides, PhD (U. Minnesota, 1998)
Process modeling, dynamics and control, computational and applied mathematics

Yoram Cohen, PhD (U. Delaware, 1981)
Water treatment and desalination, separation processes, membrane science and technology, surface nanostructurting, pollutant transport nanomaterials and exposure assessment

James F. Davis, PhD (Northwestern U., 1981)
Intelligent systems in process, control operations and design, decision support, management of abnormal situations, data interpretation, knowledge databases, pattern recognition

Vijay K. Dhiri, PhD (U. Kentucky, 1972)
Two-phase heat transfer, boiling and condensation, thermal hydraulics of nuclear reactors, microgravity heat transfer, soil remediation, high-power density electronic cooling

Yunfeng Lu, PhD (U. New Mexico, 1998)
Semiconductor manufacturing and nanotechnology

Vasiliis I. Manousiouthakis, PhD (Rensselaer, 1986)
Process systems engineering: modeling, simulation, design, optimization, and control

Harold G. Monbanouquette, PhD (North Carolina State, 1987)
Biochemical engineering, biosensors, nanotechnology

Stanley J. Osher, PhD (New York U., 1966)
Computational science, image processing, information science

Philippe Sautet, PhD (U. Paris XI Orsay, France, 1989)
First principles atomic scale simulations; quantum chemistry; applications to heterogeneous catalysis: active sites and reaction mechanisms, nanomaterials for depollution and energy transformation, molecules at surfaces

Yi Tang, PhD (Caltech, 2002)
Biosynthesis of proteins/polypeptides with unnatural amino acids, synthesis of novel anti-biotics/antitumor products

Professors Emeriti

Robert F. Hicks, PhD (UC Berkeley, 1984)
Chemical vapor deposition and atmospheric plasma processing

Kendall N. Houk, PhD (Harvard, 1968)
Computational chemistry, enzyme design, investigation of reaction mechanisms, design of materials and processes

Louis J. Igarro, PhD (U. Minnesota, 1968)
Regulation and modulation of NO production

Eldon L. Knuth, PhD (Caltech, 1953)
Molecular dynamics, thermodynamics, combustion, applications to air pollution control and combustion efficiency

Jianming C. Liao, PhD (U. Wisconsin-Madison, 1986)
Metallic engineering, synthetic biology, bioenergy

Selim M. Senkan, PhD (MIT, 1977)
Reaction engineering, combinatorial catalysis, combustion, laser photoionization, real-time detection, quantum chemistry

A.R. Frank Wazzan, PhD (UC Berkeley, 1963)
Fast reactors, nuclear fuel element modeling, stability and transition of boundary layers, heat transfer

Associate Professors

Irene A. Chen, MD, PhD (Harvard, 2007)
Synthetic living systems, in evolution, molecular biophysics, phage nanotechnology, microbiome

Yvonne Y. Chen, PhD (Caltech, 2011)
Synthetic biology, gene-circuit engineering, cell-based therapy, T-cell engineering

Assistant Professors

Nasim Annabi, PhD (U. Sydney, Australia, 2010)
Biomaterials, tissue engineering, 3D bioprinting, microfabrication, nano-composite hydrogels for drug/gene delivery, surgical sealants, adhesives/glues, conductive hydrogels for heart tissue regeneration

Carissa N. Eisler, PhD (Caltech, 2016)
Light and energy transport in nanomaterials, nanophotonics, renewable energy

Yuzhang Li, PhD (Stanford, 2018)
Electrochemical energy storage, electro-catalysis, nanomaterials synthesis and characterization, in situ transmission electron microscopy, cryogenic electron microscopy, carbon capture

Carlos G. Morales-Gui, PhD (École Polytechnique Fédérale de Lausanne [EPFL], Switzerland, 2016)
Electrochemistry, renewable energy storage, nanotechnology, advanced energy materials, catalysis, CO2 utilization, process design, mass transport coupled to chemical transformations

Junyoung O. Park, PhD (Princeton, 2016)
Cancer metabolism, metabolic engineering, bioenergy, systems biology, metabolomics

Dante A. Simonetti, PhD (U. Wisconsin-Madison, 2008)
Heterogeneous catalysis and adsorption, catalytic reaction engineering and kinetics, design of reactive materials, materials characterization

Samaranayake Srivastava, PhD (Cornell, 2014)
Soft materials, self-assembly, polymer chemistry and polymer physics, scattering rheology

Thaiesha A. Wright, PhD (Miami U. Ohio, 2020)
Biomaterials, protein engineering, polymer chemistry

Chemical Engineering Courses

Lower-Division Courses

2. Technology and Environment. (4) Lecture, four hours; outside study, eight hours. Natural and anthropogenic flows of materials at global and regional scales. Case studies of natural cycles include global warming (CO2 cycles), stratospheric ozone depletion (chlorine and ozone cycles), and global nitrogen cycles. Flow of materials in industrial economies compared and contrasted with natural flows; presentation of lifecycle methods for evaluating environmental impact of processes and products. P/NP or letter grading. (Not offered 2021-22)

10. Introduction to Chemical and Biomolecular Engineering. (1) Lecture, one hour; outside study, two hours. General introduction to chemical and biomolecular engineering. Description of how chemical and biomolecular engineering analysis and design skills are applied for creative solution of current technological problems in the design, production of micro-electronic devices, design of chemical plants for minimun environmental impact, application of nanotechnology to chemical sensing, and genetic-level design of recombinant microbes for chemical synthesis. Letter grading. Mr. Tang (F)

19. Fiat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

45. Biomolecular Engineering Fundamentals. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Recommended requisites: Chemistry 20A, 20L, 30A, 30L. Intended for those students who have not taken Life Sciences 2, 3, and Chemistry 153A. Fundamentals of modern biomolecular engineering. Topics include structure and function of biomolecules, central dogma of molecular biology, cellular information and energy processing, and experimental methods, with strong emphasis on applications in medicine, industry, and bioenergy. Letter grading. Ms. Chen, Mr. Tang (W)

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower-division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (ex-
including this course). Individual contract required; consult Undergraduate Research Center. May be repeated, P/NP grading.

Upper-Division Courses

100. Fundamentals of Chemical and Biomolecular Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: Chemistry 20B, 20L (not enforced), Mathematics 32B (may be taken concurrently), Physics 1A. Introduction to analysis and design of industrial chemical process, heat and energy balances. Introduction to programming in MATLAB. Letter grading. Mr. Li, Mr. Monboquette (F).

101C. Mass Transfer. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 101B. Introduction to analysis of mass transfer in systems of interest to chemical engineering practice. Fundamentals of mass species transport, Fick law of diffusion, diffusion in chemically reacting flows, interphase mass transfer, multicomponent systems. Letter grading. Mr. Cohen, Ms. Srivastava (Sp).

102A. Thermodynamics I. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Introduction to thermodynamics of chemical and biological processes. Work, energy, heat, and first law of thermodynamics. Extensive and intensive properties, entropy, and free energy. Ideal and real gases, property evaluation. Thermodynamics of flow systems. Applications of first and second laws in biological processes and living organisms. Letter grading. Mr. Manousiouthakis (W).

103. Separation Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Application of principles of heat, mass, and momentum transport to design and operation of separation processes, including distillation, gas absorption, filtration, and reverse osmosis. Letter grading. Mr. Monboquette (Sp).

104A. Chemical and Biomolecular Engineering Laboratory I. (4) Lecture, four hours; laboratory, six hours; outside study, four hours. Enforced requisite: course 100. Enforced corequisite: course 101B. Recommended: course 102B. Investigation of basic transport phenomena in 10 predetermined experimental setups. Statistical analysis of data and individually written technical reports and group presentations. Design and performance of one original experimental study involving transport, separation, or another aspect of chemical and biomolecular engineering and understanding design, validation, confidence limits, comparison of two means and of multiple means, single and multiple variable linear regression, and brief introduction to factorial design of experiments. Oral and written presentations. Technical writing of sections of technical reports and their contents; writing clearly, concisely, and consistently; importance of word choices and punctuation in multicultural environments; and understanding of following required formatting. Letter grading. Mr. Lu, Mr. Monboquette, Ms. Simonetti (W,Sp).

104B. Chemical and Biomolecular Engineering Laboratory II. (6) Lecture, four hours; laboratory, eight hours; outside study, two hours. Enforced requisite: courses 101C, 103, 104A. Course consists of four experiments in chemical engineering unit operations, each of two weeks duration. Students present their results, written and orally. Written report includes sections on theory, experimental procedures, scaleup and process design, and error analysis. Letter grading. Mr. Park, Mr. Simonetti, Mr. Srivastava (Sp).

104C. Semiconductor Processing. (3) Lecture, four hours; outside study, five hours. Enforced requisite: course 101C. Enforced corequisite: course 104CL. Basic engineering principles of semiconductor unit operations, including fabrication and characterization of semiconductor devices. Investigation of processing steps used to make CMOS devices, including wafer cleaning, oxidation, diffusion, lithography, chemical vapor deposition, plasma etching, metallization, and statistical design of experiments and error analysis. Presentation of student results in both written and oral form. Letter grading. Mr. Chang (Sp).

104CL. Semiconductor Processing Laboratory. (3) Laboratory, four hours; outside study, five hours. Enforced requisite: course 101C. Enforced corequisite: course 104C. Series of experiments that emphasize basic engineering principles of semiconductor unit operations, including fabrication and characterization of semiconductor devices. Investigation of processing steps used to make CMOS devices, including wafer cleaning, oxidation, diffusion, lithography, chemical vapor deposition, plasma etching, and metallization. Hands-on device testing includes transistors, diodes, and capacitors. Letter grading. Ms. Chang (Sp).

104D. Molecular Biotechnology Laboratory. From Gene to Product. (6) Lecture, two hours; laboratory, eight hours; outside study, eight hours. Enforced requisite: course 101C. Enforced corequisite: course 104C. Series of experiments that emphasize basic engineering principles of semiconductor unit operations, including fabrication and characterization of semiconductor devices. Investigation of processing steps used to make CMOS devices, including wafer cleaning, oxidation, diffusion, lithography, chemical vapor deposition, plasma etching, and metallization. Hands-on device testing includes transistors, diodes, and capacitors. Letter grading. Ms. Chen, Mr. Park (W,Sp).

104E. Cryogenics and Low-Temperature Process es. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: courses 100A, 102B (or Materials Science 130). Fundamentals of cryogenics and cryoengineering science pertaining to industrial low-temperature processes. Basic approaches to analysis of cryofluids and envelopes needed for operation of cryogenic systems; treatment of freezing, thawing, and condensation of cryosystems and other special conditions. Concurrently scheduled with course C211. Letter grading. Mr. Christofides (F).

C112. Polymer Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 102A, 102B (or Materials Science 130). Enforced corequisite: course C212. Description of modern polymer processing technologies. Development of polymer processing techniques, rheology of macromolecules, characterization of polymer materials, and design of equipment for processing polymers. Letter grading. (Not offered 2021-22).
deposition, electroynthesis, fuel cells, aqueous and non-aqueous-state electronic devices. May be concurrently scheduled with course CM214. Letter grading. (Not offered 2021-22)

C115. Biochemical Reaction Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: courses 101C, 101G. Use of previously learned concepts of biophysical chemistry, thermodynamics, transport phenomena, and reaction kinetics to develop tools needed for technical design and economic analysis of biological reactors. May be concurrently scheduled with course CM215. Letter grading. Ms. Annabi (Sp)

C126. Viruses and Biotechnology. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course CM145. Introduction of vi- ruses and their varied roles in biotechnology, from utilization of viral enzymes to biotechnologies used to combat viral infectious diseases. Basic concepts of virology. Focus on use of viruses, including bacterio- phages, and viral proteins as tools in biotechnology. Examples include bacteriophage display, virus-based nanomaterials, and viral vectors for gene delivery, and vaccines. Covers case studies of viral diseases and biotechnological strategies for diagnosis, pre- vention, and treatment. Examples include human im- munodeficiency virus and coronaviruses. Students conduct literature searches and write paper on rele- vant topic of their choice. Concurrently scheduled with course C226. Letter grading.

CM127. Synthetic Biology for Biofuels. (4) (Same as Chemistry CM127.) Lecture, four hours; discus- sion, one hour; outside study, seven hours. Requisite: Chemistry 153A. Engineering microorganisms for complex phenotype is common goal of metabolic en- gineering and synthetic biology. Production of advanced biofuels involves designing and constructing novel metabolic pathways. Such novel metabolic pathways require profound understanding of biochemistry, pro- tein structure, and biological regulations and are aided by tools in bioinformatics, systems biology, and molecular biology. Fundamentals of metabolic bio- chemistry, protein structure and function, and bioin- formatics. Use of systems modeling for metabolic networks to design microorganisms for energy appli- cations. Concurrently scheduled with course CM227. Letter grading. (Not offered 2021-22)

C128. Hydrogen. (4) Lecture, four hours; discus- sion, one hour; outside study, seven hours. Enforced requisite: Chemistry 20A. Electronic, physical, and chemical properties of various methods of production, including production through methane steam reforming, electrolysis, and thermochemical cycles. Description in depth of several uses of hy- drogen, including hydrogen combustion and hy- drogen fuel cells. Concurrently scheduled with course C228. Letter grading.

Mr. Manousothakis (Sp)

C130. Membrane Science and Technology. (4) Lecture, four hours; discussion; one hour; outside study, seven hours. Enforced requisite: course 101C. Membrane science and technology, with emphasis on separations at micro, nano, and molecular/angstrom scale with membranes. Relationship between structure/morphology of membranes and their separation characteristics. Use of nanotechnology for design of selective membranes and models of mem- brane transport (flux and selectivity). Examples pro- vided from various fields/applications, including bio- technology, microelectronics, chemical processes, sensors, and biomedical devices. Concurrently scheduled with course C221. Letter grading. (Not offered 2021-22)

C131. Membrane Science and Technology. (4) Lecture, four hours; discussion; one hour; outside study, seven hours. Enforced requisite: course 101C. Membrane science and technology, with emphasis on separations at micro, nano, and molecular/angstrom scale with membranes. Relationship between structure/morphology of membranes and their separation characteristics. Use of nanotechnology for design of selective membranes and models of mem- brane transport (flux and selectivity). Examples pro- vided from various fields/applications, including bio- technology, microelectronics, chemical processes, sensors, and biomedical devices. Concurrently scheduled with course C221. Letter grading. (Not offered 2021-22)

C132. Cell Material Interactions. (4) Lecture, four hours; discussion; one hour; outside study, seven hours. Enforced requisite: course 45. Introduction to design and synthesis of biomaterials for regenerative medi- cine, in vitro cell culture, and drug delivery. Biological principles of cellular microenvironment and design of extracellular matrix analogs using biological and en- gineering principles. Biomaterials for growth factor, and DNA and RNA delivery as therapeutic agents, and to facilitate tissue regeneration. Use of stem cells in tissue engineering. Concurrently scheduled with course C224. Letter grading. Ms. Annabi (W)

C135. Advanced Process Control. (4) Lecture, four hours; discussion; one hour; outside study, seven hours. Enforced requisite: course 107. Introduction to advanced process control. Topics include (1) Lya- punov stability for autonomous nonlinear systems in- cluding converse theorems, (2) input to state stability, integral input to state stability, and gain theorems, (3) design of nonlinear and robust controllers for various classes of nonlinear systems, (4) model predictive control of linear and nonlinear systems, (5) advanced methods for tuning of classical controllers, and (6) in- troduction to control of distributed parameter sys- tems. Concurrently scheduled with course C235. Letter grading. (Not offered 2021-22)

C140. Fundamentals of Aerosol Technology. (4) Lecture, four hours; outside study, eight hours. En- forced requisite: course 101C. Technology of particle/ gas systems with applications to gas cleaning, com- mercial production of fine particles, and catalysis. Particle deposition, adhesion, sedimentation, diffusion, optical properties, experimental methods, dynamics and control of par- ticle formation processes. Concurrently scheduled with course C240. Letter grading. (Not offered 2021-22)

CM145. Molecular Biotechnology for Engineers. (4) (Same as Bioengineering CM145.) Lecture, four hours; discussion; one hour; outside study, seven hours. Requisite: course 45. Selected topics in mo- lecular biology that form foundation of biotechnology and biomedical industry today. Topics include re- combinant DNA technology, molecular research tools, manipulation of gene expression, directed mutagen- esis and site-directed mutagenesis. DNA-based diagnostics and DNA microarrays, antibody and protein-based diagnostics, genomics and bioinformatics, isolation of human genes, gene therapy, and tissue engi- neering. Concurrently scheduled with course CM215. Letter grading. Ms. Chen (F)

C153. Introduction to Microscale and Nanoscale Manufacturing. (4) (Same as Bioengineering M153, Electrical and Computer Engineering M153, and Me- chanical and Aerospace Engineering M183B.) Lec- ture, three hours; laboratory, four hours; outside study, five hours. Enforced requisites: Chemistry 20A, Physics 1A, 1B, 1C, 4AL. Introduction to general manufactur- ing methods, mechanisms, constraints, and microfabrication and nanofabrication. Focus on concept, physics, and instruments of various micro- fabrication and nanofabrication techniques that have been broadly applied in industry and science, in- cluding various photolithography techniques, phys- ical and chemical deposition methods, and physical and chemical etching methods. Hands-on experi- ence for fabricating microstructures and nanostruc- tures in modern clean-room environment. Letter grading. (F)

188. Special Courses in Chemical Engineering. (4) Seminar, four hours; outside study, eight hours. Spe- cial topics in chemical engineering for undergraduate students taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated once for credit with topic or instructor change. Letter grading.

194. Research Graduate Seminar. (4) Seminar, four hours; outside study, eight hours. Designed for undergraduate students who are part of research group. Discussion of research methods and current literature in field. May be re- peated for credit. Letter grading.

199. Directed Research in Chemical Engineering. (2 to 8) Tutorial, to be arranged. Limited to juniors/se- niors. Supervised individual research or investigation of selected topic under guidance of faculty member. Culminating paper or project required. May be re- peated for credit with school approval. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading. (FW,Sp)

Graduate Courses

200. Advanced Engineering Thermodynamics. (4) Lecture, four hours; outside study, eight hours. Re- quisites: courses 109A, 109B. Phase-equilibrium and statistical thermodynamics of chemical and physical systems with engineering applications. Presentation of role of atomic and molecular specta and intermolecular force and interpretation of spectroscopic properties of gases, liquids, solids, and plasmas. Letter grading. Mr. Sautet (F)

201. Methods of Molecular Simulation. (4) Lecture, four hours; outside study, eight hours. Requisite: course 200 or Chemistry C223A or Physics 215A. Modern simulation techniques for classical molecular systems. Monte Carlo and molecular dynamics in various ensembles. Applications to liquids, solids, and polymers. Letter grading. (Not offered 2021-22)

210. Advanced Chemical Reaction Engineering. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 101C, 106. Principles of chemical reac- tor reactor analysis and design. Particular emphasis on sophisticated effects of chemical reaction and mass transfer on noncatalytic and catalytic reactions in fixed and fluidized beds. Letter grading.

Mr. Simonetti (W)

211. Cryogenics and Low-Temperature Process- es. (4) Lecture, four hours; discussion, one hour; out- side study, seven hours. Fundamentals of cryogenics and cryogenics engineering science pertaining to industrial low-temperature processing. Basic approaches to analysis of cryofluids and envelopes needed for oper- ation of cryogenic systems; low-temperature be- havior of matter, optimization of cryosystems and other special conditions. Concurrently scheduled with course C111. Letter grading. (Not offered 2021-22)
C212. Polymer Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 101A, Chemistry 30A. Formation of polymers, criteria for selecting reaction scheme, polymerization techniques, polymer characterization, Mechanical properties of macromolecules, polymer process engineering. Diffusion in polymeric systems. Polyamers in biomedical applications and in microelectronics. Concurrently scheduled with course C114. Letter grading. (Not offered 2021-22)

CM214. Electrochemical Processes. (4) Same as Materials Science CM263.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 102B, Mechanical and Aerospace Engineering 124. Fundamentals of electrochemistry and engineering applications to industrial electrochemical processes. Primary emphasis on fundamental approach to analyze electrochemical processes. Specific topics include electrochemical reactions on metal and semiconductor surfaces, electrodeposition, electrolytes, ion exchanges, electrochemistry, fuel cells, aqueous and non-aqueous batteries, and solid-state electrochemistry. May be concurrently scheduled with course CM114. Letter grading. (Not offered 2021-22)

CM215. Biochemical Reaction Engineering. (4) (Same as Bioengineering M215.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 101C. Use of previously learned concepts of biophysical chemistry, thermodynamics, transport phenomena, and reaction kinetics to develop tools needed for theoretical and economic analysis of biochemical reactors. May be concurrently scheduled with course C115. Letter grading. Ms. Annabi (F)

C216. Surface and Interface Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Introduction to surfaces and interfaces of engineering materials, particularly catalytic surface and thin films for solid-state electronic devices. Topics include surface energies, crystals and surfaces, analysis of structure and composition of crystals and their surfaces and interfaces. Examination of engineering applications, including catalytic surfaces, interfaces in microelectronics, and solid-state lasers. May be concurrently scheduled with course C116. Letter grading. Mr. Lu (Sp)

C217. Electrochemical Engineering. (4) Lecture, four hours; outside study, eight hours. Requisite: course C114. Transport of electrochemical phenomena; relationships between molecular, transport, and electrode kinetics, along with applications to industrial electrochemistry, fuel cell design, and modern battery technology. Letter grading. (Not offered 2021-22)

C218. Multimedia Environmental Assessment. (4) Lecture, four hours; discussion, one hour; preparation, two hours; outside study, five hours. Recommended requisites: courses 101C, 102B. Pollutant sources, estimation of source releases, waste minimization, transport and fate of chemical pollutants in environment, intermedia transfers of pollutants, multimedia modeling of chemical partitioning in environment, exposure assessment, multimedia risk assessment, risk reduction strategies. Concurrently scheduled with course C118. Letter grading. Mr. Cohen (Sp)

220. Advanced Mass Transfer. (4) Lecture, four hours; outside study, eight hours. Requisite: course 101C. Advanced treatment of mass transfer with applications to biotechnology, separation processes, cleaning, pulmonary bioengineering, controlled release systems, and reactor design; molecular and constitutive theories of diffusion, interfacial transport, membrane processes. Covers case studies of diseases and biotechnological strategies for diagnosis, prevention, and treatment. Examples include human immunodeficiency virus and coronaviruses. Students develop a research project and write a paper on relevant topic of their choice. Concurrently scheduled with course C126. Letter grading.

CM227. Synthetic Biochemistry for Biofuels. (4) (Same as Chemistry CM227.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: Chemistry 153A. Engineering microorganisms for complex phenotype is common goal of metabolic engineering and synthetic biology. Production of ad- vanced biofuels involves constructing novel microbial networks in cells. Such efforts require profound understanding of biochemistry, protein structure, and biological regulations and are aided with tools in bioinformatics, systems biology, and molecular biology. Fundamentals of metabolic biochemistry, protein structure and function, and bioinformatics. Use of systems modeling of metabolic networks to design microorganisms for energy applications. Concurrently scheduled with course CM127. S/U or letter grading. (Not offered 2021-22)

C228. Hydrogen. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course CM114. Study of physical and chemical properties of hydrogen. Various methods of production, including production through methane steam reforming, electrolysis, and thermochemical cycles. Description in depth of several uses of hydrogen, including hydrogen and hydro- gen fuel cells. Concurrently scheduled with course C128. Letter grading.

231. Molecular Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 106 or 110. Analysis and design of molecular-beam sys- tems. Molecular-beam scattering and laser spectroscopy in combustion chambers or gasjets. Molecular-beam studies of gas-surface interactions, including energy accommodations and heterogeneous reactions. Ap- plications to air pollution control and to catalysis. Letter grading. (Not offered 2021-22)

233. Frontiers in Biotechnology. (2) Lecture, one hour. Requisite: Life Sciences 3. Integration of sci- ence and business in biotechnology. Academic re- search leading to licensing and founding of compa- nies that produce commercially viable biotechnol- ogy products. Invited lecturers from academia and in- dustry cover emerging areas of biotechnology from combination of science, engineering, and business points of view. S/U or letter grading. (Not offered 2021-22)

234. Plasma Chemistry and Engineering. (4) Lecture, four hours; outside study, eight hours. Designed for graduate chemistry or engineering students. Ap- plication of chemistry, physics, and engineering principles to design and operation of plasma and ion-beam reactors used in etching, deposition, oxidation, and cleaning of materials. Examination of atomic, molecular, and ionic phenomena involved in plasma and ion-beam processing of semiconductors, etc. Letter grading. Ms. Chang (Not offered 2021-22)
C235. Advanced Process Control. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 107. Introduction to advanced process control. Topics include (1) Lyapunov stability for autonomous nonlinear systems including (2) input to state stability, bifurcations, interconnected systems, and small gain theorems, (3) design of nonlinear and robust controllers for various classes of nonlinear systems, (4) model predictive control of interconnected systems, (5) advanced methods for tuning of classical controllers, and (6) introduction to control of distributed parameter systems. Concurrently scheduled with course C135. Letter grading. (Not offered 2021-22)

236. Chemical Vapor Deposition Technology. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 210, 212. Chemical vapor deposition is widely used to deposit thin films that comprise microelectronic devices. Topics include reactor design, transport phenomena, gas and surface chemical kinetics, structure and composition of deposited films, and relationships between process conditions and film properties. Letter grading. (Not offered 2021-22)

CM245. Molecular Biotechnology for Engineers. (4) Same as Bioengineering CM245). Lecture, four hours; discussion, one hour; outside study, seven hours. Selected topics in molecular biology that form foundation of biotechnology and biomedical industry today. Topics include recombinant DNA technology, molecular research tools, manipulation of gene expression, directed mutagenesis and protein engineering, DNA-based diagnostics and DNA microarrays, antibody and protein-based diagnostics, genomics and bioinformatics, isolation of human genes, gene therapy, and tissue engineering. Concurrently scheduled with course CM145. Letter grading. Ms. Chen (F)

246. Systems Biology: Intracellular Network Identification and Analysis. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Selected topics in molecular biology that form foundation of biotechnology and biomedical industry today. Topics include recombinant DNA technology, molecular research tools, manipulation of gene expression, directed mutagenesis and protein engineering, DNA-based diagnostics and DNA microarrays, antibody and protein-based diagnostics, genomics and bioinformatics, isolation of human genes, gene therapy, and tissue engineering. Concurrently scheduled with course CM145. Letter grading. Ms. Chen (F)

248. Systems Biology: Intracellular Network Identification and Analysis. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Selected topics in molecular biology that form foundation of biotechnology and biomedical industry today. Topics include recombinant DNA technology, molecular research tools, manipulation of gene expression, directed mutagenesis and protein engineering, DNA-based diagnostics and DNA microarrays, antibody and protein-based diagnostics, genomics and bioinformatics, isolation of human genes, gene therapy, and tissue engineering. Concurrently scheduled with course CM145. Letter grading. Ms. Chen (F)

270. Principles of Reaction and Transport Phenomena. (4) Lecture, four hours; laboratory, eight hours. Fundamentals in transport and chemical reaction engineering applications related to state-of-art research areas in chemical engineering. Letter grading. Ms. Chang (F)

270R. Advanced Research in Semiconductor Manufacturing. (6) Laboratory, nine hours; outside study, nine hours. Limited to graduate chemical engineering students in MS semiconductor manufacturing option. Supervised research in processing semiconductor materials and devices. Letter grading.

M280A. Linear Dynamic Systems. (4) (Same as Electrical and Computer Engineering M240A and Mechanical and Aerospace Engineering M270A.) Lecture, four hours; outside study, eight hours. Requisites: Electrical and Computer Engineering 141A or Mechanical and Aerospace Engineering 171A. State-space description of linear time-invariant (LTI) and time-varying (LTV) systems in continuous and discrete time. Linear algebra concepts such as eigenvalues and eigenvectors, singular values, Cayley/Hamilton theorem, Jordan form; solution of state equations; stability, controllability, observability, realizability, and minimality. Stabilization design via state feedback and observers; separation principle. Connections with transfer function techniques. Letter grading.

M280C. Optimal Control. (4) (Same as Electrical and Computer Engineering M240C and Mechanical and Aerospace Engineering M270C.) Lecture, four hours; outside study, eight hours. Requisite: Electrical and Computer Engineering 240B or Mechanical and Aerospace Engineering 270B. Applications of variational methods, Pontryagin maximum principle, Hamilton/Jacobi/Bellman equation (dynamic programming) to optimal control of dynamic systems modeled by nonlinear ordinary differential equations. Letter grading.

283C. Analysis and Control of Infinite Dimensional Systems. (4) Lecture, four hours; outside study, eight hours. Requisites: courses M280A, M282A. Designed for graduate students. Introduction to advanced dynamical analysis and controller synthesis methods for nonlinear infinite dimensional systems. Topics include (1) linear operator and stability theory (basic results on Banach and Hilbert spaces, semigroup theory, convergence theory in function spaces), (2) nonlinear model reduction (linear and nonlinear Galerkin method, proper orthogonal decomposition), (3) nonlinear control of nonlinear hyperbolic and parabolic partial differential equations (PDEs), (4) applications to transport-reaction processes. Letter grading. Mr. Christofides (Not offered 2021-22)

290. Special Topics. (2 to 4) Seminar, four hours. Requisites for each offering announced in advance by department. Advanced and current study of one or more areas of chemical engineering analysis, such as chemical process dynamics and control, fuel cells and batteries, membrane transport, advanced chemical engineering analysis, polymers, optimization in chemical engineering. May be repeated for credit with topic change. Letter grading.

M297. Seminars: Systems, Dynamics, and Control Topics. (2) (Same as Electrical and Computer Engineering M248S and Mechanical and Aerospace Engineering M298A.) Seminar, two hours; outside study, six hours. Limited to graduate engineering students. Presentations of research topics by leading academic researchers from fields of systems, dynamics, and control. Students who work in these fields present their papers and results. S/U grading.

298A-298Z. Research Seminars. (2 to 4 each) Seminar, to be arranged. Prerequisites: For each offering announced in advance by department. Lectures, discussions and computer operations. Open to projects in areas of current interest. May be repeated for credit. S/U grading. (F,W,Sp)

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Prerequisites: apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum development and instruction at UCLA. May be repeated for credit. S/U grading. (F,W,Sp)

495A. Teaching Assistant Training Seminar. (2) Seminar, two hours; outside study, four hours; one day intensive training at beginning of Fall Quarter. Limited to graduate chemical engineering students. Required of all new teaching assistants. Special seminar in communicating chemical engineering principles, concepts, and methods; teaching assistant preparation, organization, and instruction of material, including use of grading, advising, and rapport with students. S/U grading. Ms. Eisler (F)

495B. Teaching with Technology for Teaching Assistants. (2) Seminar, two hours; outside study, four hours; one day intensive training at beginning of Fall Quarter. Limited to graduate chemical engineering students. Designed for teaching assistants interested in learning more about effective use of technology and ways to incorporate that technology into their classroom for benefit of student learning. S/U grading. (W)

596. Directed Individual or Tutorial Studies. (2 to 8) Tutorial, to be arranged. Limited to graduate chemical engineering students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies. Supervised investigation of advanced technical problems. S/U grading.

597A. Preparation for MS Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate chemical engineering students in MS semiconductor manufacturing option. Reading and preparation for MS comprehensive examination. S/U grading.

597B. Preparation for PhD Preliminary Examinations. (2 to 16) Seminar, to be arranged. Limited to graduate chemical engineering students. S/U grading.

597C. Preparation for PhD Oral Qualifying Examinations. (2 to 16) Seminar, to be arranged. Limited to graduate chemical engineering students. Preparation for oral qualifying examination, including preliminary research on dissertation. S/U grading.
Civil and Environmental Engineering

5731 Boelter Hall
Box 951593
Los Angeles, CA 90095-1593
310-825-2471
Department e-mail
Department website
Ertugrul Taciroglu, PhD, Chair
Jennifer A. Jay, PhD, Vice Chair
Jian Zhang, PhD, Vice Chair

Faculty Roster

Professors
Yousef Bozorgnia, PhD, PE
Scott J. Brandenberg, PhD, PE
J.R. DeShazo, PhD
Mekonnen Gebremichael, PhD
Eric M.V. Hoek, PhD
Jennifer A. Jay, PhD
Jiann-Wen (Woody) Ju, PhD, PE
Dennis P. Lettenmaier, PhD, NAE
Enrique López-Droguett, PhD
Shaily Mahendra, PhD
Steven A. Margulis, PhD
Ali Mosleh, PhD, NAE
Sriram Narasimhan, PhD
Gaurav Sant, PhD
Michael K. Stenstrom, PhD, PE
Jonathan P. Stewar, PhD, PE
Ertugrul Taciroglu, PhD
John W. Wallace, PhD
William W.-G. Yeh, PhD, NAE (Richard G. Newman AECOM Endowed Professor of Civil Engineering)
Jian Zhang, PhD

Professors Emeriti
Stanley B. Dong, PhD, PE
Lewis P. Felton, PhD
Michael E. Fourney, PhD, PE
Richard L. Perrine, PhD
Moshe F.Rubinstein, PhD
Keith D. Stolzenbach, PhD, PE
Mladen Vucetic, PhD

Associate Professors
Mathieu Bauchy, PhD
Henry V. Burton, PhD, SE (Englekirk Presidential Endowed Professor of Structural Engineering)
David Jassby, PhD
Jiaqi Ma, PhD
Xiaoyu (Rayne) Zheng, PhD

Assistant Professors
Timu W. Gallien, PhD
Sanjay K. Mohanty, PhD

Adjunct Professors
Kenneth W. Hudnut, PhD
George Mylonakis, PhD, PE
Thomas A. Sabol, PhD, SE
Zhongbo Yu, PhD

Adjunct Associate Professors
Donald R. Kendall, PhD, PE
Issam Najm, PhD, PE

Overview

The Department of Civil and Environmental Engineering programs at UCLA include civil engineering materials, earthquake engineering, environmental engineering, geotechnical engineering, hydrology and water resources engineering, structural engineering, structural mechanics, and transportation engineering. The civil engineering undergraduate curriculum leads to a BS in Civil Engineering, a broad-based education in environmental engineering, geotechnical engineering, hydrology and water resources engineering, and structural engineering and mechanics. This program is an excellent foundation for entry into professional practice in civil engineering or for more advanced study. The department also offers the undergraduate Environmental Engineering minor.

At the graduate level, MS and PhD degree programs are offered in the areas of civil engineering materials, environmental engineering, geotechnical engineering, hydrology and water resources engineering, structures (including structural/earthquake engineering and structural mechanics), and transportation engineering. In these areas, research is being done on a variety of problems ranging from basic physics and mechanics problems to critical problems in earthquake engineering and in the development of new technologies for pollution control and water distribution and treatment.

Department Mission

The Civil and Environmental Engineering Department seeks to exploit its subfield teaching and research strengths as well as to engage in multidisciplinary collaboration. This occurs within the context of a central guiding theme: engineering sustainable infrastructure for the future. Under this theme the department is educating future engineering leaders, most of whom will work in multidisciplinary environments and confront a host of twenty-first-century challenges. With an infrastructure-based vision motivating its teaching and research enterprise, the department conceptualizes and orients its activity toward broadening and deepening fundamental knowledge of the interrelationships among the built environment, natural systems, and human agency.
Civil Engineering BS

The Civil Engineering major is a designated capstone major. In each of the major field design courses, students work individually and in groups to complete design projects. To do so, they draw on their prior coursework, research the needed materials and possible approaches to creating their device or system, and come up with creative solutions. This process enables them to integrate many of the principles they have learned previously and apply them to real systems. In completing their projects, students are also expected to demonstrate effective oral and written communication skills, as well as their ability to work productively with others as part of a team.

Educational Objectives

The objectives of the civil engineering curriculum at UCLA are to (1) provide graduates with a solid foundation in basic mathematics, science, and humanities, as well as fundamental knowledge of relevant engineering principles; (2) provide students with the capability for critical thinking, engineering reasoning, problem solving, experimentation, and teamwork; (3) prepare graduates for advanced study and/or professional employment within a wide array of industries or governmental agencies; (4) produce graduates who understand ethical issues associated with their profession, and who are able to apply their acquired knowledge and skills to the betterment of society; and (5) foster in students a respect for themselves and in groups to complete design projects. In each of the major field design courses, students work individually and in groups to complete design projects. To do so, they draw on their prior coursework, research the needed materials and possible approaches to creating their device or system, and come up with creative solutions. This process enables them to integrate many of the principles they have learned previously and apply them to real systems. In completing their projects, students are also expected to demonstrate effective oral and written communication skills, as well as their ability to work productively with others as part of a team.

Learning Outcomes

The Civil Engineering major has the following learning outcomes:

• Understanding of, and ability to apply, basic mathematical and scientific concepts that underlie the field
• Ability to contribute meaningfully to design projects
• Critical thinking skills, problem-solving abilities, and familiarity with computational procedures essential to the field
• Ability to work productively as a member of a team
• Effective oral and written communication skills

Preparation for the Major

Required: Chemistry and Biochemistry 20A, 20B, 20L; Civil and Environmental Engineering 1, M20 (or Computer Science 31); Mathematics 31A, 31B, 32A, 32B, 33A, 33B (or Mechanical and Aerospace Engineering 82); Physics 1A, 1B, 1C, 4AL; one natural science course selected from Civil and Environmental Engineering 58XP, Earth, Planetary, and Space Sciences 3, 15, 16, 17, 20, Environment 12, Life Sciences 7A, Microbiology, Immunology, and Molecular Genetics 5, 6, or Neuroscience 10.

The Major

Required: Chemical Engineering 102A or Mechanical and Aerospace Engineering 105A, Civil and Environmental Engineering 91 (or Mechanical and Aerospace Engineering 101), 102, 103, C104 (or Materials Science and Engineering 104), 108, 110 (or C111), 120, 135A, 150, 153, 190, Mechanical and Aerospace Engineering 103; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and at least eight major field elective courses (32 units) from the lists below with at least two design courses, one of which must be a capstone design course and two of which must be laboratory courses. The laboratory courses must be taken from two distinct areas (both 120L and 129L may be taken to satisfy the two-laboratory requirement). Courses applied toward the required course requirement may not also be applied toward the major field elective requirement.

Civil Engineering Materials: Civil and Environmental Engineering C104, C105, C106, C111, C182; laboratory course: 108L.

Environmental Engineering: Civil and Environmental Engineering 154, 155, C159, 164, M165, M166; laboratory courses: 156A, 156B; capstone design courses: 157B, 157C.

Geotechnical Engineering: Civil and Environmental Engineering 125; laboratory courses: 120L, 129L; design courses: 121, C123 (capstone).

Structural Engineering and Mechanics: Civil and Environmental Engineering 125, 130, 135B, M135C, C137, 142; laboratory courses: 108L, 135L, 140L; design courses: 141, 143, 144 (capstone), 147 (capstone), 148.

Transportation Engineering: Civil and Environmental Engineering 180, C181, C182, C185, C186.

Additional Elective Options: Courses selected from an approved list available in the UCLA Samueli Office of Academic and Student Affairs. For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 21 or the GE Requirement web page.

Environmental Engineering Minor

The Environmental Engineering minor is designed for students who wish to augment their major program of study with an exposure to engineering methods applied to key environmental problems facing modern society in developed and developing countries. The minor also offers students a brief experience and understand-
ing of the roles that environmental engineering methods play in solving environmental problems.

Admission
To enter the minor, students must be in good academic standing (2.0 grade-point average or better) and file a petition in the Office of Academic and Student Affairs, 6426 Boelter Hall.

The Minor
Required Lower-Division Course (4 units): Mathematics 3C or 32A.

Policies
Credit for Chemical Engineering 102A and Mechanical and Aerospace Engineering 105A is not allowed. A minimum of 20 upper-division units applied toward the minor requirements must be in addition to units applied toward major requirements or another minor, and at least 16 units applied toward the minor must be in residence at UCLA. Transfer credit for any of the above is subject to departmental approval; consult with the undergraduate counselors before enrolling in any courses for the minor. Each minor course must be taken for a letter grade, and students must have a minimum grade of C (2.0) in each and an overall grade-point average of 2.0 or better in the minor. Successful completion of the minor is indicated on the transcript and diploma.

Graduate Study
For admission information, see Graduate Programs Admission on page 27. The following introductory information is based on 2021-22 program requirements for UCLA graduate degrees. Complete program requirements are available at Program Requirements for UCLA Graduate Degrees. Students are subject to the detailed degree requirements as published in program requirements for the year in which they enter the program.

The Department of Civil and Environmental Engineering offers Master of Science (MS) and Doctor of Philosophy (PhD) degrees in Civil Engineering.

Civil Engineering MS
Course Requirements
There are two plans of study that lead to the MS degree: the capstone plan (also known as comprehensive examination) and the thesis plan. At least nine courses (36 units) are required, a majority of which must be in the Civil and Environmental Engineering Department. At least five of the courses must be at the 200 level. In the thesis plan, seven of the nine must be formal 100- or 200-series courses. The remaining two may be 598 courses involving work on the thesis. In the capstone (comprehensive examination) plan, 500-series courses may not be applied toward the nine-course requirement. Courses completed outside of the department must be equal in rigor and related to the civil and environmental engineering program of study and are recommended to be quantitative in nature. In addition, MS students must attend the Civil and Environmental Engineering 200 seminar each quarter. Graduate students must meet two grade-point averages—a minimum 3.0 GPA in all coursework and a minimum 3.0 GPA in all 200-level coursework applied toward the degree. All courses counting toward the nine-course requirement, except for 598, must be taken for a letter grade.

Each major field has a set of required preparatory courses which are normally completed during undergraduate studies. Equivalent courses taken at other institutions can satisfy the preparatory course requirements. The preparatory courses cannot be used to satisfy course requirements for the MS degree; courses must be selected in accordance with the lists of required graduate and elective courses for each major field. Courses not listed below may be completed toward the course requirement if pre-approved by the faculty adviser and student affairs officer.

Undergraduate Courses. No lower-division courses (1-99) may be applied toward graduate degrees.

The MS degree offers seven fields of specialization that have specific course requirements.

Civil Engineering Materials
Required Preparatory Courses. General chemistry and physics, both with laboratory exercises; multivariate calculus; linear algebra and differential equations; and introductory thermodynamics. Other undergraduate preparation could include Civil and Environmental Engineering C104, 120, 121, 135A, 140L, 142, and Materials Science and Engineering 104.

Required Graduate Courses. Two courses must be selected from Civil and Environmental Engineering C204, C205, 226, 253, 258A, 261B, M262A, 263A, 266, 267.

Environmental and Water Resources Engineering
Required Preparatory Courses. Chemistry and Biochemistry 20A, 20B, 20L; Civil and Environmental Engineering 151 or 153; Mathematics 32A, 32B, 33B (or Mechanical and Aerospace Engineering 82); Mechanical and Aerospace Engineering 103; Physics 1A, 1B, 4AL.

Environmental and Water Resources Engineering Option. Required: Two courses from Civil and Environmental Engineering 250A through 250D; two courses from 254A, 255A, 255B, 266; select the remaining courses (nine total for the capstone [comprehensive examination] option and seven total for the thesis option) from the approved elective list or obtain approval for other electives.

Environmental Engineering Option. Required: Civil and Environmental Engineering 254A, 255A, 255B, 266; one course from 250A through 250D. Select the remaining courses (nine total for the capstone [comprehensive examination] option and seven total for the thesis option) from the approved elective list or obtain approval for other electives.

Hydrology and Water Resources Engineering Option. Required: Civil and Environmental Engineering 254A, 255A, 255B, 266; select the remaining courses (nine total for the capstone [comprehensive examination] option and seven total for the thesis option) from the approved elective list or obtain approval for other electives.
cal engineering, chemistry and biochemistry, computer science, Earth and space sciences, electrical and computer engineering, and environmental health sciences are commonly approved to satisfy course requirements. No more than two courses may be applied outside of Civil and Environmental Engineering unless pre-approved for exceptional circumstances. No more than two undergraduate courses may be applied toward the nine-course requirement unless pre-approved for exceptional circumstances.

Geotechnical Engineering

Required Preparatory Courses. Civil and Environmental Engineering 108, 120, 121.

Required Graduate Courses. Civil and Environmental Engineering 220, 221, C223.

Major Field Elective Courses. Civil and Environmental Engineering 224, 225, 226, 227, C228, C239, 245.

Other Elective Courses. Other elective courses may be taken with prior approval from the faculty adviser.

Structural/Earthquake Engineering

Required Preparatory Courses. Civil and Environmental Engineering 135A, 135B, and 141 (or 142).

Required Graduate Courses. Civil and Environmental Engineering 235A, C239, 241, 246, and at least two courses from Civil and Environmental Engineering 223B, 241, 243A, 244, 245, 247.

Elective Courses. Undergraduate—no more than two courses from Civil and Environmental Engineering M135C, 143, and either 141 or 142 (whichever was not used as a requisite for graduate courses); geotechnical area—Civil and Environmental Engineering 220, 221, 222, C223, 225, 227; general graduate—Civil and Environmental Engineering M230A, M230B, M230C, 232, 233, 235B, 235C, 236, M237A, C239, 241, 243A, 243B, 244, 245, 247; Mechanical and Aerospace Engineering 269B.

Civil and Environmental Engineering 125 may not be applied toward elective courses.

Structural Mechanics

Required Preparatory Courses. Civil and Environmental Engineering 130, 135A, 135B.

Required Graduate Courses. Civil and Environmental Engineering 232, 235A, 235B, M237A, 244.

Elective Courses. Undergraduate—maximum of two courses from Civil and Environmental Engineering M135C; graduate—Civil and Environmental Engineering M230A, M230B, M230C, 233, 235C, C239, 246, 247; Mechanical and Aerospace Engineering 269B.

Civil and Environmental Engineering 125 may not be applied toward elective courses.

Transportation Engineering

Required Preparatory Courses. Knowledge of calculus, linear algebra, and differential equations; Civil and Environmental Engineering 180, or equivalent course or professional experience; Geography 7, Urban Planning 206A, or equivalent professional experiences. These preparatory courses may be taken while enrolled in the MS program, but may not count toward the required nine degree program courses.

Required Graduate Courses. Civil and Environmental Engineering C281, C286; Civil and Environmental Engineering C285 or Urban Planning M253; Urban Planning 206B; and one course from Urban Planning C251, 254, M255, M256, or M258.

Elective Courses. Any four courses not counted as a required course selected from Civil and Environmental Engineering C285, C271, Urban Planning C251, M253, M254, M256, M258.

Other Elective Courses. Other elective courses may be taken with prior approval from the faculty adviser.

Comprehensive Examination Capstone Plan

In addition to the course requirements, a comprehensive examination (capstone) is administered that covers the subject matter contained in the program of study. The examination may be offered in one of the following formats: (1) a portion of the doctoral written preliminary examination, (2) examination questions offered separately on final examinations of common department courses to be selected by the comprehensive examination committee, or (3) a written and/or oral examination administered by the committee. Committees for the capstone plan consist of at least three faculty members. In case of failure, the examination may be repeated once with the consent of the graduate adviser.

Thesis Plan

In addition to the course requirements, under this plan students are required to write a thesis on a research topic in civil and environmental engineering supervised by the thesis adviser. An MS thesis committee reviews and approves the thesis. No oral examination is required.

Time-to-Degree

The normative duration for full-time students in the MS program on the comprehensive examination track is four quarters and on the thesis track is six quarters. The maximum time allowed for completing the MS degree is three years from the time of admission to the MS program in the school. Each quarter, students must make satisfactory progress toward their degree. Quarters taken on an approved leave of absence do not count toward the three year time limit.

Civil Engineering PhD

Major Fields or Subdisciplines

Civil engineering materials, environmental engineering, geotechnical engineering, hydrology and water resources engineer-
ing, structural/earthquake engineering, structural mechanics, and transportation engineering.

Course Requirements
There is no formal course requirement for the PhD degree, and students may theoretically substitute coursework by examinations. However, students normally take courses to acquire the knowledge needed for the required written preliminary examination. The basic program of study for the PhD degree is built around one major field and one super-minor field or two minor fields. A super-minor field is comprised of a body of knowledge equivalent to five courses, at least three of which are at the graduate level. When two minor fields are selected, each minor field normally embraces a body of knowledge equivalent to three courses from the selected field, at least two of which are graduate courses. The minimum acceptable grade-point average for the minor field is 3.25. If students fail to satisfy the minor field requirements through coursework, a minor field examination may be taken (once only). The minor fields are selected to support the major field and are usually subsets of other major fields. A minimum 3.25 grade-point average is required in all coursework. In addition, PhD students must attend the Civil and Environmental Engineering 200 seminar each quarter until they advance to candidacy.

Students who have completed graduate-level coursework prior to entering a UCLA doctoral program may apply coursework toward one of the following: PhD major field, one minor, or super-minor. At least 50 percent of coursework applied toward the PhD program must be completed at UCLA, unless a petition has been approved by the department.

Written and Oral Qualifying Examinations
After mastering the body of knowledge defined in the major field, students take a written preliminary examination that should be completed within the first two years of full-time enrollment in the PhD program. Students may not take the examination more than twice.

After completing the written preliminary examination and/or starting the second year of the PhD program, all PhD students are required to make a public presentation once per year (summer through spring) to the doctoral committee, but ordinarily include a broad inquiry into the student’s preparation for research. The doctoral committee also reviews the prospectus of the dissertation at the oral qualifying examination. The student must confirm with the committee the expectations of deliverables for the prospectus including, but not limited to, written documents and an oral presentation.

Students nominate a doctoral committee prior to taking the University Oral Qualifying Examination. Students are required to meet with committee members once per year (summer through spring) after advancement to candidacy until graduation. Meetings may be one on one or as a group and members may participate remotely. Students will provide documentation of meetings annually to the Office of Academic and Student Affairs.

Advancement to Candidacy
Students are required to advance to candidacy upon successful completion of the written preliminary and oral qualifying examinations.

Doctoral Dissertation
Every doctoral degree program requires the completion of an approved dissertation that demonstrates the student’s ability to perform original, independent research and constitutes a distinct contribution to knowledge in the principal field of study.

Final Oral Examination
A final oral examination, or defense of dissertation, is required for all students in the program.

Time-to-Degree
The normative duration for full-time students in the PhD program, after completing an MS degree, is 12 quarters. The maximum time allowed for completing the PhD degree, after completing the MS degree, is 24 quarters. Each quarter, students must maintain satisfactory academic progress toward their degree. Quarters taken on an approved leave of absence do not count toward the time limit.

Fields of Study
Civil Engineering Materials
Ongoing research is focused on inorganic, random porous materials and incorporates expertise at the interface of chemistry and materials science to develop the next generation of sustainable construction materials. The work incorporates aspects of first principles and continuum scale simulations and integrated experiments, ranging from nano-to-macro scales. Special efforts are devoted toward developing low-clinker factor cements and concretes, reducing the carbon footprint of construction materials, and increasing the service life of civil engineering infrastructure.

Environmental Engineering
Research in environmental engineering focuses on the understanding and management of physical, chemical, and biological processes in the environment and in engineering systems. Areas of research include process development for water and wastewater treatment systems and the investigation of the fate and transport as well as treatment technologies of contaminants in the environment.

Geotechnical Engineering
Research in geotechnical engineering focuses on understanding and advancing the state of knowledge on the effects that soils and soil deposits have on the performance, stability, and safety of civil engineering structures. Areas of research include laboratory investigations of soil behavior under static and dynamic loads, constitutive modeling of soil behavior, behavior of structural foundations under static and dynamic loads, soil improvement techniques, response of soil deposits and earth structures to earthquake loads, and the investigation of geotechnical aspects of environmental engineering.

Hydrology and Water Resources Engineering
Ongoing research in hydrology and water resources deals with surface and groundwater processes, hydrometeorology and hydroclimatology, watershed response to disturbance, remote sensing, data assimilation, hydrologic modeling and parameter estimation, multij objective resource planning and management, numerical modeling of solute transport in groundwater, and optimization of conjunctive use of surface water and groundwater.
Structures (Structural Mechanics and Earthquake Engineering)

Research in structural mechanics is directed toward improving the ability of engineers to understand and interpret structural behavior through experiments and computer analyses. Areas of special interest include computer analysis using finite-element techniques, computational mechanics, structural dynamics, nonlinear behavior, plasticity, micromechanics of composites, damage and fracture mechanics, structural optimization, probabilistic static and dynamic analysis of structures, and experimental stress analysis.

Designing structural systems capable of surviving major earthquakes is the goal of experimental studies on the strength of full-scale reinforced concrete structures, computer analysis of soils/structural systems, design of earthquake resistant masonry, and design of seismic-resistant buildings and bridges.

Teaching and research areas in structural/earthquake engineering involve assessing the performance of new and existing structures subjected to earthquake ground motions. Specific interests include assessing the behavior of reinforced concrete buildings and bridges, as well as structural steel, masonry, and timber structures. Integration of analytical studies with laboratory and field experiments is emphasized to assist in the development of robust analysis and design tools, as well as design recommendations. Reliability-based design and performance assessment methodologies are also an important field of study.

Transportation Engineering

Research in transportation engineering covers various topics including traffic system operations and control, intelligent transportation systems, transportation planning, transportation network system analysis, travel behavior and demand modeling, resilient infrastructure systems and health monitoring, and highway safety. Specifically, the program focuses on new mobility technologies and systems and considers the intersection of travel behavior, economics, engineering, regulation, and infrastructure as technology and business forces lead to new mobility options such as automated and connected vehicles, electric vehicles, vehicle/ride sharing, and micromobility.

Facilities

The Civil and Environmental Engineering Department has a number of laboratories to support its teaching and research.

Instructional Laboratories

Engineering Geomatics Laboratory

This field laboratory teaches basic and advanced geomatics techniques including light detection and range (LIDAR) imaging, georeferencing using total station and differential global positioning system (GPS) equipment, and integration of measurements with LIDAR mapping software and Google Earth. Experiments are conducted on campus.

Environmental Engineering Laboratories

The laboratories are used for the study of basic laboratory techniques for characterizing water and wastewaters. Selected experiments include measurement of biochemical oxygen demand, suspended solids, dissolved oxygen hardness, and other parameters used in water quality control.

Experimental Fracture Mechanics Laboratory

The laboratory is used for preparing and testing specimens using modern dynamic testing machines to develop an understanding of fracture mechanics and to become familiar with experimental techniques available to study crack tip stress fields, strain energy release rate, surface flaws, and crack growth in laboratory samples.

Hydrology Laboratory

The laboratory is used for studying basic surface water processes and characterizing a range of geochemical parameters. Basic experiments include measurements of suspended solids, turbidity, dissolved oxygen, sediment distributions, and other basic water quality constituents. The laboratory also includes an extensive suite of equipment for measuring surface water processes in situ, including precipitation, stage height, discharge, channel geomorphology, and other physical parameters.

Mechanical Vibrations Laboratory

The laboratory is used for conducting free and forced vibration and earthquake response experiments on small model structures such as a three-story building, a portal frame, and a water intake/outlet tower for a reservoir. Two electromagnetic exciters, each with a 30-pound dynamic force rating, are available for generating steady state forced vibrations. A number of accelerometers, LVDTs (displacement transducers), and potentiometers are available for measuring the motions of the structure. A laboratory view-based computer-controlled dynamic data acquisition system, an oscilloscope, and a spectrum analyzer are used to visualize and record the motion of the model structures.

Two small electromagnetic and servohydraulic shaking tables (1.5 ft. x 1.5 ft. and 2 ft. x 4 ft.) are available to simulate the dynamic response of structures to base excitation such as earthquake ground motions.

Reinforced Concrete Laboratory

The laboratory is available for students to conduct monotonic and cyclic loading to verify analysis and design methods for moderate-scale reinforced concrete slabs, beams, columns, and joints, which are tested to failure.

Soil Mechanics Laboratory

The laboratory is used for performing experiments to establish data required for soil classification, soil compaction, shear strength of soils, soil settlement, and consolidation characteristics of soils. Students enrolled in the Advanced Soil Mechanics Laboratory course see demonstrations of cyclic soil testing techniques including triaxial and direct simple shear, and advanced data acquisition and processing.

Structural Design and Testing Laboratory

The laboratory is used for the design/optimization, construction, instrumentation, and testing of small-scale structural models to compare theoretical and observed behavior. Projects provide integrated design/laboratory experience involving synthesis of structural systems and procedures for measuring and analyzing response under load.

Research Laboratories

Building Earthquake Instrumentation Network

The network consists of more than 100 earthquake strong motion instruments in two campus buildings to measure the response of actual buildings during earthquakes. When combined with over 50 instruments placed in Century City high-rises and other nearby buildings, this network, which is maintained by the U.S. Geological Survey (USGS) and the California Geological Survey’s Strong Instrumentation Motion Program, represents one of the most detailed building instrumentation networks in the world. The goal of the research conducted using the response of these buildings is to improve computer modeling methods and the ability of struc-
tural engineers to predict the performance of buildings during earthquakes.

Environmental Engineering Laboratories

The laboratories are used for conducting water and waste-water analysis, including instrumental techniques such as microcopy, PCR, qPCR, GC, GC/MS, HPLC, TOC, IC, and particle counting instruments. A wide range of wet chemical analysis can be made in this facility with 6,000 square feet of laboratory space and an accompanying 4,000-square-foot rooftop facility where large pilot scale experiments can be conducted. Additionally, electron microscopy is available in another laboratory.

Recently studies have been conducted on oxygen transfer; storm water toxicity; transport and remediation of pollutants in soil; membrane fouling; toxicity assessment and removal of contaminants from drinking, ground, storm, and waste water; and computer simulation of a variety of environmental processes.

Experimental Mechanics Laboratory

The laboratory supports two major laboratories: the Optical Metrology Laboratory and the Experimental Fracture Mechanics Laboratory.

In the Optical Metrology Laboratory, tools of modern optics are applied to engineering problems. Such techniques as holography, speckle-interferometry, Moiré analysis, and fluorescence-photo mechanics are used for obtaining displacement, stress, strain, or velocity fields in either solids or liquids. Recently, real-time video digital processors have been combined with these modern optical technical techniques, allowing direct interfacing with computer-based systems such as computer-aided testing or robotic manufacturing.

The Experimental Fracture Mechanics Laboratory is currently involved in computer-aided testing (CAT) of the fatigue fracture mechanics of ductile material. An online dedicated computer controls the experiment as well as records and manipulates data.

Laboratory for the Chemistry of Construction Materials (LC2)

Laboratory for the Chemistry of Construction Materials research efforts are directed toward development and design of sustainable, low-carbon-dioxide-footprint materials for infrastructure construction applications. To this end, its research group develops fundamental constituent chemistry-microstructure-engineering performance descriptors of cementitious materials to correlate and unify the fundamental variables that describe the overall response of the material. These efforts are directed toward addressing the practical needs of the wider construction community, and developing so-called new concretes for the next generation of infrastructure construction applications. The overall research theme aims to rationalize use of natural resources in construction, promote environmental protection, and advance the cause of ecological responsibility in the concrete construction industry.

Laboratory for the Physics of Amorphous and Inorganic Soils (PARISlab)

PARISlab research focuses on improving materials of engineering and industrial relevance. Its goal is to understand composition-nano- and micro-structure-property-relationships in materials at a fundamental level. To this end, it uses a computational physical/material science approach supported by experiments.

In strong collaboration with the Laboratory for the Chemistry of Construction Materials (LC2), PARISlab works to establish a new paradigm in civil engineering by tackling the sustainability of infrastructure materials at different scales, from atoms to structures.

Large-Scale Structure Test Facility

The facility allows investigation of the behavior of large-scale structural components and systems subjected to gravity and earthquake loadings. The facility consists of a high-bay area with a 20 ft. x 50 ft. strong floor with anchor points at 3 ft. on center. Actuators with servohydraulic controllers are used to apply monotonic or cyclic loads. The area is serviced by two cranes. The facilities are capable of testing large-scale structural components under a variety of axial and lateral loadings.

Associated with the laboratory is an electrohydraulic universal testing machine with force capacity of 100 tons. The machine is used mainly to apply tensile and compressive loads to specimens so that the properties of the materials from which the specimens are made can be determined. It can also be used in fatigue testing of small components.

Mobility Laboratory

The Mobility Lab is dedicated to harnessing system theories and tools—such as artificial intelligence, control theory, robotics, machine learning, and optimization—to innovate and develop advanced mobility technologies and solutions for smart cities, particularly intelligent vehicular and transportation systems. It conducts extensive research, with support from government agencies (such as federal and state transportation departments, and the National Science Foundation) and private sectors into improving transportation system sustainability with advanced technologies and management solutions. The lab also leverages the university environment, and works with external partners, to perform research and development; and to prepare a future workforce for competitive advantage in advanced vehicular technologies, vehicle automation, and electrification; urban analytics for future mobility and smart cities; and resilient, secure, and smart transportation and logistics infrastructure.

Soil Mechanics Laboratory

The laboratory is used for standard experiments and advanced research in geotechnical engineering, with equipment for static and dynamic triaxial and simple shear testing. Modern computer-controlled servo-hydraulic closed-loop system supports triaxial and simple shear devices. The system is connected to state-of-the-art data acquisition equipment. The laboratory also includes special simple shear apparatuses for small-strain static and cyclic testing and for one-dimensional or two-dimensional cyclic loading across a wide range of frequencies. A humidity room is available for storing soil samples.

Faculty Areas of Thesis Guidance

Professors

Yousef Bozorgnia, PhD, PE (UC Berkeley, 1981)
Structural engineering, earthquake engineering, engineering seismology

Scott J. Brandenberg, PhD, PE (UC Davis, 2005)
Geotechnical earthquake engineering, soil-structure interaction, liquefaction, data acquisition and processing, numerical analysis

J.R. DeShazo, PhD (Harvard, 1997)
Regulatory policy, institutional design, environmental economics, energy economics, electric vehicles

Mekonnen Gebremichael, PhD (U. Iowa, 2004)
Remote sensing of hydrology, watershed hydrologic modeling, hydroclimate, stochastic processes and scaling

Eric M.V. Hoek, PhD (Yale, 2001)
Physical and chemical environmental processes, colloidal and surface phenomena, environmental membrane separations, biological and biological fouling

Jennifer A. Jay, PhD (MIT, 1999)
Aquatic chemistry, environmental microbiology

Jiann-Wen (Woody) Ju, PhD, PE (UC Berkeley, 1986)
Damage mechanics, mechanics of composite materials, computational plasticity, micromechanics, concrete modeling and durability, computational mechanics
Civil and Environmental Engineering Department / 57

Associate Professors
Mathieu Bauchy, PhD (U. Pierre et Marie Curie, France, 2012)
Development of high-performance and sustainable glasses and cementitious materials for infrastructure and handled devices applications; multiscale simulations of materials

Henry V. Burton, PhD, SE (Stanford, 2014)
Performance-based earthquake engineering, seismic design, evaluation and retrofit, enhanced seismic performance systems, building community resilience

David Jassby, PhD (Duke, 2011)
Water treatment and desalination, membrane separation processes, membrane material fabrication, electrochemistry, environmental applications of nanotechnology

Jaqi Ma, PhD (U. Virginia, 2014)
Transportation engineering, connected and automated vehicles, mobility systems, transportation systems resilience, intelligent transport systems

Assistant Professors
Timu W. Gallien, PhD (UC Irvine, 2012)
Urban coastal flood prediction, wave runup and overtopping, coastal hazards, sea level rise, flood inundation, damage and mitigation methods, nearshore remote sensing and observation

Sanjay Mohanty, PhD (U. Colorado Boulder, 2012)
Effect of water change on water quality and quantity; sustainable urban development at the water-energy nexus; transport of contaminants and colloids in the subsurface and groundwater; stormwater capture, treatment, and re-use; bioremediation

Adjunct Professors
George Mylonakis, PhD, PE (SUNY Buffalo, 2005)
Soil mechanics and dynamics, earthquake engineering, geomechanics, stress wave propagation, foundation engineering

Thomas Sabol, PhD, SE (UCLA, 1986)
Seismic performance and structural design issues for steel and concrete seismic force resisting systems; application of probabilistic methods to earthquake damage quantification

Adjunct Associate Professors
Donald R. Kendall, PhD, PE (UCLA, 1989)
Hydraulics, groundwater hydrology, advanced engineering economics, stochastic processes

Issam Najm, PhD, PE (U. Illinois Urbana-Champaign, 1990)
Water chemistry; physical and chemical processes in drinking water treatment

Civil and Environmental Engineering Courses

Lower-Division Courses
1. Civil Engineering and Infrastructure. (2) Lecture, two hours; outside study, two hours. Applications of infrastructure, its importance, and manner by which it is designed and constructed. Study of civil engineers in infrastructure development and preservation. P/NP grading. Mr. Taciorglu (F)

19. Fiat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics in major science education projects to elementary or middle school audience. Letter grading. (Not offered 2021-22)

91. Statics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: Mathematics 31A, 31B, Physical mechanics, vector representation, and resultant forces and moments. Free-body diagrams and equilibrium, internal loads and equilibrium in trusses, frames, and beams. Planar and nonplanar systems, distributed forces, determinate and indeterminate force systems, shear and moment diagrams, and axial force diagrams. Letter grading. Mr. Sant (F)

99. Student Research Program. (1 to 2) Tutorial. (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower-division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.

Upper-Division Courses
102. Dynamics of Particles and Bodies. (2) Lecture, two hours; discussion, two hours; outside study, two hours. Requisites: course 91 or Mechanical and Aerospace Engineering 101, Physics 1B. Introduction to fundamentals of dynamics of single particles, system of particles, and rigid bodies. Topics include kinematics and kinetics of particles, work and energy, impulse and momentum, multiparticle systems, kinematics and kinetics of rigid bodies in two- and three-dimensional motions. Letter grading. Mr. Bauchy (W)

103. Applied Numerical Computing and Modeling in Civil and Environmental Engineering. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course M20 or (Computer Science 31), Mathematics 33B or Mechanical and Aerospace Engineering 82 (either may be taken concurrently). Introduction to numerical computing with specific applications in civil and environmental engineering. Topics include error and computer arithmetic, root finding, curve fitting, numerical integration and solution of differential equations, computation of linear and nonlinear equations, numerical solution of ordinary and partial differential equations. Letter grading. Mr. Margulis, Mr. Taciorglu (Sp)

C104. Structure Processing, and Properties of Civil Engineering Materials. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 91 or Mechanical and Aerospace Engineering 101, Chemistry 20A, 20B, Mathematics 31A, 31B, 32B, Physics 1A, 1B, 1C. Corequisite:

Associate Professors
Mathieu Bauchy, PhD (U. Pierre et Marie Curie, France, 2012)
Development of high-performance and sustainable glasses and cementitious materials for infrastructure and handled devices applications; multiscale simulations of materials

Henry V. Burton, PhD, SE (Stanford, 2014)
Performance-based earthquake engineering, seismic design, evaluation and retrofit, enhanced seismic performance systems, building community resilience

David Jassby, PhD (Duke, 2011)
Water treatment and desalination, membrane separation processes, membrane material fabrication, electrochemistry, environmental applications of nanotechnology

Jaqi Ma, PhD (U. Virginia, 2014)
Transportation engineering, connected and automated vehicles, mobility systems, transportation systems resilience, intelligent transport systems

Assistant Professors
Timu W. Gallien, PhD (UC Irvine, 2012)
Urban coastal flood prediction, wave runup and overtopping, coastal hazards, sea level rise, flood inundation, damage and mitigation methods, nearshore remote sensing and observation

Sanjay Mohanty, PhD (U. Colorado Boulder, 2012)
Effect of water change on water quality and quantity; sustainable urban development at the water-energy nexus; transport of contaminants and colloids in the subsurface and groundwater; stormwater capture, treatment, and re-use; bioremediation

Adjunct Professors
George Mylonakis, PhD, PE (SUNY Buffalo, 2005)
Soil mechanics and dynamics, earthquake engineering, geomechanics, stress wave propagation, foundation engineering

Thomas Sabol, PhD, SE (UCLA, 1986)
Seismic performance and structural design issues for steel and concrete seismic force resisting systems; application of probabilistic methods to earthquake damage quantification

Adjunct Associate Professors
Donald R. Kendall, PhD, PE (UCLA, 1989)
Hydraulics, groundwater hydrology, advanced engineering economics, stochastic processes

Issam Najm, PhD, PE (U. Illinois Urbana-Champaign, 1990)
Water chemistry; physical and chemical processes in drinking water treatment

Civil and Environmental Engineering Courses

Lower-Division Courses
1. Civil Engineering and Infrastructure. (2) Lecture, two hours; outside study, four hours. Examples of infrastructure, its importance, and manner by which it is designed and constructed. Study of civil engineers in infrastructure development and preservation. P/NP grading. Mr. Taciorglu (F)

19. Fiat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics in major science education projects to elementary or middle school audience. Letter grading. (Not offered 2021-22)

91. Statics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: Mathematics 31A, 31B, Physical mechanics, vector representation, and resultant forces and moments. Free-body diagrams and equilibrium, internal loads and equilibrium in trusses, frames, and beams. Planar and nonplanar systems, distributed forces, determinate and indeterminate force systems, shear and moment diagrams, and axial force diagrams. Letter grading. Mr. Sant (F)

99. Student Research Program. (1 to 2) Tutorial. (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower-division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.

Upper-Division Courses
102. Dynamics of Particles and Bodies. (2) Lecture, two hours; discussion, two hours; outside study, two hours. Requisites: course 91 or Mechanical and Aerospace Engineering 101, Physics 1B. Introduction to fundamentals of dynamics of single particles, system of particles, and rigid bodies. Topics include kinematics and kinetics of particles, work and energy, impulse and momentum, multiparticle systems, kinematics and kinetics of rigid bodies in two- and three-dimensional motions. Letter grading. Mr. Bauchy (W)

103. Applied Numerical Computing and Modeling in Civil and Environmental Engineering. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course M20 or (Computer Science 31), Mathematics 33B or Mechanical and Aerospace Engineering 82 (either may be taken concurrently). Introduction to numerical computing with specific applications in civil and environmental engineering. Topics include error and computer arithmetic, root finding, curve fitting, numerical integration and solution of differential equations, computation of linear and nonlinear equations, numerical solution of ordinary and partial differential equations. Letter grading. Mr. Margulis, Mr. Taciorglu (Sp)
course 108. Discussion of aspects of cement and concrete production, including manufacturing technology and production of concrete. Aspects of cement composition and basic chemical reactions, microstructure, properties of plastic and hardened concrete, chemical admixtures, and durability control through experimental testing. Development and testing of fundamentals for complete understanding of overall response of all civil engineering materials. By end of term, successful usage of fundamental materials science concepts to understand, explain, and analyze concrete engineering performance of civil engineering materials. Concurrently scheduled with course C204.

Letter grading.

Mr. Sant (W)

Mr. Bauchi (F)

C106. Methods and Simulation of Civil Engineering Materials. (4) Lecture, four hours; outside study, eight hours. Requisites: Chemistry and Biochemistry 20A, 20B, Mathematics 31A, 31B, 32B, Physics 1A, 1B, 1C. Provides fundamental understanding of modeling and numerical simulations for civil engineering materials. Largely focused on practical examples and applications. By course end, students are expected to be able to independently run simulations at scale relevant to targeted problems. Concurrently scheduled with course C206. Letter grading.

Mr. Bauchi (Not offered 2021-22)

Mr. Bauchi, Ms. Zhang (W/Sp)

Mr. Ju (W)

110. Introduction to Probability and Statistics for Engineering. (4) Lecture, four hours; discussion, one hour (when scheduled); outside study, seven hours. Requisites: Mathematics 32A, 33A. Recommended: course M20. Introduction to fundamental concepts and applications of probability and statistics in civil engineering, with focus on how these concepts are used in experimental design and sampling, data analysis, risk and reliability analysis, and project design under uncertainty. Includes basic probability concepts, random variables and analytical probability distributions, functions of random variables, estimating parameters from observational data, regression, hypothesis testing, and Bayesian concepts. Letter grading.

Ms. Jay (Sp)

C111. Machine Learning and Artificial Intelligence for Civil Engineering. (4) Lecture, two hours; discussion, two hours; outside study, six hours. Requisites: course M20, Chemistry 20A, 20B, Mathematics 31A, 31B, 32B, Physics 1A, 1B, 1C. Theoretical and practical introduction to machine learning and machine learning for civil engineering problems. Focus on practice and problem-solving skills. By course end, students are expected to be able to independently run machine learning analyses. Concurrently scheduled with course C211. Letter grading.

Mr. Bauchi (Sp)

120. Principles of Soil Mechanics. (4) Lecture, two hours; active learning, two hours; discussion, two hours; outside study, six hours. Requisite or corequisite: course 120. Laboratory experiments to perform experiments to study soil properties using materials and data. Soil foundation for structures and as material of construction. Soil formation, classification, physical and mechanical properties, soil compaction, earth pressures, consolidation, and shear strength. Letter grading.

Mr. Brandenberg (F)

120L. Soil Mechanics Laboratory. (4) Formerly numbered 128L. Lecture, one hour; laboratory, six hours; outside study, five hours. Requisite or corequisite: course 120. Laboratory experiments to be performed by students to obtain soil parameters required for assigned design problems. Soil classification, grain size distribution, Atterberg limits, specific gravity, and unit weight of soil; determination of soil shear strength determination. Design problems, laboratory report writing. Letter grading.

Mr. Brandenberg (Not offered 2021-22)

121. Design of Foundations and Earth Structures. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 120. Design methods for foundations and earth structures. Site investigation, including evaluation of soil properties for design. Design of footings and piles, including stability and settlement calculations. Design of slopes and earth retaining structures. Letter grading.

Mr. Stewart (W)

C123. Advanced Geotechnical Design. (4) Formerly numbered 123L. Lecture, two hours; active learning, two hours; discussion, two hours; outside study, six hours. Requisite: course 121. Slope stability analysis, including limit equilibrium procedures, finite element method, seepage analysis, and advanced topics such as rigid drawdown, construction of embankments on soft soil, and seismic slope stability. Lateral earth retention systems including gravity walls, sheet piles, and driven piles. Design of geotechnical design project involving appropriate engineering standards and realistic constraints. Concurrently scheduled with course C223. Letter grading.

Mr. Brandenberg (F)

Mr. Bozorgnia (Sp)

C128. Geohazards and Infrastructure Resilience. (4) Lecture, four hours; outside study, eight hours. Requisite: course 120. Geologic characterization of soil and rock units. Relationships between landforms, active, past, and ancient geologic processes, ground and surface water, and properties of soil as foundation, expansion index, landslides, and earthquake. Climate change, wildfires, landslides, volcanism, and earthquakes. Effects of geologic processes on civil infrastructure and risk assessment procedures to promote resilience. Concurrently scheduled with course C228. Letter grading.

Mr. Casas (F)

Mr. Gallien (Sp)

130. Elementary Structural Mechanics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 108. Analysis of stress and strain, phonomenological material behavior, extension, bending, and transverse stress shear stresses in beams with general cross-sections, shear center, deflection of beams, torsion of beams, warping, column instability and failure. Letter grading.

Mr. Tacioglu (Sp)

135A. Elementary Structural Analysis. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 135A. Introduction to structural analysis; classification of structural elements; analysis of statically determinate trusses, beams, and frames; deflections in elements; virtual work; analysis of indeterminate structures using force method; introduction to displacement method and energy concepts. Letter grading.

Mr. Ju (F)

135B. Intermediate Structural Analysis. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 135A. Analysis of truss and frame structures using matrix methods; matrix displacement method; matrix displacement method; analysis concepts based on virtual work; moment distribution. Letter grading.

Mr. Tacioglu, Mr. Wallace (W)

M135C. Introduction to Finite Element Methods. (4) Formerly Mechanical and Aerospace Engineering M188). Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 130 or Mechanical and Aerospace Engineering 156A or 166A. Introduction to basic concepts of finite element methods (FEM) and applications to structural and solid mechanics and heat transfer. Direct matrix structural analysis; weighted residual, least squares, and Ritz approximation methods; shape functions; finite element method; numerical integration. Practical use of FEM software; geometric and analytical modeling; preprocessing and postprocessing techniques; term projects with computers. Letter grading.

Mr. Brandenberg (W)

135L. Structural Design and Testing Laboratory. (4) Lecture, two hours; laboratory, five hours; outside study, five hours. Requisites: courses M20, 135A. Limitation enrollment. Computer-aided optimum design; construction, instrumentation, and test of small-scale model structure. Use of computer-based data acquisition and interpretation systems for comparison of experimental and theoretically predicted behavior. Letter grading.

Mr. Burton (F/Sp)

C137. Elementary Structural Dynamics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 135B. Basic structural dynamics course for civil engineering students. Elastic free and forced vibrations of single degree of freedom systems, introduction to response history and response spectrum analysis approaches for single and multidiscipline of freedom systems. Axial, bending, and torsional vibration of beams. Concurrently scheduled with course C239. Letter grading.

Mr. Tacioglu (F)

137L. Structural Dynamics Laboratory. (4) Lecture, two hours; laboratory, six hours; outside study, four hours. Requisite or corequisite: course 137. Calibration of instrumentation for dynamic measurements. Determination of natural frequencies and damping factors from free vibrations. Determination of experimental transfer functions and their graphical representations.

140L. Structural Components and Systems Testing Laboratory. (4) Lecture, two hours; laboratory, six hours; outside study, four hours. Enforced requisites: course 142. Comparison of experimental results with analytical results and code requirements to assess accuracies and limitations of calculation procedures used in structural design. Tests include quasi-static tests of structural elements (beams, columns) and systems (slab-column, beam-column) and dynamic tests of simple building systems. Quasi-static tests focus on assessment of element or subsystem stiffness, strength, and deformation capability, whereas dynamic tests focus on assessment of periods, mode shapes, and damping. Development of communication skills through preparation of laboratory reports and oral presentations.

Mr. Wallace (Sp)

141. Steel Structures. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 135A, Introduction to building codes. Fundamentals of load and resistance factor design of steel elements. Design of tension and compression members. Design of beams and beam columns. Simple connection design. Introduction to computer modeling methods and design process. Letter grading. Mr. Wallace (F)

Ms. Zhang (W)

142L. Reinforced Concrete Structural Laboratory. (4) Lecture, two hours; laboratory, six hours; outside study, four hours. Requisite: course 135A, Introduction to building codes. Laboratory work in reinforced concrete structures. Design considerations used for reinforced concrete beams, columns, slabs, and joints evaluated using analysis and experiments. Links between theory, building codes, and experimental results. Students demonstrate accuracies and limitations of calculation procedures used in design of reinforced concrete structures. Development of skills in written and oral presentation. Letter grading. Mr. Wallace (Not offered 2021-22)

143. Design of Prestressed Concrete Structures. (4) Lecture, four hours; discussion; two hours; outside study, six hours. Requisites: courses 135A, 142. Engineering fundamentals of flexural stress-resultant systems that determine and indeterminate systems. Flexural and shear strength design, including secondary effects in indeterminate systems. Design of indeterminate post-tensioned beam using both hand calculations and commercially available computer program. Discussion of external post-tensioning, one- and twoway slab systems. Letter grading. Mr. Wallace (Sp)

144. Structural Systems Design. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 141 or 142, and 190. Design course for civil engineering students, with focus on design and performance of complete building structural systems. International Building Code (IBC) and ASCE 7 dead, live, wind, and earthquake loads. Design of reinforced concrete and structural steel buildings. Computer modeling, analysis, and performance assessment of buildings. Letter grading.

Mr. Wallace (Sp)

147. Design and Construction of Tall Buildings. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 135B, 141, 190. Role of structural engineer, architect, and other design professions in design process. Development of architectural design of tall buildings. Influence of building code, zoning, and finance. Advantages and limitations of different structural systems. Development of structural system design and computer modeling for architectural design. Letter grading. Mr. Wallace (W)

148. Wood and Timber Design. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Recommended requisites: courses 108, 135A, 143, and course 150, Mechanical and Aerospace Engineering 103. Study of hydraulics, flow of water in open channels and pressure conduits, force and flow of hydraulic machinery, hydroelectric power. Introduction to system analysis and design applied to water resources engineering. Letter grading. Ms. Gallien (W)

152. Hydraulic and Hydrometric Design. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 150, 151, 190. Analysis and design of hydraulic and hydrometric systems, including stormwater management systems, potable and recycled water distribution systems, wastewater collection systems, and constructed wetlands. Emphasis on practical design components, including reading/interpreting professional drawings and specifications, environmental impact assessment, permitting, agency coordination, and engineering ethics. Project-based course includes analysis of alternatives designs, use of engineering economics, and preparation of written engineering reports. Letter grading. Mr. Margulis (Sp)

153. Introduction to Environmental Engineering Science. (4) Lecture, four hours; discussion, one hour (when scheduled); outside study, seven hours. Recommended requisites: course 103, Introduction to Aerospace Engineering 103. Water, air, and soil pollution: sources, transformations, effects, and processes for removal of contaminants. Water quality, water and wastewater treatment, water distribution systems, wastewater treatment plants, design of unit operations, predesign of water treatment plants, hydraulics of plants, process control, and cost estimation. Letter grading. Mr. Stenstrom (Not offered 2021-22)

157C. Design of Wastewater Treatment Plants. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 155, 190. Process design of wastewater treatment plants, including primary and secondary treatment, detailed design review of existing plants, process control, and economics. Letter grading. Mr. Stenstrom (Sp)

157L. Hydrologic Analysis. (4) Lecture, two hours; laboratory, five hours; outside study, five hours. Requisite: course 150. Collection, compilation, and interpretation of data for quantification of components of hydrologic cycle, including precipitation, evaporation, interception, and runoff. Analysis of potential solutions and parameters for development, construction, and application of analytical models for selected problems in hydrology and water resources. Letter grading. Mr. Yeh (Not offered 2021-22)

158. Coastal Engineering. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 151 and Mechanical and Aerospace Engineering 103. Covers coastal water levels (tides, climate variability, storms, sea level rise, resonance), surface gravity waves (characteristics, transformation, spectra), coastal processes (erosion, flooding), coastal protection (walls, barriers, riprap, rock piers, breakwaters), coastal modeling. Concurrently scheduled with course C258. Letter grading. Mr. Gallien (Sp)

159. Green Infrastructure. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Required: courses 150, 153. Overview of fundamental science, engineering, and ecological principles to designing green infrastructure for stormwater management. Students design green infrastructure based on computer simulations, performance calculations, and analytical methods. Students calculate its performance, and develop critical thinking skills needed to design innovative or futuristic green infrastructures that would not only mitigate adverse impact estimation. Letter grading. Mr. Stenstrom (Sp)

164. Sustainable Waste Management. (4) Lecture, four hours; discussion; two hours; outside study, six hours. Requisite: course 153. Introduction to environ-
C181. Traffic Engineering Systems: Operations and Control. (4) (Formerly numbered 181.) Lecture, four hours; outside study, eight hours. Requisite: course 120 or equivalent. Includes traffic data collection and analysis, traffic flow theory, highway capacity analysis, signalized intersection design and analysis, and simulation modeling. Students gain understanding of basic traffic flow theory, learn to conduct traffic data collection and analysis, and to apply capacity analysis methods and simulation modeling for both highway and arterial road systems. Concurrently scheduled with course C281. Letter grading. Mr. Ma (F)

C182. Rigid and Flexible Pavements: Design, Materials, and Serviceability. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 118, 120. Materials Science 104. Correlation, analysis, and metrication of aspects of pavement design, including materials selection and traffic loading and volume. Special attention to aspects of pavement distress/serviceability and factoring of these into metrics of pavement performance. Discussion of potential choices of pavement materials (i.e., asphalt and concrete). Identification of factors leading to weaknesses in pav ing applications. Unification and correlation of different variables that influence pavement performance and highlight their relevance in pavement design. Concurrently scheduled with course C282. Letter grading. Mr. Sant (Not offered 2021-22)

C185. Transportation Systems Analysis. (4) Lecture, four hours; outside study, eight hours. Requisite: course 180. Transportation researchers and practitioners are motivated by desiring to expand spatial interactions that resulted in movement of people or goods from place to place. Such interactions become more intricate as new technologies emerge. To effectively manage transportation systems involves understanding essential nature of transportation systems to analyze and optimally design such systems is needed more than ever. Introduction to fundamental concepts, methods, and principles underlying transportation systems analysis. Includes two modules, each of which focuses on one level of system analysis: traveler behavior and network. Concurrently scheduled with course C285. Letter grading.

C166. Intelligent Transportation Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 180. Introduction to basic elements of intelligent transportation systems (ITS), focusing on technology and transportation systems. Topics include systems engineering processes, advanced traveler information systems, transportation network operations, commercial vehicle operations and intermodal freight, public transportation applications, ITS and regional strategic transportation planning, travel demand management, electronic toll collection, and road-pricing, connected and automated vehicles (CAV), data access and exchanges, cybersecurity for ITS and ITS applications. Concurrently scheduled with course C286. Letter grading.

188. Special Courses in Civil and Environmental Engineering. (4) Lecture, to be arranged; discussion, to be arranged (when scheduled); outside study, to be arranged. Introduces students to ongoing civil engineering for undergraduate students taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated for credit with topic or instructor change. Letter grading.

190. Professional Practice. (2) Lecture, two hours; discussion; one hour; outside study, three hours. Requisite: one course from 121, 141, 142, 151, 155 (may be taken concurrently). Sustainability in design (e.g., LEED certification for building projects); professional licensure (PE, SE, and GE); project management (proposals, scheduling, and budgeting), business, public policy, leadership, ethics, traffic loading and loads, load and environment impact reports. Letter grading. Mr. Burton (F)

194. Research Group Seminars: Civil and Environmental Engineering. (2 to 8) Seminar, two to eight hours; outside study, four to 16 hours. Designed for undergraduate students. Open to C111. Limit of 12 students. Discussion of research methods and current literature in field or of research of faculty members or students. May be repeated for credit. Letter grading.

199. Directed Research in Civil and Environmental Engineering. (2 to 8) Tutorial, to be arranged. Limited to seniors/juniors. Supervised individual research or investigation under guidance of faculty mentor. Culminating project or paper required. May be repeated for credit with school approval. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading. (F,W,Sp)

Graduate Courses

200. Civil and Environmental Engineering Graduate Seminar. (2) Seminar, four hours; outside study, six hours. Various topics in civil and environmental engineering that may include earthquake engineering, environmental engineering, geotechnical engineering, hydrology and water resources engineering, materials engineering, structural engineering, and structural mechanics. May be repeated for credit. S/U grading. (F,W,Sp)

C206. Modeling and Simulation of Civil Engineering Materials. (4) (Formerly numbered 206.) Lecture, four hours; outside study, eight hours. Corequisites: Chemistry and Biochemistry 20A, 20B, Mathematics 31A, 31B, 32B, Physics 1A, 1B, 1C. Provides fundamental understanding of modeling and numerical simulations for civil engineering materials. Largely focused on practical applications and examples. By course end, students are expected to be able to independently run simulations at scale relevant to targeted problems. Concurrently scheduled with course C106. Letter grading. Mr. Ma (Sp)

C211. Machine Learning and Artificial Intelligence for Civil Engineering. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Theoretical and practical introduction to artificial intelligence and machine learning for civil engineering problems. Focus on practice and problem-solving skills. By course end, students are expected to be able to independently run machine learning analysis. Concurrently scheduled with course C111. Letter grading.

222. Introduction to Soil Dynamics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 120. Review of engineering problems involving soil dynamics. Fundamentals of theoretical soil dynamics: response of sliding block-on-plane to cyclic earthquake loads; application of theoretical single degree-of-freedom (DOF) system, multiple DOF system and one-dimensional wave propagation. Fundamentals of cyclic soil behavior; stress-strain-pore pressure relationships, shear modulus, shear modulus damping, cyclic settlement and concept of volumetric cyclic threshold shear strain. Introduction to modeling of cyclic soil behavior. Letter grading. Mr. Vucetic (Not offered 2021-22)

C223. Advanced Geotechnical Design. (4) Formerly numbered 223.) Lecture, two hours; active learning, two hours; discussion, two hours; outside study, six hours. Requisite: course 220. Slope stability analysis, including limit equilibrium and finite element method, seepage analysis, and advanced topics such as rapid drawdown, construction of embankments on soft soil, and seismic slope stability. Lateral earth retention systems including gravity walls and excavation support systems. Advanced analysis methods and design project involving real landslide problem. Emphasis on preparation of professional engineering documents such as proposals, work scopes, estimates, plans, and reports.

Concurrently scheduled with course C128. Letter grading. Mr. Brandenberg (W)

224. Advanced Cyclic and Monotonic Soil Behavior. (4) Lecture, four hours; outside study, eight hours. Requisite: course 120. In-depth study of soil behavior under cyclic and monotonic loads. Relationships between stress, strain, pore water pressure, and volume change in range of very small and large strains. Concept of normalized static and cyclic soil behavior. Cyclic degradation and liquefaction of saturated soils. Cyclic settlement of partially saturated and dry soils. Concept of volumetric cyclic threshold shear strain. Prediction of postcyclic behavior using shear modulus damping during cyclic loading. Postcyclic behavior under monotonic loads. Critical review of laboratory, field, and modeling testing techniques. Letter grading. Mr. Vucetic (Not offered 2021-22)

225. Geotechnical Earthquake Engineering. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 220, 245 (may be taken concurrently). Analysis of earthquake-induced ground failure, liquefaction, cyclic softening soils, seismic compression, surface fault rupture, and seismic slope stability. Ground response effects on earthquake ground motions. Soil-structure interaction, including inertial and kinematic interactions, and foundation deformations under seismic loading. Letter grading. Mr. Stewart (Sp)

226. Geoenvironmental Engineering. (4) Lecture, four hours; outside study, eight hours. Requisite: course 125. Geoenvironmental engineering involves application of geotechnical principles to environmental problems. Topics include environmental regulations, waste characterization, geosynthetics, solid waste landfill, subsurface barrier walls, and disposal of high water content materials. Letter grading. Mr. Stewart (Not offered 2021-22)

227. Numerical Methods in Geotechnical Engineering. (4) Lecture, four hours; outside study, eight hours. Requisite: course 220. Introduction to basic concepts of computer modeling of soils using finite element method, and to constitutive modeling based on elasticity and plasticity theories. Special emphasis on numerical applications and identification of modeling concerns such as instability, bifurcation, nonexistence, and nonuniqueness of solutions. Letter grading. Mr. Brandenberg (W)

C228. Geohazards and Infrastructure Resilience. (4) Formerly numbered 228.) Lecture, four hours; outside study, eight hours. Requisite: course 120. Geologic characterization of soil and rock units. Relationships developed between landforms, active, past, and ancient landscapes, ground and surface water, and properties of soil and rock. Geohazards associated with climate change, wildfires, landslides, volcanism, and earthquakes. Effects of geologic processes on civil infrastructure and risk assessment procedures. Terminology, relevant legal issues, and current literature. Letter grading. Mr. Stewart (Not offered 2021-22)

M230A. Linear Elasticity. (4) Same as Mechanical and Aerospace Engineering M256A.) Lecture, four hours; outside study, eight hours. Elastic-strain energy; linear elasticity; plane strain and plane stress; three-dimensional elastic problems; holes, corners, inclusions, cracks; three-dimensional problems of Kelvin, Boussinesq, and Cerrutti. Introduction to boundary integral equation methods. Mr. Ju, Mr. Mal (W)

M230B. Nonlinear Elasticity. (4) Same as Mechanical and Aerospace Engineering M256B.) Lecture, four hours; outside study, eight hours. Requisite: course M230A. Kinematics of deformation, material and spatial coordinates, deformation gradient tensor, nonlinear and linear strain tensors, strain displacement relations; balance laws, Cauchy and Piola stresses, Cauchy equations of motion, balance of energy, stored energy; constitutive relations, elasticity, hyperelasticity, thermoelasticity; linearization of field equations; solution of selected problems. Letter grading. Mr. Ju, Mr. Mal (W)

M230C. Plasticity. (4) Same as Mechanical and Aerospace Engineering M230C.) Lecture, four hours; outside study, eight hours. Requisites: courses M230A, M230B. Classical rate-independent plasticity theory, yield functions, flow rules and thermodynamics of plasticity; viscosity stress; Perzyna and Duwan/Lions types of viscoplasticity. Thermoplasticity and creep. Return mapping algorithms for plasticity and viscoplasticity. Finite element implementations. Letter grading. Mr. Ju, Mr. Mal (Sp)

252. Theory of Plates and Shells. (4) Lecture, four hours; outside study, eight hours. Requisite: course 130. Small and large deformation theories of thin plates; energy methods; free vibrations; membrane theory of shells; axi-symmetric deformation of cylindrical and spherical shells, iceberg bending. Letter grading. Ms. Zhang (F)

235A. Advanced Structural Analysis. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 135A. Recommended: course 135B. Review of matrix force and displacement methods of structural analysis; virtual work theorem, virtual forces, and displacements; theorems on stationary value of total and complementary potential energy, minimum total potential energy, Maxwell/Beelli theorems, approximations of integration to finite element analysis. Letter grading. Mr. Burton, Mr. Taciroglu (F)

235B. Finite Element Analysis of Structures. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 130, 235A. Direct-entropy force method systems; solution methods for linear equations; analysis of structural systems with one-dimensional elements: introduction to variational calculus; discrete element displacement, force, and nodal force interpolation, finite element analysis, membrane, plate, shell structures; instability effects. Letter grading. Mr. Taciroglu (W)

235C. Nonlinear Structural Analysis. (4) Lecture, four hours; outside study, eight hours. Requisite: course 235B. Classification of nonlinear effects; material nonlinearities; conservative, nonconservative material behavior; geometric nonlinearities, Lagrangian, Eulerian description of motion; finite element methods in geometrically nonlinear problems; postbuckling behavior of structures; solution of nonlinear problems; incremental, iterative and programming methods. Letter grading. Mr. Taciroglu (Sp)

C239. Elementary Structural Dynamics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Recommended requisite: course 135B. Basic structural dynamics course for civil engineering students. Elastic free and forced vibrations of single degree of freedom systems, introduction to response analysis and response spectrum analysis for single and multidegree of freedom systems. Axial, bending, and torsional vibration of beams. Concurrency scheduled with course C137. Letter grading. Mr. Taciroglu (F)

241. Advanced Steel Structures. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses C137, 141, 235A. Performance characterization of steel structures for static and earthquake loads. Behavior state analysis and building code provisions for special moment resisting, braced, and eccentric braced frames. Composite steel-concrete structures. Letter grading. Mr. Wallace (Sp)

243A. Behavior and Design of Reinforced Concrete Structural Elements. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course C122. Advanced topics on design of reinforced concrete structures, including stress-strain relationships for plain and confined concrete, moment-curvature analysis of sections, and design for shear. Design of slender and low-rise walls, as well as design of beam-column joints. Introduction to displacement-based design and applications of strut-and-tie models. Letter grading. Mr. Wallace (F)

243B. Response and Design of Reinforced Concrete Structural Systems. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 243A, 246. Information on response and behavior of reinforced concrete buildings to earthquake ground motions. Conceptual and computational use of elastic and inelastic response spectra, role of strength, stiffness, and ductility in design, use of prescriptive versus performance-based design methodology, introduction to advanced computer analysis and modeling techniques for new and existing construction. Letter grading. Mr. Wallace (Sp)

244. Structural Reliability. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Introductory to concepts and applications of structural reliability. Topics include computing first- and second-order estimates of failure probabilities of engineered systems, computing sensitivities of failure probabilities to assumed parameter values, measuring relative importance of random variables associated with sys-
245. Earthquake Ground Motion Characterization. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Corequisite: course C137 or 246. Earthquake fundamentals, including plate tectonics, far field vs. near field, and magnitudes scales. Characterization of earthquake source, including magnitude range and rate of future earthquakes. Ground motion prediction equations and site effects on ground motion. Seismic hazard analysis. Ground motion selection and modification for response history analysis. Letter grading. Mr. Burton (W)

246. Structural Response to Ground Motions. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses C137, 141, 142, 235A. Spectral analysis of ground motions: response, time, and Fourier spectra. Response of structures to ground motions: to earthquakes. Concepts and methods to evaluate structural response. Response analysis, including evaluation of contemporary design standards. Limitations due to idealizations. Letter grading. Mr. Borojevic (W)

247. Earthquake Hazard Mitigation. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 130, and M237A or 246. Concept of seismic isolation, linear theory of base isolation, seismic behavior of tectonic bearing under compression and bending, buckling of bearings, passive energy dissipation devices, response of structures with isolated and nonisolated devices, static and dynamic analysis procedures, code provisions and design methods for seismically isolated structures. Letter grading. Ms. Zhang (Sp)

250A. Surface Water Hydrology. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 150. In-depth study of surface water hydrology, including discussion and interrelationship of major topics such as rainfall and evaporation, soils and infiltration properties, runoff and snowmelt processes. Introduction to rainfall-runoff modeling, floods, and policy issues involved in water resource engineering and management. Letter grading. Mr. Gebremichael (F)

250C. Hydrometeorology. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 250A, 251B. Introduction to hydrologic modeling concepts, including rainfall-runoff analysis, input data and output, basin and distributed modeling, parameter estimation and sensitivity analysis, and application of models for flood forecasting and prediction of streamflows in water resource applications. Letter grading. Mr. Yeh (Not offered 2021-22)

251B. Contaminant Transport in Groundwater. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 250B, 253. Phenomena and mechanisms of advection, diffusion, governing equations of transport in porous media, various analytical and numerical solutions, groundwater flow, remediation design, software packages and applications. Letter grading. Mr. Margulis (Not offered 2021-22)

251C. Remote Sensing with Hydrologic Applications. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 250A, 250C. Introduction to basic physical concepts of remote sensing as they relate to surface and atmospheric hydrologic processes. Application of hydrologic data assimilation techniques geared toward assimilating disparate observations into dynamic models of hydrologic systems. Letter grading. Mr. Margulis (Not offered 2021-22)

252. Engineering Economic Analysis of Water and Environmental Planning. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: Engineering 110, one or more courses from Economics 1, 2, 11, 101. Economic theory and application of price theory to water resource management and reclamation of water and environmental problems; application of price theory to water resource management and reclamation; benefit-cost analysis with applications to water resources and environmental planning. Letter grading. Mr. Yeh (Not offered 2021-22)

254A. Environmental Aquatic Inorganic Chemistry. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: Chemistry 20B, Mathematics 31A, 31B, Physics 1A, 1B. Equilibrium and kinetic descriptions of chemical behavior of metals and inorganic ions in natural fresh/marine surface waters and in water treatment. Processes include acid-base chemistry and alkalinity (carbonate systems). Applications include radiative transfer, absorption, oxidation/reduction, and photochemistry. Letter grading. Ms. Jay (F)

255A. Physical and Chemical Processes for Water and Wastewater Treatment. (4) Lecture, four hours; discussion, two hours; outside study, eight hours. Requisites: courses 155, 254A. Review of momentum and mass transfer, chemical reaction engineering, coagulation and flocculation, granular filtrations, sedimentation, carbon adsorption, gas transfer, disinfection, oxidation, and membrane processes. Letter grading. Mr. Jassby (W)

255B. Biological Processes for Water and Wastewater Treatment. (4) Lecture, four hours; discussion, two hours; outside study, eight hours. Requisites: courses 254A, 255A. Fundamentals of environmental engineering microbiology; kinetics of microbial growth and biological oxidation; applications for activated sludge, gas transfer, fixed-film processes, aerobic and anaerobic digestion, sludge disposal, and biological nutrient removal. Letter grading. Mr. Stenstrom (W)

255A. Membrane Separations in Aquatic Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 254A. Applications of membrane separations to desalination, water reclamation, brine disposal, and ultrapure water systems. Discussion of reverse osmosis, ultrafiltration, electro dialysis, and ion exchange technologies from both practical and theoretical standpoints. Letter grading. Mr. Hoek (Sp)

259. Green Infrastructure. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 150, 153, 155. In-depth study of the science, engineering, and ecological principles to designing green infrastructure for stormwater management. Students design green infrastructure based on current practices, perform engineering calculations to calculate its performance, and develop critical thinking skills needed to design innovative or futuristic green infrastructures that would not only mitigate impacts but also remain resilient under extreme weather conditions expected during climate change. Concurrently scheduled with course C159. Letter grading. Mr. Mohanty (Sp)

260. Advanced Topics in Hydrology and Water Resources. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 250A, 250B, 250D. Current research topics in inverse problem of parameter estimation, experimental design, conjunctive use of surface and groundwater, multiobjective water resources planning, and optimization of water resource systems. Topics may vary from term to term. Letter grading. Mr. Yeh (Not offered 2021-22)

261. Colloidal Phenomena in Aquatic Systems. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 254A, 255A. Colloidal interactions, colloidal stability, colloidal hydrodynamics, surface chemistry, adsorption of pollutants on colloidal surfaces, and transport of colloids in aquatic systems. Introduction to colloidal processes in aquatic environments. Letter grading. Mr. Hoek (Not offered 2021-22)

261A. Advanced Water Treatment Processes. (4) Lecture, four hours; outside study, eight hours. Requisite: course 255A. In-depth coverage of advanced water treatment processes, including advanced oxidation processes, photochemical, electrochemical treatment methods, and membrane separations. These advanced processes are increasingly necessary to adequately treat both drinking and wastewater. Study of process fundamentals and cutting-edge technologies in detail for thorough understanding of advantages and challenges associated with application of these processes. Letter grading. Mr. Jassby (Sp)

261B. Advanced Biological Processes for Water and Wastewater Treatment. (4) Lecture, four hours; outside study, eight hours. Requisite: course 255B. In-depth treatment of selected topics related to biological treatment of waters and wastewaters, such as nitrification-denitrification, activated sludge processes, emerging pollutants, toxicity, and nutrients. Discussion of theoretical aspects, experimental observations, and recent literature. Application to important and emerging environmental topics. Letter grading. Mr. Stenstrom (Sp)

M262A. Introduction to Atmospheric Chemistry. (4) (Same as Atmospheric and Oceanic Sciences M203A.) Lecture, three hours. Requisite for undergraduates: Chemistry 20B, Principles of chemical kinetics, thermochemistry, spectroscopy, and photo-
M262B. Atmospheric Diffusion and Air Pollution. (4) (Same as Atmospheric and Oceanic Sciences M224B.) Lecture, three hours. Nature and sources of atmospheric pollution; diffusion from point, line, and area sources; processes of particle and gas dispersion in urban and rural areas; meteorological factors and air pollution potential; meteorological aspects of air pollution. S/U or letter grading. (Not offered 2021-22)

263A. Physics of Environmental Transport. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Transport processes in surface water, groundwater, and atmosphere. Emphasis on exchanges across phase boundaries: sediment/water interface; air/water gas exchange; particles, droplets, and bubbles; small-scale dispersion and mixing; effect of reactions on transport; linkages between physical, chemical, and biological processes. Letter grading. Mr. Stolzenbach (Not offered 2021-22)

263B. Advanced Topics in Transport at Environmental Interfaces. (4) Lecture, four hours; outside study, eight hours. Requisite: course 263A. In-depth treatments of selected topics involving transport phenomena at environmental interfaces between solid, fluid, and gas phases, such as aquatic sediments, porous aggregates, and vegetative canopies. Discussion of theoretical models and experimental observations. Application to important environmental engineering problems. Letter grading. Mr. Stolzenbach (Not offered 2021-22)

266. Environmental Biotechnology. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 153, 254A. Environmental biotechnology—concept and potential, biotechnology of pollution control, bioremediation, biomass conversion: composting, biogas and bioethanol production. Letter grading. Ms. Mahendra (F)

267. Environmental Applications of Geochemical Modeling. (4) Lecture, four hours; outside study, eight hours. Requisite: course 254A. Geochemical modeling is important tool for predicting environmental impacts of contamination. Hands-on experience in modeling using geochemical software packages commonly found in environmental consulting industry, to gain understanding of geochemical principles pertaining to movement and transformation of contaminants. Models of modeling include speciation, mineral solubility, surface complexation, reaction path, inverse mass balance, and reactive transport modeling. Case studies involve acid mine drainage, nuclear waste disposal, bioavailability and risk assessment, mine tailings and mining waste, deep well injection, landfill leachate, and microbial respiration. Research/modeling project required. Letter grading. Ms. Jay (Not offered 2021-22)

C281. Traffic Engineering Systems: Operations and Control. (4) Lecture, four hours; outside study, eight hours. Requisite: course 180. Traffic operations including traffic data collection and analysis, safety and crash studies, traffic flow theory, highway capacity analysis, signalized intersection design and analysis, and simulation modeling. Students gain understanding of basic traffic flow theory, learn to conduct traffic data collection and analysis, and apply capacity analysis methods and simulation modeling for both highway and signalized intersections. Concurrently scheduled with course C181. Letter grading. Mr. Ma (F)

C282. Rigid and Flexible Pavements: Design, Materials, and Serviceability. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Correlation, analysis, and metrisation of aspects of pavement design, including materials selection and traffic loading and volume. Special attention to aspects of pavement distress/serviceability and factoring of these into metrics of pavement performance. Discussion of potential choices of pavement materials (i.e., asphalt and concrete) and their specific strengths and weaknesses in paving applications. Unifies concepts and correlation of different variables that influence pavement performance and highlight their relevance in pavement design. Concurrently scheduled with course C182. Letter grading. Mr. Sant (Not offered 2021-22)

C285. Transportation Systems Analysis. (4) Lecture, four hours; outside study, eight hours. Requisite: course 180. Transportation researchers and practitioners are motivated by desire to explain spatial interactions that resulted in movement of people or goods from place to place. Such interactions become more intricate as new technologies emerge. To explore and perceive these intricate interactions, understanding of essential nature of transportation systems to analyze and optimally design such systems is needed more than ever. Introduction to fundamental concepts, methods, and principles underlying transportation systems analysis. Includes two modules, each of which focuses on one level of system analysis: traveler behavior and network. Concurrently scheduled with course C185. Letter grading.

C286. Intelligent Transportation Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 180. Introduction to basic elements of intelligent transportation systems (ITS), focusing on technological, systems, and institutional aspects. Topics include systems engineering processes, advanced transportation information systems, transportation network operations, commercial vehicle operations and intermodal freight, public transportation applications, ITS and regional strategic transportation planning, travel demand management, electronic toll collection, and road-pricing, connected and automated vehicles (CAV), data access and exchanges, cybersecurity for ITS, and other smart mobility technologies. Concurrently scheduled with course C186. Letter grading.

597C. Preparation for PhD Oral Qualifying Examination. (2 to 16) Tutorial, to be arranged. Limited to graduate civil engineering students. Preparation for oral qualifying examination, including preliminary research on dissertation. S/U grading.
Overview

Computer science is concerned with the design, modeling, analysis, and applications of computer systems. Its study at UCLA provides education at the undergraduate and graduate levels necessary to understand, design, implement, and use the software and hardware of digital computers and digital systems. The programs offer comprehensive and integrated studies of subjects in computer system architecture, computer networks, distributed computer systems, programming languages and software systems, information and data management, artificial intelligence, computer science theory, computational systems biology and bioinformatics, and computer vision and graphics.

The undergraduate and graduate studies and research projects in the Department of Computer Science are supported by significant computing resources. In addition to the departmental computing facility, there are over a dozen research laboratories specializing in areas such as distributed systems, multimedia computer communications, distributed sensor networks, VLSI systems, VLSI CAD, embedded and reconfigurable systems, computer graphics, bioinformatics, and artificial intelligence. Also, the Cognitive Systems Laboratory is engaged in studying computer systems that emulate or support human reasoning. The Biocybernetics Laboratory is devoted to multidisciplinary research involving the application of engineering and computer science methods to problems in biology and medicine.
The BS degree may be attained through the Computer Science and Engineering major, the Computer Science major, or the Computer Engineering major described below.

In addition, UCLA Samueli offers MS and PhD degrees in Computer Science, as well as minor fields for graduate students seeking engineering degrees. In cooperation with the John E. Anderson Graduate School of Management, the Computer Science Department offers a concurrent degree program that enables students to obtain the MS in Computer Science and the MBA (Master of Business Administration).

Department Mission

The Computer Science Department strives for excellence in creating, applying, and imparting knowledge in computer science and engineering through comprehensive educational programs, research in collaboration with industry and government, dissemination through scholarly publications, and service to professional societies, the community, state, and nation.

Undergraduate Study

Computer Science and Engineering BS

The computer science and engineering curriculum provides the education and training necessary to design, implement, test, and utilize the hardware and software of digital computers and digital systems. The curriculum has components spanning both the Computer Science and Electrical and the Computer Engineering departments. Within the curriculum students study all aspects of computer systems from electronic design through logic design, MSI, LSI, and VLSI concepts and device utilization, machine language design, implementation and programming, operating system concepts, systems programming, networking fundamentals, higher-level language skills, and application of these to systems. Students are prepared for employment in a wide spectrum of high-technology industries.

The computer science and engineering program is accredited by the Engineering Accreditation Commission and the Computing Accreditation Commission of ABET.

Capstone Major

The Computer Science and Engineering major is a designated capstone major. Computer Science and Engineering students complete a major product design course. Graduates are expected to apply the basic mathematical and scientific concepts that underlie modern computer science and engineering; design a software or digital hardware system, component, or process to meet desired needs within realistic constraints; function productively with others as part of a team; identify, formulate, and solve computer software- and hardware-related engineering problems; and demonstrate effective communication skills.

Educational Objectives

The computer science and engineering undergraduate program educational objectives are that our alumni (1) make valuable technical contributions to design, development, and production in their practice of computer science and computer engineering, in related engineering or application areas, and at the interface of computers and physical systems; (2) demonstrate strong communication skills and the ability to function effectively as part of a team; (3) demonstrate a sense of societal and ethical responsibility in their professional endeavors; and (4) engage in professional development or postgraduate education to pursue flexible career paths amid future technological changes.

Learning Outcomes

The Computer Science and Engineering major has the following learning outcomes:

- Ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- Ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
- Ability to communicate effectively with a range of audiences
- Ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- Ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- Ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- Ability to acquire and apply new knowledge as needed, using appropriate learning strategies
- Application of computer science theory and software development fundamentals to produce computing-based solutions

Preparation for the Major

Required: Computer Science 1, 31, 32, 33, 35L, M51A; Electrical and Computer Engineering 3; Mathematics 31A, 31B, 32A, 32B, 33A, 33B, 61; Physics 1A, 1B, 1C, and 4AL or 4BL.

The Major

Required: Computer Science 111, 118, 131, M151B, M152A, 180, 181, Electrical and Computer Engineering 100, 102, 115C; one course from Civil and Environmental Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, 170E, or Statistics 100A; one capstone design course (Computer Science 152B); a minimum of 4 units and one elective course selected from Electrical and Computer Engineering 101A through M185; a minimum of 12 units and three elective courses selected from Computer Science 111 through M185; and up to 8 units of Computer Science 188; and 12 units of technical breadth courses selected from an approved list available in the Office of Academic and Student Affairs.

Students who want to deepen their knowledge of electrical engineering are encouraged to select that discipline as their technical breadth area.

For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 21 or the GE Requirement web page.

Policies

Credit is not allowed for both Computer Science 170A and Electrical and Computer Engineering 133A unless at least one of them is applied as part of the technical breadth area. Electrical and Computer Engineering 110, 131A, and CM182 may not satisfy elective credit. A petition may be submitted to consider four units of Computer Science 194 or 199 for an elective. Credit is not guaranteed and subject to vice chair review.

A multiple-listed (M) course offered in another department may be used instead of the same computer science course (e.g., Electrical and Computer Engineering M16C may be taken instead of Computer Science M151B). Credit is applied automatically.

Computer Science BS

The computer science curriculum is designed to accommodate students who want professional preparation in computer science but do not necessarily have a strong interest in computer systems hardware. The curriculum consists of components in computer science, a minor or technical support area, and a core of courses from the social sciences, life sciences, and humanities. Within the curriculum, students study subject matter in software engineering, principles of pro-
gramming languages, data structures, computer architecture, theory of computation and formal languages, operating systems, distributed systems, computer modeling, computer networks, compiler construction, and artificial intelligence. Majors are prepared for employment in a wide range of industrial and business environments.

The computer science program is accredited by the Computing Accreditation Commission of ABET.

Capstone Major

The Computer Science major is a designated capstone major. Students complete either a software engineering or a major product design course. Graduates are expected to apply the basic mathematical and scientific concepts that underlie modern computer science and engineering; design a software or digital hardware system, component, or process to meet desired needs within realistic constraints; function productively with others as part of a team; identify, formulate, and solve computer software- and hardware-related engineering problems; and demonstrate effective communication skills.

Educational Objectives

The computer science undergraduate program educational objectives are that our alumni (1) make valuable technical contributions to design, development, and production in their practice of computer science and related engineering or application areas, particularly in software systems and algorithmic methods, (2) demonstrate strong communication skills and the ability to function effectively as part of a team, (3) demonstrate a sense of societal and ethical responsibility in their professional endeavors, and (4) engage in professional development or postgraduate education to pursue flexible career paths amid future technological changes.

Learning Outcomes

The Computer Science major has the following learning outcomes:

- Analysis of a complex computing problem and application of principles of computing and other relevant disciplines to identify solutions
- Design, implementation, and evaluation of a computing-based solution to meet a given set of computing requirements in the context of the program’s discipline
- Effective communication in a variety of professional contexts
- Recognition of professional responsibilities and making informed judgments in computing practice based on legal and ethical principles
- Function effectively as a member or leader of a team engaged in activities appropriate to the program’s discipline
- Ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- Ability to acquire and apply new knowledge as needed, using appropriate learning strategies
- Application of computer science theory and software development fundamentals to produce computing-based solutions

Preparation for the Major

Required: Computer Science 1, 31, 32, 33, 35L, 51A; Mathematics 31A, 31B, 32A, 32B, 33A, 33B, 61; Physics 1A, 1B, 1C, and 4AL or 4BL.

The Major

Required: Computer Science 111, 118, 131, 131B, 152A, 180, 181; one course from Civil and Environmental Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, 170E, or Statistics 100A; one capstone software engineering or design course from Computer Science 130 or 152B; a minimum of 20 units and five elective courses selected from Computer Science 111 through CSE187, and up to 8 units of Computer Science 188; a minimum of 12 units and three science and technology courses (not used to satisfy other requirements) that may include 12 units of upper-division computer science courses or 12 units of courses selected from an approved list available in the Office of Academic and Student Affairs; and 12 units of technical breadth courses selected from an approved list available in the Office of Academic and Student Affairs.

Students must take at least one course from Computer Science 130 or 132. Computer Science 130 or 152B may be applied as an elective only if it is not taken as the capstone course.

For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 21 or the GE Requirement web page.

Policies

Credit is not allowed for both Computer Science 170A and Electrical and Computer Engineering 133A unless at least one of them is applied as part of the science and technology requirement or as part of the technical breadth area. A petition may be submitted to consider four units of Computer Science 194 or 199 for an elective. Credit is not guaranteed and subject to vice chair review.

A multiple-listed (M) course offered in another department may be used instead of the same computer science course (e.g., Electrical and Computer Engineering M116C may be taken instead of Computer Science M151B). Credit is applied automatically.

Computer Engineering BS

The computer engineering curriculum provides all computer engineering students with preparation in the mathematical and scientific disciplines that lead to a set of courses that span the fundamentals of the discipline in the major areas of data science and embedded networks. These collectively provide an understanding of many inventions of importance to our society, such as the Internet of things, human-cyber-physical systems, mobile/wearable/implantable systems, robotic systems, and more generally smart systems at all scales in diverse spheres. The design of hardware, software, and algorithmic elements of such systems represents an already dominant and rapidly growing part of the computer engineering profession. Students are encouraged to make use of their computer science and electrical and computer engineering electives and a two-quarter capstone design course to pursue deeper knowledge within one of these areas according to their interests, whether for graduate study or preparation for employment.

Capstone Major

The Computer Engineering major is a designated capstone major that is jointly administered by the Computer Science Department and Electrical and Computer Engineering Department. Undergraduate students complete a design course in which they integrate their knowledge of the discipline and engage in creative design within realistic and professional constraints. Students apply their knowledge and expertise gained in previous mathematics, science, and engineering coursework. Students identify, formulate, and solve engineering problems and present their projects to the class.

Educational Objectives

The computer engineering undergraduate program educational objectives are that our alumni (1) understand fundamental computing concepts and make valuable contributions to the practice of computer engineering; (2) design, analyze, and implement complex computer systems for a variety of application areas and cyberphysical domains; (3) demonstrate the ability to work effectively in a team and communicate their ideas; (4) continue to learn as part of a graduate program or otherwise in the world of constantly evolving technology.
Learning Outcomes
The Computer Engineering major has the following learning outcomes:

- Ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- Ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, economic, and economic factors
- Ability to communicate effectively with a range of audiences
- Ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- Ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- Ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- Ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Preparation for the Major

Required: Computer Science 1 (or Electrical and Computer Engineering 1), 31, 32, 33, 35L, 51A (or Electrical and Computer Engineering M16); Electrical and Computer Engineering 3; Engineering 96C; Mathematics 31A, 31B, 32A, 32B, 33A, 33B, 61; Physics 1A, 1B, 1C, and 4AL or 4BL.

The Major

Required: Computer Science 111, 118 (or Electrical and Computer Engineering 132B), M151B (or Electrical and Computer Engineering M116C), M152A (or Electrical and Computer Engineering M116L); Electrical and Computer Engineering 100, 102, 113, 115C; one course from Civil and Environmental Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, 170E, Statistics 100A; 8 units of computer science and 8 units of electrical and computer engineering upper-division electives; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; 8 units capstone design from either Electrical and Computer Engineering 180DA/180DB or 183DA/183DB.

For information on UC, school, and general education requirements, see **Requirements for BS Degrees** on page 21 or the **GE Requirement** web page.

Suggested Tracks

Networked Embedded Systems: This track targets two related trends that have been a significant driver of computing, namely stand-alone embedded devices becoming networked and coupled to physical systems, and the Internet evolving toward a network of things (the IoT). These may broadly be classified as cyber physical systems, and includes a broad category of systems such as smart buildings, autonomous vehicles, and robots, which interact with each other and other systems. This trend in turn is driving innovation both in the network technologies (new low-power wireless networks for connecting things, and new high-speed networks and computing infrastructure to accommodate the transport and processing needs of the deluge of data resulting from continual sensing), and in embedded computing (new hardware and software stack catering to requirements such as ultra-low power operation, and embedded machine learning).

Students pursuing this track are strongly encouraged to take Electrical and Computer Engineering M119 or Computer Science M119 in junior year, and to choose three electives from courses such as Computer Science 117, 130, 131, 132, 133, 136, 181, 188, Electrical and Computer Engineering 2, 115A, 115B, 115C, 132A, 133A, 141, 142, 188.

Students who pursue a technical breadth area in either electrical and computer engineering or computer science can choose an additional three courses from this list.

Data Science: This track targets the trend toward the disruptive impact on computing systems, both at the edge and in the cloud, of massive amounts of sensory data being collected, shared, processed, and used for decision making and control. Application domains such as health, transportation, energy, etc. are being transformed by the abilities of inference-making and decision-making from sensory data that is pervasive, continual, and rich. This track will expose students to the entire data-to-decision pathway spanning the entire stack from hardware and software to algorithms, applications, and user experience.

Students pursing this track are strongly advised to take Computer Science 143 and M146 or Electrical and Computer Engineering M146, and to additionally choose two electives from courses such as Computer Science CM121, 136, 144, 145, 161, 188, Electrical and Computer Engineering 114, 133A, 133B, 134, 188.

Students who pursue a technical breadth area in either electrical and computer engineering or computer science can choose an additional three courses from this list.

Students are also free to design ad hoc tracks. The technical breadth area requirement provides an opportunity to combine elective courses in electrical and computer engineering and computer science with those from another UCLA Samueli major to produce a specialization in an interdisciplinary domain. As noted above, students can also select a technical breadth area in either Electrical and Computer Engineering or Computer Science to deepen their knowledge in either discipline.

Bioinformatics Minor

The Bioinformatics minor introduces undergraduate students to the emerging interdisciplinary field of bioinformatics, an active area of research at UCLA combining elements of the computational sciences with the biological sciences. The minor organizes the many course offerings in different UCLA departments into a coherent course plan providing students with significant training in bioinformatics in addition to the training they obtain from their major. Students who complete the minor will be strong candidates for admission to PhD programs in bioinformatics as well as have the relevant training to obtain jobs in the biotechnology industry.

Students complete a core curriculum and an elective course and are strongly encouraged to participate in undergraduate research as early as possible in one of the many groups offering research opportunities in bioinformatics.

Admission

To enter the minor, students must be (1) in good academic standing (2.0 grade-point average or better), (2) have completed at least two of the lower-division requirements with minimum grades of C, and (3) file a petition in the Office of Academic and Student Affairs of the Henry Samueli School of Engineering and Applied Science, 6426 Boelter Hall.

The Minor

Required Lower-Division Courses (17 units minimum): Computer Science 32 or Program in Computing 10C, Life Sciences 7A, Mathematics 33A, 61.

Required Upper-Division Courses (18 units minimum): Computer Science 180 (or Mathematics 182), M184, two courses selected from Computer Science CM121, CM122, and CM124, and one course selected from Chemistry and Biochemistry C100, 153B, Civil and Environmental Engineering 110, Computer Science CM121, CM122, CM124, 170A, CM186, CM187, Ecology and Evolutionary Biology C135, Electrical and Computer Engineering 102, 131A, 141, Human Genetics C144, Mathematics
The Department of Computer Science and the MBA (Master of Business Administration) offer a concurrent degree program that enables students to complete the requirements for the MS in Computer Science and the MBA in three academic years. Students should request application materials from both the MBA Admissions Office, John E. Anderson Graduate School of Management, and the Department of Computer Science.

Computer Science PhD

Major Fields or Subdisciplines
Artificial intelligence; computational systems biology; computer networks; computer science theory; computer system architecture; graphics and vision; data science computing; and software systems.

Course Requirements
Normally, students take courses to acquire the knowledge needed to prepare for the written and oral examinations and for conducting PhD research. The basic program of study for the PhD degree is built around the major field requirement and two minor fields. The major field and at least one minor field must be in computer science.

The fundamental examination is common for all PhD candidates in the department and is also known as the written qualifying examination. To satisfy the major field requirement, students are expected to attain a body of knowledge contained in five courses, as well as the current literature in the area of specialization. In particular, students are required to take a minimum of three graduate courses in the major field of PhD research, selecting these courses in accordance with guidelines specific to the major field. Guidelines for course selection in each major field are available from the departmental Student Affairs Office. Grades of B– or better, with a grade-point average of at least 3.33 in all courses used to satisfy the major field requirement, are required. Students are required to satisfy the major

Computer Science MS

Course Requirements

Course Requirement. A total of nine courses is required for the MS degree, including a minimum of five graduate courses. No specific courses are required, but a majority of both the total number of formal courses and the total number of graduate courses must consist of courses offered by the Computer Science Department.

Undergraduate Courses. No lower-division courses may be applied toward graduate degrees. In addition, the following upper-division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199, Civil and Environmental Engineering 108, 199, Computer Science M152A, 152B, 199, Electrical and Computer Engineering 100, 101A, 102, 110L, M116L, 199, Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 141L, 150, 160, 161L, 199, Mechanical and Aerospace Engineering 102, 103, 105A, 105D, 199.

Breadth Requirement. MS degree students must satisfy the computer science breadth requirement by the end of the third term in graduate residence at UCLA. The requirement is satisfied by mastering the contents of five undergraduate courses or equivalent: Computer Science 180, two courses from 111, 118, and M151B, one course from 130, 131, or 132, and one course from 143, 161, or 174A. A UCLA undergraduate course taken by graduate students cannot be used to satisfy graduate degree requirements if students have already received a grade of B– or better for a course taken elsewhere that covers substantially the same material.

For the MS degree, students must also complete at least three terms of Computer Science 201 with grades of Satisfactory. Competence in any or all courses in breadth requirements may be demonstrated in one of three ways:

1. Satisfactory completion of the course at UCLA with a grade of B– or better
2. Satisfactory completion of an equivalent course at another university with a grade of B– or better
3. Satisfactory completion of a final examination in the course at UCLA

Comprehensive Examination Plan

In the comprehensive examination plan, at least five of the nine courses must be 200-series courses. The remaining four courses may be either 200-series or upper-division courses. No units of 500-series courses may be applied toward the comprehensive examination plan requirements.

Thesis Plan

In the thesis plan, seven of the nine courses must be formal courses, including at least four from the 200 series. The remaining two courses may be 598 courses involving work on the thesis. The thesis is a report on the results of student investigation of a problem in the major field of study under the supervision of the thesis committee, which approves the subject and plan of the thesis and reads and approves the complete manuscript. While the problem may be one of only limited scope, the thesis must exhibit a satisfactory style, organization, and depth of understanding of the subject. Students should normally start to plan the thesis at least one year before the award of the MS degree is expected. There is no examination under the thesis plan.

Computer Science MS/Management MBA

The Department of Computer Science and the John E. Anderson Graduate School of Management offer a concurrent degree program that enables students to complete the requirements for the MS in Computer Science and the MBA (Master of Business Administration) in three academic years. Students should request application materials from both the MBA Admissions Office, John E. Anderson Graduate School of Management, and the Department of Computer Science.

Graduate Study

For admission information, see Graduate Programs Admission on page 27.

The following introductory information is based on 2021-22 program requirements for UCLA graduate degrees. Complete program requirements are available at Program Requirements for UCLA Graduate Degrees. Students are subject to the detailed degree requirements as published in program requirements for the year in which they enter the program.

The Department of Computer Science offers Master of Science (MS) and Doctor of Philosophy (PhD) degrees in Computer Science and participates in a concurrent degree program (Computer Science MS/Management MBA) with the John E. Anderson Graduate School of Management.

Computer Science MS

Course Requirements

Course Requirement. A total of nine courses is required for the MS degree, including a minimum of five graduate courses. No specific courses are required, but a majority of both the total number of formal courses and the total number of graduate courses
field requirement within the first nine terms after enrolling in the graduate program.

Each minor field normally embraces a body of knowledge equivalent to two courses, at least one of which is a graduate course. Grades of B– or better, with a grade-point average of at least 3.33 in all courses included in the minor field, are required. By petition and administrative approval, a minor field may be satisfied by examination.

Breadth Requirement. PhD degree students must satisfy the computer science breadth requirement by the end of the third term in graduate residence at UCLA. The requirement is satisfied by mastering the contents of five undergraduate courses or equivalent: Computer Science 180, two courses from 111, 118, and M151B, one course from 130, 131, or 132, and one course from 143, 161, or 174A. A UCLA undergraduate course taken by graduate students cannot be used to satisfy graduate degree requirements if students have already received a grade of B– or better for a course taken elsewhere that covers substantially the same material.

For the PhD degree, students must also complete at least three terms of Computer Science 201 with grades of Satisfactory (in addition to the three terms of 201 that may have been completed for the MS degree).

Competence in any or all courses may be demonstrated in one of three ways:

1. Satisfactory completion of the course at UCLA with a grade of B– or better
2. Satisfactory completion of an equivalent course at another university with a grade of B– or better
3. Satisfactory completion of a final examination in the course at UCLA

For requirements for the Graduate Certificate of Specialization, see Engineering Schoolwide Programs.

Written and Oral Qualifying Examinations

The written qualifying examination consists of a high-quality paper, solely authored by the student. The paper can be either a research paper containing an original contribution or a focused critical survey paper. The paper should demonstrate that the student understands and can integrate and communicate ideas clearly and concisely. It should be approximately 10 pages single-spaced, and the style should be suitable for submission to a first-rate technical conference or journal. The paper must represent work that the student did as a graduate student at UCLA. Any contributions that are not the student’s own, including those of the student’s advisor, must be explicitly acknowledged in detail. Prior to submission, the paper must be reviewed by the student’s advisor on a cover page with the advisor’s signature indicating review. After submission, the paper must be reviewed and approved by at least two other members of the faculty. There are two deadlines: a year for submission of papers.

After passing the preliminary examination and coursework for the major and minor fields, the student should form a doctoral committee and prepare to take the University Oral Qualifying Examination. A doctoral committee consists of a minimum of four members. Three members, including the chair, must hold appointments in the department. The remaining member must be a UCLA faculty member in another department. The nature and content of the oral qualifying examination are at the discretion of the doctoral committee but ordinarily include a broad inquiry into the student’s preparation for research. The doctoral committee also reviews the prospectus of the dissertation at the oral qualifying examination.

Fields of Study

Artificial Intelligence

Artificial intelligence (AI) is the study of intelligent behavior. While other fields such as philosophy, psychology, neuroscience, and linguistics are also concerned with the study of intelligence, the distinguishing feature of AI is that it deals primarily with information processing models. Thus the central scientific question of artificial intelligence is how intelligent behavior can be reduced to information processing. Since even the simplest computer is a completely general information processing device, the test of whether some behavior can be explained by information processing mechanisms is whether a computer can be programmed to produce the same behavior. Just as human intelligence involves gathering sensory input and producing physical action in the world, in addition to purely mental activity, the computer for AI purposes is extended to include sense organs such as cameras and microphones, and output devices such as wheels, robotic arms, and speakers.

The predominant research paradigm in artificial intelligence is to select some behavior that seems to require intelligence on the part of humans, to theorize about how the behavior might be accounted for, and to implement the theory in a computer program to produce the same behavior. If successful, such an experiment lends support to the claim that the selected behavior is reducible to information processing terms, and may suggest the program’s architecture as a candidate explanation of the corresponding human process.

The UCLA Computer Science Department has active research in the following major subfields of artificial intelligence:

- Computer vision. Processing of images, as from a TV camera, to infer spatial properties of the objects in the scene (three-dimensional shape), their dynamics (motion), their photometry (material and light), and their identity (recognition)
- Expert systems. Study of large amounts of specialized or highly technical knowledge that is often probabilistic in nature. Typical domains include medical diagnosis and engineering design
- Knowledge representation and qualitative reasoning. Analysis of tasks such as common-sense reasoning and qualitative physics. Here the deductive chains are short, but the amount of knowledge that potentially may be brought to bear is very large
- Machine learning. Study of the means by which a computer can automatically improve its performance on a task by acquiring knowledge about the domain
- Natural language processing. Symbolic, statistical, and artificial neural network approaches to text comprehension and generation
- Parallel architecture. Design and programming of a machine with thousands or even millions of simple processing elements to produce intelligent behavior; the human brain is an example of such a machine
- Problem Solving. Analysis of tasks, such as playing chess or proving theorems, that require reasoning about relatively long sequences of primitive actions, deductions, or inferences
- Robotics. Translation of a high-level command, such as picking up a particular object, into a sequence of low-level control signals that might move the joints of a robotic arm/hand combination to accomplish the task; often this involves using a computer vision system to locate objects and provide feedback

Computational Systems Biology

The computational systems biology (CSB) field can be selected as a major or minor field for the PhD or as a specialization area for the MS degree in Computer Science.

Graduate studies and research in the CSB field are focused on computational modeling and analysis of biological systems and biological data.

Core coursework is concerned with the methods and tools development for computational, algorithmic, and dynamic systems network modeling of biological systems at molecular, cellular, organ, whole organism, or population levels—and leveraging them in biosystem and bioinformatics applications. Methodological studies include bioinformatics and systems biology.
modeling, with focus on genomics, proteomics, metabolomics, and higher levels of biological/physiological organization, as well as multiscale approaches integrating the parts.

Typical research areas with a systems focus include molecular and cellular systems biology, organ systems physiology, medical, pharmacological, pharmacokinetic (PK), pharmacodynamic (PD), toxicokinetic (TK), physiologically based PBPK-PD, PBTK, and pharmacogenomic system studies; neurosystems, imaging and remote sensing systems, robotics, learning and knowledge-based systems, visualization, and virtual clinical environments. Typical research areas with a bioinformatics focus include development of computational methods for analysis of high-throughput molecular data, including genomic sequences, gene expression data, protein-protein interaction, and genetic variation. These computational methods leverage techniques from both statistics and algorithms.

Computer Networks

The computer networks field involves the study of computer networks of different types, in different media (wired, wireless), and for different applications. Besides the study of network architectures and protocols, this field also emphasizes distributed algorithms, protocols, and systems, and the ability to evaluate system performance at various levels of granularity (but principally at the systems level). In order to understand and predict systems behavior, mathematical models are pursued that lead to the evaluation of system throughput, response time, utilization of devices, flow of jobs and messages, bottlenecks, speedup, power, etc. In addition, students are taught to design and implement computer networks using formal design methodologies subject to appropriate cost and objective functions. The tools required to carry out this design include probability theory, queueing theory, distributed systems theory, mathematical programming, control theory, operating systems design, simulation methods, measurement tools, and heuristic design procedures. The outcome of these studies provides the following:

1. An appropriate model of the computer system under study
2. An adequate (exact or approximate) analysis of the behavior of the model
3. The validation of the model as compared to simulation and/or measurement of the system
4. Interpretation of the analytical results in order to obtain behavioral patterns and key parameters of the system
5. Design methodology

Resource Allocation

A central problem in the design and evaluation of computer networks deals with the allocation of resources among competing demands (e.g., wireless channel bandwidth allocation to backlogged stations). In fact, resource allocation is a significant element in most of the technical (and non-technical) problems we face today.

Most of our resource allocation problems arise from the unpredictability of the demand for the use of these resources, as well as from the fact that the resources are geographically distributed (as in computer networks). The computer networks field encounters such resource allocation problems in many forms and in many different computer system configurations. Our goal is to find allocation schemes that permit suitable concurrency in the use of devices (resources) so as to achieve efficiency and equitable allocation. A very popular approach in distributed systems is allocation on demand, as opposed to pre-scheduled allocation. On-demand allocation is found to be effective, since it takes advantage of statistical averaging effects. It comes in many forms in computer networks and is known by names such as asynchronous time division multiplexing, packet switching, frame relay, random access, and so forth.

Computer Science Theory

Computer science is in large measure concerned with information processing systems, their applications, and the corresponding problems of representation, transformation, and communication. The computer science fields are concerned with different aspects of such systems, and each has its own theoretical component with appropriate models for description and analysis, algorithms for solving the related problems, and mathematical tools. Thus in a certain sense computer science theory involves all of computer science and participates in all disciplines.

The term theoretical computer science has come to be applied nationally and internationally to a certain body of knowledge emphasizing the interweaving of computability and algorithms, interpreted in the broadest sense. Under computability, one includes questions concerning which tasks can and cannot be performed by information systems of different types restricted in various ways, as well as the mathematical analysis of such systems, their computations, and the languages for communication with them. Under algorithms, one includes questions concerning (1) how a task can be performed efficiently under reasonable assumptions on available resources (e.g., time, storage, type of processor); (2) how efficiently a proposed system performs a task in terms of resources used; and (3) the limits on how efficiently a task can be performed. These questions are often addressed by first developing models of the relevant parts of an information processing system (e.g., the processors, their interconnections, their rules of operation, the means by which instructions are conveyed to the system, or the way the data is handled) or of the input/output behavior of the system as a whole. The properties of such models are studied both for their own interest and as tools for understanding the system and improving its performance or applications.

Emphasis of Computer Science Theory

Computer science theory emphasizes:

- Design and analysis of algorithms
- Distributed and parallel algorithms
- Models for parallel and concurrent computation
- Online and randomized algorithms
- Computational complexity
- Automata and formal languages
- Cryptography and interactive proofs

Computer System Architecture

Computer system architecture deals with the design, implementation, and evaluation of computer systems and their building blocks. It deals with general-purpose systems as well as embedded special-purpose systems. The field also encompasses the development of tools to enable system designers to describe, model, fabricate, and test highly complex computer systems from single-chip to computing clouds.

Computer systems are implemented as a combination of hardware and software. Hence, research in the field of computer architecture often involves both hardware and software issues. The requirements of application software and operating systems, together with the capabilities of compilers, play a critical role in determining the features implemented in hardware. At the same time, the computer architect must also take into account the capabilities and limitations of the underlying implementation technology as well as of the design tools.

The goal of research in computer architecture is to develop building blocks, system organizations, design techniques, and design tools that lead to improved performance and reliability as well as reduced power consumption and cost.

Corresponding to the richness and diversity of computer systems architecture research at UCLA, a comprehensive set of courses is offered in the areas of advanced processor architecture, arithmetic processor systems, parallel and distributed archi-
tectures, fault-tolerant systems, reconfigurable systems, embedded systems, and computer-aided design of VLSI circuits and systems.

- **Novel architectures** encompass the study of computations that are performed in ways that are quite different than those used by conventional machines. Examples include various domain-specific architectures characterized by high computational rates, low power, and reconfigurable hardware used in a wide range of computing devices from smart phones to data centers.

- **The study of high-performance processing algorithms** deals with algorithms for very high-performance numerical processing. Techniques such as redundant-digit representations of number systems, fast arithmetic, and the use of highly parallel arrays of processing elements are studied with the goal of providing the extremely high processing speeds required in a number of upcoming computer applications.

- **Computer-aided design of VLSI circuits and systems** is an active research area that develops techniques for the automated synthesis and analysis of large-scale systems. Topics include high-level and logic-level synthesis, technology mapping, physical design, interconnect modeling, and optimization of various VLSI technologies such as full-custom designs, standard cells, programmable logic devices (PLDs), multichip modules (MCMs), system-on-a-chip (SoCs) that are used in a wide range of applications from IoTs to data centers.

- **VLSI architectures and implementation** is an area of current interest and collaboration between the Electrical and Computer Engineering and Computer Science departments that addresses the impact of large-scale integration on the issues of computer architecture. Application of these systems in medicine and health care, multimedia, and finance is being studied in collaboration with other schools on campus.

Data Science Computing

The data science computing field focuses on basic problems of modeling and managing data and knowledge, and their relation with other fundamental areas of computer science, such as operating systems and networking, programming languages, and human-computer interface design.

A data management system embodies a collection of data, devices in which the data are stored, and logic or programs used to manipulate that data. Information management is a generalization of data management in which the data being stored are permitted to be arbitrarily complex data structures, such as rules and trees. In addition, information management goes beyond simple data manipulation and query and includes inference mechanisms, explanation facilities, and support for distributed and web-based access.

The need for rapid, accurate information is pervasive in all aspects of modern life. Modern systems are based on the coordination and integration of multiple levels of data representation, from characteristics of storage devices to conceptual and abstract levels. As human enterprises have become more complex, involving more complicated decisions and trade-offs among decisions, the need for sophisticated information and data management has become essential.

Graphics and Vision

The graphics and vision field focuses on the synthesis and analysis of image and video data by computer. Graphics includes the topics of rendering, modeling, animation, visualization, and interactive techniques, among others, and it is broadly applicable in the entertainment industry (motion pictures and games) and elsewhere. Vision includes image/video representation and registration, feature extraction, threedimensional reconstruction, object recognition, and image-based modeling, among others, with application to real-time vision/control for robots and autonomous vehicles, medical imaging, visual sensor networks and surveillance, and more. Several of the projects undertaken by our researchers in this field unify graphics and vision through mathematical modeling, wherein graphics is considered models-to-images synthesis problem and vision the converse images-to-models analysis problem.

Software Systems

The software systems field is concerned with the study of theory and practice in the development of software systems. Well-engineered systems require appreciation of both principles and architectural trade-offs. Principles provide abstractions and rigor that lead to clean designs, while systems-level understanding is essential for effective design.

Principles here encompass the use of programming systems to achieve specified goals, the identification of useful programming abstractions or paradigms, the development of comprehensive models of software systems, and so forth. The thrust is to identify and clarify concepts that apply in many programming contexts.

Development of software systems requires an understanding of many methodological and architectural issues. The complex systems developed today rely on concepts and lessons that have been extracted from years of research on programming languages, operating systems, database systems, knowledge-based systems, real-time systems, and distributed and parallel systems.

Facilities

Departmental laboratories and centers for instruction and research include:

Artificial Intelligence Laboratories

Automated Reasoning Group

Adnan Y. Darwiche, Director

The Automated Reasoning Group focuses on research in automated reasoning (logical and probabilistic) and machine learning, including their application to problems in science and engineering. On the theoretical side, the group focuses on tractable circuit representations and models that combine logic and probability, in addition to new models for machine learning that can integrate background knowledge. On the practical side, the group builds scalable reasoning and learning systems that can scale to real-world problems.

Cognitive Systems Laboratory

Judea Pearl, Director

The Cognitive Systems Laboratory targets research areas concerned with evidential reasoning, the distributed interpretation of multisource data in networks of partial beliefs; learning, the structuring and parameterizing of links in belief networks to form a representation consistent with a stream of observations; constraint processing, including intelligent backtracking, learning while searching, temporal reasoning, etc.; graphoids, the characterization of informational dependencies, and their graph representations; and default reasoning, use of qualitative probabilistic reasoning to draw plausible and defeasible conclusions from incomplete information.
Computational Machine Learning Laboratory
Cho-Jui Hsieh, Director
The Computational Machine Learning Laboratory conducts research on making machine learning algorithms more efficient, scalable, robust, and interpretable. The current focuses include large-scale training algorithms, robustness evaluation and defense, AutoML, machine learning model verification, and reinforcement learning.

Large-Scale Machine Learning Group (BigML)
Baharan Mirzasoleiman, Director
The Large-Scale Machine Learning Group conducts research in machine learning focused on designing new methods that enable efficient learning from massive datasets. More specifically, the group designs techniques that can gain insights from the underlying data structure by utilizing complex and higher-order interactions between data points. The extracted information can be used to efficiently explore and robustly learn from datasets that are too large to be dealt with by traditional approaches. The developed methods have immediate application to high-impact problems where massive data volumes prohibit efficient learning and inference, such as huge image collections, recommender systems, Web and social services, video, and other large data streams.

Machine Intelligence (MINT) Group
Aditya Grover, Director
The MINT group conducts research along two main thrusts: foundational research in machine learning, including topics in probabilistic reasoning, statistical inference, graphs and network science, reinforcement learning, and deep learning; and applications of artificial intelligence for accelerating scientific discovery, with a focus on sustainable development and climate change.

Natural Language Processing Group
Kai-Wei Chang, Director
The Natural Language Processing Group focuses on developing reliable machine learning solutions for processing natural languages. Specifically, it targets design of models, algorithms, and learning mechanisms to improve the generalization ability of natural-language processing models such that they can generalize across unseen tasks, unseen inputs, and low-resource languages.

Peng’s Language Understanding and Synthesis Laboratory (PLUS)
Nanyun Violet Peng, Director
The PLUS Laboratory is a collection of researchers working on natural language processing. The laboratory’s mission is to push the frontier of natural language generation towards coherent, controllable, and creative narrative generation through natural language understanding and common-sense reasoning. Along these lines, the laboratory develops novel machine learning models, specifically deep structured models and graph neural networks to cope with challenging natural language-related problems.

Statistical and Relational Artificial Intelligence Laboratory (StarAI)
Guy Van den Broeck, Director
The StarAI Laboratory performs research on machine learning (statistical relational learning, tractable learning), knowledge representation and reasoning (graphical models, lifted probabilistic inference, knowledge compilation), applications of probabilistic reasoning and learning (probabilistic programming, probabilistic databases), and artificial intelligence in general.

Statistical Machine Learning Laboratory
Quanquan Gu, Director
The Statistical Machine Learning Laboratory conducts research on machine learning, optimization, and high-dimensional statistical inference. Its focus is on development and analysis of nonconvex optimization algorithms for machine learning to understand large-scale, dynamic, complex, and heterogeneous data; and on building the theoretical foundations of deep learning and deep reinforcement learning.

Computational Systems Biology Laboratories

AI in Imaging and Neuroscience Research Laboratory
Fabien Scalzo, Director
The AI in Imaging and Neuroscience Research Laboratory aims to develop machine learning algorithms for medical images, with a special focus on vascular diseases and cancer. An important component of its research is development of computational and predictive models for neurovascular diseases based on multimodal medical imaging, including magnetic resonance imaging (MRI), computed tomography (CT), digital subtraction angiography (DSA), and transcranial Doppler ultrasound (TCD). By building models that can identify predictive factors of the patient outcome, they can help tailor treatment and improve the odds of a better recovery.

Big Data and Genomics Laboratory
Eran Halperin, Director
The Big Data and Genomics Laboratory aims to improve understanding and treatment of human disease by analysis of big data collected in relation to diseases. The main focus of the laboratory has been development of methods for analysis of genomic data—including genetics, epigenetics, RNA, and microbiome data; as well as medical records, images, and waveforms of UCLA Health medical center patients. The methods developed are typically standalone tools, often used by other researchers for analysis of specific diseases. The methodology involves a combination of machine learning, optimization algorithms, combinatorial optimization, and classical and Bayesian statistics.

Biocybernetics Laboratory
Joseph J. DiStefano III, Director
The interdisciplinary research of the Biocybernetics Laboratory typically involves integration of theory with real laboratory data, using biomodeling, computational, and biosystems approaches. Problem domains are physiological systems, disease processes, pharmacology, and some post-genomic bioinformatics. Laboratory pedagogy involves development and exploitation of the synergistic and methodologic interface between structural and computational biomodeling with laboratory data, or computational systems biology, with a focus on integrated approaches for solving complex biosystem problems from sparse biodata (e.g., in physiology, medicine, and pharmacology), as well as voluminous biodata (e.g., from genomic libraries and DNA array data).

Computational Genetics Laboratory
Eleazar Eskin, Director
The Computational Genetics Laboratory is comprised of a computational genetics group affiliated with both the Computer Science and Human Genetics departments.
Research interests are in computational genetics, bioinformatics, computer science, and statistics. The laboratory focuses on developing techniques for solving the challenging computational problems that arise in attempting to understand the genetic basis of human disease.

Machine Learning and Genomics Laboratory

Sriram Sankararman, Director

The interdisciplinary Machine Learning and Genomics Laboratory research group is affiliated with UCLA departments of Computer Science, Human Genetics, and Computational Medicine. It is broadly interested in questions at the intersection of computer science, statistics, and biomedicine. It develops statistical and computational methods to make sense of complex, high-dimensional datasets generated in the fields of genomics and medicine, to answer questions ranging from how humans have evolved, to what the biological underpinnings of diseases are, to how we can improve the diagnosis and treatment of disease. A major focus of this research is understanding and interpreting human genomes. The biological questions of interest center around understanding how evolution shapes human genes, and how they modulate complex traits that include common diseases. The laboratory develops and extends tools from a diverse set of disciplines including machine learning, algorithms, optimization, high-dimensional statistics, and information theory. It also applies these tools to high-dimensional genomic and medical datasets that are publicly available or being generated by laboratory collaborators.

Computer Systems Architecture Laboratories

Architecture Specialization Laboratory (PolyArch)

Anthony J. Nowatzki, Director

The Architecture Specialization Laboratory studies how to redesign computer architectures and accelerators to continue improving performance and energy efficiency, even while technology scaling reaches its physical limits. Broadly, its approach is to consider how to reform traditional hardware/software abstractions to convey rich information that can make building efficient micro-architectures possible. These changes necessitate codesign of ISAs, architecture, execution models, and compilers.

Concurrent Systems Laboratory

Yuval Tamir, Director

The Concurrent Systems Laboratory conducts research on the design, implementation, and evaluation of computer systems that use state-of-the-art technology to achieve high performance and high reliability. Projects involve software, hardware, and networking. The focus is typically on parallel and distributed systems, and often involves fault tolerance.

Digital Arithmetic and Reconfigurable Architecture Laboratory

Milos D. Ercegovac, Director

The Digital Arithmetic and Reconfigurable Architecture Laboratory is used for fast digital arithmetic (theory, algorithms, and design) and numerically intensive computing on reconfigurable hardware. Research includes floating-point arithmetic, online arithmetic, application-specific architectures, and design tools.

eHealth Research Laboratory (ER Lab)

Majid Sarrafzadeh, Director

The ER Lab goal is to use technology in health care to reduce the cost of providing high-quality care to the chronically ill, estimated (by Milken Institute Center for Health Care Economics) to be over $1 trillion per year. The laboratory strives to improve global and local public health surveillance, with a resultant reduction in epidemics, increased control over infectious disease, and improved drug safety. Other goals are diminished rate of medical errors; ongoing preventive health, with attendant reductions in morbidity, mortality, and cost of care; and consumer engagement in health and self-management.

VAST Laboratory

Jason Cong, Director

The VAST Laboratory investigates cutting-edge research topics at the intersection of VLSI technologies, design automation, architecture, and compiler optimization at multiple scales, from micro-architecture building blocks to heterogeneous compute nodes and scalable data centers. Currently, the laboratory is focused on architecture and design automation for emerging technologies such as neuromorphic computing and quantum computing; and customizable domain-specific computing with applications to multiple domains such as machine learning, big data analytics, and bioinformatics.

Graphics and Vision Laboratories

Center for Vision, Cognition, Learning, and Art

Song-Chun Zhu, Director

The Center for Vision, Cognition, Learning, and Art is affiliated with the Computer Science and Statistics departments. Research begins with computer vision and expands to other disciplines. The objective is to pursue a unified framework for representation, learning, inference, and reasoning; and to build intelligent computer systems for real-world applications. Its projects span four directions: vision (object, scene, events, etc.); cognition (intentions, roles causality, etc.); learning (information projection, stochastic grammars, etc.); and art (abstraction, expression, aesthetics, etc.).

Computer Graphics and Vision Laboratory (GraViLab)

Demetri Terzopoulos, Director

The Computer Graphics and Vision Laboratory engages in a broad spectrum of visual computing research unifying computer graphics (image synthesis), computer vision (image analysis), and related fields; with emphasis on geometric, physics-based, learning-driven, and artificial intelligence/life modeling and simulation. Major research interests include biomimetic simulation of humans and other animals, from biomechanics to sensorimotor control to intelligence; and image/video analysis combining (deep) learning and modeling paradigms, especially for application to medicine and health care.

UCLA Collective on Vision and Image Sciences

The Collective on Vision and Image Sciences brings together researchers from multiple departments at UCLA, including Brain Mapping, Computational and Systems Biology, Computer Science, Image Informatics, Mathematics, Neuroimaging, Psychology, Radiology, and Statistics.

UCLA Vision Laboratory

Stefano Soatto, Director

Researchers at the Vision Laboratory investigate how images—i.e., measurements of light—can be used to infer properties of the physical world such as shape, motion, location, and material properties of objects. This is key to developing engineering systems that can “see” and interact intelligently with the world around them.
For example, images captured by a car-mounted video camera can be processed by computers to infer a model of the car’s surroundings, e.g., other vehicles, pedestrians, etc. This technology can also be used to analyze images captured in the environment, to help understand the effects of climate change by monitoring the behavior of animals and plants. Analysis of images of the human body can be used both for diagnostic purposes and for planning interventions.

Information and Data Management Laboratories

Information and Data Management Group

(Multiple Faculty)

The Information and Data Management Group is a collaboration of all UCLA faculty from this field. It is interested in multiple research areas including big data, archival information systems, knowledge discovery and data mining, Earth Science Partners’ private network, genomics graph database development, multimedia information stream system technology, Smart Space middleware architecture, and technologically based assessment of language and literacy, to name just a few.

Web Information Systems Laboratory

Carlo A. Zaniolo, Director

The Web Information Systems Laboratory research group investigates Web-based information systems and seeks to develop enabling technology for such systems by integrating the Web with database systems. Current research efforts include the DeAL system, a next-generation datalog system; SemScape, an NLP-based framework for mining unstructured or free text; EARL (Early Accurate Result Library) for Hadoop; Panta Rei, a study of support for schema evolution in the context of snapshot databases and transaction-time databases; Stream Mill, a complete data stream management system; and ArchIS, a powerful archival information system.

Network Systems Laboratories

Intelligent Sensing and Connectivity Laboratory (ICON Lab)

Omid Abari, Director

The group conducts research in the area of networked systems, with applications to the Internet of Things (IoT). It develops software-hardware systems that deliver ubiquitous sensing, efficient computing; and wireless communication at scale. Its research borrows techniques from diverse areas including computer networks, machine learning, signal processing, hardware design, and HCI to develop new algorithms and technologies that enable smart environments.

Internet Research Laboratory (IRL)

Lixia Zhang, Principal Investigator

The Internet Research Laboratory mission is to help the Internet grow. Its research efforts focus on design and development of network architecture and protocols, and the challenges in building secure networks and systems. Its past work has turned into Internet standards and successful startups. Since 2010, the laboratory has been working on design and development of named data networking (NDN), a new Internet architecture.

Network Design Automation Laboratory

George Varghese, Director

The Network Design Automation Laboratory focuses on research in this field, an effort to build a comprehensive set of design tools for networks inspired by electronic design automation for chips. A major focus is analysis and synthesis of router configuration files to avoid major outages that frequently cripple major service providers. This work involves development of new tools inspired by other fields such as programming languages, hardware design, and data mining; but targeted to incorporate the special structure and challenges of networks. It involves collaboration with multiple disciplines such as programming languages, systems, and network debugging; and includes other UCLA faculty.

Networked and Application Systems Group (NAS)

Ravi Netravali, Director

The group is focused on building practical systems to improve the performance and ease of debugging large-scale distributed applications. Such applications include web pages, mobile apps, video streaming and analytics systems, data analytics platforms, and more. The group uses a cross-layer methodology that aims to understand the impact of decisions at different layers in the end-to-end system; and designs solutions that incorporate fundamental principles at the network, operating system, and application vantage points.

UCLA Connection Laboratory

Leonard Kleinrock, Director

The Connection Laboratory offers an environment to support advanced research in technologies at the forefront of all things regarding networking and connectivity, and will deliver the benefits of that research to society globally. The laboratory’s broad-based agenda enables faculty, students, and visitors to pursue research challenges of their own choosing, without externally imposed constraints on scope or risk. It draws inspiration from the foundational role of UCLA as the birthplace of the Internet. With its open inclusive structure, the laboratory will help to realize the vision of creating high-leverage technologies, as was accomplished years ago with the Internet.

Wireless Networking Group (WiNG)

Songwu Lu, Director

The Wireless Networking Group’s research areas include wireless networking, mobile systems, and cloud computing. Its focus is on design, implementation, and experimentation of protocols, algorithms, and systems for wireless data networks. The goal is to build high-performance and dependable networking solutions for the wireless Internet.

Software Systems Laboratories

Compilers Laboratory

Harry Xu, Director

The Compilers Laboratory is used for research into compilers, embedded systems, and programming languages.

Large-Scale Systems Group

Miriyung Kim, Director

The Software Engineering and Analysis Laboratory (SEAL) conducts research in software engineering, in particular debugging and testing for big data systems and automated
tools for data science and ML-based systems. Its overall goal is to improve software engineering productivity and correctness. To achieve it, the laboratory designs scalable software systems, software analysis algorithms, and automated development tools. It also conducts user studies with software engineers, and carries out statistical analysis of open-source project data to allow data-driven decisions for designing novel software engineering tools. With expertise in software evolution, the laboratory is known for its research on code clones—code duplication detection, management, and removal solutions. The laboratory is a leader in creation and definition of the emerging area where software engineering and data science intersect. It has conducted the most comprehensive study of industry data scientists, and developed novel debugging technologies for widely-used big data systems such as Apache Spark. Through tech-transfer, several companies have used SEAL research on interactive code clone search and big data analytics debugging technologies.

Software Systems Group
(Multiple Faculty)
The Software Systems Group is a collaboration of faculty from the software systems and network systems fields. It conducts research on the design, implementation, and evaluation of operating systems, networked systems, programming languages, and software engineering tools.

Computer Science Centers

Center for Autonomous Intelligent Networked Systems (CAINS)
The Center for Autonomous Intelligent Networked Systems was established in 2001 with researchers from several laboratories in the Computer Science, and Electrical and Computer Engineering, departments. It serves as a forum for intelligent-agent researchers and visionaries from academia, industry, and government, with an interdisciplinary focus on fields such as engineering, medicine, biology, and social sciences. Information and technology are exchanged through symposia, seminars, short courses, and collaboration in joint research projects sponsored by government and industry. Research projects include use of unmanned autonomous vehicles, mobile sensor platforms, and network coding.

Center for Domain-Specific Computing (CDSC)
Jason Cong, Director
The Center for Domain-Specific Computing looks beyond parallelization and focuses on domain-specific customization as a disruptive technology to bring orders-of-magnitude power-performance efficiency improvement. CDSC develops a general methodology for creating novel, customizable computing platforms, and associated compilation tools and runtime management environment to support domain-specific computing. Its recent focus is on design and implementation of accelerator-rich architectures, from single chips to data centers; and actively exploring the use of emerging computing technologies, such as neuromorphic and quantum computing. It also develops highly automated compilation tools and runtime management software for customizable heterogeneous platforms, including multicores CPUs, many-core GPUs, FPGAs, and quantum computers. By combining these capabilities, CDSC researchers are able to deliver a supercomputer-in-a-box or -in-a-cluster. This approach has been successfully applied to multiple application domains such as machine learning, big data analytics, medical imaging, and bioinformatics.

Center for Encrypted Functionalities
Amit Sahai, Director
The Center for Encrypted Functionalities was established in 2014 through an NSF Secure and Trustworthy Cyberspace (SaTC) Frontier Award. The center tackles the deep and far-reaching problem of general-purpose software obfuscation. The goal of obfuscation is to enable software that can keep secrets: software that makes use of secrets, but such that they remain hidden even if an adversary can examine the software code in its entirety and analyze its behavior as it runs. The center is headquartered at UCLA with partners at Columbia, Johns Hopkins, and Stanford universities, and University of Texas at Austin.

Center for Information and Computation Security (CICS)
Rafail Ostrovsky, Director
The Center for Information and Computation Security was established in 2003 to promote all aspects of research and education in cryptography and computer security. It explores novel techniques for securing national and private-sector information infrastructures across various network-based and wireless platforms as well as wide-area networks. The inherent challenge is to provide guarantees of privacy and survivability under malicious and coordinated attacks.

The center has raised federal, state, and private-sector funding, including collaboration with Israel through multiple U.S.–Israel Binational Science Foundation grants. It has also attracted multiple international visiting scholars. CICS explores and develops state-of-the-art cryptographic algorithms, definitions, and proofs of security; novel cryptographic applications such as new electronic voting protocols and identification, data-rights management schemes, and privacy-preserving data mining; security mechanisms underlying a clean-slate design for a next-generation secure Internet; biometric-based models and tools, such as encryption and identification schemes based on fingerprint scans; and the interplay of cryptography and security with other fields such as bioinformatics, machine learning, complexity theory, etc.

Scalable Analytics Institute (ScAI)
The Scalable Analytics Institute was established in 2013 with a focus on the continuing growth of data and demand for smart analytics to mine that data. Such analytics are creating major transformative opportunities in science and industry. To fully capitalize on these opportunities, computing technology must solve the three-pronged challenge created by the exploding size of big data, the growing complexity of big data, and the increased sophistication of analytics that can be used to extract patterns and trends from the data.

Wireless Health Institute (WHI)
Benjamin M. Wu (Bioengineering), Director; Bruce Dobkin (Medicine/Neurology), William Kaiser (Electrical and Computer Engineering), Gregory J. Pottie (Electrical and Computer Engineering), Co-Directors
WHI is leading initiatives in health care solutions in the fields of disease diagnosis, neurological rehabilitation, optimization of clinical outcomes for many disease conditions, geriatric care, and many others. WHI also promotes this new field in the international community through the founding and organization of the leading Wireless Health conference series.

WHI technology always serves the clinician community through jointly developed innovations and clinical trial validation. Each WHI program is focused on large-scale product delivery in cooperation with manufacturing partners. WHI collaborators include the UCLA schools of Medicine, Nursing, and Engineering; and Applied Sciences; Clinical Translational Science Institute for medical research; Ronald Reagan UCLA
Medical Center; and faculty from many departments across UCLA. WHI education programs span high school, undergraduate, and graduate students, and provide training in end-to-end product development and delivery for WHI program managers.

WHI develops innovative, wearable biomedical monitoring systems that collect, integrate, process, analyze, communicate, and present information so that individuals become engaged and empowered in their own health care, improve their quality of life, and reduce burdens on caregivers. WHI products appear in diverse areas including motion sensing, wound care, orthopaedics, digestive health and process monitoring, advancing athletic performance, and many others. Clinical trials validating WHI technology are underway at 10 institutions. WHI products developed by the UCLA team are now in the marketplace in the U.S. and Europe. Physicians, nurses, therapists, other providers, and families can apply these technologies in hospital and community practices. Academic and industry groups can leverage the organization of WHI to rapidly develop products in complete-care programs, and validate in trials. WHI welcomes new team members, and continuously forms new collaborations with colleagues and organizations in medical science and health care delivery.

Computing Resources

In summarizing the resources now available to conduct experimentally based research in the UCLA Computer Science Department, it is useful to identify the major components of the research environment: the departmental computing facility, other hardware and software systems, administrative structure, and technical support staff.

Hardware

Computing facilities range from large campus-operated supercomputers to a major local network of servers and workstations that are administered by the department computing facilities (DCF) or school network (SEASnet). The departmental research network includes Oracle servers and shared workstations, on the school Ethernet TCP/IP local network. A wide variety of peripheral equipment is also part of the facility; and many more research-group workstations share the network; the total number of machines exceeds 1000, the majority running the Linux operating system. The network consists of switched gigabit Ethernet to the desktop with a gigabit backbone connection. The department LAN is connected to the campus gigabit backbone. An 802.11ac wireless network is also available to faculty, staff, and graduate students.

Administrative Structure

The central facilities and wide-area networking are operated by the campuswide Information Technology Services. Access to departmental and SEASNet machines is controlled so as to maximize the usefulness of these computers for education and research, but no direct charges are involved.

Technical Support Staff

The support staff consists of hardware and software specialists. The hardware laboratory supports network connections, configured routers, switches, and network monitoring tools. The software group administers the department UNIX servers, providing storage space and backup for department users.

Faculty Areas of Thesis Guidance

Professors

Junghee (John) Cho, PhD (Stanford, 2002) Databases, web technologies, information discovery and integration
Jason (Jingsheng) Cong, PhD (U. Illinois, 1990) Electronic design automation, energy-efficient computing, customized computing for big-data applications, highly scalable algorithms, quantum computing
Adnan Y. Darwiche, PhD (Stanford, 1993) Knowledge representation and automated reasoning (symbolic and probabilistic), applications to diagnosis, prediction, planning, and verification
Joseph J. DiStefano III, PhD (UCLA, 1966) Dynamic biosystems modeling methodology, simulation, clinical therapy and experimental design optimization; pharmacokinetics (PK), pharmacodynamics (PD), physiologically based PK (PKPD), epidemiological modeling
Eleazar Eskin, PhD (Columbia, 2002) Bioinformatics, genetics, genomics, machine learning
Eliezer M. Gafni, PhD (MIT, 1982) Computer communication, networks, mathematical programming algorithms
Eran Halperin, PhD (Tel Aviv U., Israel, 2000) Computational biology, population genetics, statistical genetics and epigenetics, machine learning, algorithms
Minyung Kim, PhD (U. Washington, 2008) Software engineering specifically on software evolution
Songwu Lu, PhD (U. Illinois, 1999) Integrated-service support over heterogeneous networks, e.g., mobile computing environments, Internet and ActiveNet: networking and computing, wireless communications and networks, computer communication networks, dynamic game theory, dynamic systems, neural networks, and information economics

Todd D. Millstein, PhD (U. Washington, 2003) Programming language design, static type systems, formal methods, software model checking, compilers
Stanley J. Osher, PhD (New York U., 1966) Scientific computing and applied mathematics
Rafail Ostrovsky, PhD (MIT, 1992) Theoretical computer science algorithms, cryptography, complexity theory, randomization, network protocols, geometric algorithms, data mining
Jens Palsberg, PhD (Aarhus U., Denmark, 1992) Compilers, embedded systems, programming languages
Miodrag Potkonjak, PhD (UC Berkeley, 1991) Computer-aided analysis and synthesis of system level designs, behavioral synthesis, and interaction between high-performance application-specific computers and communications
Glenn D. Reinman, PhD (UC San Diego, 2001) Multi-processor architectures, exploration of instruction/thread/memory-level parallelism, power-efficient design, hardware/software co-design, multicores and multiprocessors
Amit Sahai, PhD (MIT, 2000) Theoretical computer science, cryptography, computer security, algorithms, error-correcting codes and learning theory
Majid Sarrafzadeh, PhD (U. Illinois, 1987) Computer engineering, embedded systems, VLSI CAD, algorithms
Stefano Soatto, PhD (Caltech, 1996) Computer vision; shape analysis, motion analysis, texture analysis, 3-D reconstruction, vision-based control; computer graphics: image-based modeling and rendering; medical imaging: registration, segmentation, statistical shape analysis; autonomous systems: sensor-based control, planning non-linear filtering; human-computer interaction: vision-based interfaces, visibility, visualization
Mari B. Srivastava, PhD (UC Berkeley, 1992) IoT, edge computing, and human-cyber-physical systems; ML/AI for real-time and resource-constrained systems; security and privacy; applications in mobile health and smart environments
Demetri Terzopoulos, PhD (MIT, 1984) Computer graphics, computer vision, medical image analysis, computer-aided design, artificial life/intelligence
Mihaela van der Schaar, PhD (Eindhoven U. Technology, Netherlands, 2001) Multimedia processing and compression, multimedia networking, multimedia communications, multimedia architectures, enterprise multimedia streaming, mobile and ubiquitous computing
George Varghese, PhD (MIT, 1993) Network algorithms, network verification
Wei Wang, PhD (UCLA, 1999) Data mining, bioinformatics and computational biology, databases
Lixia Zhang, PhD (MIT, 1989) Computer network, Internet architecture, protocol designs, security and resiliency of large-scale systems
Song-Chun Zhu, PhD (Harvard, 1996) Computer vision, statistical modeling and computing, vision and visual arts, machine learning

Professors Emeriti

Eran Halperin, PhD (Tel Aviv U., Israel, 2000) Evolution
Janaki Narayanan, PhD (Caltech, 1985) Computer science and health care delivery.
Joseph J. DiStefano III, PhD (UCLA, 1966) Dynamic biosystems modeling methodology, simulation, clinical therapy and experimental design optimization; pharmacokinetics (PK), pharmacodynamics (PD), physiologically based PK (PKPD), epidemiological modeling
Eleazar Eskin, PhD (Columbia, 2002) Bioinformatics, genetics, genomics, machine learning
Eliezer M. Gafni, PhD (MIT, 1982) Computer communication, networks, mathematical programming algorithms
Eran Halperin, PhD (Tel Aviv U., Israel, 2000) Computational biology, population genetics, statistical genetics and epigenetics, machine learning, algorithms
Minyung Kim, PhD (U. Washington, 2008) Software engineering specifically on software evolution
Songwu Lu, PhD (U. Illinois, 1999) Integrated-service support over heterogeneous networks, e.g., mobile computing environments, Internet and ActiveNet: networking and computing, wireless communications and networks, computer communication networks, dynamic game theory, dynamic systems, neural networks, and information economics

* Also Professor of Mathematics
Associate Professors

Rajive L. Bagrodia, PhD (U. Texas, 1987)
- Wireless networks, nomadic computing, parallel programming, performance evaluation of computer and communication systems

Alfonso F. Cardenas, PhD (UCLA, 1969)
- Database management, distributed heterogeneous and multimedia (text, image/picture, video, voice) systems, information systems planning and development methodologies, software engineering, medical informatics, legal and policy issues

Jack W. Carlyle, PhD (UC Berkeley, 1961)
- Communication, computation theory and practice, algorithms and complexity, discrete system theory, developmental and probabilistic systems

Wesley W. Chu, PhD (Stanford, 1966)
- Distributed computing, distributed database, memory management, computer communications, performance measurement and evaluation, multiaccess packet-switched systems

Michael G. Dyer, PhD (Yale, 1982)
- Artificial intelligence, natural language processing, connectionist, cognitive, and animat-based modeling

Milos D. Ercegovac, PhD (U. Illinois, 1975)
- Application-specific architectures, digital computer arithmetic, digital design, low-power systems, reconfigurable systems

Shelia A. Greib została (Harvard, 1963)
- Theoretical computer science, computational complexity, program schemes and semantics, formal languages, automata, computability

Leonard Kleinrock, PhD (MIT, 1963)
- Computer networks, computer-communication systems, resource sharing and allocation, computer systems modeling analysis and design, queueing systems theory and applications, performance evaluation of congestion-prone systems, performance evaluation and design of distributed multi-access packet-switching systems, wireless networks, mobile computing, nomadic computing, and distributed and parallel processing systems

Allen Klinger, PhD (UC Berkeley, 1966)
- Pattern recognition, picture processing, biomedical applications, mathematical modeling

Lawrence P. McNamee, PhD (U. Pittsburgh, 1964)
- Computer graphics, discrete simulation, digital filtering, computer-aided design, LSI fabrication techniques, printed circuit board design

Richard R. Munzt, PhD (Princeton, 1969)
- Multimedia systems, database systems, data mining

D. Stott Parker, Jr., PhD (U. Illinois, 1978)
- Data mining, information modeling, scientific computing, biometric databases, database and knowledge-based systems

Judea Pearl, PhD (Polytechnic Institute of Brooklyn, 1965)
- Artificial intelligence, philosophy of science, reasoning under uncertainty, causal inference, causal and counterfactual analysis

David A. Rennels, PhD (UCLA, 1973)
- Digital computer architecture and design, fault-tolerant computing, digital arithmetic

Carlo A. Zaniolo, PhD (UCLA, 1976)
- Knowledge bases and deductive databases, parallel execution of PROLOG programs, formal software specifications, distributed systems, big data, artificial intelligence, and computational biology

Associate Professors

Jason Ernst, PhD (UCLA, 2008)
- Computational biology, bioinformatics, machine learning

Alysson K. Fletcher, PhD (UC Berkeley, 2006)
- Applied mathematics including inverse problems, statistical physics, dynamical systems, machine learning, information theory

Raghu Meka, PhD (U. Texas Austin, 2011)
- Complexity theory, pseudorandomness, algorithms, learning theory and data mining

Alexander Sherstov, PhD (U. Texas Austin, 2009)
- Complexity theory with a focus on communication and circuit complexity, computational learning theory, quantum computing

Yizhu Sun, PhD (U. Illinois Urbana-Champaign, 2012)
- Information and social network analysis, data mining, database systems, statistics, information retrieval, machine learning and network science

Yuval Tiram, PhD (UC Berkeley, 1985)
- Computer systems, software systems, computer architecture, parallel and distributed systems, dependable systems, network design automation, cloud computing, operating systems, system-level virtualization, interconnection networks and switches, multicore architectures

Guy Van den Ackuck, PhD (Katholieke U. Leuven, Belgium, 2013)
- Machine learning (statistical relational learning), knowledge representation and reasoning (graphical models, lifted probabilistic inference), applications of probabilistic reasoning and learning (probabilistic programming, probabilistic databases), artificial intelligence

Harry Xu (Ohio State, 2011)
- Programming languages, compilers, runtime systems, distributed systems, big data systems and analytics, software engineering

Assistant Professors

Omid Abari, PhD (MIT, 2018)
- Internet of Things (IoT), wireless networking, mobile systems, software architecture, computer interaction (HCI)

Kai-Wei Chang, PhD (U. Illinois Urbana-Champaign, 2015)
- Tractable machine learning methods for complex and big data, statistical approaches to natural language processing

Aditya Grover, PhD (Stanford, 2020)
- Statistical machine learning, reinforcement learning, deep learning, probabilistic graphical models, graph and network science, artificial intelligence for scientific discovery, sustainability and climate change

Quanquan Gu, PhD (U. Illinois Urbana-Champaign, 2014)
- Machine learning, high-dimensional statistical inference, optimization, data mining

Cho-Jui Hsieh, PhD (U. Texas Austin, 2015)
- Fast and scalable algorithms for large-scale machine learning (deep learning), fast prediction and model compression for big ML models, low-rank models for recommender systems, theoretical analysis of optimization algorithms, security for machine learning

Achuta Kadambi, PhD (MIT, 2018)
- Computational imaging, computer vision, robotics, medical devices

Babaran Mirzasoleiman, PhD (ETH Zürich, Switzerland, 2017)
- Large-scale machine learning, data/model compression, optimization, approximation algorithms

Anthony J. Nowatzki, PhD (U. Wisconsin Madison, 2016)
- Hardware/software co-design, modeling, and optimization

Nanyun (Violet) Peng, PhD (Johns Hopkins, 2017)
- Natural language processing, artificial intelligence, information extraction, multilingual natural language understanding, narrative understanding and generation, figurative language generation

Sriram Sankararaman, PhD (UC Berkeley, 2010)
- Computational biology, computational/statistical genomics, statistical machine learning, probabilistic graphical models, Bayesian statistics

Senior Lecturers SOE

Paul R. Eggert, PhD (UCLA, 1980)
- Programming languages, operating systems principles, compilers, Internet

David A. Smalley, MS (UCLA, 1978)
- Programming languages, software development

Adjunct Professors

Van Jacobson, MS (U. Arizona, 1972)
- Named data network (NDA), content-centric networking

Ali Kar, PhD (U. Utah, 1969)
- Object-oriented programming, personal computing, graphical user interfaces

Adjunct Associate Professors

Carey S. Nachenberg, MS (UCLA, 1995)
- Anti-virus and intrusion detection technology

Giovanni Pau, PhD (U. Bologna, Italy, 1998)
- Protocol design implementation and evaluation for QoS support in wired/wireless networks and vertical handover protocols and architectures

Ramin Ramezani, PhD (Imperial College, London, England, 2014)
- Logic and AI, inductive logic programming, constraint solving, machine learning, combined reasoning, signal processing

Adjunct Assistant Professors

Ravi Nethravali, PhD (MIT, 2018)
- Computer systems, computer networks, distributed systems, cloud computing

Fabien Scalzo, PhD (U. Liège, Belgium, 2008)
- Stroke and traumatic brain injuries (TBI) using brain mapping of imaging and biosignals (MR, CT, X-ray angiography, TCD, and ICP); development of machine learning and computer vision algorithms to improve neurocritical care and bring understanding of neurological disorders

Bioinformatics Courses

Lower-Division Courses

19. Fiat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower-division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.
Computer Science Courses

Upper-Division Courses

190. Directed Research in Bioinformatics. (2 to 4) Tutorial, six to 12 hours. Limited to juniors/seniors. Supervised individual research under guidance of faculty mentor. Culminating paper required. May be repeated for credit. Individual contract required. Letter grading.

M51A. Logic Design of Digital Systems. (4) (Same as Electrical and Computer Engineering M16.) Lecture, four hours; discussion, two hours; outside study, six hours. Introduction to combinational and sequential systems. Design and analysis of digital systems using boolean algebra and logic gates. Emphasis on design and implementation of combinational and sequential systems. Standard logic modules and programmable logic arrays. Specification and implementation of digital systems and control sections. Number systems and arithmetic algorithms. Error control codes for digital information. Letter grading.

Mr. Eyolfson, Mr. Reiher, Mr. Xu (F,W,Sp)

97. Variable Topics in Computer Science. (1 to 4) Lecture, one to four hours; (OC) discussion, zero to two hours. Designed for freshmen/sophomores. Variable topics in computer science not covered in regular computer science courses. May be repeated once for credit with topic or instructor change. Letter grading.

Mr. Eggert (F,W,Sp)

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower-division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.

Mr. Hof (F,W,Sp)

Upper-Division Courses

Mr. Eyolfson, Mr. Reiher, Mr. Xu (F,W,Sp)

112. Modeling Uncertainty in Information Systems. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: course 111 and course M51A. Fundamentals of Computer Engineering 131A, Mathematics 170A, or Statistics 100A. Designed for juniors/seniors. Probability and stochastic process models as applied in computer science. Basic mathematical tools include random variables, conditional probability, expectation and higher moments, Bayes theorem, Markov chains. Applications include probabilistic algorithms, evidential reasoning, analysis of algorithms and data structures, reliability, communication protocol and queueing models. Letter grading.

Mr. Soatto (Not offered 2021-22)

117. Computer Networks: Physical Layer. (4) Formerly numbered M117L.) Lecture, two hours; discussion, two hours; laboratory, two hours; outside study, six hours. Not open to students with credit for course M117L. Introduction to fundamental computer communication concepts underlying and supporting modern networks, with focus on wireless communication and media access layers of network protocol stack. Systems include wireless LANs (IEEE802.11) and ad hoc wireless and personal area networks (e.g., Bluetooth, ZigBee). Experimental project based on mobile radio-equipped devices (smart phones, tablets, etc.) as sensor platforms for personal applications such as wireless positioning and environmental awareness, and experimental laboratory sessions included. Letter grading.

Mr. Nowatzki, Mr. Reiman (F,Sp)

35L. Software Construction. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 31. Fundamentals of tools and environments for software construction projects, programming open-source platforms used in upper-division computer science courses. Software practice through collaborative student project. Letter grading.

Mr. Mr. Hof (F,W,Sp)

118. Computer Network Fundamentals. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course 111. Designed for juniors/seniors. Introduction to design and performance evaluation of computer networks, including topics such as what protocols do, layering network architecture, Internet protocol architecture, network applications, transport protocols, routing algorithms and protocols, internetworking, congestion control, and link layer protocols including Ethernet and wireless channels. Letter grading.

Mr. Lu, Mr. Varghese, Ms. Zhang (F,W,Sp)

M119. Fundamentals of Embedded Networked Systems. (4) (Same as Electrical and Computer Engineering E119.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 33; 118 or Electrical and Computer Engineering 132B; one course from Civil and Environmental Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, 170E, Statistics 100A. Design trade-offs and principles of operation of cyberphysical systems such as devices and systems constituting Internet of Things. Topics include signal propagation and modeling, sensing, node architecture and operation, and applications. Letter grading.

Mr. Srivastava (F)

CM121. Introduction to Bioinformatics. (4) (Same as Chemistry CM160A.) Lecture, four hours; discussion, two hours. Requisites: course 32 or Program in Computing 10C with grade of C– or better, and one course from Civil and Environmental Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, Mathematics 170E, or Statistics 100A. Prior knowledge of biology not required. Designed for engineering students as well as students from biological sciences and medical school. Introduction to bioinformatics and methodologies, with emphasis on concepts and inventing new computational and statistical techniques to analyze biological data. Focus on sequence analysis and alignment algorithms. Concurrently scheduled with course CM221. P/NP grading.

Mr. Pimentel (W)

CM122. Algorithms in Bioinformatics. (4) (Same as Chemistry CM160B.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 32 or Program in Computing 10C with grade of C– or better, and one course from Civil Engineering 110, Electrical Engineering 131A, Mathematics 170A, Mathematics 170E, or Statistics 100A. Course CM122 is not requisite to CM121. Designed for engineering students as well as students from biological sciences and medical school. Development and application of computational approaches to biological questions, with focus on formulating computational problems and then solving these problems using algorithmic techniques. Computational techniques include those from statistics and computer science. Concurrently scheduled with course CM222. Letter grading.

CM124. Machine Learning Applications in Genetics. (4) (Same as Human Genetics CM124.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 32 or Program in Computing 10C with grade of C– or better, Mathematics 33A, and one course from Civil Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, Mathematics 170E, or Statistics 100A. Course CM124 is not requisite to CM121. Designed for engineering students as well as students from biological sciences and medical school. Introduction to computational analysis of genetic variation and computational interdisciplinary research in genetics. Topics include introduction to genetics, identification of genes involved in disease, inferring human population history, technologies for obtaining genome information, and applications. Focus on formulating interdisciplinary problems as computational problems and then solving those problems using computational techniques from statistics and computer science. Concurrently scheduled with course CM224. Letter grading.

Mr. Halperin (Sp)

130. Software Engineering. (4) Lecture, four hours; laboratory, two hours; outside study, six hours. Requisites: courses 111, 131. Recommended requisite:
Engineerings 138E/W or 185E/W. Structured programming, problem-programming techniques, modularity, abstract types data, composite design, soft-ware tools, software control programs, program testing, team programming. Letter grading.

Mr. Elsasser, Mr. Kim (F.W.Sp)

131. Programming Languages. (4) Lecture, four hours; laboratory, two hours; outside study, six hours. Enforced requisites: courses 133, 35L. Basic concepts in design and use of programming languages, including abstraction, modularity, control mechanisms, types, declarations, syntax, and semantics. Study of several different language paradigms, including functional, object-oriented, and logic programming. Letter grading. Mr. Millstein (Not offered 2021-22)

132. Compiler Construction. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: course 131. Compiler structure and syntax, semantic analysis; code generator. Letter grading. Mr. Rosario (Sp)

133. Parallel and Distributed Computing. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: course 131, M151B. Distribution model, shared memory parallel architectures; asynchronous parallel languages: MPI, Maïse; primitives for parallel computation: specification of parallelism, interprocess communication and synchronization, parallel programs for scientific and distributed computing. Letter grading. Mr. Cong (Sp)

134. Distributed Systems. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: course 118. Covers fundamental concepts regarding design and implementation of distributed systems. Topics include synchronization (e.g., lock synchronization, logical clocks, vector clocks), failure recovery (e.g., snapshotting, primary backup), consistency models (e.g., linearizability, eventual, causal), consensus protocols (e.g., Paxos, Raft), distributed transactions, and lock. Students gain hands-on practical experience through multiple programming assignments that work through steps of creating fault-tolerant, shared key/value store. Exploration of how these concepts have manifested in several real-world, large-scale distributed systems used by Internet companies like Google, Facebook, and Amazon. Letter grading. Mr. Reiher (W)

145. Introduction to Data Mining. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: course 143. Introduction to survey of data mining (process of automatic discovery of patterns, changes, associations, and anomalies in massive databases), knowledge engineering, and wide spectrum of data mining applications areas such as bioinformatics, e-commerce, environmental studies, financial markets, multimedia data processing, network monitoring, and social service analysis. Letter grading. Mr. Cho (Not offered 2021-22)

M146. Introduction to Machine Learning. (4) (Same as Electrical and Computer Engineering M146E.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 33, and Civil and Environmental Engineering 110 or Electrical and Computer Engineering 131A or Mathematics 170A or 170E or Statistics 100A. Introduction to breadth of data science. Foundations for modeling data science problems. Common tools for data analysis, and application of tools and models to data gathering and analysis. Topics include statistical foundations, regression, classification, kernel methods, clustering, expectation maximization, neural network, probabilistic graphical models, reinforcement learning and deep learning. Letter grading. Mr. Chang, Mr. Grover, Mr. Sankaranarayanan (F.W.Sp)

M148. Introduction to Data Science. (4) (Same as Electrical and Computer Engineering M148E.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 31 or Program in Computing 10A, and one course from Civil and Environmental Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, 170E, or Statistics 100A. How to analyze data arising in real world so as to understand corresponding phenomenon. Covers topics in machine learning, data analytics, and statistical modeling classically employed for prediction. Comprehensive, hands-on overview of data science domain by blending theoretical and practical instruction. Data science lifecycle: data selection and cleaning, feature engineering, model selection, and prediction methodology. Letter grading.

Mr. Reinman, Mr. Sarrafzadeh (F.W.Sp)

M152A or Electrical and Computer Engineering M16. Recommended: course M151B or Electrical and Computer Engineering M116L.) Laboratory, four hours; outside study, two hours. Enforced requisites: course MS1A or Electrical Engineering M16. Hands-on design, implementation, and evaluation of computer-aided design tools, use of computer-aided design tools for schematic capture and simulation, implementation of complex circuits using programmed array logic, design parameters, and performance evaluation. Letter grading.

Mr. Reinman, Mr. Tamir (F.W.Sp)

M152A. Introductory Digital Design Laboratory. (2) (Same as Electrical and Computer Engineering M116L.) Laboratory, four hours; outside study, two hours. Enforced requisites: course MS1A or Electrical Engineering M16. Hands-on design, implementation, and evaluation of computer-aided design tools for schematic capture and simulation, implementation of complex circuits using programmed array logic, design parameters, and performance evaluation. Letter grading. Mr. Sarrafzadeh (F.W.Sp)

152B. Digital Design Project Laboratory. (4) Laboratory, four hours; discussion, two hours; outside study, six hours. Enforced requisites: course M151B or Electrical Engineering M116C. Recommended: Engineering 131E/W or 185E/W. Limiting design and implementation of complex digital subsystems using field-programmable gate arrays (e.g., processors, special-purpose processors, device controllers, and input/output interfaces) within teams to develop and implement designs and to document and give oral presentations of their work. Letter grading.

Mr. Sarrafzadeh (F.W.Sp)

161. Fundamentals of Artificial Intelligence. (4) Lecture, four hours; laboratory, two hours; outside study, six hours. Enforced requisites: course 180. Introduction to fundamental problem solving and knowledge representation paradigms of artificial intelligence. Introduction to Lisp with regular programming assignments. State-space and problem reduction methods, brute-force and heuristic search, planning techniques, two-player games. Knowledge structures including predicate logic, production systems, semantic nets and primitives, frames, scripts. Special topics in natural language processing, expert systems, vision, and parallel architectures. Letter grading.

Mr. Darwiche, Mr. Gu, Mr. Van den Broeck (W.Sp)

168. Computational Methods for Medical Imaging. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 32 or Program in Computing 10A, and one course from Civil and Environmental Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, 170E, or Statistics 100A. Theory and practice of image acquisition imaging, computer tomography (CT), magnetic resonance (MR). Project-based course covers applied topics in medical imaging including image processing, atlasing, predictive modeling, personalized medicine, data driven and machine learning methods. Letter grading. (Not offered 2021-22)

M171L. Data Communication Systems Laboratory. (2 to 4) (Same as Electrical and Computer Engineering M171L.) Laboratory, four to eight hours; outside study, two to four hours. Recommended prepa ration: course M150A. Limited to students with credit for course M117. Interpretation of analog-signaling aspects of digital systems and data communications through experience in using computer systems and display signals in relevant laboratory setups. Use of
oscilloscopes, pulse and function generators, baseband and RF signal composition capabilities, modems, PCs, and workstations in experiments on pulse transmission impairments, waveforms and their spectra, modem and terminal characteristics, and interference. (Not offered 2021-22)

172. Real-Time Three-Dimensional Animation. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course 32. Introduction to handling of geometry, appearance, and motion space for real-time virtual environments, both on theoretical and practical levels. Completion of one quality real-time three-dimensional animation produced by following through from preproduction to postproduction. Both products expected to be game demonstrations, storytelling games, or machinima (use of real-time graphics engines to create cinematic productions). Focus on achieving highest quality productions to qualify and submit products to Student Academy Awards competition. Use of Unity Game Engine to make technical decisions to adapt stories to games. Introduction to interaction concepts, enabling students to create low-fidelity real-time three-dimensional animation and to concepts in artificial intelligence, enabling them to refine their interactions to create high-fidelity real-time three-dimensional animation. Letter grading. (Not offered 2021-22)

174A. Introduction to Computer Graphics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course 32. Basic principles behind modern two- and three-dimensional computer graphics systems, including complete set of steps that allow the user to output realistic images in real time. How to position and manipulate objects in scene using geometric and camera transformations. How to create final image using perspective and orthographic transformations. Basics of modeling primitives such as polygonal models and implicit and parametric surfaces. Basics behind color space, illumination models, shading, and texture mapping. Letter grading.
Mr. Law (F,WSp)

174B. Introduction to Computer Graphics: Three-Dimensional Photography and Rendering. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course 32. Basic principles behind modern two- and three-dimensional computer graphics systems, including complete set of steps that allow the user to output realistic images in real time. How to position and manipulate objects in scene using geometric and camera transformations. How to create final image using perspective and orthographic transformations. Basics of modeling primitives such as polygonal models and implicit and parametric surfaces. Basics behind color space, illumination models, shading, and texture mapping. Letter grading.
Mr. Law (F,WSp)

Mr. Hsieh, Mr. Sarrafzadeh (F, W,Sp)

182. Introduction to Cryptography. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Preparation: knowledge of basic probability theory. Enforced requisite: course 180. Introduction to cryptography; topics include symmetric and public key concepts and techniques. Topics include notions of hardness, one-way functions, hard-core bits, pseudorandom generators, pseudorandom functions and permutations, semantic security, public-key and private-key encryption, key-agreement, homomorphic encryption, private information retrieval and voting protocols, message authentication, digital signatures, interactive proofs, zero knowledge proofs, collision-resistant hash functions, commitment protocols, and two-party secure computation with static security. Letter grading.
Mr. Ostrovsky (Sp)

M194. Introduction to Computational and Systems Biology. (2) (Same as Biotechnology 184 and Computer Science M184.) Lecture, two hours; outside study, four hours. Enforced requisite: one course from: 31, Civil Engineering M20, Mechanical and Aerospace Engineering M20, or Program in Computing 10A; and Life Sciences 30B or Mathematics 30B or 31A. Survey course designed to introduce students to computational and systems modeling in biology and medicine, providing motivation, flavor, culture, and cutting-edge contributions in computational biosciences. Aims at providing an overview of basis for focused studies by students with computational and systems biology interests. Presentations by individual UCLA researchers discussing their active computational and systems biology research. P/NP grading.
Mr. Eskin (F)

CM186. Computational Systems Biology: Model- and Simulation of Biological Systems. (5) (Same as Biotechnology CM186, Computer Science CM186, and Computational and Systems Biology M186.) Lecture, four hours; laboratory, two hours; discussion, one hour. Requisites: Life Sciences 30A, 30B, Mathematics 32A or M32T, 33A, and 33B. Finite-state languages, and finite-state automata. Macromolecular, and other biologically inspired models and their application to life sciences problems at molecular, cellular, organ, and population levels. Both theory- and data-driven modeling, with focus on translating modeling concepts into mathematical models, and using them for simulation, quantification, and analysis. Numerical simulation, optimization, and parameter identifiability and search algorithms, with model discrimination and optimization techniques, for example, Monte Carlo and genetic algorithms. Prerequisite: CM187 and Computer Science M187.) Lecture, four hours; outside study, eight hours. Requisites: course M182 or CM186 or Computational and Systems Biology M150; and research experience (course 199, Bioengineering 199, Computational and Systems Biology 199, or equivalent). Closely directed, interactive, and real research experience in active quantitative systems biology research laboratory. Focus on how to focus on topics of current interest in scientific community, appropriate to student interests and capabilities. Capabilities of oral presentations and written progress reports explain experimental design and obtained results. Letter or P/NP grading. (Not offered 2021-22)

188. Special Courses in Computer Science. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Special topics in computer science for undergraduate students taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated for credit with topic or instructor change. Letter grading.

188SB. Special Study for USIE Facilitators. (1) Tutorial, to be arranged. Enforced co-requisite: Honors College 101E. Limited to junior/senior USIE facilitators. Individual study in regularly scheduled meetings with faculty mentor to discuss selected USIE seminar topic, conduct preparatory research, and begin preparation of syllabus. Individual contract with faculty mentor required. May not be repeated. Letter grading.

188SB. Individual Studies for USIE Facilitators. (1) Tutorial, to be arranged. Enforced prerequisite: course 188SB. Limited to junior/senior USIE facilitators. Individual study in regularly scheduled meetings with faculty mentor to finalize course syllabus. Individual contract with faculty mentor required. May not be repeated. Letter grading.

188SC. Individual Studies for USIE Facilitators. (2) Tutorial, to be arranged. Enforced prerequisite: course 188SB. Limited to junior/senior USIE facilitators. Individual study in regularly scheduled meetings with faculty mentor while facilitating USIE 88S course. Individual contract with faculty mentor required. May not be repeated. Letter grading.

189. Methods and Application of Collaborative Learning Theory in Life Sciences. (2) Seminar, two hours; clinic, four hours. Requisites: course 192A or Life Sciences 192A (may be taken concurrently), and at least one term of prior enrollment in course in which collaborative learning theory is practiced and refined under supervision of instructors. With instructor guidance, students apply pedagogical principles based on current educational research, assist with development of innovative instructional materials, and receive frequent feedback on their progress. May be repeated four times for credit. Letter grading.
(F,WSp)

M190A. Introduction to Collaborative Learning Theory and Practice. (1) (Formerly numbered 192A.) (Same as Chemistry M192E, Life Sciences M192A, Mathematics M192A, and Physics M192S.) Seminar, one hour. Training seminar for undergraduate students who are selected for learning assistant (LA) program. Exploration of current topics in pedagogy
and education research focused on methods of learning, systems for application in simulations and teaching, and system settings. Students practice communication skills with frequent assessment of and feedback on progress. Letter grading.

194. Research Group Seminars: Computer Science. Seminar, major outside study, eight hours. Designed for undergraduate students who are part of research group. Discussion of research methods and current literature in field or of research of faculty members or students. May be repeated for credit. Letter grading. (F,W,Sp)

199. Directed Research in Computer Science. (2 to Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation under guidance of faculty mentor. Culminating paper or project required. May be repeated for credit with school approval. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading. (F,W,Sp)

Graduate Courses

201. Computer Science Seminar. (2) Seminar, four hours; outside study, two hours. Designed for graduate computer science students. Seminars on current research topics in computer science. May be repeated for credit. S/U grading. (F,W,Sp)

202. Advanced Computer Science Seminar. (4) Seminar, four hours; outside study, eight hours. Preparation for major field examination in computer science. Current computer science research into theory of, and synthesis of, and applications of information processing systems. Each member completes one tutorial and one or more original works in one specialized area. May be repeated for credit. Letter grading. (Not offered 2021-22)

205. Health Analytics. (4) Lecture, four hours; outside study, two hours. Preparation for the major field examination in health analytics. Applied data analytics course, with focus on healthcare applications. How data property generate and analyze health data. Project-based course to learn about best practices in health data collection and validation. Exploration of various machine learning and data analytic tools to learn underlying structure of databases for clinical healthcare problems. Different machine learning concepts and algorithms, statistical models, and building of data-driven models. Big data analytics and tools for handling structure data and semi-structured data sets. Letter grading. (Not offered 2021-22)

211. Network Protocol and Systems Software Design for Wireless and Mobile Internet. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course 118. Designed for graduate students. In-depth study of network protocol and systems software design in area of wireless and mobile Internet. Topics include (1) networking fundamentals: design philosophy of TCP/IP, end-to-end arguments, and protocol design principles, (2) networking protocols: 802.11 MAC standard, packet scheduling, mobile IP, ad hoc routing, and wireless TCP; (3) mobile computing systems software: middleware, tools, services, and applications, and (4) topical studies: energy-efficient design, security, location management, and quality of service. Letter grading. Mr. Lu (F)

M213A. Embedded Systems. (Same as Electrical and Computer Engineering 202.) Lecture, four hours; discussion, one hour; outside study, seven hours. Designed for graduate computer science and electrical engineering students. Methodologies and design issues of embedded systems. Topics include hardware and software platforms for embedded systems, techniques for modeling and specification of system behavior, software organization, runtime systems, scheduling, real-time communication and packet scheduling, low-power battery and energy-aware system design, timing synchronization, fault tolerance and debugging, and system-level hardware and software architecture optimization. Foundational as well as practical design methods. Letter grading. (Not offered 2021-22)

M213B. Energy-Aware Computing and Cyber-Physical Systems. (Same as Electrical and Computer Engineering M202B.) Lecture, four hours; outside study, eight hours. Prerequisite: course M51A or Electrical and Computer Engineering M16. Recommended: courses 111, and M115B or Electrical and Computer Engineering M111C. System-level management and cross-layer methods for power and energy consumption in computing and communication at various scales ranging across embedded, mobile, personal, and enterprise. Topics include: Computing, networking, sensing, and control technologies and algorithms for improving energy sustainability in human-cyber-physical systems. Topics include energy and power sources, and energy storage; dynamic power management; power-performance scaling and energy proportionality; duty-cycling; power-aware scheduling; low-power protocols; battery modeling and management; thermal management; sensing of power consumption. Letter grading. (Not offered 2021-22)

214. Big Data Systems. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced prerequisite: course 111. Modern computing has entered era of big data. Introduction to concepts and state-of-art in modern big data systems. Study of distributed storage and database systems, which provide foundation for other systems. Discussion of systems built for specific kinds of workloads, such as processing of streaming data, relational data, batched data, graph data, as well as machine learning. Letter grading.

216. Network Algorithmics. (4) Lecture, four hours; outside study, eight hours. Recommended preparation: one course on networks. Prerequisite: course 211. Introduction to algorithmic frameworks for networked systems. Models of network devices and hardware design. Principles for efficient implementation. Lookup algorithms (exact match, prefix lookups, advanced cache life support), fair queueing implementations, crossbar and scalable switches, with examples from well-known networking devices. Advanced topics include traffic measurement and network security. Letter grading. Mr. Varghese (Sp)

217A. Internet Architecture and Protocols. (4) Lecture, four hours; outside study, eight hours. Enforced prerequisite: course 118. Focus on mastering existing core set of Internet protocols, including IP, core transport protocols, routing protocols, security protocols and securitycurity protocols such as DNSSEC, to understand principles behind design of these protocols, appreciate their design tradeoffs, and learn lessons from their operations. Letter grading. Ms. Zhang (F)

217B. Advanced Topics in Internet Research. (4) Lecture, four hours; outside study, eight hours. Enforced prerequisite: course 217A. Designed for graduate students. Overview of Internet development history and design. Techniques for protocol design. Discussion of current Internet research topics, including latest research results in routing protocols, transport protocols, network measurements, networking management, information retrieval, and machine learning. Letter grading. Ms. Zhang (Sp)

218. Advanced Computer Networks. (4) Lecture, four hours; discussion, two half hours; outside study, six hours. Prerequisites: courses 112, 118. Review of seven-layer ISO-OSI model. High-speed networks: LANs, MANs, ATM. Flow and congestion control; bandwidth allocation. Internet research topics. (Not offered 2021-22)

219. Current Topics in Computer System Modeling Analysis. (4) Lecture, eight hours; outside study, four hours. Review of current literature in area of computer system modeling techniques on which instructor has developed special proficiency as consequence of research interests. Students report on selected topics. May be repeated for credit with consent of instructor. Mr. Abari, Mr. Lu, Mr. Varghese (W,Sp)

CM221. Introduction to Bioinformatics. (4) Same as Bioinformatics M221, Chemistry CM260A, and Human Genetics M260A.) Lecture, four hours; discussion, two hours. Prerequisites: course 32 or Program in Computing 10C with grade of C– or better, and one course from Civil and Environmental Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, Mathematics 170E, or Statistics 100A. Prior knowledge of biology not required. Designed for engineering students as well as students from biological sciences and medical school. Introduction to bioinformatics, with emphasis on concepts and inventing new computational and statistical techniques to analyze biological data. Focus on sequence analysis and alignment algorithms. May be repeated with the consent of the instructor. Letter grading. Mr. Pimentel (W)

CM222. Algorithms in Bioinformatics. (4) (Same as Bioinformatics M222 and Chemistry CM260B.) Lecture, four hours; discussion, two hours. Prerequisites: course 32 or Program in Computing 10C with grade of C– or better, and one course from Civil Engineering 110, Electrical Engineering 131A, Mathematics 170A, Mathematics 170E, or Statistics 100A. Course CM212 not requisite to CM222. Designed for engineering students as well as students from biological sciences and medical school. Development and application of computational approaches to biological questions, with focus on defining interdisciplinary problems as computational problems and then solving these problems using algorithmic techniques. Computational techniques include those from statistics and computer science. Concurrently scheduled with courses CM221, CM223, CM224. Mr. Eskin (Sp)

CM224. Machine Learning Applications in Genet- ics. (4) (Same as Bioinformatics M224 and Human Genetics CM224.) Lecture, four hours; discussion, two hours; outside study, six hours. Prerequisites: course 32 or Program in Computing 10C with grade of C– or better, and one course from Civil Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, Mathematics 170E, or Statistics 100A. Designed for engineering students as well as students from biological sciences and medical school. Introduction to computational analysis of genetic variation and computational inter-disciplinary research in genetics. Topics include introduction to genetics, identification of genes involved in disease, inferring human population history, technologies for obtaining genetic information, and generating risk assessment. Focus on interdisciplinary problems as computational problems and then solving those problems using computational techniques from statistics and computer science. Concurrently scheduled with course CM212, Letter grading. Mr. Halperin (F)

M225. Computational Methods in Genomics. (4) (Same as Bioinformatics M225 and Human Genetics M225.) Lecture, two and one half hours; discussion, two and one half hours; outside study, two hours. Introduction to computational approaches in bioinformatics, genomics, and computational genetics and preparation for computational interdisciplinary research in genetics and genomics. Include genome analysis, regulatory genomics, association analysis, association study design, isolated and admixed populations, population substructure, human structural variation, model organisms, and genomic
M229S. Seminar: Current Topics in Bioinformatics. (4) (Same as Bioinformatics M226, Biomathematics M226, and Human Genetics M226.) Lecture, four hours; outside study, eight hours. Enrollment limit: course 32 or Program in Computing 10C with grade of C– or better. Recommended: one course from Bio- statistics 100A, 110A, Civil Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, or Statistics 100A. Familiarity with probability, statistics, linear algebra, and algorithms expected. Designed for engineering students as well as students from bioinformatics, genomics, and medical school. Biology has become data-intensive science. Bottle- neck in being able to make sense of biological processes has shifted from data generation to statistical models and inference algorithms that can analyze these datasets. Statistical machine learning provides important toolkit in this endeavor. Biological datasets offer new challenges to field of machine learning. Examination of statistical and computational aspects of machine learning techniques and their application to key biological questions. Letter grading. Ms. Sankaranaram (F)

M229S. Seminar: Current Topics in Bioinformatics. (4) (Same as Biochemistry M229S.) Seminar, four hours; outside study, eight hours. Designed for graduate engineering students as well as students from biological sciences and medical school. Introduction to current topics in bio- sciences and the computational and statistical genomics, and preparation for computational in- terdisciplinary research in genomics and proteomics. Topics include next- generation sequencing data analysis, regulatory genomics, association analysis, association study design, isolated and admixed populations, population substructure, human structural variation, model orga- nisms, and genomic technologies. Computational techniques include statistics and com- puter science. May be repeated for credit with topic change. Letter grading. Mr. Sankaranaram (Sp)

230. Software Engineering. (4) Lecture, four hours; discussion, two hours. Recommended: preparation for undergraduate students; prior programming experience required. Required preparation for graduate students: undergraduate-level knowledge of data structures and object-oriented program languages. As software systems become increasingly large and complex, automated software engineering analysis and development tools play important role in various software engineering tasks, such as design, construction, testing and debugging of software systems. Introduction to foundations, tech- niques, tools, and applications of automated soft- ware engineering technology. Development, exten- sion, and evaluation of mini automated software en- gineering analysis tool and assessment of how tool fits into software development process. Introduction to current research topics in automated software engineering graduation requirements. Mr. Kim (Sp)

231. Types and Programming Languages. (4) Lecture, four hours; outside study, eight hours. Requisite: course 131. Introduction to static type systems and their usage in programming language design and software. Various formal semantics, simply- typed lambda calculus, type soundness proofs, types for mutable references, types for exceptions. Para- metric polymorphism, let-bound polymorphism, poly- morphic types for objects, subtyping, combining parametric polymorphism and subtyping. Types for modules, parameterized modules. Formal specification and implementation of type of systems, systems from recent literature and modern applications of type systems. Letter grading. Mr. Millstein (W)

232. Static Program Analysis. (4) Lecture, four hours; outside study, eight hours. Requisite: course 132. Introduction to static analysis of object-oriented programs and its usage for optimization and bug finding. Class hierarchy analysis, rapid type analysis, equality-based analysis, subset-based analysis, flow- insensitive and flow-sensitive analysis, context-insen- sitive and context-and-sensitive analysis. Soundness proofs for various static tools. Course requires for static analysis information such as directed graphs and binary decision diagrams. Flow-directed method inlining, type-safe method inlining, synchronization optimization, call graph vulnerability and difficulty detection. Formal specification and implementa- tion of a variety of static analyses, as well as readings from recent research literature on modern applica- tions of static analysis. Letter grading. (Not offered 2022-23)

233A. Parallel Programming. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 111, 113. Mutual exclusion and resource allocation in distributed memory multiprocessor systems. Computer computa- tion: specification of parallelism, interprocess com- munication and synchronization, atomic actions, bi- nary and multway rendezvous; synchronous and asyntatic languages: CSP, UNITY, and axiom semantics for selected parallel languages. Letter grading. (Not offered 2022-23)

233B. Verification of Concurrent Programs. (4) Lecture, four hours; outside study, eight hours. Requisition: course 131. Formal techniques and veriﬁca- tion of concurrent programs. Topics include safety, liveness, program and state assertion-based tech- niques, weakest precondition semantics, Hoare logic, temporal logic, UNITY, and axiom semantics for selected parallel languages. Letter grading. (Not offered 2022-23)

234. Computer-Aided Veriﬁcation. (4) Lecture, four hours; outside study, eight hours. Requisite: course 181. Introduction to theory and practice of formal methods for design and analysis of concurrent and embedded systems, with focus on algorithmic tech- niques for checking logical properties of hardware and software systems. Topics include semantics of reactive systems, invariant verification, temporal logic model checking, theory of omega automata, state- space reduction techniques, compositional and hier- archical reasoning. Letter grading. (Not offered 2022-23)

235. Advanced Operating Systems. (4) Lecture, four hours. Preparation: C or C++ programming ex- perience. Requisite: course 111. In-depth investiga- tion of operating systems issues through guided con- struction of research operating system for PC ma- chines and consideration of recent literature. Memory management and protection, interrupts and traps, process creation, interprocess communication, preemptive multitasking, file systems. Virtualization, networking, profiling, research operating systems. Series of labo- ratory projects, including extra challenge work. Letter grading. (Not offered 2022-23)

236. Computer Security. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 111, 118. Basic and research material on computer security. Topics include basic principles and goals of computer security; common security tools; use of cryp- tographic protocols for security, security tools (fire- walls, virtual private networks, honeypots), virus and worm protection, security assurance and testing, de- sign of secure programs, privacy, applying security principles to realistic problems, and new and emerging threats and security tools. Letter grading. (Not offered 2022-23)

237A. Prototyping Programming Languages. (4) Lecture, four hours; outside study, six hours. Enforced requisite: course 131. How different programming language paradigms provide dramatically different ways of thinking about compu- tation and offer trade-offs on many dimensions, such as modularity, expressiveness, and safety. Concrete exploration of three major program- ming paradigms—functional, object-oriented, and logic programming—by prototyping implementations of simple languages in each. Analysis of prototyping to shed light on design and structural properties of each lan- guage paradigm and to allow easy comparison against one another. Hands-on experience imple- menting new abstract languages, extending existing languages and as libraries in existing languages. Con- currrently scheduled with course C137A. Letter grading. (Not offered 2022-23)

C237B. Programming Language Design. (4) Sem- inar, four hours; outside study, six hours. Enforced requisite: course C237A. Study of various program- ming language designs, from computing history and research literature, that attempt to address problems of modern systems that are bloated, buggy, and dif- ficult to maintain and extend despite trend in com- puting toward ever higher levels of abstraction for programming. Hands-on experience designing, pro- testing, and evaluating language abstractions, and/or programming environments. Concurrently scheduled with course C137B. Letter grading. (Not offered 2022-23)

238. Quantum Programming. (4) Lecture, four hours; outside study, eight hours. Review of current literature and background on quantum computing. Emphasis on quantum programming languages and systems in which instructor has developed special proficiency as consequence of re- search interests. May be repeated for credit with topic change. Letter grading. Ms. Kim, Mr. Palsberg (W)

239. Current Topics in Computer Science: Pro- grammable Languages and Systems. (4) Lecture, four hours; outside study, eight hours. Review of cur- rent literature in area of computer science program- ming languages and systems in which instructor has developed special proficiency as consequence of re- search interests. May be repeated for credit with topic change. Letter grading. Ms. Kim, Mr. Palsberg, Mr. Xu (WSp)

240A. Databases and Knowledge Bases. (4) Lecture, four hours; outside study, eight hours. Requisite: course 143. Logical models for data and knowledge representation. Relational and object lan- guages and advanced reasoning. Temporal que- ries, spatial queries, and uncertainty in deductive data- bases and object relational databases (ORDBs). Abstract data types and user-defined column func- tions in ORDBs. Data mining algorithms. Semistruc- tured information. Letter grading. (Not offered 2022-23)

241B. Pictorial and Multimedia Database Manage- ment. (4) Lecture, three and one half hours; discus- sion, 30 minutes; laboratory, one hour; outside study, seven hours. Requisite: course 143. Multimedia data: alphanumeric, long text, images/pictures, video, and voice. Multimedia information systems requirements. Database management applications and database systems and across Internet by alphanumeric, image, video, and audio content. Querying, visual languages, and communication. Database design and organization, logical and physical. Indexing methods, Internet mul- timedia streaming. Other topics at discretion of in- structor. Letter grading. (Not offered 2022-23)

244A. Distributed Database Systems. (4) Lecture, four hours; outside study, eight hours. File allocation, intelligence, directory design, transaction management, deadlock, strong and weak concurrency control, commit protocols, semantic query answering, multi- database systems, fault recovery techniques, net- work models and query languages. Letter grading. (Not offered 2022-23)
254. Big Data Analytics. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 143 or 180 or equivalent. With unprecedented rate at which data is being collected today in almost all fields of human endeavor, there is emerging economic and scientific need to extract meaningful information from it. Data analytics is process of automatic discovery of patterns, changes, associations, and anomalies in massive databases, and is highly inter-disciplinary field requiring expertise of several disciplines including database systems, data warehousing, data mining, machine learning, statistics, algorithms, data visualization, and cloud computing. Survey of main topics in big data analytics and latest advances, as well as wide spectrum of applications such as bioinformatics, E-commerce, environmental study, financial market study, multimedia data processing, network monitoring, social media analysis. Letter grading. Ms. Wang (F)

255. Web Information Management. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 112, 143, 180, 181. Designed for graduate students. Scale of Web data requires novel algorithms and principles for their management and retrieval. Study of Web characteristics and new management techniques needed to build computer systems suitable for Web environment. Topics include Web modeling and query processing, large-scale data mining algorithms, efficient page refresh techniques, Web search algorithms, and query processing techniques on independent data sources. Letter grading. (Not offered 2021-22)

247. Advanced Data Mining. (4) Lecture, four hours; outside study, eight hours. Requisite: course 145 or M146 or equivalent. Introduction of concepts, algorithms, and techniques of data mining on different types of datasets, covering basic data mining algorithms, advanced topics on text mining, recommender systems, and graph/network mining. Team-based project involving hands-on practice of mining useful knowledge from large data sets is required. Letter grading. Ms. Sun (W)

249. Current Topics in Data Structures. (4) Lecture, four hours; outside study, eight hours. Review of current literature in area of data structures in which instructor has developed special proficiency as conceived of by instructor.脱贫致富。Letter grading. Mr. Chang (Sp)

251A. Advanced Computer Architecture. (4) Lecture, four hours; outside study, eight hours. Requisite: course M151B. Recommended: course 111. Design and implementation of high-performance systems; advanced topics by techniques such as dynamic pipelining, superscalar and VLIW processors, branch prediction, speculative execution, software for instruction-level parallelism, simulation-based performance analysis and evaluation, state-of-art design examples, introduction to parallel architectures. Letter grading. Mr. Nowatki, Mr. Tamir (FW)

251B. Parallel Computer Architecture. (4) Lecture, four hours; outside study, eight hours. Requisite: course M151B. Recommended: course 251A. SIMD and MIMD systems, symmetric multiprocessors, distributed-shared-memory systems, message-passing systems, multicore chips, clustered computing, interconnection networks, host-network interfaces, switching element design, communication primitives, cache coherence, memory consistency models, synchronization primitives, state-of-art design examples. Letter grading. Mr. Tamir (W)

256A. Advanced Scalable Architectures. (4) Lecture, four hours; outside study, eight hours. Requisite: course M151B. Recommended: course 251A. State-of-the-art scalable algorithms in main memory, including implementation technology, chip microarchitecture, and system architecture. High-performance building blocks, such as chip multiprocessors (CMPs), on-chip interconnect mechanisms, and hardware techniques for exploiting parallelism at multiple levels. Current research areas. Examples of chips and systems. Letter grading. (Not offered 2021-22)

2568. Design of VLSI Circuits and Systems. (4) Same as Electrical Engineering M261A. Lecture, four hours; discussion, two hours; laboratory, four hours; outside study, two hours. Requisites: course M51A or Electrical and Computer Engineering 115A. Recommended: Electrical and Computer Engineering 115C. LSI/VLSI design and application in computer systems. Fundamental design models, techniques that exploit geometric properties of complex integrated systems on chips. Letter grading. (Not offered 2021-22)

258C. LSI in Computer System Design. (4) (Same as Electrical and Computer Engineering M262C.) Lecture, four hours; outside study, eight hours. Requisites: course M262A. LSI/VLSI design and application in computer systems. In-depth studies of VLSI architectures and VLSI design tools. Letter grading. (Not offered 2021-22)

258F. Physical Design Automation of VLSI Systems. (4) Lecture, four hours, outside study, eight hours. Detailed study of various physical design automation problems of VLSI circuits, including logic partitioning, floorplanning, placement, global routing, channel and switchbox routing, planar routing and via minimization, compaction and performance-driven layout. Discussion of applications of number of important optimization techniques in both physical and interconnection дизайн диалог (4). Letter grading. (Not offered 2021-22)

258G. Logic Synthesis of Digital Systems. (4) Lecture, four hours; outside study, eight hours. Requisites: courses M51A, 180. Detailed study of various problems in logic-level synthesis of VLSI digital systems, including two-level Boolean network optimization; multilevel Boolean network optimization; technology mapping for standard cells, and field-programmable gate-array (FPGA) designs; retiming for sequential circuits; and applications of binary decision diagrams (BDDs). Letter grading. Mr. Cong, Mr. Nowatki (Sp)

258H. Analysis and Design of High-Speed VLSI Interconnects. (4) Lecture, four hours; outside study, eight hours. Requisites: courses M258A, 258F. Detailed study of various problems in analysis and design of high-speed VLSI interconnects at both integrated circuit (IC) and packaging levels, including interconnect capacitance and resistance, lossless and lossy transmission lines, cross-talk and power distribution noise, delay models and power dissipation in interconnects, and clocking for high-speed systems. Letter grading. (Not offered 2021-22)

259. Current Topics in Computer Science: System Design/Architecture. (4) Lecture, four hours; outside study, eight hours. Requisite: course M151B. Literature in area of computer science system design in which instructor has developed special proficiency as conceived of by instructor.脱贫致富。Letter grading. (Not offered 2021-22)

260. Machine Learning Algorithms. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Recommended requisite: course 180. Problems of identifying patterns in data. Machine learning allows computers to learn potentially complex patterns from data and to make decisions based on these patterns. Introduction to fundamentals of this discipline to provide both conceptual grounding and practical experience with several learning algorithms. Techniques and experiments such as data mining, healthcare, financial systems, commerce, and social networking. Letter grading. Mr. Gu (F)

260B. Algorithmic Machine Learning. (4) Lecture, four hours; outside study, eight hours. In-depth examination of handful of ubiquitous machine learning. Covers several classical tools in machine learning but more emphasis on recent advances and developing efficient and provable algorithms for learning under constraints, including low-rank approximations, online learning, multiplicative weights framework, mathematical optimization, outlier-robust algorithms, streaming algorithms, S/U or learning with expert advice. Letter grading.

261A. Problem Solving and Search. (4) Lecture, four hours; outside study, eight hours. Requisite: course 180. In-depth treatment of systematic problem-solving search algorithms in artificial intelligence, including problem spaces, brute-force search, heuristic search, linear-space algorithms, real-time search, heuristic evaluation functions, two-player games, and constraint-satisfaction problems. Letter grading. Mr. Warrell (Fall, Winter), Mr. Meka (Sp)

262A. Learning and Reasoning with Bayesian Networks. (4) Lecture, four hours; outside study, eight hours. Requisite: course 112 or Electrical Engineering 131A. Review of several formalisms for representing and reasoning under uncertainty: probability; representation of comprehensive descriptive bases of Bayesian inference using belief networks representation. Letter grading. Mr. Darwiche (W)

262C. Current Topics in Causal Modeling, Inference, and Reasoning. (4) Same as Statistics M241C. Lecture, four hours; outside study, eight hours. Requisite: one graduate probability or statistics course such as course 262A, Statistics 200B, or 202B. Review of Bayesian networks, causal Bayesian networks, and structural equations. Learning causal structures from data. Identifying causal effects. Covariate selection and instrumental variables in linear and nonparametric models. Simpson paradox and confounding control. Logic and algorithmization of counterfactuals, Probabilities of counterfactuals. Direct and indirect effects. Probabilities of causation. Identifying causes of events. Letter grading. (Not offered 2021-22)

262Z. Current Topics in Cognitive Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 262A. Additional requisites for each offering announced in advance by department. Theory and implementation of systems that emulate or support human reasoning. Current literature and individual studies in artificial intelligence, knowledge-based systems, decision support systems, computational psychology, and heuristic programming theory. May be repeated for credit with topic change. Letter grading. (Not offered 2021-22)

263. Natural Language Processing. (4) Lecture, four hours; outside study, eight hours. Natural language processing (NLP) enables computers to understand and process human languages. NLP techniques have been widely used in many applications, including machine translation, question answering, machine learning and natural language processing (NLP), with emphasis on semantics. Pre-
263C. Animats-Based Modeling. (4) Lecture, four hours; outside study, eight hours. Requisite: computer science 130 or 131 or 161. Animats are mobile/sensing animal-like software agents embedded in simulated dynamic environments. Emphasis on modeling: goal-oriented behavior controllers, adaptation/learning, reinforcement learning, evolutionary programming. Animat-based tasks include foraging, mate finding, predation, navigation, predator avoidance, cooperative nest construction, communication, and quantum teleportation. Letter grading. (Not offered 2021-22)

264A. Automated Reasoning: Theory and Applications. (4) Lecture, four hours; laboratory, four hours; outside study, four hours. Requisite: course 161. Introduction to automated reasoning with propositional and first-order logic. Topics include syntax and semantics of formal logic; algorithms for logical reasoning, including satisfiability and entailment; syntactic and semantic restrictions on knowledge bases; effect of these restrictions on expressiveness, compactness, and computational tractability; applications of automated reasoning to diagnosis, planning, design, formal verification, and reliability analysis. Letter grading.

M266B. Statistical Computing and Inference in Vision and Cognition. (4) Same as Statistics M232B. Lecture, three hours. Preparation: basic statistics, linear algebra, computer vision, introduction to broad range of algorithms for statistical inference and learning that could be used in vision, pattern recognition, speech, bioinformatics, data mining, computer vision, and computer simulation methods for studying analyzing biological systems. Selections from families of formal languages, grammars, machines, operators; pushdown automata, context-free languages, context-sensitive languages, computational complexity. Topics include Bayesian decision theory, parametric and nonparametric learning, clustering, complex V-dimensional MCL, MDC, PCA/ICA/TCA, MDS, SVM, boosting. S/U or letter grading. (Not offered 2021-22)

267A. Probabilistic Programming and Relational Learning. (4) Lecture, four hours; outside study, eight hours. Introduction to computational models of probability and statistical models of relational data. Study of relational representations such as probabilistic databases, relational graphical models, and Markov logic networks, as well as various probabilistic programming languages. Covers their syntax and semantics, probabilistic inference problems, parameter, and structure learning algorithms, and theoretical aspects. Emphasis on context-free and context-sensitive expressive statistical modeling, how to formalize and reason about complex statistical assumptions and encode knowledge in machine learning models. Survey of key applications in natural language processing, graph mining, computer vision, and computational biology. Letter grading.

M268. Machine Perception. (4) (Same as Electrical and Computer Engineering M268.) Lecture, four hours; discussion, two hours; outside study, six hours. Designed for graduate students. Computational aspects of processing visual and other sensory information, and applied treatment of early vision in animal and machine. Integration of symbolic and iconic representations of the process of image segmentation.

268S. Seminar: Computational Neuroscience. (2) Seminar, two hours; outside study, four hours. Designed for students undertaking thesis research. Discussion of advanced research in computational neuroscience. Neural networks and computation as paradigms for parallel and concurrent computation in applications to problems of perception, vision, multimodal sensory integration, and robotics. May be repeated for credit. S/U grading. (Not offered 2021-22)

269. Seminar: Current Topics in Artificial Intelligence. (4) Seminar, to be arranged. Review of current literature and research in area of artificial intelligence in which instructor has developed special proficiency as consequence of research interests. Students report on selected topics. May be repeated for credit. Letter grading.

C274C. Computer Animation. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course 174A. Introduction to computer animation, including basic principles of character modeling, forward and inverse kinematics, forward and inverse dynamics, motion capture animation techniques, physics-based animation of particles and systems. Concurrently scheduled with course C274C. Letter grading. (Not offered 2021-22)

275. Artificial Life for Computer Graphics and Vision. (4) Lecture, four hours; outside study, eight hours. Enforced requisite: course 174A. Recommended: course 161. Investigation of important role that concepts from artificial life, emerging discipline that spans computational and biological sciences, can play in construction of advanced computer graphics and vision models for virtual reality, animation, interactive games, active vision, sensor networks, medical image analysis, etc. Focus on comprehensive models that can realistically emulate variety of living things (plants and animals) from lower animals to humans. Exposure to effective computational modeling of natural phenomena of life and their incorporation into sophisticated, self-animating graphical entities. Specific topics include modeling plants using L-systems, biomechanical simulation and control, behavioral animation, reinforcement and neuromuscular vision, (fractal) artifactual modeling, artificial animals and humans, human facial animation, and artificial evolution. Letter grading.

Mr. Terzopoulos (Sp)

M276A. Pattern Recognition and Machine Learning. (4) Same as Statistics M232A. Lecture, three hours; discussion, one hour. Designed for graduate students. Three fundamental concepts, theories, and algorithms for pattern recognition and machine learning that are used in computer vision, image processing, speech recognition, data mining, statistics, and computational biology. Topics include Bayesian decision theory, parametric and nonparametric learning, clustering, complexity (VC-dimension, MCL, MDC, PCA/ICA/TSA, MDS, SVM, boosting). S/U or letter grading.

280A-280C-280D-280DA-280DP-280G-280P. Algorithms. (4 each) Lecture, four hours; outside study, eight hours. Requisite: course 180. Additional requisites for each offering announced in advance by department. Selections from design, analysis, optimization, and implementation of algorithms; computational complexity and general theory of algorithms; algorithms for parallel machines. Subtopics of some current sections: Principles of Design and Analysis (280A); Distributed Algorithms (280D); Graphs and Networks (280G). May be repeated for credit with consent of instructor and topic change. Letter grading.

(Not offered 2021-22)

280AP. Approximation Algorithms. (4) Lecture, four hours; outside study, eight hours. Requisite: course 180. Additional requisites for each offering announced in advance by department. Selections from design, analysis, optimization, and implementation of algorithms; computational complexity and general theory of algorithms; algorithms for parallel machines. Subtopics of some current sections: Principles of Design and Analysis (280A); Distributed Algorithms (280D); Graphs and Networks (280G). May be repeated for credit with consent of instructor and topic change. Letter grading.

(Not offered 2021-22)

CM286. Computational Systems Biology: Modeling and Simulation of Biological Systems. (5) (Same as Bioengineering CM286.) Lecture, four hours; laboratory, two hours; discussion, one hour. Unit Title: Life Sciences 30A, 30B, Mathematics 32A or M32T, 33A, and 33B, or 3C, or Mathematics 31A, 31B, 32A or M32T, 33A, and 33B. Dynamic biosystem modeling and computer simulation methods for studying analyzing bio-
logical/biomedical processes and systems at multiple levels of organization, including linear and nonlinear control system, multicompartamental, epidemiological, pharmacokinetic, and other biomodeling methods applied to life sciences problems at molecular, cellular, organ, and population levels. Both theory- and data-driven modeling, with focus on translating biomodeling goals and data into dynamical mathematical models, and implementing them for simulation, optimization, and analysis, numerical simulation, optimization, and parameter identifiability and search algorithms, with model discrimination and analysis and software exercises in PC laboratory assignments. (Not offered 2021-22)

289G. Current Topics in Computer Theory. (4) Lecture; four hours; outside study, eight hours. Review of current literature in area of computer theory in which instructor has developed special proficiency as consequence of research interests. Students report on selected topics. Letter grading.

M296A. Advanced Modeling Methodology for Dynamic Biomedical Systems. (4) Same as Bioengineering M296A and Medicine M270C. Lecture; four hours; outside study, eight hours. Requisite: Electromechanical Engineering 141 or 142 or Mathematics 115A or Mechanical and Aerospace Engineering 171A. Development of dynamic systems modeling methodology for physiological, mechanical, pharmacological, and related systems. Control system, multicompartamental, noncompartmental, and input/output models, linear and nonlinear. Emphasis on systems modeling and analysis relevant in biomedical sciences and other limited data environments. Problem solving in PC laboratory. (Not offered 2021-22)

M296B. Optimal Parameter Estimation and Experiment Design for Biomedical Systems. (4) Same as Bioengineering M296B, Biomathematics M270, and Medicine M270D. Lecture; four hours; outside study, eight hours. Requisite: course CM286 or M296A or Biomathematics 220. Estimation methodology and model parameter estimation algorithms for fitting dynamic system models to biomedical data. Model discrimination methods. Theory and algorithms for designing optimal experiment and sampling protocols. Letter grading. Problem solving in PC laboratory. (Not offered 2021-22)

M296C. Advanced Topics and Research in Biomedical Systems Modeling and Computing. (4) Same as Bioengineering M270E. Lecture; four hours; outside study, eight hours. Requisite: course M296B. Research techniques and experience on special topics involving models, modeling methods, and model/computing in biological and medical sciences. Review and critique of literature. Research problem searching and formulation. Approaches to solutions. Individual MS- and PhD-level project training. Letter grading. (Not offered 2021-22)

M296D. Introduction to Computational Cardiology. (4) (Same as Bioengineering M296D.) Lecture; four hours; outside study, eight hours. Requisite: course CM182 or CM286. Introduction to mathematical modeling and computer simulation of cardiac electrophysiological processes, ionic models of action potential (AP). Theory of AP propagation in one-dimensional and two-dimensional cardiac tissue. Simulation on sequential and parallel supercomputers, choice of numerical algorithms, to optimize accuracy and to provide computational stability. (Not offered 2021-22)

289H. Current Topics in Computer Theory. (4) Lecture; four hours; outside study, eight hours. Review of current literature in area of computer theory in which instructor has developed special proficiency as consequence of research interests. Students report on selected topics. Letter grading.

289RA. Current Topics in Computer Theory: Randomized Algorithms. (4) Lecture; four hours; outside study, eight hours. Basic concepts and design techniques for randomized algorithms, such as probability theory, Markov chains, random walks, and probabilistic analysis. Algorithms in data structures, graph theory, computational geometry, number theory, and parallel and distributed systems. Letter grading. (Not offered 2021-22)

289SG. Current Topics in Computer Theory. (4) Lecture; four hours; outside study, eight hours. Review of current literature in area of computer theory in which instructor has developed special proficiency as consequence of research interests. Students report on selected topics. Letter grading.

597A. Preparation for MS Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate computer science students. Preparation for MS comprehensive examination. S/U grading.

597B. Preparation for PhD Preliminary Examinations. (2 to 16) Tutorial, to be arranged. Limited to graduate computer science students. Preparation for PhD preliminary examinations. S/U grading.

597C. Preparation for PhD Oral Qualifying Examination. (2 to 16) Tutorial, to be arranged. Limited to graduate computer science students. Preparation for oral qualifying examination, including preliminary research on dissertation. S/U grading.

598. Research for and Preparation of MS Thesis. (2 to 12) Tutorial, to be arranged. Limited to graduate computer science students. Preparation for and selection of research topic. S/U grading.

Electrical and Computer Engineering

Overview

Electrical and computer engineers are responsible for inventions that have revolutionized our society, such as the electrical grid, telecommunications, and automated computing and control. The profession continues to make vital contributions in many domains, such as the infusion of information technology into all aspects of daily life. To further these ends, the Department of Electrical and Computer Engineering fosters a dynamic academic environment that is committed to a tradition of excellence in teaching, research, and service. It has state-of-the-art research programs and facilities in a variety of fields. Departmental faculty members are engaged in research efforts across several disciplines in order to serve the needs of industry, government, society, and the scientific community. Interactions with other disciplines are strong. Faculty members regularly conduct collaborative research projects with colleagues in the Geffen School of Medicine; Graduate School of Education and Information Studies; School of Theater, Film, and Television; and College of Letters and Science.

The program grants two undergraduate degrees (Bachelor of Science in Electrical Engineering and Bachelor of Science in Computer Engineering) and two graduate degrees (Master of Science and Doctor of Philosophy in Electrical and Computer Engineering). The graduate program provides students with an opportunity to pursue advanced coursework, in-depth training, and research investigations in several fields.

Research

The primary areas in the department are circuits and embedded systems, computer engineering, physical and wave electronics, and signals and systems. These areas cover a broad spectrum of specialization, for example, communications and telecommunication, computer vision, control systems, cybersecurity, electromagnetics, embedded computer networking, embedded computing systems, engineering optimization, integrated circuits and systems, machine learning, micro-electro-mechanical systems (MEMS), nanotechnology, photonics and optoelectronics, plasma electronics, signal processing, and solid-state electronics.
Department Mission

The education and research activities in the Electrical and Computer Engineering Department are aligned with its mission statement. In partnership with its constituents, consisting of students, alumni, industry, and faculty members, the mission of the department is to (1) produce highly qualified, well-rounded, and motivated students with fundamental knowledge of electrical engineering who can provide leadership and service to California, the nation, and the world; (2) pursue creative research and new technologies in electrical engineering and across disciplines in order to serve the needs of industry, government, society, and the scientific community; (3) develop partnerships with industrial and government agencies; (4) achieve visibility by active participation in conferences and technical and community activities; and (5) publish enduring scientific articles and books.

Undergraduate Study

Electrical Engineering BS

The undergraduate curriculum provides all Electrical Engineering majors with preparation in the mathematical and scientific disciplines that lead to a set of courses that span the fundamentals of the three major departmental areas of signals and systems, circuits and embedded systems, and physical wave electronics. These collectively provide an understanding of inventions of importance to society, such as integrated circuits, embedded systems, photonic devices, automated computation and control, and telecommunication devices and systems. Students are encouraged to make use of their electrical and computer engineering electives and a two-term capstone design course to pursue deeper knowledge within one of these areas according to their interests, whether for graduate study or preparation for employment. See the elective examples and suggested tracks below.

The electrical engineering program is accredited by the Engineering Accreditation Commission of ABET.

Capstone Major

The Electrical Engineering major is a designated capstone major. Undergraduate students complete a design course in which they integrate their knowledge of the discipline and engage in creative design within realistic and professional constraints. Students apply their knowledge and expertise gained in previous mathematics, science, and engineering coursework. Within a multidisciplinary team structure, students identify, formulate, and solve engineering problems and present their projects to the class.

Educational Objectives

The electrical engineering curriculum provides an excellent background for either graduate study or employment. Undergraduate education in the department provides students with (1) fundamental knowledge in mathematics, physical sciences, and electrical engineering; (2) the opportunity to specialize in specific areas of interest or career aspiration; (3) intensive training in problem solving, laboratory skills, and design skills; and (4) a well-rounded education that includes communication skills, the ability to function well on a team, an appreciation for ethical behavior, and the ability to engage in lifelong learning. This education is meant to prepare students to thrive and to lead. It also prepares them to achieve the following two program educational objectives: (1) that graduates of the program have successful technical or professional careers, and (2) that graduates of the program continue to learn and to adapt in a world of constantly evolving technology.

Learning Outcomes

The Electrical Engineering major has the following learning outcomes:

- Application of knowledge of mathematics, science, and engineering
- Design of a system, component, or process to meet desired needs within realistic constraints
- Function as a productive member of a multidisciplinary team
- Effective communication
- Identification, formulation, and solution of electrical engineering problems

Preparation for the Major

Required: Chemistry and Biochemistry 20A; Computer Science 31, 32; Electrical and Computer Engineering 2, 3, 10, 11L, M16 (or Computer Science M51A); Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL, 4BL.

The Major

Required: Electrical and Computer Engineering 101A, 102, 110, 111L, 113, 131A; six core courses selected from Computer Science 33, Electrical and Computer Engineering 101B, 115A, 121B, 132A, 133A, 141, 170A; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; 12 units of major field elective courses, at least 8 of which must be upper-division electrical and computer engineering courses— the remaining 4 units may be from upper-division electrical and computer engineering courses or from another UCLA Samueli department; and one two-term electrical and computer engineering capstone design course (8 units).
Electrical and Computer Engineering 100 and CM182 may not satisfy elective credit. For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 21 or the GE Requirement web page.

Elective Examples

Communications Systems: Studies range from basic wave propagation to point-to-point links up to large-scale networks for both wired and wireless applications. Students might take 12 units selected from Electrical and Computer Engineering 132A, 132B, 133A, 134, and M171L, and 8 capstone design units from 113DA/113DB or 180DA/180DB.

Control Systems and Optimization: The study of how to control a variety of systems ranging from a single physical system to continental networks, such as the electrical grid. Students might take 12 units selected from Electrical and Computer Engineering 112, 133A, 133B, 141, and 142 and 8 capstone design units from 113DA/113DB or 184DA/184DB.

Electromagnetic Systems: Topics include the fundamentals of electromagnetic wave propagation in guided systems and free space, antennas, and radio systems. Students might take 12 units selected from Electrical and Computer Engineering 101B, 162A, 163A, and 163C and 8 capstone design units from 163DA/163DB or 164DA/164DB.

Embedded Computing: The study of compact systems that include collections of integrated circuits that interact with the physical world for purposes such as sensing and control in applications as diverse as appliances, automobiles, and medicine. Students might take 12 units selected from Electrical and Computer Engineering 115A, 115C, M116C, M116L, M119, and 142 and 8 capstone design units from 180DA/180DB or 183DA/183DB.

Integrated Circuits: The study of how to achieve large-scale integration of thousands to billions of computational memory, and sensing elements in single or multichip modules. Students might take 12 units selected from Electrical and Computer Engineering 115A, 115AL, 115B, 115C, and 115E and 8 capstone design units from 164DA/164DB or 183DA/183DB.

Photonics and Plasma Electronics: The study of how to manipulate light and plasmas to create devices such as those that enable high-speed optical communication systems. Students might take 12 units selected from Electrical and Computer Engineering 170A, 170B, 170C, and M185 and 8 capstone design units from 173DA/173DB.

Signal Processing: The study of how to derive meaningful inferences from measured data, such as speech, images, or other data, after conversion from analog to digital form. Students might take 12 units selected from Electrical and Computer Engineering 114, 133A, 133B, 134, and M146 and 8 capstone design units from 113DA/113DB.

Simulation and Data Analysis: Studies focus on applications related to the processing of big data for both analog/multimedia and digital sources. Students might take 12 units selected from Electrical and Computer Engineering 114, 132A, 133A, 133B, 134, and M146 and 8 capstone design units from 113DA/113DB or 180DA/180DB.

Solid-State and Microelectromechanical Systems (MEMS) Devices: The study of the nanoscale and microscale devices that are the base of modern computation and sensing systems. Students might take 12 units selected from Electrical and Computer Engineering 121B, 123A, 123B, 128, and M153 and 8 capstone design units from 121DA/121DB.

Suggested Tracks

The technical breadth area requirement provides an opportunity to combine elective courses in the Electrical Engineering major with those from another UCLA Samueli major to produce a specialization in an interdisciplinary domain. Students are free to design a specialization in consultation with a faculty adviser.

Bioengineering and Informatics (8I) refers to the design of biomedical devices and the analysis of data derived from such devices and instruments. Students might take Chemistry and Biochemistry 20B and two courses from Bioengineering 100, 101, 102, and 110 and/or 12 units from Computer Science CM121, Electrical and Computer Engineering 114, 133B, 134, and 176 and 8 capstone design units from 180DA/180DB.

Computer Engineering (CE) concentrates on the part of the hardware/software stack related to the design of new processors and the operation of embedded systems. Students might take a 12-unit technical breadth area in computer science such as Computer Science 111, 117, 130, and 180 and/or 12 units of electives from Electrical and Computer Engineering 115C, M116C, M116L, M119, 132B, and M146 and 8 capstone design units from 113DA/113DB or 180DA/180DB or 183DA/183DB.

Cyber Physical Systems (CPS) refer to networked systems that include sensors and actuators that interact with the physical world. They blend embedded systems with networking and control and include, for example, robotic systems and the Internet of things (IoT). Students might take a 12-unit technical breadth area in computer science such as Computer Science 111, 117, and 180 and/or 12 units of electives from Electrical and Computer Engineering M116C, 132B, and 142 and 8 capstone design units from 183DA/183DB.

Computer Engineering BS

The computer engineering curriculum provides all computer engineering students with preparation in the mathematical and scientific disciplines that lead to a set of courses that span the fundamentals of the discipline in the major areas of data science and embedded networked systems. These collectively provide an understanding of many inventions of importance to our society, such as the Internet of things, human–cyber-physical systems, mobile/wearable/implantable systems, robotic systems, and more generally smart systems at all scales in diverse spheres. The design of hardware, software, and algorithmic elements of such systems represents an already dominant and rapidly growing part of the computer engineering profession. Students are encouraged to make use of their computer science and electrical and computer engineering electives and a two-quarter capstone design course to pursue deeper knowledge within one of these areas according to their interests, whether for graduate study or preparation for employment.

Capstone Major

The Computer Engineering major is a designated capstone major that is jointly administered by the Computer Science, and Electrical and Computer Engineering, departments. Undergraduate students complete a design course in which they integrate their knowledge of the discipline and engage in creative design within realistic and professional constraints. Students apply their knowledge and expertise gained in previous mathematics, science, and engineering coursework. Students identify, formulate, and solve engineering problems and present their projects to the class.

Educational Objectives

The computer engineering undergraduate program educational objectives are that our alumni (1) understand fundamental computing concepts and make valuable contributions to the practice of computer engineering; (2) design, analyze, and implement complex computer systems for a variety of application areas and cyberphysical domains; (3) demonstrate the ability to work effectively in a team and communicate their ideas; (4) continue to learn as part of a graduate program or otherwise in the world of constantly evolving technology.

Learning Outcomes

The Computer Engineering major has the following learning outcomes:
• Ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
• Ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
• Ability to communicate effectively with a range of audiences
• Ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
• Ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
• Ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
• Ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Preparation for the Major

Required: Computer Science 1 (or Electrical and Computer Engineering 1), 31, 32, 33, 35L, M51A (or Electrical and Computer Engineering M16); Electrical and Computer Engineering 3; Engineering 96C; Mathematics 31A, 31B, 32A, 32B, 33A, 33B, 61; Physics 1A, 1B, 1C, and 4AL or 4BL.

The Major

Required: Computer Science 111, 118 (or Electrical and Computer Engineering 132B), M151B (or Electrical and Computer Engineering M116C), M152A (or Electrical and Computer Engineering M116L), 180; Electrical and Computer Engineering 100, 102, 113, 115C; one course from Civil and Environmental Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, 170E, Statistics 100A; 8 units of computer science and 8 units of electrical and computer engineering upper-division electives; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; 8 units capstone design from either Electrical and Computer Engineering 180DA/180DB or 183DA/183DB.

For information on UC, school, and general educational requirements, see Requirements for BS Degrees on page 21 or the GE Requirement web page.

Suggested Tracks

Networked Embedded Systems: This track targets two related trends that have been a significant driver of computing, namely stand-alone embedded devices becoming networked and coupled to physical systems, and the Internet evolving toward a network of things (the IoT). These may broadly be classified as cyber physical systems, and includes a broad category of systems such as smart buildings, autonomous vehicles, and robots, which interact with each other and other systems. This trend in turn is driving innovation both in the network technologies (new low-power wireless networks for connecting things, and new high-speed networks and computing infrastructure to accommodate the transport and processing needs of the deluge of data resulting from continual sensing), and in embedded computing (new hardware and software stack catering to requirements such as ultra-low power operation, and embedded machine learning).

Students pursuing this track are strongly encouraged to take Electrical and Computer Engineering M119 or Computer Science M119 in junior year, and to choose three electives from courses such as Computer Science 117, 130, 131, 132, 133, 136, 181, 188, Electrical and Computer Engineering 2, 115A, 115B, 115C, 132A, 133A, 141, 142, 188.

Students who pursue a technical breadth area in either electrical and computer engineering or computer science can choose an additional three courses from this list.

Data Science: This track targets the trend toward the disruptive impact on computing systems, both at the edge and in the cloud, of massive amounts of sensory data being collected, shared, processed, and used for decision making and control. Application domains such as health, transportation, energy, etc. are undergoing transformation by the abilities of inference-making and decision-making from sensory data that is pervasive, continual, and rich. This track will expose students to the entire data-to-decision pathway spanning the entire stack from hardware and software to algorithms, applications, and user experience.

Students pursuing this track are strongly advised to take Computer Science 143 and M146 or Electrical and Computer Engineering M146, and to additionally choose two electives from courses such as Computer Science CM121, 136, 144, 145, 161, 188, Electrical and Computer Engineering 114, 133A, 133B, 134, 188.

Students who pursue a technical breadth area in either electrical and computer engineering or computer science can choose an additional three courses from this list. Students are also free to design ad hoc tracks. The technical breadth area requirement provides an opportunity to combine elective courses in electrical and computer engineering and computer science with those from another UCLA Samueli major to produce a specialization in an interdisciplinary domain. As noted above, students can also select a technical breadth area in either Electrical and Computer Engineering or Computer Science to deepen their knowledge in either discipline.

Graduate Study

For admission information, see Graduation Programs Admission on page 27.

The following introductory information is based on 2021-22 program requirements for UCLA graduate degrees. Complete program requirements are available at Program Requirements for UCLA Graduate Degrees. Students are subject to the detailed degree requirements as published in program requirements for the year in which they enter the program.

The Department of Electrical and Computer Engineering offers Master of Science (MS) and Doctor of Philosophy (PhD) degrees in Electrical and Computer Engineering.

Electrical and Computer Engineering MS

Areas of Study

Students may pursue specialization across three major areas of study: (1) circuits and embedded systems, (2) physical and wave electronics, and (3) signals and systems. These areas cover a broad spectrum of specializations in, for example, communications and telecommunications, control systems, electromagnetics, embedded computing systems, engineering optimization, integrated circuits and systems, microelectromechanical systems (MEMS), nanotechnology, photonics and optoelectronics, plasma electronics, signal processing, and solid-state electronics. Students must select a number of formal graduate courses to serve as their major and minor fields of study according to the requirements listed below for the thesis (seven courses) and non-thesis (eight courses) options. The selected courses must be approved by the faculty adviser.

Course Requirements

Students may select either the thesis plan or the non-thesis (comprehensive examination) plan. The selection of courses is tailored to the professional objectives of the students and must meet the requirements stated below. The courses should be selected and approved in consultation with the faculty adviser. Departures from the stated requirements are considered only in
exceptional cases and must be approved by the departmental graduate adviser. The minimum requirements for the MS degree are as follows:

1. Requisite. BS degree in Electrical Engineering or a related field

2. All MS program requirements should be completed within two academic years from admission into the MS graduate program in the Henry Samueli School of Engineering and Applied Science

3. Students must maintain a minimum cumulative grade-point average of 3.0 every term and 3.0 in all graduate courses

4. Thesis Option. Students selecting the thesis option must complete at least the following requirements: (a) five formal graduate courses to serve as the major field of study, (b) two formal graduate courses to serve as the minor field of study, (c) Electrical and Computer Engineering 297, (d) two Electrical and Computer Engineering 598 courses involving work on the MS thesis, (e) no other 500-level courses, other seminar courses, nor Electrical and Computer Engineering 296 or 375 may be applied toward the course requirements, and (f) an MS thesis completed under the direction of the faculty adviser to a standard that is approved by a committee comprised of three faculty members. The thesis research must be conducted concurrently with the coursework

5. Non-Thesis Option. Students selecting the non-thesis option must complete at least the following requirements: (a) six formal graduate courses to serve as the major field of study, (b) two formal graduate courses to serve as the minor field of study, (c) Electrical and Computer Engineering 297, (d) Electrical and Computer Engineering 299 to serve as the minor field of study, (e) Electrical and Computer Engineering 296 or 375 may be applied toward the course requirements, and (f) an MS thesis completed under the direction of the faculty adviser to a standard that is approved by a committee comprised of three faculty members appointed by the department. In case of failure, students may be re-examined only once with consent of the departmental graduate adviser, and (e) no 500-level courses, other seminar courses, nor Electrical and Computer Engineering 296 or 375 may be applied toward the course requirements

6. Students must select a number of formal graduate courses to serve as their major and minor fields of study according to the requirements listed above for the thesis (seven courses) and non-thesis (eight courses) options. The selection of the major and minor sequences of courses must be from different established tracks, or approved ad hoc tracks, or combinations thereof. The selected courses must be approved by the faculty adviser

7. For the thesis option at least four, and for the non-thesis option five, of the formal graduate courses used to satisfy the MS program requirements listed above must be in the Electrical and Computer Engineering Department

8. A formal graduate course is defined as any 200-level course, excluding seminar or tutorial courses

9. At most one upper-division undergraduate course is allowed to replace one of the formal graduate courses covering the major and minor fields of study provided that (a) the undergraduate course is not required of undergraduate students in the Electrical and Computer Engineering Department and (b) the undergraduate course is approved by the faculty adviser

10. A track is a coherent set of courses in some general field of study. The department suggests lists of established tracks as a means to assist students in selecting their courses. Students are not required to adhere to the suggested courses in any specific track

Circuits and Embedded Systems Area Tracks

1. Embedded Computing Track. Courses deal with the engineering of computer systems as may be applied to embedded devices used for communications, multimedia, or other such restricted purposes. Courses include Computer Science 251A, Electrical and Computer Engineering 201A, 201C, M202A, M202B, M216A

2. Integrated Circuits Track. Courses deal with the analysis and design of analog and digital integrated circuits; architecture and integrated circuit implementations of large-scale digital processors for communications and signal processing; hardware/software codesign; and computer-aided design methodologies. Courses include Computer Science 251A, 252A, Electrical and Computer Engineering 215A through 215E, M216A, 221A, 221B

Physical and Wave Electronics Area Tracks

1. Electromagnetics Track. Courses deal with electromagnetic theory; propagation and scattering; antenna theory and design; microwave and millimeter wave circuits; printed circuit antennas; integrated and fiber optics; microwave-optical interaction, antenna measurement, and diagnostics; numerical and asymptotic techniques; satellite and personal communication antennas; periodic structures; genetic algorithms; and optimization techniques. Courses include Electrical and Computer Engineering 221C, 260A, 260B, 261, 262, 263, 266, 270

Signals and Systems Area Tracks

1. Communications Systems Track. Courses deal with communication and telecommunication principles and engineering applications; channel and source coding; spread spectrum communication; cryptography; estimation and detection; algorithms and processing in communication and radar; satellite communication systems; stochastic modeling in telecommunication engineering; mobile radio engineering; and telecommunication switching, queuing system, communication networks, local-area, metropolitan area, and wide-area computer communication networks. Courses include Electrical and Computer Engineering 205A, 210A, 230A through 230D, 231A, 231E, 232A through 232E, 238, 241A

2. Control Systems and Optimization Track. Courses deal with state-space theory of linear systems; optimal control of deterministic linear and nonlinear systems; stochastic control; Kalman filtering; stability theory of linear and nonlinear feedback control systems; computer-aided design of control systems; optimization theory, including linear and nonlinear programming; convex optimization and engineering applications; numerical methods; nonconvex programming; associated network flow and graph problems; renewal theory; Markov chains; stochastic dynamic programming; and queuing theory. Courses include Electrical and Computer Engineering 205A, M208B, M208C, 210B, 236A, 236B, 236C, M237, M240A, M240C, 241A, M242A

3. Signal Processing Track. Courses deal with digital signal processing theory, statistical signal processing, analysis and design of digital filters, digital speech processing, digital image processing, multirate digital signal processing, adaptive filtering, esti-
Ad Hoc Tracks
In consultation with their faculty advisers, students may petition for an ad hoc track tailored to their professional objectives. This may comprise graduate courses from established tracks, from across areas, and even from outside electrical and computer engineering. The petition must justify how the selection of courses in the ad hoc track forms a coherent set of courses, and how the proposed ad hoc track serves the professional objectives. The petition must be approved by the faculty adviser and the departmental graduate advisor.

Comprehensive Examination Plan
The MS comprehensive examination requirement is satisfied either (1) by solving a comprehensive examination problem in the final project, or equivalent, of every formal graduate electrical and computer engineering course taken. A grade-point average of at least 3.0 in the comprehensive examination problems is required for graduation. The MS individual study program is administered by the faculty advisor, the director of the area to which the students belong, and the vice chair of Graduate Affairs or (2) through completion of an individual study course (Electrical and Computer Engineering 299) under the direction of a faculty member. Students are assigned a topic of individual study by the faculty member. The study culminates with a written report and an oral presentation. The MS individual study program is administered by the faculty member directing the course, the director of the area to which the students belong, and the vice chair of Graduate Affairs. Students who fail the examination may be reexamined once with consent of the vice chair of Graduate Affairs.

Electrical and Computer Engineering PhD
Areas of Study
Students may pursue specialization across three major areas of study: (1) circuits and embedded systems, (2) physical and wave electronics, and (3) signals and systems. These areas cover a broad spectrum of specializations in, for example, communications and telecommunications, control systems, electromagnetics, embedded computing systems, engineering optimization, integrated circuits and systems, microelectromechanical systems (MEMS), nanotechnology, photonics and optoelectronics, plasma electronics, signal processing, and solid-state electronics.

Course Requirements
The selection of courses for the PhD program is tailored to the professional objectives of the students and must meet the requirements stated below. The courses should be selected and approved in consultation with the faculty adviser. Departures from the stated requirements are considered only in exceptional cases and must be approved by the departmental graduate adviser. Normally, students take additional courses to acquire deeper and broader knowledge in preparation for the dissertation research.

The minimum requirements for the PhD degree are as follows:
1. Requisite. MS degree in Electrical Engineering or a related field granted by UCLA or by an institution recognized by the UCLA Graduate Division
2. All PhD program requirements should be completed within five academic years from admission into the PhD graduate program in the Henry Samueli School of Engineering and Applied Science
3. Students must maintain a minimum cumulative grade-point average of 3.5 in the PhD program
4. Students must complete at least the following requirements: (a) four formal graduate courses selected in consultation with the faculty adviser; (b) Electrical and Computer Engineering 297; (c) one technical communications course such as Electrical and Computer Engineering 295; (d) no 500-level courses, other seminar courses, nor Electrical and Computer Engineering 296 or 375 may be applied toward the course requirements; (e) pass the PhD preliminary examination which is administered by the department and takes place once every year. In case of failure, students may be reexamined only once with consent of the departmental graduate adviser; (f) pass the University Oral Qualifying Examination which is administered by the doctoral committee; (g) complete a PhD dissertation under the direction of the faculty adviser; and (h) defend the PhD dissertation in a public seminar with the doctoral committee
5. A formal graduate course is defined as any 200-level course, excluding seminar or tutorial courses. Formal graduate coursework taken to meet the MS degree requirements may not be applied toward the PhD course requirements
6. At least two of the formal graduate courses must be in electrical and computer engineering
7. Within two academic years from admission into the PhD program, all courses should be completed and the PhD preliminary examination should be passed. It is strongly recommended that students take the PhD preliminary examination during their first academic year in the program
8. The University Oral Qualifying Examination must be taken when all required courses are complete, and within one year after passing the PhD preliminary examination
9. Students admitted originally to the MS program in the Electrical and Computer Engineering Department must complete all MS program requirements with a grade-point average of at least 3.5 to be considered for admission into the PhD program. Only after admission into the program can students take the PhD preliminary examination
10. Students must nominate a doctoral committee prior to taking the University Oral Qualifying Examination. A doctoral committee consists of a minimum of four members. By petition, one of the four members may be a faculty member from another UC campus

Written and Oral Qualifying Examinations
The written qualifying examination is known as the PhD preliminary examination in the department. The purpose of the examination is to assess student competency in the discipline, knowledge of the fundamentals, and potential for independent research. Students admitted originally to the MS program in the Electrical and Computer Engineering Department must complete all MS program requirements with a grade-point average of at least 3.5 to be considered for admission into the PhD program. Only after admission into the program can students take the PhD preliminary examination, which is held three times every year. Students are examined by a group of faculty members in their general area of study. Students who fail the examination may repeat it once only with consent of the departmental graduate adviser. The preliminary examination, together with the course requirements for the PhD program, should be completed within two years from admission into the program.

After passing the written qualifying examination described above, students are ready to take the University Oral Qualifying Examination. The nature and content of the examination are at the discretion of the doctoral committee, but ordinarily include a broad inquiry into the preparation for research. The doctoral committee also reviews the prospectus of the dissertation at the oral qualifying examination.

Students must nominate a doctoral committee prior to taking the University Oral
Qualifying Examination. A doctoral committee consists of a minimum of four members. By petition, one of the four members may be a faculty member from another UC campus.

Facilities and Programs

Computing Resources
The department maintains a server room with several racks of computer and storage servers in addition to computing resources within individual faculty labs. The network infrastructure supports a variety of Windows, UNIX, and Linux servers, workstations, and laptops. The school also offers access to a computing cluster primarily used for undergraduate and graduate teaching purposes. The campus supplies free access to a large-scale computing cluster (Hoffman2) with over 13,000 computing cores on over 1200 server nodes. Archival-class backup storage is also available through the campus.

Research Centers and Laboratories

Center for Development of Emerging Storage Systems (CoDESS)
CoDESS has a dual mission: to push the frontiers of modern data storage systems through an integrated research program and to create a highly-trained workforce of graduate students. Current research thrusts include information and coding theory for ultra-reliable data storage systems, data reduction algorithms and communication methods for cloud storage, enabling technologies for future recording paradigms and storage devices, and source-efficient signal processing techniques and architecture optimization.

Center for Engineering Economics, Learning, and Networks (CEELN)
The Center for Engineering Economics, Learning, and Networks will develop a new wave of ideas, technologies, networks, and systems that change the ways in which people (and devices) interact, communicate, collaborate, learn, teach, and discover. The center brings together an interdisciplinary group of researchers from diverse disciplines—including computer science, electrical engineering, economics, and mathematics—with diverse interests spanning microeconomics, machine learning, multiagent systems, artificial intelligence, optimization, and physical and social networks, all sharing a common passion: developing rigorous theoretical foundations to shape the design of future generations of networks and systems for interaction.

Center for Heterogeneous Integration and Performance Scaling (CHIPS)
The Center for Heterogeneous Integration and Performance Scaling addresses emerging technologies, design, and architectures to achieve a more holistic Moore’s Law for the overall system. It has pioneered the chiplet/dielet approach to heterogeneous integration on both rigid and flexible platforms, and the logic-based charge trap transistor for in-memory analog computation. Core activities include advanced heterogeneous hardware integration technologies, methodologies, and tools; wafer-scale integration; active and passive components for advanced systems; medical electronics; and in-memory analog computing. CHIPS applies these methods to the development of large-scale reliable systems.

CHIPS is multidisciplinary, integrating specialties and students in diverse areas that include electrical and computer engineering, computer science, materials science and engineering, mechanical engineering, computer science and engineering, biosciences, and medicine; with strong industry participation. CHIPS is unabashedly hardware focused, and develops students who want to build and test what they design, much of it in-house.

Center for High-Frequency Electronics
The Center for High-Frequency Electronics was established with support from several government agencies and contributions from local industries, beginning with a $10 million grant from Hewlett-Packard. The first major goal of the center is to combine, in a synergistic manner, five areas of research. These include solid-state millimeter wave devices, millimeter systems for imaging and communications, millimeter wave high-power sources (gyrotrons), GaAs gigabit logic systems, and VLSI and LSI based on new materials and structures. The center supports work in these areas by supplying the necessary advanced equipment and facilities and allows the University to play a major role in initiating and generating investigations into new electronic devices. Students, both graduate and undergraduate, receive training and instruction in a unique facility.

The second major goal of the center is to bring together the manpower and skills necessary to synthesize new areas of activity by stimulating interactions between different interdependent fields. The Electrical and Computer Engineering Department, other departments within UCLA, and local universities (such as Caltech and USC) have begun to combine and correlate certain research programs as a result of the formation of the center.

Clean Energy Research Center–Los Angeles (CERC–LA)
Lei He, Director
CERC–LA was created by UCLA to tackle many of the grand challenges related to generation, transmission, storage, and management of energy. As many energy challenges are global in nature, this center engages the participation of a multidisciplinary group of researchers from many nations. CERC–LA leads a U.S.-China clean energy and climate change research consortium. CERC–LA, together with the China National Center for Climate Change Strategy and International Cooperation (NCSC), Peking University (PKU), and Fudan University, was selected by the U.S. Department of State and the China National Development and Reform Commission as a U.S.-China EcoPartner. CERC–LA plans to have satellite offices in other cities including Shanghai and Beijing.

Circuits Laboratories
The laboratories are equipped for measurements on high-speed analog and digital circuits and are used for the experimental study of communication, signal processing, and instrumentation systems. A hybrid integrated circuit facility is available for rapid mounting, testing, and revision of miniature circuits. These include both discrete components and integrated circuit chips. The laboratory is available to advanced undergraduate and graduate students through faculty sponsorship on thesis topics, research grants, or special studies.

Electromagnetics Laboratories
The laboratories involve the disciplines of microwaves, millimeter waves, wireless electronics, and electromechanics. Students enrolled in microwave laboratory courses, such as Electrical and Computer Engineering 163DA and 164DB, special projects classes such as Electrical and Computer Engineering 199, and/or research projects, have the opportunity to obtain experimental and design experience in the following technology areas: integrated microwave circuits and antennas, integrated millimeter wave circuits and antennas, numerical visualization of electromagnetic waves, electromagnetic scattering and radar cross-section measurements, and antenna near field and diagnostics measurements.
Koc UCLA Translational Research Center
Aydogan Ozcan, Director

The center is a world-leading research nexus for new imaging, sensing, and diagnostics technologies to use in creating a massively scalable suite of ubiquitous computational laboratories, which will significantly improve the tool set for probing micro- and nano-scale objects and processes. Its focus on simplified and cost-effective designs for these analysis tools ensures they are especially suitable for point-of-care and home use, and for professional needs in resource-constrained settings. Through these next-generation technologies, the laboratory will create integrated self-learning systems and networks, specifically for sensing and diagnosis, that aim to impact measurement challenges in application focus areas—such as point-of-care medicine, mobile health, telemedicine, and environmental monitoring—with highly sensitive, specific, and yet remarkably cost-effective and massively scalable technological solutions.

Nanoelectronics Research Facility (Nanolab)

Nanolab is a state-of-the-art, 20,000-square-foot, class 10/1001000 clean-room facility that supports graduate research and teaching. The space includes the Microlab, an undergraduate teaching laboratory for device fabrication (CMOS, MEMS, and optoelectronics). With a full complement of utilities (high-purity deionized water, high-purity nitrogen, exhaust scrubbers) and the latest technologies in vibration isolation and electromagnetic shielding, Nanolab offers advanced processing equipment for fabrication and analysis. In BSL2-capable biosuites, researchers can leverage standard semiconductor process techniques with evolving biomedical, nanometer-scale fabrication to study fundamental quantum size effects; and explore novel nanometer-scale device concepts. Nanolab staff has deep knowledge of fabrication techniques and process development to support both academic and commercial research and development projects.

Photonics and Optoelectronics Laboratories

Students in the Laser Laboratory investigate the properties of lasers; and gain an understanding of the application of this modern technology to optics, communication, and holography.

The photonics and optoelectronics laboratories include facilities for research in all of the basic areas of quantum electronics. Specific areas of experimental investigation include high-powered lasers, nonlinear optical processes, ultrafast lasers, parametric frequency conversion, electro-optics, infrared detection, and semiconductor lasers and detectors. Operating lasers include mode-locked and Q-switched Nd:YAG and Nd:YLF lasers, Ti:Al2O3 lasers, ultraviolet and visible wavelength argon lasers, wavelength-tunable dye lasers, as well as gallium arsenide, helium-neon, excimer, and high-powered continuous and pulsed carbon dioxide laser systems. Also available are equipment and facilities for research on semiconductor lasers, fiber optics, nonlinear optics, and ultrashort laser pulses. These laboratories are open to undergraduate and graduate students who have faculty sponsorship for their thesis projects or special studies.

Plasma Electronics Facilities

Two laboratories are dedicated to the study of the effects of intense laser radiation on matter in the plasma state. One houses a state-of-the-art, tabletop terawatt (T3) 400fs laser system that can be operated in either a single or dual frequency mode for laser-plasma interaction studies. Diagnostic equipment includes a ruby laser scattering system, a streak camera, and optical spectrograph and multichannel analyzer. Parametric instabilities such as stimulated Raman scattering have been studied, as well as the resonant excitation of plasma waves by optical mixing. The second laboratory, located in Boelter Hall, houses the MARS laser, currently the largest on-campus university CO2 laser in the U.S. It can produce 200J, 170ps pulses of CO2 radiation, focusable to 1016 W/cm2. The laser is used for testing new ideas for laser-driven particle accelerators and free-electron lasers. Several high-pressure, short-pulse drivers can be used on the MARS. Other equipment includes a theta-pinch plasma generator, an electron linac injector, and electron detectors and analyzers.

A second group of laboratories is dedicated to basic research in plasma sources for basic experiments, plasma processing, and plasma heating.

There is also a large computing cluster called DAWSON 2 that is dedicated to the study of plasma-based acceleration, inertial fusion energy, and high-energy-density plasma science. DAWSON 2 consists of 96 HP L390 nodes, each with 12 Intel X5650 CPUs and 48 GB of RAM; and three Nvidia M2070s GPUs and 18 GB of global memory (for a total of 1152 CPUs and 288 GPUs) connected by a nonblocking QDR Infiniband network with 160TB of parallel storage from Panasas. Peak system performance is approximately 300TF/180TF (single/double precision) with a measured linpack performance of 68.1TF (double precision). DAWSON 2 is housed in the UCLA Institute for Digital Research Engineering data center.

Solid-State Electronics Facilities

Solid-state electronics equipment and facilities include a modern integrated semiconductor device processing laboratory; complete new Si and III-V compound molecular beam epitaxy systems; CAD and mask-making facilities; lasers for beam crystallization study; thin film and characterization equipment; deep-level transient spectroscopy instruments; computerized capacitance-voltage and other characterization equipment, including doping density profiling systems; low-temperature facilities for material and device physics studies in cryogenic temperatures; optical equipment, including many different types of lasers for optical characterization of superlattice and quantum well devices; and characterization equipment for high-speed devices, including high magnetic field facilities for magnetotransport measurement of heterostructures. The laboratory facilities are available to faculty, staff, and graduate students for their research.

Wireless Health Institute (WHI)

Benjamin M. Wu (Bioengineering), Director; Bruce Dobkin (Medicine/Neurology), William Kaiser (Electrical and Computer Engineering), Gregory J. Pottie (Electrical and Computer Engineering), Co-Directors

WHI leads initiatives in health care solutions in the fields of disease diagnosis, neurological rehabilitation, optimization of clinical outcomes for many disease conditions, geriatric care, and many others. WHI also promotes this new field in the international community through the founding and organization of the leading Wireless Health Conference series.

WHI technology always serves the clinician community through jointly developed innovations and clinical trial validation. Each WHI program is focused on large-scale product delivery in cooperation with manufacturing partners. WHI collaborators include the UCLA schools of Medicine, Nursing, and Engineering and Applied Sciences; Clinical Translational Science Institute for medical research; Ronald Reagan UCLA Medical Center; and faculty from many departments across UCLA. WHI education programs span high school, undergraduate, and graduate students, and offer training in end-to-end product development and delivery for WHI program managers.

WHI develops innovative, wearable biomedical monitoring systems that collect, integrate, process, analyze, communicate, and present information so that individuals become engaged and empowered in their own health care, improve their quality of life, and reduce burdens on caregivers.
WHI products appear in diverse areas including motion sensing, wound care, orthopaedics, digestive health and process monitoring, advancing athletic performance, and many others. Clinical trials validating WHI technology are underway at 10 institutions. WHI products developed by the UCLA team are now in the marketplace in the U.S. and Europe. Physicians, nurses, therapists, other providers, and families can apply these technologies in hospital and community practices. Academic and industry groups can leverage the organization of WHI to rapidly develop products in complete-care programs, and validate in trials. WHI welcomes new team members, and continuously forms new collaborations with colleagues and organizations in medical science and health care delivery.

Multidisciplinary Research Facilities
The department is also associated with several multidisciplinary research centers including:
- California NanoSystems Institute (CNSI)
- Center for Heterogeneous Integration and Performance Scaling (CHIPS)
- Center for High-Frequency Electronics (CHFE)
- Center for Nanoscience Innovation for Defense (CNID)
- Center of Excellence in Green Nanotechnology (CEGN)
- Functional Engineered Nano Architectonics Focus Center (FENA)
- Plasma Science and Technology Institute
- Translational Applications of Nanoscale Multiferroic Systems (TANMS)
- WIN Institute of Neurotronics (WINs)

Faculty Groups and Laboratories
Department faculty members also lead a broad range of research groups and laboratories that cover a wide spectrum of specialties, including:
- Algorithmic Research in Network Information Laboratory (Fragouli)
- Antenna Research, Analysis, and Measurement Laboratory (Rahmat-Samii)
- BioPhotonics Laboratory (Ozcan)
- CAD for VLSI Design and Manufacturing, Machine Learning Systems in Emerging Technologies (Gupta)
- CMOS Research Laboratory (Woo)
- Communication Circuits Laboratory (Razavi)
- Complex Networks Group (Roychowdhury)
- Cyber-Physical Systems Laboratory (Tabuada)
- Device Research Laboratory (K. Wang)
- Digital Microwave Laboratory (E. Wang)
- Energy and Electronic Design Automation Laboratory (He)
- High-Performance Mixed Mode Circuit Design Group (Yang)
- High-Speed Electronics Laboratory (Chang)
- Image Communications Laboratory (Villasenor)
- Information Theory and Systems Laboratory (Diggavi)
- Integrated Circuits and Systems Laboratory (Abidi)
- Interconnected and Integrated Bioelectronics Laboratory (2BL) (Emaminejad)
- Laboratory for Embedded Machines and Ubiquitous Robotics (Mehta)
- Laser-Plasma Group (Joshi)
- MedAdvance: Machine Learning and Artificial Intelligence for Medicine (van der Schaar)
- Mesoscopic Optics and Quantum Electronics Laboratory (Wong)
- Nanoelectronics Research Center (Candler)
- Networked and Embedded Systems Laboratory (Srivastava)
- Neural Computation and Engineering Laboratory (Kao)
- Neuroengineering Group (Markovic)
- Open Processor Laboratory (He)
- Optoelectronics Circuits and Systems Laboratory (Jalali)
- Optoelectronics Group (Yablonovitch)
- Quantum Biology Tech (QuBit) (Aiello)
- Quantum Light-Matter Cooperative (Q-LMC) (Carbajo)
- Robust Information Systems Laboratory (Dolecek)
- Secure Systems and Architectures (SSysArch) (Sehatbaksh)
- Sensors and Technology Laboratory (Candler)
- Signal Processing and Circuit Electronics Group (Pamarti)
- Speech Processing and Auditory Perception Laboratory (Alwan)
- Terahertz Devices and Intersubband Nanostructures Group (Williams)
- Terahertz Electronics Laboratory (Jarrahi)
- Visual Machines Group (Kadambi)

Faculty Areas of Thesis Guidance
Professors
Asad A. Abidi, PhD (UC Berkeley, 1981)
- High-performance analog electronics, device modeling
Abeer A.H. Alwan, PhD (MIT, 1992)
- Speech processing, acoustic properties of speech sounds with applications to speech synthesis, recognition by machine and coding, hearing-aid design, and digital signal processing
Katsushi Arisaka, PhD (U. Tokyo, Japan, 1985)
- High energy and astroparticle experiments
Danijela Cabric, PhD (UC Berkeley, 2007)
- Wireless communications system design, cognitive radio networks, VLSI architectures of signal processing and digital communication algorithms, performance analysis and experiments on embedded system platforms
Robert N. Candler, PhD (Stanford, 2006)
- MEMS/INEMS for compact free-electron lasers, miniature medical devices, nanoscale magnetic structures and devices, additive manufacturing, fundamental limits of micro- and nano-scale devices
M.-C. Frank Chang, PhD (National Chiao-Tung U., Taiwan, 1979)
- High-speed semiconductor (GaAs, InP, and Si) devices and integrated circuits for digital, analog, microwave, and optoelectronic integrated circuit applications
Panagiotis D. Christofides, PhD (U. Minnesota, 1996)
- Process modeling, dynamics and control, computational and applied mathematics
Jason (Jingsheng) Cong, PhD (U. Illinois, 1990)
- Novel architectures and compilation for customizable computing, design automation for VLSI systems and other emerging technologies such as quantum computing and highly scalable algorithms
Suhas Diggavi, PhD (Stanford, 1999)
- Wireless communication, information theory, wireless networks, data compression, signal processing
Lara Dolecek, PhD (UC Berkeley, 2007)
- Information and coding theory, graphical models, statistical algorithms and computational methods with applications to large-scale and complex systems for data processing, communication and storage
Christina Fragouli, PhD (UCLA, 2000)
- Network coding, algorithms for networking, wireless networks and network security
Bahman Gharesifard, PhD (Queen’s U., Canada, 2009)
- Systems and controls, network optimization, distributed decision-making, data-driven control, decentralization in machine learning, online optimization, social and economic networks, game theory, optimal transport theory, geometric control and mechanics
Puneet Gupta, PhD (UC San Diego, 2007)
- CAD for VLSI design and manufacturing, physical design, manufacturing-aware circuits and layouts, design-aware manufacturing
Lei He, PhD (UCLA, 1999)
- Artificial Intelligence (AI) and Internet of Things (IoT) for health, transportation, and power and water sustainability; programmable logic (FPGA), re-configurable computing, AI-on-a-chip, neuromorphic computing, and quantum computing; modeling, simulation, and computer-aided design of VLSI circuits and IoT systems
Henry Samue1, PhD (UCLA, 1980)

VLSI implementation of signal processing and digital communication systems, high-speed digital integrated circuits, digital filter design

Stefano Soatto, PhD (Caltech, 1996)

Computer vision, systems and control theory, detection and estimation, robotics, system identification, shape analysis, motion analysis, image processing, video processing, autonomous systems

Jason L. Speyer, PhD (Harvard, 1968)

Stochastic and deterministic optimal control and estimation with application to aerospace systems; guidance, flight control, and flight mechanics

Mani B. Srivastava, PhD (UC Berkeley, 1992)

Wireless networking, embedded computing, networked embedded systems, sensor networks, mobile and ubiquitous computing, low-power and power-aware systems

Paulo Tabuada, PhD (Technical U. Lisbon, Portugal, 2002)

Real-time, networked, embedded control systems; mathematical systems theory including discrete-event, timed, and hybrid systems; geometric nonlinear control; algebraic/categorical methods

Miehs a van der Schaaf, PhD (Eindhoven U. Technology, Netherlands, 2001)

Multimedia processing and compression, multimedia networking, multimedia communications, multimedia architectures, enterprise multimedia streaming, mobile and ubiquitous computing

John D. Villasenor, PhD (Stanford, 1989)

Communications, signal and image processing, configurable computing systems, and design environments

Kang L. Wang, PhD (MIT, 1970)

Nanoelectronics and optoelectronics, nano and molecular devices, MBE and superlattices, microwave and millimeter electronics, quantum information

Yuanxun Ethan Wang, PhD (U. Texas Austin, 1996)

Smart antennas, RF and microwave power amplifiers, numerical techniques, DSP techniques for microwave systems, phased arrays, wireless and radar systems, microwave integrated circuits

Richard D. Wesel, PhD (Stanford, 1996)

Communication theory and signal processing with particular interests in channel coding, including turbo codes and trellis codes, joint algorithms for distributed communication and detection

Benjamin Williams, PhD (MIT, 2003)

Terahertz and mid-infrared photonics, plasmonics, and metamaterials; quantum-cascade lasers; intersubband devices; transport and optoelectronics in low-dimensional semiconductor and other quantum materials; terahertz spectroscopy and imaging

Chee Wei Wong, ScD (MIT, 2003)

Ultrafast and nonlinear optics, quantum communications and computing, chip-scale optoelectronics, precision measurements and sensing

Jason C.S. Woo, PhD (Stanford, 1987)

Solid-state technology, CMOS and bipolar device/circuit optimization, novel device design, modeling of integrated circuits, VLSI fabrication

C.-K. Ken Yang, PhD (Stanford, 1998)

High-performance VLSI design, digital and mixed-signal circuit design
Associate Professors

Aydin Babakhani, PhD (Caltech, 2008)
Millimeter-wave integrated circuits, wirelessly powered single-chip circuits

Sam Emaminejad, PhD (Stanford, 2014)
Biological and chemical sensors, wearable and flexible electronics, MEMS and NEMS fabrication, statistical physics and inference, identification of neural systems

Assistant Professors

Clairce D. Aiello, PhD (MIT, 2018)
Network neuroscience, machine learning, cortical and subcortical neural networks

Jonathan C. Kao, PhD (Stanford, 2016)
Computational imaging, computer vision, robotics, medical device design

Xiang Anthony Chen, PhD (Carnegie Mellon, 2017)
Human-computer interaction, sensing and interaction techniques, intelligent interactive systems, computational design and fabrication

Achuta Kadambi, PhD (MIT, 2018)
Computational imaging, computer vision, robotics, medical device design

Diana L. Huffaker, PhD (U. Texas Austin, 1995)
Solid-state nanotechnology, MWIR optoelectronic devices, solar cells, Si photonics, novel materials

Asad M. Madni, PhD (California Coast, 1987)
Development and commercialization of intelligent sensors and systems and microwave instrumentation, signal processing

Ingrid M. Verbauwhede, PhD (Katholieke U. Leuven, Belgium, 1991)
Embedded systems, VLSI, architecture and circuit design and design methodologies for applications in security, wireless communications and signal processing

Eli Yablonovitch, PhD (Harvard, 1972)
Optoelectronics, high-speed optical communications, photonic integrated circuits, photonic crystals, plasmonic optical and plasmonic circuits, quantum computing and communication

Adjunct Associate Professor

Chi On Chui, PhD (Stanford, 2004)
Nanoelectronic and optoelectronic devices and technology, heterostructure semiconductors, monolithic integration of heterogeneous technology, exploratory nanotechnology

Adjunct Assistant Professors

Shervin Moloudi, PhD (UCLA, 2008)
Telecommunication analog and high-frequency circuit design

Zachary Taylor, PhD (UC Santa Barbara, 2009)
Biomedical optics, imaging system design, novel contrast-generation mechanisms

Electrical and Computer Engineering Courses

Lower-Division Courses

1. Undergraduate Seminar (F) Seminar, one hour; outside study, six hours. Introduction by faculty members and industry lecturers to electrical engineering disciplines through current and emerging applications of autonomous systems and vehicles, biomedical devices, aerospace electronics, consumer products, data science, and entertainment products. Letter grading. Mr. Joshi, Mr. Williams (F)

2. Physics for Electrical Engineers. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: Physics 1C. Introduction to concepts of modern physics necessary to understand solid-state devices, including elementary quantum theory, Fermi energies, and concepts of electrons in solids. Discussion of electrical properties of semiconductors leading to operation of junction devices. Letter grading. Mr. Williams (F)

2H. Physics for Electrical Engineers (Honors). (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: Physics 1C. Honors course parallel to course 2. Letter grading. Mr. Alwan (F)

3. Introduction to Electrical Engineering. (4) Lecture, two hours; laboratory, two hours; outside study, eight hours. Introduction to field of electrical engineering. Basic circuits techniques with application to explanation of electrical engineering inventions such as telecommunications, electrical grid, automatic computing and control, and enabling device technology. Research frontiers of electrical engineering. Letter grading. Mr. Pottie (F,Sp)

4. Circuit Theory I. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 2; course 3 (or Computer Science 1 or Materials Science 10), Mathematics 33A, Physics 1B. Corequisites: course 11L. Development of linear circuit analysis. Resistive circuits, capacitors, inductors and ideal transformers, Kirchhoff laws, node and loop analysis, first-order circuits, second-order circuits, Thevenin and Norton theorems, sinusoidal steady state. Letter grading. Mr. Pamarti (W)

10H. Circuit Theory I (Honors). (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 2; course 3 (or Computer Science 1 or Materials Science 10), Mathematics 33A, Physics 1B. Corequisites: course 11L. Enforced only for Computer Science and Engineering and Electrical Engineering majors. Mathematics 33B. Introduction to linear circuit analysis. Resistive circuits, capacitors, inductors and ideal transformers, Kirchhoff laws, node and loop analysis, first-order circuits, second-order circuits, Thevenin and Norton theorems, sinusoidal steady state. Letter grading. Mr. Pamarti (F)

11L. Circuits Laboratory I. (1) Lecture, one hour; laboratory, one hour; outside study, one hour. Enforced corequisite: course 10. Experiments with basic circuits containing resistors, capacitors, inductors, and transformers. Ohm’s law and voltage and current division, Thevenin and Norton equivalent circuits, superposition, transient and steady state analysis. Letter grading. Mr. Srivastava (F,W,Sp)

19. Fiat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many potential paths of discovery at UCLA. Letter grading.

89. Honors Seminars. (1) Seminar, three hours. Limited to 20 students. Designed as adjunct to lower-division lecture course. Exploration of topics in greater depth through supplemental readings, papers, or other activities and led by lecture course instructor. May be applied toward honors credit for eligible students. Honors students content on transcript of P/NP or letter grading. Mr. Pottie

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower-division students mentored by a faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.

Upper-Division Courses

100. Electrical and Electronic Circuits. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Mathematics 33A, 33B or Mechanical and Aerospace Engineering 82, Physics 1C. Not open for credit to students with credit for course 110. Electrical quantities, linear circuit elements, circuit principles, circuit theorems, transient and steady state circuit behavior, semiconductor diodes and transistors, small signal models, and operational amplifiers. Letter grading. Mr. Razavi (F,W,Sp)

101A. Engineering Electromagnetics. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Mathematics 32A and 32B, or 33A and 33B, Physics 1C. Electromagnetic field concepts, waves and phasors, transmission lines and Smith chart, transient responses, analysis of Maxwell equations, static and quasi-static electric and magnetic fields. Letter grading. Mr. Mrishi, Mr. Williams (F)

Alan N. Willson, Jr., PhD (Syracuse, 1967)
Theory and application of digital signal processing including VLSI implementations, digital filter design, nonlinear circuit theory

Kung Yao, PhD (Princeton, 1965)
Communication theory, signal and array processing, sensor (dop) wireless communication systems, VLSI and systolic algorithms

Mr. Joshi, Mr. Williams (F)
101B. Electromagnetic Waves. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 101A. Time-varying fields and Maxwell equations, plane wave propagation and interaction with media, energy flow and Poynting vector, guided waves in waveguides, transmission lines, group velocity, radiation and antennas. Letter grading. Mr. Y.E. Wang (W,Sp)

110. Circuit Theory II. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Enforced requisite: courses 10, 101B (enforced only for Computer Science and Engineering and Electrical Engineering majors). Sinusoidal excitation and phasors, AC steady state analysis, AC steady state power, network functions, poles and zeros, frequency response, mutual inductance, ideal transformer, application of Laplace transforms to circuit analysis. Letter grading. Mr. Abidi, Mr. Mamarti (W)

110H. Circuit Theory II (Honors). (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 10, 101B (enforced only for Computer Science and Engineering and Electrical Engineering majors). Sinusoidal excitation and phasors, AC steady state analysis, AC steady state power, network functions, poles and zeros, frequency response, mutual inductance, ideal transformer, application of Laplace transforms to circuit analysis. Letter grading. Mr. Abidi, Mr. Mamarti (W)

110L. Circuit Measurements Laboratory. (2) Laboratory, four hours; outside study, two hours. Requisite: course 100 or 110. Experiments with basic circuits containing resistors, capacitors, inductors, and op-amps. Ohm’s law voltage and current division, Thevenin and Norton equivalent circuits, superposition, transient and steady state analysis, and frequency response principles. Letter grading. Mr. Razavi (F,W,Sp)

111L. Circuits Laboratory II. (1) Lecture, one hour; laboratory, one hour; outside study, one hour. Enforced requisite: course 110L. Corequisite: course 1101. Enforced requisite: course 110. Experiments with electrical circuits containing resistors, capacitors, inductors, transformers, and op-amps. Steady state power analysis, frequency response principal, op-amp-based circuit synthesis, and two-port network principles. Letter grading. Mr. Parnami (W,Sp)

112. Introduction to Power Systems. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 110. Comprehensive overview of generation and operation of interconnected power systems. Development of appropriate models for interconnected power systems and learning to use and interpret power flow, economic dispatch, and short circuit analysis. Introduction to power system transient dynamics. Letter grading. Mr. Tabuada (F)

113DA. Digital Signal Processing Design. (4) Lecture, two hours; laboratory, four hours; outside study, six hours. Enforced requisite: course 113. Real-time implementation of digital signal processing algo-

Mr. K.L. Wang (Sp)

142. Linear Systems: State-Space Approach. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 102. State-space methods of linear system analysis and synthesis, application to control systems, control system modeling. Letter grading.

Mr. Tabuada (Not offered 2021-22)

C143A. Neural Signal Processing. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 131A, Mathematics 33A. Topics include fundamental properties of electrical activity in neurons; technology for measuring neural activity; spiking statistics and Poisson processes; generative models and classification; regression and Kalman filtering; principal components analysis, factor analysis, and expectation maximization. Concurrently scheduled with course C243A. Letter grading.

Mr. Diggavi (Sp)

M146. Introduction to Machine Learning. (4) (Same as Computer Science M146.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 131A, Mathematics 170A or 170B or Statistics 100A. Computer Science 33. Introduction to breadth of data science. Foundations for modeling data sources, principles of operation of computer methods for data analysis, and application of tools and models to data gathering and analysis. Topics include statistical foundations, regression, classification, kernel methods, clustering, expectation maximization, unsupervised data analysis, decision theory, reinforcement learning and deep learning. Letter grading. Ms. Dolbecq (F,Sp)

C147. Neural Networks and Deep Learning. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 131A, 133A or 205A, and M146, or equivalent. Review of machine learning concepts; maximum likelihood; supervised classification; neural network architectures; back-propagation; training neural networks; optimization for training neural networks; convolutional neural networks; practical CNN architectures; deep learning libraries in Python; recurrent neural networks, backpropagation through time, long short-term memory, hierarchical recurrent networks; variational autoencoders; generative adversarial networks; adversarial examples and training. Concurrently scheduled with course C247. Letter grading.

Mr. Kao (W)

M148. Introduction to Data Science. (4) (Same as Computer Science M148.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: one course from 131A, Civil and Environmental Engineering 110, Mathematics 170A, Statistics 170E, or Statistics 100A, and Computer Science 31 or Program in Computing 10A, and 10B. How to analyze data arising in real world so as to understand corresponding phenomenon. Covers in machine learning, data analytics, and statistical modeling classically employed for prediction. Comprehensive, hands-on overview of data science domain by blending theoretical and practical instruction. Data science lifecycle: data selection and cleaning, feature engineering, model selection, and prediction methodologies. Letter grading.

Mr. Babakhani (F)

M155. Introduction to Microscale and Nanoscale Manufacturing. (4) Chemical Engineering 151S, Chemical Engineering 151S, and Mechanical and Aerospace Engineering 183SB. Lecture, three hours; laboratory, four hours; outside study, five hours. Hands-on experience in manufacture of MEMS devices and microtools: techniques, design tools, power and communication methods, mechanisms, constraints, and microfabrication and nanofabrication. Focus on concepts, physics, and instruments of various microfabrication and nanofabrication techniques, broadly applied in industry and academia, including various photolithography technologies, physical and chemical deposition methods, and physical and chemical etching methods. Hands-on experience for fabricating microstructures and nanostructures in modern clean-room environment. Letter grading.

Mr. Chou (FW)

Mr. Rahmat-Samii (Sp)

163A. Introductory Microwave Circuits. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Enforced requisite: course 101B. Theory and design of microwave circuits and systems, radar systems, wireless sensors, and biological applications of microwave systems. Letter grading.

Mr. Jalaali (W)

163B. Microwave and Wireless Design I. (4) Lecture, four hours; laboratory, three hours; outside study, eight hours. Enforced prerequisites: courses 101A, 101B. Course 163B is required to 163DB. Limited to senior Electrical Engineering majors. CAD tools of microwave design for line-based circuits and components to address need in industry and research community for students with microwave and wireless circuit design experiences. Standard design procedure for waveguide and transmission line-based microwave circuits and systems to gain experience in using Microwave CAD software such as Agilent ADS or HFSS. How to fabricate and test these designs. In Progress, subject to be given only upon completion of course 163DB.

Mr. Y.E. Wang (W)

163DB. Microwave and Wireless Design II. (4) Lecture, one hour; laboratory, three hours; outside study, eight hours. Enforced prerequisites: courses 101A, 101B, 163A, 163B. Limited to senior Electrical Engineering majors. Design of radio frequency circuits and systems, with emphasis on both theoretical foundations and hands-on experience. Design of radio frequency transceivers and their building blocks according to given specifications or in form of open-ended problems. Introduction to advanced topics related to projects through lecture and laboratories. Creation by students of end-to-end systems in application context, managing trade-offs across subsystems while meeting constraints and optimizing metrics related to cost, performance, ease of use, manufacturability, and other real-world issues and writing presentations of project results required. Letter grading.

Ms. Kao (Sp)

164DA-164DB. Radio Frequency Design Project I, II. (4–4) Lecture, one hour; laboratory, three hours; outside study, eight hours. Enforced prerequisite: course 115B. Course 164DA is enforced requisite to 164DB. Limited to senior Electrical Engineering majors. Design of radio frequency circuits and systems, with emphasis on both theoretical foundations and hands-on experience. Design of radio frequency transceivers and their building blocks according to given specifications or in form of open-ended problems. Introduction to advanced topics related to projects through lecture and laboratories. Creation by students of end-to-end systems in application context, managing trade-offs across subsystems while
meeting constraints and optimizing metrics related to cost, performance, ease of use, manufacturability, energy efficiency, testability, and other real-world issues. Oral and written presentations of project results required. In Progress (164DA) and letter (164DB) grading.

Mr. Chang, Mr. Razavi (W,SP)

170A. Principles of Photonics. (4) Lecture, four hours; recitation, one hour; outside study, seven hours. Enforced requisites: courses 2, 101A. Development of solid foundation on essential principles of photonics from around world with minimum prior knowledge on this subject. Topics include optical properties of materials, light propagation and modes, optical interferometers and resonators, optical communications, principles of lasers and light-emitting diodes, and optical detection. Letter grading. Mr. Liu (FW)

170B. Photonic Devices and Circuits. (4) Lecture, four hours; recitation, one hour; outside study, seven hours. Enforced requisite: course 170A. Coverage of core knowledge of practical photonic devices and circuits. Topics include optical waveguides, optical fibers, optical amplifiers, optical modulators, lasers, light-emitting diodes, optical detectors, and integrated photonic devices and circuits. Letter grading. Mr. Liu (Not offered 2021-22)

170C. Photonic Sensors and Solar Cells. (4) Lecture, four hours; laboratory, one hour; outside study, seven hours. Enforced requisite: course 101A. Recommended: courses 2, 170A. Fundamentals of detection of light for communication and sensing, as well as the development of solid foundation on essential principles of solar cells. Introduction to radiometry, semiconductor photodetectors, noise processes and figures of merit, thermal detectors, and photovoltaic solar cells of various types and materials. Letter grading. Mr. Williams (Sp)

M171L. Data Communication Systems Laboratory. (2 to 4) (Same as Computer Science M171L) Laboratory, four to eight hours; outside study, two to four hours. Recommended preparation: course M116L. Limited to seniors. Not open to students with credit for course M117. Interpretation of analog-signaling aspects of digital systems and data communications through experience in using contemporary test instruments to generate and display signals in relevant laboratory setups. Use of oscilloscopes, pulse and function generators, baseband spectrum analyzers, digital and analog logic analyzers, and desktop computers to test and analyze signals in modern and traditional laboratory environments, and interfaces. Letter grading. Mr. Jaleel (Not offered 2021-22)

173DA-173DB. Design of Robotic Systems. (Design, 4-4) Lecture, one hour; laboratory, three hours; outside study, eight hours. Introduction to measurement of basic photonic devices, including LEDs, lasers, detectors, and amplifiers; fiber-optic fundamentals and measurement of fiber systems. Modulation techniques, including AM, FM, and phase and suppressed carrier methods. Possible projects include lasers, optical communication, and biomedical imaging and sensing. 173DA. Enforced requisite: course 101A. Recommended: course 170A or Biomedical Engineering C170. Choice of project preliminary design. In Progress grading (credit to be given only on completion of course 173DB). 173DB. Limited to seniors. Not open to students with credit for course 173DA. Preparation: course 173DA. Finalization of design and testing of projects began in course 173DA. Letter grading. Mr. Stafsudd (Not offered 2021-22)

176. Photonics in Biomedical Applications. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Enforced requisite: course 101A. Study of different types of optical systems and their physical characteristics. Topics include design and current and projected biomedical applications. Specific capabilities of photonics to be related to each example. Letter grading. Mr. Ozcan (Sp)

180DA-180DB. Systems Design. (Design, 4-4) Limited to seniors and graduate students. Advanced systems design integrating communications, control, and signal processing subsystems. Introduction to advanced topics related to projects through lecture and laboratory. Course projects may include design of coherent radiation and particle beams, and renewable energy sources. Letter grading. Mr. Mori (F)

188. Special Courses in Electrical Engineering. (4) Lecture, four hours; discussion, two hours; outside study, seven hours. Special topics in electrical engineering for undergraduate students taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated once for credit with topic or instructor change. Letter grading. (F, W, SP)

189. Advanced Honors Seminars. (1) Seminar, three hours. Limited to 20 students. Designed as ad-junct to undergraduate lecture course. Exploration of topics in greater depth through supplemental readings, papers, or other activities and led by lecture course instructor. May be applied toward honors credit for eligible students. Honors content noted on transcript, P/NP or letter grading. (F, W, SP)

194. Research Group Seminars: Electrical Engineering. (2 to 4) Seminar, four hours; outside study, eight hours. Designed for undergraduate students who are part of research group. Discussion of research methods and current trends in field. May be repeated for credit. Letter grading. (FW, SP)

199. Directed Research in Electrical Engineering. (2 to 8) Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation under guidance of faculty member and reading paper or project required. May be repeated for credit with school approval. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading. (FW, SP)

Graduate Courses

201A. VLSI Design Automation. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Recommended: courses 101A, 102. Design automation for integrated circuits. Topics include principles of digital circuit design automation, VLSI circuits and systems, including introduction to circuit and system platforms such as field programmable gate arrays and multi-core systems; high-level synthesis, logic synthesis, and technology mapping; physical design; and testing and verification. Letter grading. Mr. Gupta (Not offered 2021-22)

201C. Modeling of VLSI Circuits and Systems. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Recommended: course 115C. Challenges of digital circuit design and layout in deeply scaled technologies, with focus on design-manufacturing interactions. Simulation of large-scale digital design flow; basic manufacturing flow; lithographic patterning; resolution enhancement, and mask preparation; yield and variability modeling; circuit reliability and aging issues; design rules and their origins; layout design for manufacturing; test structures and process control; circuit and architecture methods for variability mitigation. Letter grading. Mr. He (Sp)

201D. Design in Nanoscale Technologies. (4) Lecture, four hours; outside study, eight hours. Enforced requisite: course 115C. Challenges of digital circuit design and layout in deeply scaled technologies, with focus on design-manufacturing interactions. Simulation of large-scale digital design flow; basic manufacturing flow; lithographic patterning; resolution enhancement, and mask preparation; yield and variability modeling; circuit reliability and aging issues; design rules and their origins; layout design for manufacturing; test structures and process control; circuit and architecture methods for variability mitigation. Letter grading. Mr. Gupta (W)

M202A. Embedded Systems. (4) Same as Computer Science M213A) Lecture, four hours; discussion, one hour; outside study, seven hours. Designed for graduate computer science and electrical engineering students. Methodologies and technologies for design of embedded systems. Topics include hardware and software platforms for embedded systems, techniques for modeling and optimization codevelop-ment. Letter grading. Mr. Gupta (W)

Electrical and Computer Engineering Department / 99
hardware and software architecture optimization. Theory of computation as well as principles and design methods. Letter grading. Mr. Srivastava (F)

M202B. Energy-Aware Computing and Cyber-Physical Systems. (4) (Same as Computer Science M213B.) Lecture, four hours; outside study, eight hours. Repeatable for credit with topic change. S/U or letter grading. Mr. Yang (Not offered 2021-22)

M209A. Special Topics in Circuits and Embedded Systems. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Special topics in one or more aspects of circuits and embedded systems, such as digital, analog, mixed-signal, and radio frequency integrated circuits (RF ICs); electronic design automation; wireless communication circuits and systems; embedded processor architectures; embedded software; distributed sensor and actuator networks; robotics; and embedded security. May be repeated for credit with topic change. S/U grading.

M208B. Seminar: Circuits and Embedded Systems. (2 to 4) Seminar, two to four hours; outside study, four to eight hours. Seminars and discussions on current and advanced topics in one or more aspects of circuits and embedded systems, such as digital, analog, mixed-signal, and radio frequency integrated circuits (RF ICs); electronic design automation; wireless communication circuits and systems; embedded processor architectures; embedded software; distributed sensor and actuator networks; robotics; and embedded security. May be repeated for credit with topic change. S/U grading.

M210A. Adaptation and Learning. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Preparation: prior training in probability theory, random processes, and linear algebra. Recommended: course 210A. Subject matter includes: mean-square error estimation and filters, least-squares estimation and filters, steepest-descent algorithms, stochastic-gradient algorithms, convergence, stability, tracking, and performance analyses. Methods for adaptation and learning, adaptive filters, learning and classification, optimization. Letter grading.

M210B. Inference over Networks. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Preparation: prior training in probability theory, random processes, linear algebra, and adaptation. Enforced requisite: course 210A. Subject matter includes: mean-square error estimation and filters, least-squares estimation and filters, steepest-descent algorithms, stochastic-gradient algorithms, convergence, stability, tracking, and performance analyses. Distribution optimization, Online and distributed adaptation and learning, and semiparametric and nonparametric work behavior. Incremental, consensus, diffusion, and gossip strategies. Letter grading.

M211B. Digital Image Processing II. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Preparation: course 211A. Subject matter includes: intro-duction of digital image processing theory and computer programming experience. Enforced requisite: course 113. Theory and applications of digital signal processing of speech signals, mathematical models of human speech production and perception mechanisms, speech analysis/synthesis. Techniques include linear prediction, filter-bank models, and homo-morphic filtering. Applications to speech synthesis, automatic recognition, and hearing aids. Letter grading. Ms. Alwan (F)

M214A. Digital Signal Processing. (4) Lecture, three hours; laboratory, two hours; outside study, seven hours. Requisite: course 113. Subject matter includes: introduction to complex DSP algorithms in emerging applications for personal communications and healthcare. Letter grading. Mr. Markovic (F)

M216B. VLSI Signal Processing. (4) Lecture, four hours; outside study, eight hours. Advanced concepts in VLSI signal processing with emphasis on circuit design and optimization within block-based description that can be mapped to hardware. Fundamental concepts from digital signal processing theory, and circuit design applied to complex DSP algorithms in emerging applications for personal communications and healthcare. Letter grading. Mr. Markovic (W)

M216C. VLSI in Computer System Design. (4) Lecture, four hours; laboratory, four hours; outside study, four hours. Preparation: course 211A and 211B. Subject matter includes: theory and application in computer systems. In-depth studies of VLSI architectures and VLSI design tools. Letter grading. (Not offered 2021-22)
218. Network Economics and Game Theory. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Discussion of existing multiagent learning techniques and their applicability. Includes computer projects that explore entire data analysis and modeling cycle: collecting and cleaning large-scale data, deriving predictive models, and evaluating performance of different models. Letter grading.

219. Large-Scale Data Mining: Models and Algorithms. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Introduction of variety of scalable data modeling tools, both predictive and causal, from different disciplines. Topics include supervised and unsupervised data mining tools from machine learning and computational linear algebra. Focus on techniques to evaluate relative performance of different methods and their applicability. Includes computer projects that explore entire data analysis and modeling cycle: collecting and cleaning large-scale data, deriving predictive models, and evaluating performance of different models. Letter grading.

221E. Channel Coding Theory. (4) Lecture, four hours; outside study, eight hours. Requisite: course 131A or equivalent. Modeling, analysis, and design of queuing systems; traffic management and design of intelligent transportation systems, communications networks, autonomous vehicular networks, business and management systems. Markovian and non-Markovian queuing systems and networks. Applications to transportation networking, transport of autonomous vehicular systems; computer communications, management and business systems. Letter grading.

222. Stochastic Modeling with Applications to Telecommunication Systems. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Stochastic processes as applied to study of telecommunication systems, traffic engineering, business, and management. Discrete-time and continuous-time Markov processes, regenerative processes, Markov-kernel and semiregenerative stochastic processes. Decision and reward processes. Applications to traffic and queueing analysis of basic telecommunication and computer communication networks, Internet, and management systems. Letter grading.

235. Mathematical Foundations of Data Storage Systems. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 131A or equivalent. Development of mathematical models and techniques for large-scale, ultra-reliable, fast, and affordable data storage systems. Topics include, but are not limited to, graph-based codes and algebraic codes and decoders for modern storage systems (Flash, raw materials), re-writing codes, algorithms for data deduplication and synchronization, and redundant array of independent disks (RAID) systems. Letter grading.

Ms. Dolecek (W,Sp)

Ms. Fragouli, Mr. Vandenberghe

Mr. Vandenberghe (W)

Mr. Vandenberghe (Sp)

M237. Dynamic Programming. (4) Same as Mechanical and Aerospace Engineering M276E. Lecture, four hours; outside study, eight hours. Reconfig- mended requisites: course 232A or 238A or 236B. In- troduction to linear programming, sequential decision de- cision processes. Finite horizon model in both deter- ministic and stochastic cases. Finite-state infinite horizon model. Methods of solution. Examples from inventory theory, convex optimization, control and decision processes. Markov decision processes, combinatorial optimiza- tion, communications. Letter grading.

Mr. Vandenberghe (Not offered 2021-22)

238. Multimedia Communications and Processing. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 131A. Key concepts, principles, and algorithms of online learning and how to make decisions under uncertainty, online prediction, bandits, online convex optimization, multi- arm bandits learning, multitagent learning, multiagent deep learning. Letter grading.

M238S. Seminar: Signals and Systems. (2 to 4) Seminar, two to four hours; outside study, four to eight hours. Special topics in one or more aspects of signals and systems, such as communica- tions, control, image processing, information theory, multimedia, computer networking, optimization, speech pro- cessing, telecommunications, and VLSI signal processing. May be repeated for credit with topic change. S/U or letter grading.

Ms. Dolecek (W,Sp)

M239S. Special Topics in Signals and Systems. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 131A. Key concepts, principles, and algorithms of online learning and how to make decisions under uncertainty, online prediction, bandits, online convex optimization, multi- arm bandits learning, multitagent learning, multiagent deep learning. Letter grading.

M240A. Linear Dynamic Systems. (4) Same as Chemical Engineering M260A and Mechanical and Aerospace Engineering M270A. Lecture, four hours; outside study, eight hours. Requisite: course 141 or Mechanical and Aerospace Engineering 171A. State- space description of linear time-invariant (LTI) and time-varying (LTV) systems in continuous and dis- crete time. Linear algebra concepts such as eigenvalues and eigenvectors, Cayley-Hamilton theorem, Jordan form; solution of state equations; stability, controllability, observability, real- ity, and minimality. Stabilization design via state feedback and observers; separation principle. Con- nections with transfer function techniques. Letter grading.

Mr. Tabuada (F)

Mr. Tabuada (F)

Mr. Diggavi (Not offered 2021-22)

Mr. Tabuada (W)

M242A Neural Network Signal Processing. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 131A, Mathematics 33A. Topics include fundamental properties of electrical activity in neurons; technology for measuring neural activity; spikes and statistical and polynomial models; generative models and classification; regression and Kalman filtering; principal components analysis, factor analysis, and expectation maximization. Con- temporary topics under study, scheduled with course C242A. Letter grading.

Mr. Kao (Sp)

246. Foundations of Statistical Machine Learning. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: course 131A, Mathematics 33A. Introduction to foundations of statistical machine learning. Overview of several widely used learning algorithms including logistic and linear regression, kernel methods and support vector machine (SVM), ensemble learning methods, deci- sion trees and nearest neighbor classifiers. Connect- ions to information theory through probably approxi- mately correct (PAC) learning, stability, bias-ces- sibility trade-off, structural consistency, minimum description length (MDL), and universal learning. Introduction to representation learning with topics including unsupervised learning, clustering, (non-)linearity reduction, sketching, parallel optimization, distribution estimation. Discussion of reinforcement learning. Letter grading. Mr. Diggavi (W)

C247. Neural Networks and Deep Learning. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: courses 131A, 133A, or 205A, and M146, or equivalent. Review of machine learning concepts; maximum likelihood; supervised classification; neural network architectures; back- propagation; regularization for training neural net- works; optimization for training neural networks; con- volutional neural networks; practical CNN architec- tures; deep learning in Python; recurrent neural networks, backpropagation through time, long- short-term memory and gated recurrent units; varia- tional autoencoders; generative adversarial networks; adversarial examples and training. Concurrently scheduled with course C147. Letter grading.

Mr. Kao (W)

M248S. Seminar: Systems, Dynamics, and Control Topics. (2) Same as Chemical Engineering M297 and Mechanical and Aerospace Engineering M299A. Seminar, two hours; outside study, six hours. Limited to graduate engineering students. Presentations of research topics by leading academic researchers from fields of systems, dynamics, and control. Students who work in these fields present their papers and results. S/U grading.

Mr. Tabuada (Not offered 2021-22)

M250B. Microelectromechanical Systems (MEMS) Fabrication. (4) Same as Bioengineering M255B and Mechanical and Aerospace Engineering M288B. Lecture, three hours; discussion, one hour; outside study, eight hours. Enforced requisite: course M153. Advanced discussion of micromachining processes used to construct MEMS. Coverage of many litho- graphic, deposition, and etching processes, as well as their combination in process integration. Materials issues such as chemical resistance, corrosion, me- chanical properties, and long-term reliability and stress. Letter grading.

Mr. Tabuada (Not offered 2021-22)

M252. Microelectromechanical Systems (MEMS) Device Physics and Design. (4) Same as Bioengineering M252 and Mechanical and Aerospace Engineering M288B. Lecture, two hours; outside study, seven hours. Introduction to MEMS design. Design methods, design rules,
M255. Neuroengineering. (4) (Same as Bioengineering M260 and Neuroscience M206.) Lecture, four hours; laboratory, three hours; outside study, five hours. Requisites: Mathematics 32A, Physics 1B or 5C. Introduction to principles and technologies of bioelectricity and neural signal recording, processing, and stimulation. Topics include bioelectricity, electrophysiology (action potentials, local field potentials, EEG, ECoG) and extracellular and intracellular recordings, microelectrode technology, neural signal processing (neural signal frequency bands, filtering, spike detection, spike sorting, stimulus artifact removal), neural signal processing, and stimulation. Topics include bioelectricity, electrophysiology (action potentials, local field potentials, EEG, ECoG) and extracellular and intracellular recordings, microelectrode technology, neural signal processing (neural signal frequency bands, filtering, spike detection, spike sorting, stimulus artifact removal), and prosthetics. Letter grading. Mr. Rahmat-Samii (F)

266. Computational Methods for Electromagnetics. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 162A, 163A. Computational techniques for partial differential and integral equations: finite-difference, finite-element, method of moments. Applications include transmission lines, resonators, interconnect circuits, solid-state device modeling, electromagnetic scattering, and antennas. Letter grading. (Not offered 2021-22)

270. Applied Quantum Mechanics. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Preparations: modern physics (or course 123A), linear algebra, and ordinary differential equations courses. Principles of quantum mechanics for applications in lasers, solid-state physics, and nonlinear optics. Topics include eigenfunction expansions, observables, Schrödinger equation, uncertainty principle, central force problems, Hilbert spaces, WKB approximation, matrix mechanics, density matrix formalism, and radiation theory. Letter grading. Mr. Stafudd (F)

271. Classical Laser Theory. (4) Lecture, four hours; outside study, eight hours. Enforced requisite: course 170A. Microscopic and macroscopic laser phenomena and propagation of optical pulses using classical formalism. Letter grading. Mr. Joshi (W)

274. Optical Communication and Sensing Design. (4) Lecture, four hours; outside study, nine hours. Requisites: courses 170A and 170B or equivalent. Top-down introduction to physical layer design in fiber optic communication systems, including Telecom, Datacom, and CATV. Fundamentals of digital systems, fiber optic transmission, fabrication techniques, and signal processing. Optical modulation techniques, including direct and external modulation and computer-aided design. Architectural-level design of fiber optic transceivers, circuits, including modulation and demodulation, optical amplifiers, quantizer, clock and data recovery, laser driver, and predistortion circuits. Letter grading. Mr. Liu (W)

275. Micro- and Nanoscale Biosensing for Molecular Diagnostics. (4) (Same as Bioengineering M273.) Lecture, four hours; discussion, one hour; outside study, seven hours. Covers state-of-art and emerging biosensors in context of molecular diagnostics. Students learn basic principles of biochemistry pertinent to molecular diagnostics. Students gain thorough understanding of interfaces between bioparticles, biofluids, and electronics. Topics include sensor platforms, modes of detection, sample preparation challenges, microfluidics, and emerging wearable biosensing platforms, as well as proteomics, genomics, and DNA sequencing technologies. Letter grading. Mr. Joshi (Not offered 2021-22)

276. Special Topics in Optical and Microwave Wave Electromagnetics. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Special topics in one or more aspects of physical and wave electromagnetics, such as microwave and millimeter wave circuits, photonics and optoelectronics, plasma electronics, microelectromechanical systems, solid state, and nanotechnology. May be repeated for credit with topic change. S/U grading. Mr. Y. Wang (Not offered 2021-22)

279CS. Clean Green IGERT Brown-Bag Seminar. (1) Seminar, one hour. Required of students in Clean Energy for Green Industry (IGERT) Research. Lecture seminar presented by graduate students and experts from around country who conduct research in energy harvest, storage, and conservation. S/U grading. Mr. Y. Wang (Not offered 2021-22)

282. Plasma Waves and Instabilities. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 101A, and M185 or Physics M122. Wave propagation in plasmas, microwaves, and electromagnetic fluid equations. Microwave propagation, plasma oscillations, ion acoustic waves, cyclotron waves, hydromagnetic waves, drift waves. Rayleigh/Taylor, Kelvin/Helmholtz, universal, and streaming instabilities. Application to experiments in fully and partially ionized gases. Letter grading. Mr. Mori (Not offered 2021-22)

285A. Plasma Waves and Instabilities. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 101A, and M185 or Physics M122. Wave propagation in plasmas, microwaves, and electromagnetic fluid equations. Microwave propagation, plasma oscillations, ion acoustic waves, cyclotron waves, hydromagnetic waves, drift waves. Rayleigh/Taylor, Kelvin/Helmholtz, universal, and streaming instabilities. Application to experiments in fully and partially ionized gases. Letter grading. Mr. Mori (Not offered 2021-22)

M237B. Fusion Plasma Physics and Electronics. (4) (Same as Mechanical and Aerospace Engineering M237B.) Lecture, four hours; outside study, eight hours. Fundamentals of plasmas at thermonuclear burning conditions, Fokker-Planck equation and applications to heating by neutral beams, RF, and fusion reaction products. Bremsstrahlung, synchrotron, and atomic radiation processes. Plasma surface interactions. Fluid description of burning plasma. Dynamics,
stability, and control. Applications in tokamaks, tandem mirrors, and alternate concepts. Letter grading. Mr. Chen, Mr. Joshi (Not offered 2021-22)

M293. Intellectual Property for Technology Entrepreneurs and Managers. (2) (Same as Management M247.) Seminar, two hours; outside study, four hours. Introduction to intellectual property (IP) in context of technology products and markets. Topics include best practices to put in place before product development starts, how to develop high-value patent portfolios, patent licensing, offensive and defensive IP litigation considerations, trade secrets, opportunities and pitfalls of open source software, trademarks, managing copyright in increasingly complex content ecosystems, and adopting IP strategies to globalized marketplaces. Includes case studies inspired by complex IP questions facing technology companies today. S/U or letter grading.

Mr. Villasenor (Not offered 2021-22)

295. Academic Technical Writing for Electrical Engineers. (3) Seminar, three hours. Designed for electrical engineering PhD students who have completed preliminary examinations. Students read models of good writing and learn to make rhetorical observations and writing decisions, improve their academic and technical writing skills by writing and revising conference and journal papers, and practice writing for and speaking to various audiences, including potential students, engineers outside their specific fields, and nonengineers (colleagues outside field, policymakers, etc.). Students write in variety of genres, all related to their professional development as electrical engineers. Emphasis on writing as vital way to communicate precise technical and professional information in distinct contexts, directly resulting in specific outcomes. S/U grading. (FSp)

296. Seminar: Research Topics in Electrical Engineering. (2) Seminar, two hours; outside study, four hours. Advanced study and analysis of current topics in electrical engineering. Discussion of current research and literature in research specialty of faculty member teaching course. May be repeated for credit. S/U grading.

297. Seminar Series: Electrical Engineering. (1) Seminar, 90 minutes; outside study, 90 minutes. Limited to graduate electrical engineering students. Weekly seminars and discussion by invited speakers on research topics of heightened interest. S/U grading. (F,W,Sp)

298. Seminar: Engineering. (2 to 4) Seminar, to be arranged. Limited to graduate electrical engineering students. Seminars may be organized in advanced technical fields. If appropriate, field trips may be arranged. May be repeated with topic change. S/U or letter grading. (Not offered 2021-22)

299. MS Project Seminar. (4) Seminar, to be arranged. Required of all MS students not in thesis option. Supervised research in small groups or individually under guidance of faculty mentor. Regular meetings, culminating report, and presentation required. Individual contract required; enrollment petitions available in Office of Graduate Student Affairs. S/U grading. Mr. Vandenbergh (F,WSp)

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: apprentice personnel employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. (F,WSp)

M495. Teaching Preparation Seminar: Teaching and Writing Pedagogies for Electrical Engineers. (2) (Same as English Composition M495K.) Seminar, two hours. Limited to graduate electrical engineering students. Required of all departmental teaching assistants (TAs). May be taken concurrently while holding a TA appointment. Seminar on pedagogy and logistics of being a TA with emphasis on student-centered teaching, clear communication, and multimodal teaching and learning. S/U grading. Ms. Alwan (F)

593. Directed Individual or Tutorial Studies. (2 to 8) Tutorial, to be arranged. Limited to graduate electrical engineering students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies. Supervised investigation of advanced technical problems. S/U grading.

597A. Preparation for MS Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate electrical engineering students. Reading and preparation for MS comprehensive examination. S/U grading.

597B. Preparation for PhD Preliminary Examinations. (2 to 16) Tutorial, to be arranged. Limited to graduate electrical engineering students. S/U grading.

597C. Preparation for PhD Oral Qualifying Examination. (2 to 16) Tutorial, to be arranged. Limited to graduate electrical engineering students. Preparation for oral qualifying examination, including preliminary research on dissertation. S/U grading.

598. Research for and Preparation of MS Thesis. (2 to 16) Tutorial, to be arranged. Limited to graduate electrical engineering students. Supervised independent research for MS candidates, including thesis prospectus. S/U grading.

599. Research for and Preparation of PhD Dissertation. (2 to 16) Tutorial, to be arranged. Limited to graduate electrical engineering students. Usually taken after students have been advanced to candidacy. S/U grading.

Materials Science and Engineering

3111 Engineering V
Box 951595
Los Angeles, CA 90095-1595
310-825-5534
Department website

Yu Huang, PhD, Chair
Jaeim Marian, PhD, Vice Chair
Qibing Pei, PhD, Vice Chair

Faculty Roster

Professors
Gregory P. Carman, PhD (Ben Rich-Lockheed Martin Professor of Advanced Aerospace Technologies)
Jane P. Chang, PhD (William Frederick Seyer Professor of Materials Electrochemistry)
Yong Chen, PhD
Bruce S. Dunn, PhD (Nippon Sheet Glass Company Professor of Materials Science)
Mark S. Goorsky, PhD
Vijay Gupta, PhD
Yu Huang, PhD
Subramanian S. Iyer, PhD
Ioanna Kakoulli, DPhil
Richard B. Kaner, PhD
Sunee Kodambaka, PhD
Xiaochun Li, PhD
Jaime Marian, PhD
Ali Mosteh, PhD, NAE (Evlyn Knight Professor of Engineering)
Qibing Pei, PhD
Gaurav N. Sant, PhD (Henry Samueli Fellow)
Dwight C. Streit, PhD, NAE
Sarah H. Tolbert, PhD
Kang L. Wang, PhD (Raytheon Company Professor of Electrical Engineering)
Paul S. Weiss, PhD (Presidential Professor of Chemistry)
Benjamin M. Wu, DDS, PhD
Ya-Hong Xie, PhD
Jenn-Ming Yang, PhD
Yang Yang, PhD (Carol and Lawrence E. Tannas, Jr., Endowed Professor of Engineering)

Professors Emeriti
Alan J. Ardell, PhD
Nasr M. Ghoniem, PhD
Kanj Ono, PhD
Jenn-Inghing Tu, PhD

Assistant Professors
Amartya Banerjee, PhD
Ximun He, PhD
Aaswath P. Raman, PhD

Adjunct Associate Professors
Eric P. Bescher, PhD
Sergey Prikhodko, PhD

Adjunct Assistant Professors
Magdalena Balonis-Sant, PhD
Marta Pozuelo, PhD

Adjunct Assistant Professors

Adjunct Assistant Professors
Overview
At the heart of materials science and engineering is the understanding and control of the microstructure of solids. Microstructure is used broadly in reference to electronic and atomic structure of solids—and defects within them—at size scales ranging from atomic bond lengths to airplane wings. The structure of solids over this wide range dictates their structural, electrical, biological, and chemical properties. The phenomenological and mechanistic relationships between microstructure and the macroscopic properties of solids are, in essence, what materials science is all about.

Materials engineering builds on the foundation of materials science and is concerned with the design, fabrication, and optimal selection of engineering materials that must simultaneously fulfill dimensional, property, quality control, and economic requirements.

The undergraduate program in the Department of Materials Science and Engineering leads to the BS degree in Materials Engineering. Students are introduced to the basic principles of metallurgy and ceramic and polymer science as part of the department’s Materials Engineering major. A joint major field, Chemistry/Materials Science, is offered to students enrolled in the Department of Chemistry and Biochemistry (College of Letters and Science).

The department also has a program in electronic materials that provides a broad-based background in materials science, with opportunity to specialize in the study of those materials used for electronic and optoelectronic applications. The program incorporates several courses in electrical and computer engineering in addition to those in the materials science curriculum.

The graduate program allows for specialization in one of the following fields: ceramics and ceramic processing, electronic and optical materials, and structural materials.

Department Mission
The Department of Materials Science and Engineering faculty members, students, and alumni foster a collegial atmosphere to produce (1) highly qualified students through an educational program that cultivates excellence; (2) novel and highly innovative research that advances basic and applied knowledge in materials; and (3) effective interactions with the external community through educational outreach, industrial collaborations, and service activities.

Undergraduate Study
Materials Engineering BS
The materials engineering program is designed for students who wish to pursue a professional career in the materials field and desire a broad understanding of the relationship between microstructure and properties of materials. Metals, ceramics, and polymers, as well as the design, fabrication, and testing of metallic and other materials such as oxides, glasses, and fiber-reinforced composites, are included in the course contents.

The materials engineering program is accredited by the Engineering Accreditation Commission of ABET.

Capstone Major
The Materials Engineering major is a designated capstone major. Students undertake two individual projects involving materials selection, treatment, and serviceability. Successful completion requires working knowledge of physical properties of materials and strategies and methodologies of using materials properties in the materials selection process. Students learn and work independently and practice leadership and teamwork in and across disciplines. They are also expected to communicate effectively in oral, graphic, and written forms.

Educational Objectives
The Materials Engineering major at UCLA prepares undergraduate students for employment and/or advanced studies within the national laboratories, state and federal agencies, and academia. To meet the needs of these constituencies, the objectives of the undergraduate program are to produce graduates who:

1. Have knowledge of fundamental scientific and engineering principles that govern the microstructure, properties, processing, and performance of all classes of engineering materials;
2. Understand materials processes and the application of general natural science and engineering principles to the analysis and design of materials systems of current and/or future importance to society;
3. Have strong skills in independent learning, analysis, and problem solving, with special emphasis on design of engineering materials and processes, communication, and an ability to work in teams;
4. Understand and are aware of the broad issues relevant to materials, including professional and ethical responsibilities, impact of materials engineering on society and environment, contemporary issues, and need for lifelong learning.

Learning Outcomes
The Materials Engineering major has the following learning outcomes:

- Application of knowledge of mathematics, natural science, and engineering to analysis of materials and other systems
- Learn and work independently

Yun-Chiao Huang, PhD graduate from professor Yu Huang’s research group, shows the Electronic Skin project.
• Practice leadership and teamwork in and across disciplines
• Design of a system, component, or process to meet desired needs
• Effective oral, graphic, and written communication
• Identification, formulation, and solution of engineering problems

Materials Engineering Option

Preparation for the Major

Required: Chemistry and Biochemistry 20A, 20B, 20L; Civil and Environmental Engineering M20 or Computer Science 31 or Mechanical and Aerospace Engineering M20; Materials Science and Engineering 10, 90L; Mathematics 31A, 31B, 32A, 32B, 33A, 33B (or Mechanical and Aerospace Engineering 82); Physics 1A, 1B, 1C.

The Major

Required: Electrical and Computer Engineering 100, 101A, 121B, Materials Science and Engineering 104, 110, 110L, 120, 121, 121L, 122, 130, 131L, 131L, 132, Mechanical and Aerospace Engineering 101; one upper-division mathematics course selected from Civil and Environmental Engineering 103, Electrical and Computer Engineering 102, Mathematics 132, Mechanical and Aerospace Engineering 182B, 182C; either Materials Science and Engineering 150 or 160 and one course (4 units) from Electrical and Computer Engineering 123A, 123B, Materials Science and Engineering 150, 160; 4 laboratory units from Materials Science and Engineering 141L, 161L, or up to 2 units of 199; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; two capstone design courses (Materials Science and Engineering 140A and 140B); and one major field elective course (4 units) from Electrical and Computer Engineering 110, 131A, Materials Science and Engineering 105, 111, 112, 143A, or 162.

For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 21 or the GE Requirement web page.

Graduate Study

For admission information, see Graduate Programs Admission on page 27.

The following introductory information is based on 2021-22 program requirements for UCLA graduate degrees. Complete program requirements are available at Program Requirements for UCLA Graduate Degrees. Students are subject to the detailed degree requirements as published in program requirements for the year in which they enter the program.

The Department of Materials Science and Engineering offers Master of Science (MS) and Doctor of Philosophy (PhD) degrees in Materials Science and Engineering.

Materials Science and Engineering MS

Areas of Study

There are three main areas in the MS program: ceramics and ceramic processing, electronic and optical materials, and structural materials. Students may specialize in any one of the three areas, although most students are more interested in a broader education and select a variety of courses. Basically, students select courses that serve their interests best in regard to thesis research and job prospects.

Course Requirements

Thesis Plan. Nine courses are required, of which six must be graduate courses. The courses are to be selected from the following lists, although suitable substitutions can be made from other engineering disciplines or from chemistry and physics with the approval of the departmental graduate adviser. Two of the six graduate courses may be Materials Science and Engineering 598 (thesis research).

Comprehensive Examination Plan. Nine courses are required, six of which must be graduate courses, selected from the following lists with the same provisions listed under the thesis plan. Three of the nine courses may be upper-division courses.

Electronic and ceramic processing: Materials Science and Engineering 121, 122, 143A, 151, 161, 162, 200, 201, 210, 211, 222, 223, 298.

Ceramics and optical materials: Materials Science and Engineering 121, 122, 143A, 151, 161, 162, 200, 201, 210, 211, 243A, 243C, 250B, 298.

Structural materials: Materials Science and Engineering 121, 122, 143A, 151, 161, 162, 200, 201, 210, 211, 243A, 243C, 250B, 298.

As long as a majority of the courses taken are offered by the department, substitutions may be made with the consent of the departmental graduate adviser.

Undergraduate Courses. No lower-division courses may be applied toward graduate degrees. In addition, the following upper-division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199, Civil and Environmental Engineering 108, 199, Computer Science M152A, 152B, M177L, 199, Electrical and Computer Engineering 100, 101A, 102, 110L, M116L, 133A, M177L, 199, Materials Science and Engineering 110, 120, 130, 131L, 132, 140A, 140B, 141L, 150, 160, 161L, 199, Mechanical and Aerospace Engineering 102, 103, 105A, 105D, 199.

Thesis Plan

In addition to the course requirements, under the thesis plan students are required to write a thesis on a research topic in materials science and engineering supervised by the thesis adviser. An MS thesis committee approves the thesis.

Comprehensive Examination Plan

Consult the graduate adviser for details. If the comprehensive examination is failed, students may be reexamined once with the consent of the graduate adviser.
Materials Science and Engineering PhD

Major Fields or Subdisciplines
Ceramics and ceramic processing, electronic and optical materials, and structural materials.

Course Requirements
There is no formal course requirement for the PhD degree, and students may substitute coursework by examinations. Normally, however, students take courses to acquire the knowledge needed to satisfy the written preliminary examination requirement. In this case, a grade-point average of at least 3.33 in all courses is required, with a grade of B− or better in each course. The basic program of study for the PhD degree is built around one major field and one minor field. The major field has a scope corresponding to a body of knowledge contained in nine courses, at least six of which must be graduate courses, plus the current literature in the area of specialization. Materials Science and Engineering 599 may not be applied toward the nine-course total. The major fields named above are described in a PhD major field syllabus, each of which can be obtained in the department office.

The minor field normally embraces a body of knowledge equivalent to three courses, at least two of which are graduate courses. If students fail to satisfy the minor field requirements through coursework, a minor field examination may be taken (once only). The minor field is selected to support the major field and is usually a subset of the major field.

Written and Oral Qualifying Examinations
During the first year of full-time enrollment in the PhD program, students take the oral preliminary examination that encompasses the body of knowledge in materials science equivalent to that expected of a bachelor’s degree. If students opt not to take courses, a written preliminary examination in the major field is required. Students may not take an examination more than twice.

After passing both preliminary examinations, students take the University Oral Qualifying Examination. The nature and content of the examination are at the discretion of the doctoral committee but ordinarily include a broad inquiry into the student’s preparation for research. The doctoral committee also reviews the prospectus of the dissertation at the oral qualifying examination.

Note: Doctoral Committees. A doctoral committee consists of a minimum of four members. Three members, including the chair, are inside members and must hold appointments in the department. The outside member must be a UCLA faculty member in another department. Faculty members holding joint appointments with the department are considered inside members.

Fields of Study

Ceramics and Ceramic Processing
The ceramics and ceramic processing field is designed for students interested in ceramics and glasses, including electronic materials. As in the case of metallurgy, primary and secondary fabrication processes such as vapor deposition, sintering, melt forming, or extrusion strongly influence the microstructure and properties of ceramic components used in structural, electronic, or biological applications. Formal course and research programs emphasize the coupling of processing treatments, microstructure, and properties.

Electronic and Optical Materials
The electronic and optical materials field provides an area of study in the science and technology of electronic materials that includes semiconductors, optical ceramics, and thin films (metal, dielectric, and multilayer) for electronic and optoelectronic applications.

Course offerings emphasize fundamental issues such as solid-state electronic and optical phenomena, bulk and interface thermodynamics and kinetics, and applications that include growth, processing, and characterization techniques. Active research programs address the relationship between microstructure and nanostructure and electronic/optical properties in these materials systems.

Structural Materials
The structural materials field is designed primarily to provide broad understanding of the relationships between processing, microstructure, and performance of various structural materials, including metals, intermetallics, ceramics, and composite materials. Research programs include material synthesis and processing, ion implantation-induced strengthening and toughening, mechanisms and mechanics of fatigue, fracture and creep, structure/property characterization, nondestructive evaluation, high-temperature stability, and aging of materials.

Facilities
Facilities in the Materials Science and Engineering Department include:
- Ceramic Processing Laboratory
- Glass and Ceramics Research laboratories
- Mechanical Testing Laboratory
- Metallographic Sample Preparation Laboratory
- Microscopy laboratories with a transmission electron microscope (100 keV); access to several field-emission transmission electron microscopes (80–300 keV); and a scanning electron microscope equipped with a quantitative chemical/compositional analyzer, stereo microscope, microcameras, and metallurgical microscopes
- Nano-Materials Laboratory
- Nondestructive Testing Laboratory
- Organic Electronic Materials Processing Laboratory
- Semiconductor and Optical Characterization Laboratory
- Thin Film Deposition Laboratory, including molecular beam epitaxy and wafer bonders
- X-Ray Diffraction Laboratory
- X-Ray Photoelectron Spectroscopy and Atomic Force Microscopy Facility

Faculty Areas of Thesis Guidance

Professors
Gregory P. Carman, PhD (Virginia Tech, 1991)
- Electromagnetoelasticity models and characterization, thin film shape memory, nanoscale multifunctions, magnetoelastics and piezoelectric materials
Jane P. Chang, PhD (MIT, 1998)
- Materials processing, gas-phase and surface reaction, plasma enhanced chemistries, atomic layer deposition, chemical microelectromechanical systems, and computational surface chemistry
Yong Chen, PhD (UC Berkeley, 1996)
- Nanoscale science and engineering, micro- and nano-fabrication, self-assembly phenomena, microscale and nanoscale electronic, mechanical, optical, biological, and sensing devices, circuits and systems
Bruce S. Dunn, PhD (UCLA, 1974)
- Synthesis and characterization of electronic and electrochemical materials, energy storage, sol-gel materials and chemistry
Mark S. Goorsky, PhD (MIT, 1988)
- Electronic materials processing, strain relaxation in epitaxial semiconductors and device structures, high-resolution X-ray diffraction of semiconductors, ceramics, and high-strength alloys
Vijay Gupta, PhD (MIT, 1989)
- Experimental mechanics, fracture of engineering solids, mechanics of thin film and interfaces, failure mechanisms and characterization of composite materials, ice mechanics
Yu Huang, PhD (Harvard, 2003)

Yu-Hong Xie, PhD (UCLA, 1998)
Physical properties and device application of graphene and other van der Waals materials; semiconductor physics, heterostructures, and devices; epitaxy of semiconductor thin films; nanofabrication.

Richard B. Kaner, PhD (U. Pennsylvania, 1984)

Jenn-Ming Yang, PhD (U. Delaware, 1986)

Yang Yang, PhD (U. Massachusetts Lowell, 1992)

Organic and inorganic semiconductor materials and devices with emphasis on solution processes; fundamental understanding of material properties; optoelectronic devices (LEDs, PVs, TFT, sensors)

Professors Emeriti

Alan J. Ardell, PhD (Stanford, 1964)

Irradiation-induced precipitation, high-temperature deformation of solids, electron microscopy, physical metallurgy of aluminum/lithium alloys; precipitation.

Narz M. Ghoniem, PhD (U. Wisconsin, 1977)

Mechanical behavior of high-temperature materials, radiation interaction with material (e.g., laser, ions, plasma, electrons, and neutrons), material/plasma and beam sources, physics and mechanics of material defects, fusion energy.

Kanji Ono, PhD (Northwestern U., 1964)

Mechanical behavior and nondestructive testing of structural materials, acoustic emission, dislocations and strengthening mechanisms, microstructural effects, and ultrasonics.

Ya-Hong Xie, PhD (UCLA, 1986)

Ya-Hong Xie, PhD (UCLA, 1986)
Nano-material fabrication and development, bio-nano structures.

Subramanian S. Iyer, PhD (UCLA, 1981)
System scaling technology, advanced packaging and 3D integration, technologies and techniques for multifunctional and neuromorphic computing.

Chemical and physical properties of nonmetallic archaeological materials; alteration processes in archaeological vitreous materials and pigments.

Richard B. Kaner, PhD (U. Pennsylvania, 1984)

Richard B. Kaner, PhD (U. Pennsylvania, 1984)

Richard B. Kaner, PhD (U. Pennsylvania, 1984)

Synthesis, characterization, and applications of superhard metals, conducting polymers, and thermoelectric materials.

Suneel Kodambaka, PhD (U. Illinois Urbana-Champaign, 2002)

In situ microscopy, surface thermodynamics, kinetics of crystal growth, phase transformations and chemical reactions, thin film physics.

Xiaoqun Li, PhD (Stanford, 2001)

Scifacitng (science-driven manufacturing), super metals by nanoparticles self-dispersion, scalable nanomanufacturing, smart nanomanufacturing, and additively manufacturing.

Jaime Marian, PhD (UC Berkeley, 2002)
Computational materials modeling and simulation in solid mechanics, irradiation damage, plasticity, phase transformations, thermodynamics and kinetics of alloy systems, algorithm and method development for bridging time and length scales and parallel computing applications.

Ali Mosleh, PhD, NAE (UCLA, 1981)
Reliability engineering, physics of failure modeling and system life prediction, resilient systems design, prognostics and health monitoring, hybrid systems simulation, theories and techniques for risk and safety analysis.

Qibing Pei, PhD (Chinese Academy of Sciences, China, 1990)
Electroactive polymers through molecular design and nano-engineering for electronic devices and artificial muscles.

Gaurav N. Sant, PhD (Purdue, 2009)
Development and design of sustainable low CO2 footprint materials for infrastructure construction applications.

Dwight C. Streit, PhD, NAE (UCLA, 1986)
Properties of electronic materials, characterization techniques, correlation of material and device performance.

Sarah H. Tolbert, PhD (UC Berkeley, 1995)
Self-organized nanostructured materials for energy storage, energy harvesting, nanomagnetics and nanoelectronics.

Kang L. Wang, PhD (MIT, 1970)
Nanoscale physics, materials and devices nanoelectronics, magnetics and photonics, nonlinear interactions of correlated devices and nanosystems.

Paul S. Weiss, PhD (UC Berkeley, 1986)
Atomic-scale surface chemistry and physics, molecular devices, nanolithography, bio-physics and neuroscience, nanometer-scale electronics and storage, surface interactions, surface motion, dynamics, and direct manipulation, extending capabilities of scanning tunneling microscope, molecular-scale control and measurement of composition and properties in membranes.

Benjamin M. Wu, DDS (U. Pacific, 1987), PhD (MIT, 1997)
Processing, characterization, and controlled delivery of biological molecules of bioerodible polymers; design and fabrication of tissue engineering and precursor tissue analogs; tissue-material interactions and dental biomaterials.

Marta Pozuelo, PhD (Complutense U. Madrid, Spain, 2004)
In situ nanomechanical characterization of metallic materials.
Upper-Division Courses

Mr. Dunn (FW,Sp)

105. Principles of Nanoscience and Nanotechnology. (4) Formerly numbered M105.) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: Chemistry 20A, 20B, Physics 1C. Introduction to underlying science encompassing structure, properties, and fabrication of technologically important nanoscale systems. New phenomena that emerge in very small systems (typically with feature sizes below few hundred nanometers) explained using basic concepts from physics and chemistry. Chemical, optical, and electronic properties of nanomaterials; structural assembly, templated assembly and applications of various nanostructures such as quantum dots, nanoparticles, quantum wires, quantum wells and multilayers, carbon nanotubes. Letter grading.

Mr. Kodambaka (F)

110. Introduction to Materials Characterization A (Crystal Structure, Nanostructures, and X-Ray Scattering). (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 104. Modern methods of materials characterization: fundamentals of crystallography, properties of X rays, X-ray scattering; powder method, Laue method; determination of crystal structures; phase diagram determination; high-resolution X-ray diffraction methods; X-ray spectroscopy; design of materials characterization procedures. Letter grading.

Mr. Goorsky (F)

C111. Introduction to Materials Characterization B (Electro Microscopy). (4) Formerly numbered 111.) Lecture, four hours; outside study, eight hours. Characterization of microstructure and microchemistry of materials; transmission electron microscopy; reciprocal diffraction, stereo pairs, projection, direct observation of defects in crystals; replicas; scanning electron microscopy; emissive and reflective modes; chemical analysis; electron optics of both instruments. Concurrently scheduled with course C211. Letter grading.

Mr. Kodambaka (W)

111L. Introduction to Materials Characterization A Laboratory. (2) Laboratory, four hours; outside study, two hours. Enforced requisite: course 104. Experimental techniques and analysis of materials through X-ray scattering techniques; powder method; crystal structure determination, high-resolution X-ray diffraction methods, and special projects. Letter grading.

Mr. Goorsky (F)

C111L. Introduction to Materials Characterization B Laboratory. (2) Laboratory, four hours; outside study, two hours. Characterization of crystal structure and microchemistry of materials; transmission electron microscopy; reciprocal diffraction, stereo pairs, projection, direct observation of defects in crystals; replicas; scanning electron microscopy; emissive and reflective modes; chemical analysis; electron optics of both instruments. Letter grading.

Mr. Kodambaka (W)

Ks. Kacouli (Sp)

120. Physics of Materials. (4) Lecture, four hours; discussion, one hour; outside study, two hours. Enforced requisites: courses 104, 110 (or Chemistry 113A). Introduction to electrical, optical, and magnetic properties of solids. Free electron model, introduction to band theory and Schrodinger wave equation, Crystal bonding and lattice vibrations. Mechanisms and characterization of electrical conductivity, optical absorption, magnetic behavior, dielectric properties, and p- n junctions. Letter grading.

Mr. Y. Yang (W)

121. Materials Science of Semiconductors. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 120. Structural properties, electronic band structure of semiconductors. Electrical and optical properties, defect chemistry, and doping. Electronic materials analysis and characterization, including electrical, optical, and ion beam techniques. Heterostructures, band gap engineering, development of new materials for optoelectronic applications. Letter grading.

Ms. Huang (Sp)

121L. Materials Science of Semiconductors Laboratory. (2) Laboratory, four hours; discussion, one hour; outside study, seven hours. Enforced corequisite: course 121. Experiment conducted on materials characterization, including measurements of contact resistance, dielectric constant, and thin film biaxial modulus and CTE. Letter grading.

Mr. Goorsky (Sp)

122. Principles of Electronic Materials Processing. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 104. Description of basic semiconductor materials for device processing; preparation and characterization of silicon, III-V compounds, and films. Discussion of principles of CVD, MOCVD, LPE, and MBE; metals and electrical. Letter grading.

Mr. Goorsky (W)

130. Phase Relations in Solids. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 104. Summary of thermodynamic laws, equilibrium criteria, solution thermodynamics, mass-action law, binary and ternary phase diagrams, glass transitions. Letter grading.

Mr. Xie (F)

131L. Diffusion and Diffusion-Controlled Reactions. (2) Laboratory, two hours; discussion, one hour; outside study, four hours. Enforced corequisite: course 131. Design of heat-treating cycles and performing experiments to study interdiffusion, growth of intermediate phases, recrystallization, and grain growth in metals. Letter grading.

Mr. Dunn (W)

131L. Diffusion and Diffusion-Controlled Reactions Laboratory. (2) Laboratory, two hours; discussion, one hour; outside study, four hours. Enforced corequisite: course 131. Design of heat-treating cycles and performing experiments to study interdiffusion, growth of intermediate phases, recrystallization, and grain growth in metals. Analysis of data. Comparison of results with theory. Letter grading.

Mr. Kodambaka (W)

Mr. J-M. Yang (Sp)

Mr. J-M. Yang (W)

140B. Materials Selection and Engineering Design B. (3) Lecture, four hours; outside study, two hours; laboratory, two hours; outside study, five hours. Enforced requisite: course 140A. Explicit guidance among myriad materials available for design in engineering. Properties and applications of steels, nonferrous alloys, polymer, ceramic, and composite materials, coatings. Materials selection, treatment, and serviceability emphasized as part of successful design. Design projects. Letter grading.

Mr. J-M. Yang (Sp)

141L. Computer Methods and Instrumentation in Materials Science. (2) Laboratory, four hours. Preparation: knowledge of BASIC or C or assembly language limited to introductory Science and Engineering majors. Interface and control techniques, real-time data acquisition and processing, computer-aided testing. Letter grading.

Mr. Goorsky (W)

143A. Mechanical Behavior of Materials, (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: course 104. Mechanical and Aerospace Engineering 101. Plastic flow of metals under simple and combined loading, strain rate and temperature effects, dislocations, fracture, microstructural effects, mechanical and thermal treatment of steel for engineering applications. Letter grading.

Mr. Marian (W)

143L. Mechanical Behavior Laboratory. (2) Laboratory, four hours. Requisites: courses 90L, 143A (may be taken concurrently). Methods of characterizing mechanical behavior of various materials; elastic and plastic deformation, fracture toughness, fatigue, and creep. Letter grading.

Mr. Pei (W)

150. Introduction to Polymers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Preparation: at least two courses from 132, 143A, 150, 160. Enforced requisite: course 104. Relationship between structure and mechanical properties of composite materials with fiber and particulate reinforcement. Properties of fiber, matrix, and interfaces. Selection of macrostructures and material systems. Letter grading.

Mr. J-M. Yang (Sp)

160. Introduction to Ceramics and Glasses. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Preparation: at least two courses from 132, 143A, 150, 160. Enforced requisite: course 104. Introduction to ceramics and glasses being used as important materials of engineering, processing techniques, and unique properties. Examples of design and control of properties for certain specific applications in engineering. Letter grading.

Mr. Dunn (F)

161. Processing of Ceramics and Glasses. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Preparation: course 160. Study of processes used in fabrication of ceramics and glasses; processing techniques, optical, mechanical, and electronics. Processing operations, including modern techniques of powder synthesis, greenware forming, sintering, glass melting, Microstruc- ture properties related to ceramics. Fracture analysis and design with ceramics. Letter grading.

Mr. Dunn (Not offered 2021-22)

Mr. Dunn (Sp)
162. Electronic Ceramics. (4) Lecture, four hours; outside study, four hours. Requisites: course 130 (or Mechanical and Aerospace Engineering CM114.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 130 (or Mechanical and Aerospace Engineering 105A), Chemical Engineering 102B. Fundamental chemistry and engineering applications to industrial electrochemical processes. Primary emphasis on fundamental approach to analyze electrochemical processes. Specific topics include electrochemical reactions on metal and semiconductor surfaces, electrodessorption, electrolytic deposition, fuel cells, aqueous and non-aqueous batteries, solid-state electrochemistry. May be concurrently scheduled with course CM262L, Letter grading.

170. Engaging Elements of Communication: Oral Communication. (2) Lecture, one hour; discussion, one hour; outside study, four hours. Comprehensive oral presentation skills are developed through oral presentation and team projects in order to build on strengths of individual personal styles in creation of positive interpersonal relations. Skill set prepares students for different types of academic and professional presentations for wide range of audiences. Learning environment is highly supportive and interactive as it helps students creatively develop and greatly expand effectiveness of their communication and presentation skills. Letter grading.

Mr. Xie (Not offered 2021-22)

171. Engaging Elements of Communication: Writing for Technical Community. (2) Lecture, one hour; discussion, one hour; outside study, four hours. Comprehensive writing and editorial skills on subjects specific to field of materials science and engineering. Students write review term paper in selected subject field of materials science and engineering from given set of journal publications. Instruction leads students through several crucial steps, including brainstorming, choosing title, coming up with outline, concise writing of abstract, conclusion, and final polishing. Other subjects include writing style, word choices, and grammar. Letter grading.

Mr. Xie (Not offered 2021-22)

180. Special Courses in Materials Science and Engineering. (4) Seminar, four hours; outside study, eight hours. Special topics in materials science and engineering for undergraduate students taught on experimental or temporary basis, such as those taught by resident guest faculty or visiting members. May be repeated once for credit with topic or instructor change. Letter grading. (Not offered 2021-22)

194. Research Group Seminars: Materials Science and Engineering. (2 to 4) Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation of face-to-face mentor. Culminating paper or project required. Occasional field trips may be arranged. May be repeated for credit with school approval. Individual contract required. May be concurrent with Academic and Student Affairs. Letter grading. (F,WS)

Graduate Courses

Mr. He (F)

Mr. Goorsky (Sp, odd years)

C211. Introduction to Materials Characterization B (Electron Microscopy). (4) Formerly numbered C211.) Lecture, four hours; outside study, eight hours. Characterization of microstructure and microchemistry of materials: preparation, observation, and analysis of thin sections and replicas; scanning electron microscopy; emissive and reflective electron probe microanalysis; analysis of both instruments. Concurrently scheduled with course C111. Letter grading.

Kodambaka (W)

Ms. Kakoulli

Ms. Kakoulli (Sp)

214. Structure, Properties, and Deterioration of Materials: Rock Art, Wall Paintings, Mosaics. (2) Formerly numbered M214.) Lecture, three hours. Recommended preparation: basic knowledge of general chemistry and materials science. Introduction to materials and techniques of rock art, wall paintings (including painted surfaces on cement and composite decorative architectural surfaces), and mosaics. Archaeological and ethnographic context, techniques, and materials. Pigments, colors, and binding media. Chemical, optical, and structural characterization of materials (including paints, polishes, adhesives, conservation products, and methods and conservation science and practice) for characterization of technology, constituent materials, and alteration products; development of conservation treatment proposals, testing of conservation products, and methods and conservators’ judgment. Letter grading.

Ms. Kakoulli (F)

M215. Conservation Laboratory: Rock Art, Wall Paintings, and Mosaics. (4) Formerly as Conservation M250.) Laboratory, four hours. Requisites: courses M214, M216 (or C212) or M212, Conservation 210L. Recommended: course M213. Research-based laboratory study through object-based approach in conservation materials science. Introduction to physical, chemical, and mechanical properties of conservation materials (employed for preservation of archaeological and cultural materials) and their aging characteristics. Science and application methods of traditional organic and inorganic systems and introduction of novel technology based on bio-mineralization processes and nanstructured materials. Letter grading.

Ms. Kakoulli (W)

221. Science of Electronic Materials. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 120. Study of major physical and chemical principles affecting properties and performance of semiconductor materials. Topics include band conduction, carrier statistics, band-gap engineering, optical and transport properties, novel materials systems, and characterization. Letter grading.

Mr. Goorsky (Sp)

222. Growth and Processing of Electronic Materials. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 120, 130, 131. Heavy-ion techniques for materials growth and device processing. Particular emphasis on fundamentals of growth (bulk and epitaxial), heteroepitaxy, implantation, oxidation. Letter grading.

Mr. Goorsky (W)

110 / Materials Science and Engineering Department
224. Deposition Technologies and Their Applications. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Examination of physics behind modern thin film deposition technologies and phase transition, basic vacuum technology and gas kinetics. Deposition methods used in high-technology applications. Theory and experimental details of physical vapor deposition, electron beam vapor deposition, plasma-enhanced chemical vapor deposition processes. Letter grading. Mr. Goorsky

225. Materials Science of Surfaces. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Properties, stress and strain, electromigration, phase transformations, unique application of ceramics. Letter grading. Mr. Dunn (Sp, even years)

247. Nanoscale Materials: Challenges and Opportunities. (4) Lecture, four hours; discussion, eight hours; outside study, seven hours. Comprehensive introduction to materials and physics of photovoltaic cell, covering basic physical principles of semiconductors at photon devices, physical models of cell operation, characteristics and design of common types of solar cells, and approaches to increasing solar cell efficiency. Recent progress in solar cells, such as organic solar cell, thin-film solar cells, and multiple junction solar cells provided to increase student knowledge. Tour of research laboratory included. Letter grading.

251. Chemistry of Soft Materials. (4) Lecture, four hours. Introduction to organic soft materials, including essential basic organic chemistry and polymer chemistry. Topics include three main categories of soft materials: organic molecules, synthetic polymers, and biomolecules and biomaterials. Extensive description and discussion of structure-property relationship, spectroscopic and experimental techniques, and preparation methods for various soft materials. Letter grading. Mr. Pei (F)

252. Organic Polymer Electronic Materials. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Preparation: knowledge of introductory organic chemistry and polymer science. Introduction to organic electronic materials with emphasis on materials chemistry and processing. Topics include conjugated polymers; heavily doped, highly conducting polymers; applications as processable metals in inorganic and organic electronic devices. Synthesis of semiconductor polymers for organic light-emitting diodes, solar cells, thin-film transistors. Introduction to emerging field of organic electronics and photovoltaics. Letter grading. Mr. Pei (F)

253. Bioinspired Materials. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Broad overview of most recent advances in biomimetic materials and biomaterials covering natural materials, biomimicry, and bioinspired artificial materials, with emphasis on synthesis, processing, hierarchical design, and assembly from nano- to macro-scale, properties and characterizations, and real-life applications. Letter grading. Mr. X. Yang (Sp)

261. Risk Analysis for Engineers and Scientists. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Topics include definition and fundamental concepts of risk, sociotechnical context of risk assessment, risk management, probability and reality of risk, risk-informed decision-making, domains of application (safety, health, security, economy, and environment), principal methods of risk assessment, Monte Carlo methods, and computational algorithms for risk calculation and identification of risk drivers, simulation approach to risk modeling, uncertainty analysis, examples of risk assessment of engineered systems (e.g., space and aviation, nuclear power, petro-chemical plants), other applications (e.g., medical procedures, financial risk, natural hazards risk). Letter grading.

CM263. Electrochemical Processes. (4) Same as Chemical Engineering CM214.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 143A. Principles of surface science and materials science and engineering applied to industrial electrochemical processes. Primary emphasis will be on an essential approach to analyze electrochemical processes. Specific topics include electrochemical reactions on metal and semiconductor surfaces, electrodeposition, ion exchange, fuel cells, aqueous and non-aqueous batteries, solid-state electrochemistry. May be concurrently scheduled with course CM163. Letter grading.

270. Computer Simulations of Materials. (4) Lecture, four hours; outside study, eight hours. Introduction to modern methods of computational modeling in materials science. Topics include basic statistical mechanics, classical molecular dynamics, and Monte Carlo methods, with emphasis on understanding basic physical ideas and learning to design, run, and analyze computer simulations of materials. Use of examples from current literature to show how these methods can be used to study interesting phenomena in materials science. Hands-on computer experiments. Letter grading. Mr. Marian (F)

271. Electronic Structure of Materials. (4) Lecture, four hours; outside study, eight hours. Preparation: basic knowledge of quantum mechanics. Recommended requisite: course 200. Introduction to modern first-principles electronic structure calculations for various types of modern materials. Properties of electrons and electron bands in molecules, crystals, and liquids, with emphasis on practical methods for solving Schrödinger equation and using it to calculate physical properties such as elastic constants, equilibrium structures, binding energies, vibrational frequencies, electronic band gaps and band structures, properties of defects, surfaces, interfaces, and magnetism. Extensive hands-on experience with modern density-functional theory code. Letter grading. Mr. Marian (W)

272. Theory of Nanomaterials. (4) Lecture, four hours; outside study, eight hours. Strongly recommended requisite: course 200. Introduction to properties and applications of nanomaterials, with emphasis on understanding of basic principles that distinguish nanostructures (with feature size below 100 nm) from more common microstructural materials. Explanation of new phenomena that emerge on the nanoscale and proposed realizations of quantum computing. Discussion of current and future directions of this rapidly growing field using examples from modern scientific literature. Letter grading. Mr. Marian (F)

CM280. Introduction to Biomaterials. (4) (Same as Bioengineering CM278.) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: course 104, or Chemistry 20A, 20B, and 20L. Engineering materials used in medicine and dentistry for repair and/or restoration of damaged natural tissues. Topics include relationships between material properties, suitability to task, surface chemistry, processing and treatment methods, and biocompatibility. Concurrently scheduled with course CM180. Letter grading.

282. Exploration of Advanced Topics in Materials Science and Engineering. (2) Lecture, one hour; discussion, one hour; outside study, four hours. Researchers from leading research institutions around the world deliver lectures on advanced research topics in materials science and engineering. Student groups...
present summary previews of topics prior to lecture. Class discussions follow each presentation. May be repeated for credit. S/U grading. Mr. J.-M. Yang

296. Seminar: Advanced Topics in Materials Science and Engineering. (2) Seminar, two hours; outside study, four hours. Advanced study and analysis of current topics in materials science and engineering. Discussion of current research and literature in research specialty of faculty members teaching course. May be repeated for credit. S/U grading.

M297B. Material Processing in Manufacturing. (4) (Same as Mechanical and Aerospace Engineering M297B.) Lecture, four hours; outside study, eight hours. Enforced requisite: Mechanical and Aerospace Engineering 183A. Thermodynamics, principles of material processing: phase equilibria and transitions, transport mechanisms of heat and mass, nucleation and growth of microstructure. Applications in casting/solidification, welding, consolidation, chemical vapor deposition, infiltration, composites. Letter grading.

M297C. Composites Manufacturing. (4) (Same as Mechanical and Aerospace Engineering M297C.) Lecture, four hours; outside study, eight hours. Required: course 151, Mechanical and Aerospace Engineering 166C. Matrix materials, fibers, fiber preforms, elements of processing, autoclave/compression molding, filament winding, pultrusion, resin transfer molding, automation, material removal and assembly, metal and ceramic matrix composites, quality assurance. Letter grading.

298. Seminar: Engineering. (2 to 4) Seminar, to be arranged. Limited to graduate materials science and engineering students. Seminars may be organized in advanced technical fields. If appropriate, field trips may be arranged. May be repeated with topic change. Letter grading.

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Limited to graduate materials science and engineering students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies. Supervised investigation of advanced technical problems. S/U grading.

596. Directed Individual or Tutorial Studies. (2 to 8) Tutorial, to be arranged. Limited to graduate materials science and engineering students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies. Supervised investigation of advanced technical problems. S/U grading.

597A. Preparation for MS Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate materials science and engineering students. Reading and preparation for MS comprehensive examination. S/U grading.

597B. Preparation for PhD Preliminary Examinations. (2 to 16) Tutorial, to be arranged. Limited to graduate materials science and engineering students. S/U grading.

597C. Preparation for PhD Oral Qualifying Examination. (2 to 16) Tutorial, to be arranged. Limited to graduate materials science and engineering students. Preparation for oral qualifying examination, including preliminary research on dissertation. S/U grading.

599. Research and Preparation for PhD Dissertation. (2 to 16) Tutorial, to be arranged. Limited to graduate materials science and engineering students. Usually taken after students have been advanced to candidacy. S/U grading.

Faculty Roster

Professors

Mohamed A. Abdou, PhD
Andrea L. Bertozzi, PhD (Betsy Wood Knapp Professor of Innovation and Creativity)
Robert N. Candler, PhD
Gregory P. Carman, PhD (Ben Rich-Loxheed Martin Professor of Advanced Aerospace Technologies)

Associate Professors

Elisa Franco, PhD
Jonathan B. Hopkins, PhD
Yongjie Hu, PhD
Veronica J. Santos, PhD
Raymond M. Spearrin, PhD

Assistant Professors

Tyler R. Clites, PhD
M. Khalid Jawed, PhD
Lihua Jin, PhD
Neil Y.C. Lin, PhD
Brett T. Lopez, PhD
Ankur Mehta, PhD
Xiaoyu (Rayne) Zheng, PhD

Lecturers

Ravesh C. Amar, PhD
Amiya K. Chatterjee, PhD
Robert J. Kinsey, PhD
Damian M. Toohey, PhD

Adjunct Professors

Portono S. Ayyaswamy, PhD
S. Amir Faghri, PhD
Dan M. Goebel, PhD
Vinay K. Goyal, PhD
Leslie M. Lackman, PhD
Christopher S. Lynch, PhD
Willbur J. Marner, PhD
Audrey P. O’Neal, PhD
Neil Siegel, PhD

Adjunct Associate Professor

Abdon E. Sepulveda, PhD

Professors Emeriti

H. Thomas Hahn, PhD (Raytheon Company Professor Emeritus of Manufacturing Engineering)
Chin-Ming Ho, PhD (Ben Rich Lockheed Martin Professor Emeritus of Aeronautics)
J. John Kim, PhD (Rockwell Collins Professor Emeritus of Engineering)

Adjunct Faculty

Ajit K. Mal, PhD
Anthony F. Mills, PhD
D. Lewis Mingori, PhD
Peter A. Monkewitz, PhD
Philip F. O’Brien, MS
Lucien A. Schmit, Jr., MS
Owen I. Smith, PhD
Richard E. Stern, PhD
Russell A. Westmann, PhD
Daniel C.H. Yang, PhD

Associate Professors

Timothy S. Fisher, PhD, Chair
Eric Pei-Yu Chiou, PhD, Vice Chair
Jeffrey D. Eldredge, PhD, Vice Chair
Chang-Jin (CJ) Kim, PhD, Vice Chair

Department e-mail

Department website

Department website

Timothy S. Fisher, PhD, Chair
Eric Pei-Yu Chiou, PhD, Vice Chair
Jeffrey D. Eldredge, PhD, Vice Chair
Chang-Jin (CJ) Kim, PhD, Vice Chair

Mechanical and Aerospace Engineering

48-121 Engineering IV
Box 951597
Los Angeles, CA 90095-1597
310-825-7793

Overview

The Department of Mechanical and Aerospace Engineering offers curricula in Aerospace Engineering and Mechanical Engineering at both the undergraduate and graduate levels. The scope of the departmental research and teaching program is broad, encompassing design, robotics, and manufacturing; fluid mechanics; micro/nano engineering; structural and solid mechanics; systems control; and thermal science and engineering. The applications of mechanical and aerospace engineering are quite diverse, including aircraft, spacecraft,
automobiles, energy and propulsion systems, robotics, machinery, manufacturing and materials processing, microelectronics, biological systems, and more.

At the undergraduate level, the department offers accredited programs leading to BS degrees in Aerospace Engineering and in Mechanical Engineering. At the graduate level, the department offers programs leading to MS and PhD degrees in Mechanical Engineering and in Aerospace Engineering. An MS in Manufacturing Engineering is also offered.

Department Mission

The mission of the Mechanical and Aerospace Engineering Department is to educate the nation’s future leaders in the science and art of mechanical and aerospace engineering. Further, the department seeks to expand the frontiers of engineering science and to encourage technological innovation while fostering academic excellence and scholarly learning in a collegial environment.

Undergraduate Study

Aerospace Engineering BS

The aerospace engineering program is concerned with the design and construction of various types of fixed-wing and rotary-wing (helicopters) aircraft used for air transportation and national defense. It is also concerned with the design and construction of spacecraft, the exploration and utilization of space, and related technological fields.

Aerospace engineering is characterized by a very high level of technology. The aerospace engineer is likely to operate at the forefront of scientific discoveries, often stimulating these discoveries and providing the inspiration for the creation of new scientific concepts. Meeting these demands requires the imaginative use of many disciplines, including fluid mechanics and aerodynamics, structural mechanics, materials and aeroelasticity, dynamics, control and guidance, propulsion, and energy conversion.

The aerospace engineering program is accredited by the Engineering Accreditation Commission of **ABET**.

Capstone Major

The Aerospace Engineering major is a designated capstone major. Within their capstone courses, Aerospace Engineering students are exposed to the conceptual and design phases for aircraft development and produce a structural design of a component, such as a lightweight aircraft wing. Graduates should be able to apply their knowledge of mathematics, science, and engineering in technical systems; design a system, component, or process to meet desired needs; function as productive members of a team; identify, formulate, and solve engineering problems; and communicate effectively, both orally and in writing.

Educational Objectives

In consultation with its constituents, the Mechanical and Aerospace Engineering Department has set its educational objectives as follows: within a few years after graduation, the students will be successful in careers in aerospace or mechanical or other engineering fields, and/or in further studies in other fields such as medicine, business, and law.

Learning Outcomes

The Aerospace Engineering major has the following learning outcomes:

- Application of knowledge of mathematics, science, and engineering
- Function as a productive member of a team that considers multiple aspects of an engineering problem
- Design of a system, component, or process to meet desired needs
- Effective oral and written communication
- Identification, formulation, and solution of engineering problems
Preparation for the Major

Required: Chemistry and Biochemistry 20A, 20B, 20L; Mathematics 31A, 31B, 32A, 32B, 33A; Mechanical and Aerospace Engineering M20 (or Computer Science 31), 82; Physics 1A, 1B, 1C, 4AL, 4BL.

The Major

Required: Mechanical and Aerospace Engineering 1, 101, 102, 103, 105A, 105D, 107, 150A, 157, 166A, 171A; two departmental breadth courses (Electrical and Computer Engineering 100 and Materials Science and Engineering 104)—if one or both of these courses are taken as part of the technical breadth requirement, students must select a replacement upper-division course or courses from the department—except for Mechanical and Aerospace Engineering 156A—or, by petition, from outside the department; one of the following two tracks (16 units): aeronautics (150B, C150P, 154A, 154S) or space (C150R, 161A, 161B, 161C); three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; one capstone design course (Mechanical and Aerospace Engineering 157A); one major field elective course (4 units) from Mechanical and Aerospace Engineering 150B, C150R, 154A, 154S, 155, C156B, 157A, 161A through 161C, C162B, C163A, C163B, C163C, 166C, M168, 169A, 171B, 172, 174, C175A, 181A, 182B, 182C, 183A, M183B, C183C, 185, C186, C187L.. For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 21 or the GE Requirement web page.

Mechanical Engineering BS

The mechanical engineering program is designed to provide basic knowledge in thermodynamics, fluid mechanics, heat transfer, solid mechanics, mechanical design, dynamics, control, mechanical systems, manufacturing, and materials. The program includes fundamental subjects important to all mechanical engineers. The mechanical engineering program is accredited by the Engineering Accreditation Commission of ABET.

Capstone Major

The Mechanical Engineering major is a designated capstone major. Within their capstone courses, Mechanical Engineering students work in teams to propose, design, analyze, and build a mechanical or electromechanical device. Graduates should be able to apply their knowledge of mathematics, science, and engineering in technical systems; design a system, component, or process to meet desired needs; function as productive members of a team; identify, formulate, and solve engineering problems; and communicate effectively, both orally and in writing.

Educational Objectives

In consultation with its constituents, the Mechanical and Aerospace Engineering Department has set its educational objectives as follows: within a few years after graduation, the students will be successful in careers in aerospace or mechanical or other engineering fields, and/or in graduate studies in aerospace or mechanical or other engineering fields, and/or in further studies in other fields such as medicine, business, and law.

Learning Outcomes

The Mechanical Engineering major has the following learning outcomes:

- Application of knowledge of mathematics, science, and engineering
- Function as a productive member of a team that considers multiple aspects of an engineering problem
- Design of a system, component, or process to meet desired needs
- Effective oral and written communication
- Identification, formulation, and solution of engineering problems

Preparation for the Major

Required: Chemistry and Biochemistry 20A, 20B, 20L; Mathematics 31A, 31B, 32A, 32B, 33A; Mechanical and Aerospace Engineering M20 (or Computer Science 31), 82; Physics 1A, 1B, 1C, 4AL, 4BL.

The Major

Required: Electrical and Computer Engineering 110L, Mechanical and Aerospace Engineering 101, 102, 103, 105A, 105D, 107, 131A or 133A, 156A, 157, 162A, 171A, 183A (or M183B); two departmental breadth courses (Electrical and Computer Engineering 100 and Materials Science and Engineering 104)—if one or both of these courses are taken as part of the technical breadth requirement, students must select a replacement upper-division course or courses from the department—except for Mechanical and Aerospace Engineering 166A—or, by petition, from outside the department; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; two capstone design courses (Mechanical and Aerospace Engineering 162D, 162E); and two major field elective courses (8 units) from Mechanical and Aerospace Engineering 131A (unless taken as a required course), C131G, 133A (unless taken as a required course), 135, C136, C137, C138, CM140, 150A, 150B, 150C, C150G, C150R, C154B, 154S, 155, C156B, 157A, 161A through 161C, C162B, C163A, C163B, C163C, 166C, M168, 169A, 171B, 172, 174, C175A, 181A, 182B, 182C, 183A (unless taken as a required course), M183B (unless taken as a required course), C183C, 185, C186, C187L.

For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 21 or the GE Requirement web page.

Graduate Study

For admission information, see Graduate Programs. For information on the following introductory information is based on 2021-22 program requirements for UCLA graduate degrees. Complete program requirements are available at Program Requirements for UCLA Graduate Degrees. Students are subject to the detailed degree requirements as published in program requirements for the year in which they enter the program.

The Department of Mechanical and Aerospace Engineering offers the Master of Science (MS) degree in Manufacturing Engineering, Master of Science (MS) and Doctor of Philosophy (PhD) degrees in Aerospace Engineering, and Master of Science (MS) and Doctor of Philosophy (PhD) degrees in Mechanical Engineering. All new MS and PhD students who are pursuing an MS degree in the Mechanical and Aerospace Engineering Department must meet with their advisers in their first term at UCLA. The goal of the meeting is to discuss the students’ plans for satisfying the MS degree requirements. Students should obtain an MS planning form from the department Student Affairs Office and return it with their advisers’ signature by the end of the first term.

Aerospace Engineering MS and Mechanical Engineering MS

Course Requirements

Students may select either the thesis plan or comprehensive examination plan. At least nine courses (and 36 units) are required, of which at least five must be graduate courses. In the thesis plan, seven of the nine must be formal courses, including at
least four from the 200 series. The remaining two may be 598 courses involving work on the thesis. In the comprehensive examination plan, no units of 500-series courses may be applied toward the minimum course requirement. Courses taken before the award of the bachelor’s degree may not be applied toward a graduate degree at UCLA. The courses should be selected so that the breadth requirements and the requirements at the graduate level are met. The breadth requirements are only applicable to students who do not have a BS degree from an ABET-accredited aerospace or mechanical engineering program. Undergraduate Courses. No lower-division courses may be applied toward graduate degrees. In addition, the following upper-division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199, Civil and Environmental Engineering 108, 199, Computer Science M152A, 152B, M171L, 199, Electrical and Computer Engineering 100, 101A, 102, 110L, M116L, 133A, M171L, 199, Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 140A, 140B, 141L, 150, 160, 161L, 199, Mechanical and Aerospace Engineering 101, 102, 103, 105A, 105D, 107, 188, 194, 199.

Aerospace Engineering

Breadth Requirements. Students are required to take at least three courses from the following four categories: (1) Mechanical and Aerospace Engineering 154A or 154B or 154S, (2) 150B or C150P, (3) 155 or 166A or 169A, (4) 161A or 171A.

Mechanical Engineering

Breadth Requirements. Students are required to take at least three courses from the following five categories: (1) Mechanical and Aerospace Engineering 162A or 169A or 171A, (2) 150A or 150B, (3) 131A or 133A, (4) 156A, (5) 162D or 183A.

Comprehensive Examination Plan

The comprehensive examination is required in either written or oral form. A committee of at least three faculty members, with at least two members from within the department, and chaired by the academic adviser, is established to administer the examination. Students may, in consultation with their adviser and the MS committee, select one of the following options for the comprehensive examination: (1) take and pass the first part of the PhD written qualifying examination (formerly referred to as the preliminary examination) as the comprehensive examination, (2) conduct a research or design project and submit a final report to the MS committee, or (3) take and pass three comprehensive examination questions offered in association with three graduate courses. Contact the department Student Affairs Office for more information.

Thesis Plan

The thesis must describe some original piece of research that has been done under the supervision of the thesis committee. Students should normally start to plan the thesis at least one year before the award of the MS degree is expected. There is no examination under the thesis plan.

Manufacturing Engineering MS

Areas of Study

Consult the department.

Course Requirements

Students may select either the thesis plan or comprehensive examination plan. At least nine courses (and 36 units) are required, of which at least five must be graduate courses. In the thesis plan, seven of the nine must be formal courses, including at least four from the 200 series. The remaining two may be 598 courses involving work on the thesis. In the comprehensive examination plan, no units of 500-series courses may be applied toward the minimum course requirement. Courses taken before the award of the bachelor’s degree may not be applied toward a graduate degree at UCLA. Choices may be made from the following major areas:

Undergraduate Courses. No lower-division courses may be applied toward graduate degrees. In addition, the following upper-division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199, Civil and Environmental Engineering 108, 199, Computer Science M152A, 152B, M171L, 199, Electrical and Computer Engineering 100, 101A, 102, 110L, M116L, 133A, M171L, 199, Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 140A, 140B, 141L, 150, 160, 161L, 199, Mechanical and Aerospace Engineering 101, 102, 103, 105A, 105D, 107, 188, 194, 199.

Upper-Division Courses. Students are required to take at least three courses from the following: Mechanical and Aerospace Engineering M168, 174, 183A, 185.

Graduate Courses. Students are required to take at least three courses from the following: Mechanical and Aerospace Engineering C263A, C263C, C263D, C296A, M297C.

Additional Courses. The remaining courses may be taken from other major fields of study in the department or from the following: Architecture and Urban Design 227D, Computer Science 241B, Management 241A, Management-PhD 241A, 241B, Mathematics 120A, 120B.

Comprehensive Examination Plan

The comprehensive examination is required in either written or oral form. A committee of at least three faculty members, with at least two members from within the department, and chaired by the academic adviser, is established to administer the examination. Students may, in consultation with their adviser and the MS committee, select one of the following options for the comprehensive examination: (1) take and pass the first part of the PhD written qualifying examination (formerly referred to as the preliminary examination) as the comprehensive examination, (2) conduct a research or design project and submit a final report to the MS committee, or (3) take and pass three comprehensive examination questions offered in association with three graduate courses. Contact the department Student Affairs Office for more information.

Aerospace Engineering PhD and Mechanical Engineering PhD

Major Fields or Subdisciplines

Design, robotics, and manufacturing (mechanical engineering only); fluid mechanics; micro-nano engineering; structural and solid mechanics; systems and control; thermal science and engineering.

PhD students may propose ad hoc major fields, which must differ substantially from established major fields and satisfy one of the following two conditions: (1) the field is interdisciplinary in nature or (2) the field represents an important research area for which there is no established major field in the department (condition 2 most often applies to recently evolving research areas or to areas for which there are too few faculty members to maintain an established major field).

Students in an ad hoc major field must be sponsored by at least three faculty members, at least two of whom must be from the department.
Course Requirements
The basic program of study for the PhD degree is built around major and minor fields. The established major fields are listed above, and a detailed syllabus describing each PhD major field can be obtained from the Student Affairs Office.

The program of study for the PhD requires students to perform original research leading to a doctoral dissertation and to master a body of knowledge that encompasses material from their major field and breadth material from outside the major field. The body of knowledge should include (1) six major field courses, at least four of which must be graduate courses; (2) one minor field; (3) any three additional courses, at least two of which must be graduate courses, that enhance the study of the major or minor field.

The major field syllabus advises students as to which courses contain the required knowledge, and students usually prepare for the written qualifying examination (formerly referred to as the pre-final exam) by taking these courses. However, students can acquire such knowledge by taking similar courses at other universities or even by self-study.

The minor field embraces a body of knowledge equivalent to three courses, at least two of which must be graduate courses. Minor fields are often subsets of major fields, and minor field requirements are then described in the syllabus of the appropriate major field. Established minor fields with no corresponding major field can also be used, such as applied mathematics and applied plasma physics and fusion engineering. Also, an ad hoc field can be used in exceptional circumstances, such as when certain knowledge is desirable for a program of study that is not available in established minor fields.

Grades of B– or better, with a grade-point average of at least 3.33 in all courses included in the minor field, and the three additional courses mentioned above are required. If students fail to satisfy the minor field requirements through coursework, a minor field examination may be taken (once only).

Written and Oral Qualifying Examinations
After mastering the body of knowledge defined in the major field, students take a written qualifying (preliminary) examination covering this knowledge. Students must have been formally admitted to the PhD program or admitted subject to completion of the MS degree by the end of the term following the term in which the examination is given. The examination must be taken within the first two calendar years from the time of admission into the PhD program. Students must be registered for the term in which the examination is given and be in good academic standing (minimum GPA of 3.25). The student’s major field proposal must be completed prior to taking the examination. Students may not take an examination more than twice. Students in an ad hoc major field must pass a written qualifying examination that is approximately equivalent in scope, length, and level to the written qualifying examination for an established major field.

After passing the written qualifying examination, students take the University Oral Qualifying Examination within four calendar years from the time of admission into the PhD program. The nature and content of the examination are at the discretion of the doctoral committee but include a review of the dissertation prospectus and may include a broad inquiry into the student’s preparation for research.

Note: Doctoral Committees. A doctoral committee consists of a minimum of four members. Three members, including the chair, are inside members and must hold appointments in the department. The outside member must be a UCLA faculty member in another department.

Fields of Study
Design, Robotics, and Manufacturing
The program is developed around an integrated approach to design, robotics, and manufacturing. It includes research on manufacturing and design aspects of mechanical systems, material behavior and processing, robotics and manufacturing systems, CAD/CAM theory and applications, computational geometry and geometrical modeling, composite materials and structures, automation and digital control systems, micro-devices and nanodevices, radio frequency identification (RFID), and wireless systems.

Fluid Mechanics
The graduate program in fluid mechanics includes experimental, numerical, and theoretical studies related to a range of topics in fluid mechanics, such as turbulent flows, hypersonic flows, microscale and nanoscale flow phenomena, aeroacoustics, bio-fluid mechanics, chemically reactive flows, chemical reaction kinetics, numerical methods for computational fluid dynamics (CFD), and experimental methods. The educational program for graduate students provides a strong foundational background in classical incompressible and compressible flows, while providing elective breadth courses in advanced specialty topics such as computational fluid dynamics, microfluidics, biofluid mechanics, hypersonics, reactive flow, fluid stability, turbulence, and experimental methods.

Micro-Nano Engineering
The micro-nano engineering field focuses on science and engineering issues ranging in size from nanometers to millimeters and includes both experimental and theoretical studies, covering fundamentals to applications. The study topics include microscience, top-down and bottom-up nanofabrication/microfabrication technologies, molecular fluidic phenomena, nanoscale/microscale material processing, biomolecular signatures, heat transfer at the nanoscale, and system integration. The program is highly interdisciplinary in nature.

Structural and Solid Mechanics
The solid mechanics program features theoretical, numerical, and experimental studies, including fracture mechanics and damage tolerance, micromechanics with emphasis on technical applications, wave propagation and nondestructive evaluation, mechanics of composite materials, mechanics of thin films and interfaces, analysis of coupled electro-magneto-thermo-mechanical material systems, and ferroelectric materials. The structural mechanics program includes structural dynamics with applications to aircraft and spacecraft, fixed-wing and rotary-wing aerelasticity, fluid structure interaction, computational transonic aerelasticity, biomechanics with applications ranging from whole organs to molecular and cellular structures, structural optimization, finite element methods and related computational techniques, structural mechanics of composite material components, structural health monitoring, and analysis of adaptive structures.

Systems and Control
The program features systems engineering principles and applied mathematical methods of modeling, analysis, and design of continuous- and discrete-time control systems. Emphasis is on modern applications in engineering, systems concepts, feedback and control principles, stability concepts, applied optimal control, differential games, computational methods, simulation, and computer process control. Systems and control research and education in the department cover a broad spectrum of topics primarily based in aerospace and mechanical engineering applications. However, the Chemical and Biomolecular Engineering and Electrical and Computer Engineering Departments also have active programs in control systems, and collaboration across departments among faculty members and students in both teaching and research is common.
Thermal Science and Engineering

The thermal science and engineering field includes studies of convection, radiation, conduction, evaporation, condensation, boiling and two-phase flow, chemically reacting and radiating flow, instability and turbulent flow, reactive flows in porous media, as well as transport phenomena in support of micro-scale and nanoscale thermosciences, energy, bioMEMS/NEMS, and microfabrication/nanofabrication.

Ad Hoc Major Fields

The ad hoc major fields program has sufficient flexibility that students can form academic major fields in their area of interest if the proposals are supported by several faculty members. Previous fields of study included acoustics, system risk and reliability, and engineering thermo-dynamics. Nuclear science and engineering, a former active major field, is available on an ad hoc basis only.

Centers, Facilities, and Laboratories

The Mechanical and Aerospace Engineering department has a number of experimental centers, facilities, and laboratories at which both fundamental and applied research is being conducted. See the department website research tab for details.

Active Materials Laboratory

Gregory P. Carman, Director

The Active Materials Laboratory contains equipment to evaluate the coupled response of materials such as piezoelectric, magnetostrictive, shape memory alloys, and fiber-optic sensors. The laboratory has manufacturing facilities to fabricate magnetostrictive composites and thin film shape memory alloys. Testing active material systems is performed on one of four servo-hydraulic load frames in the lab. All of the load frames are equipped with thermal chambers, solenoids, and electrical power supplies.

Additive Manufacturing and Metamaterials Laboratory

Xiaoyu (Rayne) Zheng, Director

The Additive Manufacturing and Metamaterials Laboratory performs research on additive manufacturing and material designs for structural and multifunctional devices. It draws principles from mechanics, optics, and materials science to develop the next generation of additive manufacturing (3D printing) processes, material design, and synthesis approaches to create multifunctional materials and all-in-one devices with controlled topologies, compositions, and multiscale features. It also develops methods to leverage artificial intelligence and rapid printing techniques to design metamaterials with tailorable mechanical and functional behaviors. These materials can be transferred to a wide array of applications for 3D electronics, structures, robotics, energy storage, and transportation; even biology and health care. The lab houses custom, scalable additive manufacturing capabilities and digital light-processing techniques for a wide range of multimaterials, with feature sizes ranging from tens of nanometers, to tens of centimeters, and above.

Anatomical Engineering Group

Tyler R. Clites, Director

The group researches anatomics, the co-engineering of body and machine in pursuit of synergistic bionic performance. The research combines surgical and mechanical design to co-develop body and machine. The long-term goal of the work is to transform the field of human rehabilitation and augmentation by making anatomics a fundamental tenet of bionic development.

Autonomous Vehicle Systems Instrumentation Laboratory (AVSIL)

Jason L. Speyer, Director

AVSIL is a testbed for design, building, evaluation, and testing of hardware instrumentation and coordination algorithms for multiple vehicle autonomous systems. AVSIL contains a hardware-in-the-loop (HIL) simulator—designed and built at UCLA—that allows for real-time, systems-level tests of two formation control computer systems in a laboratory environment, using the Interstate Electronics Corporation GPS Satellite Constellation Simulator. The UCLA flight control software can be modified to accommodate satellite-system experiments using real-time software, GPS receivers, and intervehicle modern communication.

Beam Control Laboratory

James S. Gibson, Director

The Beam Control Laboratory involves students, faculty, and postdoctoral scholars to develop novel methods for laser-beam control in applications including directed energy systems and laser communications. Algorithms developed at UCLA for adaptive and optimal control and filtering, as well as system identification, are being used in adaptive optics and beam steering. UCLA high-bandwidth controllers correct both higher-order wavefront errors and tilt jitter to levels not achievable by classical beam control methods.

Boiling Heat Transfer Laboratory

Vijay K. Dhir, Director

The laboratory performs experimental and computational studies of phase-change phenomena. It is equipped with various flow loops, state-of-the-art data acquisition systems, holography, high-speed imaging systems, and a gamma densitometer.

Biomechatronics Laboratory

Veronica J. Santos, Director

The Biomechatronics Laboratory is dedicated to improving quality of life by enhancing the functionality of artificial hands and their control in human-machine systems. The research is advancing the design and control of human-machine systems as well as autonomous robotic systems. Current research projects involve human biomechanics, tactile sensing, control of robotic systems, and machine learning.

Bionics Laboratory

Jacob Rosen, Director

The Bionics Laboratory performs research at the interface between robotics, biological systems, and medicine. Primary research fields are medical robotics and biorobotics, including surgical robotics; and wearable robotics as they apply to human motor control, neural control, human- and brain-machine interfaces, motor control (stroke) rehabilitation, brain plasticity, haptics, virtual reality, tele-operation, and biomechanics (full-body kinematics and dynamics, and soft/hard tissues biomechanics).

Center for Translational Applications of Nanoscale Multiferroic Systems (TANMS)

Gregory P. Carman, Director

TANMS is a multi-institutional engineering research center (ERC) focused on research, technology translation, and education associated with magnetism on the nanoscale. The TANMS vision is to develop a fundamentally new approach that couples electricity to magnetism using engineered nanoscale multiferroic elements, to enable increased energy efficiency, reduced physical size, and increased power output in consumer electronics. This new approach overcomes scaling limitations present Oersted’s magnetism control discovery of 1820. TANMS goal is to translate its research discoveries to industry while seamlessly integrating a cradle-to-career education philosophy involving its students, and future engineers, in unique research and entrepreneurial experiences.
Chen Research Group
Yong Chen, Director
The Chen Research Group studies nanofabrication, nano-scale electronic materials and devices, micro-nano electronic/optical/bio/mechanical systems, and ultra-scale spatial and temporal characterization.

Collaborative Center for Aerospace Sciences (CCAS)
Ann R. Karagozian, Director
CCAS is a multi- and trans-disciplinary research center focused on fundamental and applied basic studies relevant to aerospace systems. Research projects that broadly span the computational and experimental arenas are conducted at UCLA and at the Air Force Research Laboratory (AFRL/RQR) at Edwards Air Force Base, about 90 miles northeast of campus. UCLA faculty, students, and postdoctoral researchers collaborate with AFRL scientists and engineers on high-impact problems to advance U.S. capabilities in aerospace systems.

Complex Fluids and Interfacial Physics Laboratory
H. Pirouz Kavehpour, Director
The Complex Fluids and Interfacial Physics Laboratory is multidisciplinary, with areas of research ranging from rheology of biofluids to energy storage. The group is directed towards development of fundamental engineering and scientific knowledge.

Computational Fluid Dynamics Laboratory (Taira Lab)
Kunihiko (Sam) Taira, Director
The Computational Fluid Dynamics Laboratory studies a variety of fluid mechanics problems with research interests in the areas of computational fluid dynamics, flow control, data science, network theory, and unsteady aerodynamics. The studies leverage numerical simulations performed on high-performance computers.

Cybernetic Control Laboratory (CyClab)
Tetsuya Iwasaki, Director
CyClab investigates the neuronal mechanisms for information processing and learning. It also develops fundamental theories for analysis and design of dynamical feedback systems, with applications to bio-inspired robotic vehicles, assistive devices for human movements, and neurorehabilitation after spinal cord injury.

Davoyan Research Laboratory (A-Lab)
Artur Davoyan, Director
The laboratory is focused on nanoscale materials for space and energy applications. Research topics encompass space exploration, device physics, and sustainability.

Design and Manufacturing Laboratory
The laboratory offers an environment for synergistic integration of design and manufacturing. Available equipment includes four CNC machines, two rapid-prototyping systems, coordinate measuring, X-ray radiography, robots with vision systems, audiovisual equipment, and a distributed network of more than 30 workstations.

Dynamic Nucleic Acid Systems Laboratory
Elisa Franco, Director
The Dynamic Nucleic Acid Systems Laboratory develops mathematical models and experimental platforms to build adaptive and dynamic biological devices using DNA, RNA, and proteins. The results have applications in materials science, nanotechnology, and synthetic biology.

Energy and Propulsion Research Laboratory
Ann R. Karagozian, Director
The Energy and Propulsion Research Laboratory applies modern diagnostic methods and computational tools to the development of advanced rocket and airbreathing propulsion as well as energy systems. Research involves applications of fundamental fluid mechanics, combustion chemistry, dynamical systems, and optics.

Energy Innovation Laboratory
Richard E. Wirz, Director
The Energy Innovation Laboratory investigates high-impact renewable energy science and technology. Its current work primarily focuses on large-scale thermal energy storage for grid-scale applications and advanced wind energy capture.

Flexible Research Group
Jonathan B. Hopkins, Director
The Flexible Research Group is dedicated to the design and fabrication of flexible structures, mechanisms, and materials that achieve extraordinary capabilities. The laboratory is equipped with state-of-the-art synthesis tools, optimization software, and a number of commercial and custom-developed additive fabrication technologies for fabricating complex flexible structures at the macro- to nano-scales.

Fusion Science and Technology Center
Mohamed A. Abdou, Director
The Fusion Science and Technology Center includes experimental facilities for conducting research in fusion science and engineering, and multiple scientific disciplines in thermonuclear, thermomechanics, heat/mass transfer, and materials interactions. The center includes experimental facilities for liquid metal magnetohydrodynamic flow, thick and thin liquid metal systems exposed to intense particle and heat flux loads, and metallic and ceramic material thermomechanics.

Ho Systems Laboratory – Personalized Medicine
Chih-Ming Ho, Director
The Ho Systems Laboratory researches phenotypic personalized medicine (PPM). It has discovered that drug-dose inputs are correlated with phenotypic outputs with a parabolic response surface (PRS). With a few calibration tests to determine the coefficients of its governing algebraic quadratic equation, PPM dictates the composition and ratio of a globally optimized drug combination. Based on the PRS platform, PPM can realize unprecedented adaptability to identify the optimized drug combination for a specific patient. PRS is an indication-agnostic and mechanism-free platform technology, which has been successfully demonstrated in about 30 diseases.

Hu Research Laboratory (H-Lab)
Yongjie Hu, Director
H-Lab is focused on understanding and engineering fundamental transport phenomena and new materials for wide applications including energy conversion, storage, aerospace, electronics, thermal management, micro/nano sensors, and biomedical devices. The laboratory uses a variety of experimental and theoretical techniques to investigate nanoscale transport processes and develop device applications, with a particular emphasis on design, chemical synthesis, and manufacturing of advanced materials, ultrafast optical spectroscopy, pulsed electronics, thermal spectral mapping techniques, ab initio calculations, and atomistic modeling.
Hypersonics and Computational Aerodynamics Group
Xiaolin Zhong, Director
The Hypersonics and Computational Aerodynamics Group primarily focuses on fundamental physics-based research of hypersonic flows using advanced numerical tools; and application of discovered fundamental knowledge to real-world aerospace systems, such as development of hypersonic planes and space vehicles. Its main research areas are computational fluid dynamics (CFD), hypersonic flows, instability and transition of hypersonic boundary layers, interaction of strong shocks and turbulence, and numerical simulation of wave energy harvesting.

Laser Spectroscopy and Gas Dynamics Laboratory
Raymond M. Spearrin, Director
The Laser Spectroscopy and Gas Dynamics Laboratory conducts research driven by applications in propulsion and energy, with extensions to health and environment. Laboratory activities are united by a core focus in experimental thermofluids and applied spectroscopy. Projects commonly span fundamental spectroscopy science to design and deployment of prototype sensors to investigate dynamic flow-fields.

Living Soft Material Engineering Laboratory (Lin Lab)
Yen-Chih (Neil) Lin, Director
Lin Lab research looks at developing 3D biological tissues that mimic the geometric structure, mechanical properties, and functionality of human organs. Major research focuses include development of live cell imaging tools, cell mechanics measurements, and tissue manufacturing methods. This research could lead to detailed and complex model tissues for drug screening; and ultimately, artificial organs that could be transplanted into humans.

Materials Degradation Characterization Laboratory
Ajit K. Mal, Director
The Materials Degradation Characterization Laboratory is used for characterization of the degradation of high-strength metallic alloys and advanced composites due to corrosion and fatigue, determination of adverse effects of materials degradation on the strength of structural components, and research on fracture mechanics and ultrasonic nondestructive evaluation.

Materials in Extreme Environments Laboratory (MATRIX)
Nasr M. Ghoniem, Director
MATRIX seeks answers to two fundamental questions: What are the physical phenomena that control the mechanical properties of engineering materials operating in extreme environmental conditions; and knowing such behavior, can we design engineering materials to be more resilient.

Mechanics of Soft Materials Laboratory
Lihua Jin, Director
The Mechanics of Soft Materials Laboratory investigates the fundamental physics and mechanics of soft materials, such as their constitutive relation, nonlinear deformation, instability, and fracture. The laboratory also strives to develop new materials, structures, and functions for soft robotics and stretchable electronics.

Mechatronics and Controls Laboratory
Tsu-Chin Tsao, Director
The Mechatronics and Controls Laboratory conducts research in theory and innovation in dynamic systems, controls, mechatronics, and robotics. It creates high-performance systems with novel sensors, actuators, and real-time digital signal processing and embedded control. Applications include precision motion and vibration control, manufacturing equipment and processes, medical devices, and robots.

Micro and Nano Manufacturing Laboratory
Chang-Jin (CJ) Kim, Director
The Micro and Nano Manufacturing Laboratory explores physical phenomena unique in submillimeter scale, and utilizes microelectromechanical systems (MEMS) technologies to advance important knowledge and create useful applications. Surface tension is one such phenomenon, which led to cutting-edge discoveries and revolutionary applications, some commercialized. Research themes include electrowetting-on-dielectric (EWOD), electro-dewetting, droplets and bubbles, and superhydrophobic surfaces; and application areas include droplet (digital) microfluidics, micro fuel cells, and drag reduction of liquid flows. Typical research starts with a novel concept, and completes with application devices of commercial implication. The laboratory has various equipment to complement the Nanolab (e.g., fume hood, modular cleanroom, environment chambers, probe stations, microscopes, dicing saw, electroplating setup, and interference lithography), and facilitate drag-reduction research (e.g., water tunnel and molding setup), including a 13-foot motorboat at a local marina.

Modeling of Complex Thermal Systems Laboratory
Adrienne G. Lavine, Director
The Modeling of Complex Thermal Systems Laboratory addresses a variety of systems in which heat transfer plays an important role. Thermal aspects of these systems are coupled with other physical phenomena such as mechanical or electrical behavior. Modeling tools range from analytical to custom computer codes to commercial software.

Morrin-Gier-Martinelli Heat Transfer Memorial Laboratory
Laurent G. Pilon, Director
The heat transfer laboratory is engaged in a broad range of interdisciplinary research projects at the intersection of interfacial and transport phenomena, radiation transfer, material science, and biology for sustainable solar energy conversion; waste heat energy harvesting; electrical energy storage; and energy efficient buildings. The laboratory features state-of-the-art equipment for material synthesis and characterization such as glove boxes and high-temperature furnaces, potentiostats, calorimeters, and thermal conductivity analyzers. It is also equipped with a full set of instruments for optical characterization of solids, liquids, and suspensions from ultraviolet to infrared wavelengths (e.g., spectrometers, lasers, and detection systems). The laboratory also has various instrumented flow loops for rheological and convective heat transfer experiments with complex fluids.

Multiscale Thermosciences Laboratory (MTSL)
Y. Sungtaek Ju, Director
MTSL is focused on heat and mass transfer phenomena at the nano- to macro-scales. A wide variety of applications are explored, including novel materials and devices for energy conversion; combined cooling, heating, and power generation; thermal management of electronics and buildings;
energy-water nexus; and biomedical MEMS/NEMS devices.

Nanoscale Transport Research Group (NTRG)
Timothy S. Fisher, Director
The Nanoscale Transport Research Group works on a broad range of problems, primarily involving transport processes by electrons, phonons, photons, and fluids. It seeks to solve problems with high importance to applications in energy transport, conversion, and storage. The group is currently working on developing solutions to highly transient transport problems that occur in aerospace applications.

Optofluidics Systems Laboratory
Eric Pei-Yu Chiou, Director
The Optofluidics Systems Laboratory develops heterogeneous integrated functional devices and systems for biomedical applications. Research areas include integrated photonics and fluidics devices; 3D micro- and nano-fabrication technologies; and flexible mechanical, photonics, and electronics systems.

Pilon Research Group
Laurent G. Pilon, Director
The Pilon Research Group researches photobiological fuel production, mesoporous materials, electrochemical capacitors, waste heat energy harvesting, foams/microfoams, biomedical optics, and energy efficiency.

Plasma and Beam Assisted Manufacturing Laboratory
Richard E. Wirz, Director
The Plasma and Space Propulsion Laboratory investigates plasmas using a combination of experimental, computational, and theoretical perspectives. Its research is directly inspired by the rapidly emerging field of electric propulsion (EP). Other applications of its work include microplasmas, plasma processing, and fusion.

Robotics and Mechanisms Laboratory (RoMeLa)
Dennis W. Hong, Director
RoMeLa is a facility for robotics research and education with an emphasis on studying humanoid robots and novel mobile robot locomotion strategies. Research is in the areas of robotic locomotion and manipulation, soft actuators, platform design, kinematics and mechanisms, and autonomous systems. RoMeLa is active in research-based international robotics competitions, winning numerous prizes including third place in the DARPA Urban Challenge. The laboratory also took first place in the RoboCup international autonomous robot soccer competition (kid-size and adult-size humanoid divisions), and was world champion five times in a row. It also brought the prestigious Louis Vuitton Cup Best Humanoid award to the U.S. for the first time, and most recently was one of six Track A teams chosen to participate in the DARPA Robotics Challenge disaster response robot competition.

Scifacturing Laboratory
Xiaochun Li, Director
The Scifacturing Laboratory furnishes a creative, interdisciplinary platform for science-driven manufacturing (scifacturing) as the next level of manufacturing. It seeks to enable application of physics and chemistry to empower breakthroughs in manufacturing. The laboratory links molecular, nano-, and micro-scale knowledge to scaleable processes/systems in manufacturing and materials processing. Current focus areas include scale-up nanomanufacturing, solidification nanoprocessing of supermaterials with dense nanoparticles, structurally integrated micro- and nano-systems (especially sensors and actuators) for manufacturing, clean energy and biomedical manufacturing, meso/micro 3D printing, and laser materials processing.

Sensors and Instrumentation Laboratory
Robert T. M’Closkey, Director
The Sensors and Instrumentation Laboratory focuses on the design, fabrication, modeling, and testing of microscale sensors, notably coriolis vibratory gyroscopes. The laboratory offers the opportunity to conduct leading-edge analytical and experimental research in state-of-the-art facilities.

Simulations of Flow Physics and Acoustics Laboratory (SOFiA)
Jeffrey D. Eldredge, Director
The SOFiA Laboratory explores a wide variety of phenomena that occur in fluid flows in nature and technology. It investigates low-order modeling of unsteady aerodynamics of agile, bio-inspired, micro-air vehicles; microparticle manipulation by viscous streaming; the fluid dynamics of biological and biologically-inspired locomotion; interactions of fluid flows with flexible surfaces; transitional and turbulent sonic boundary layer flows; vortex estimation techniques for autonomous control of formation flight; and new computational tools for simulation of biomedical flows.

Smart Grid Energy Research Center (SMERC)
Rajit Gadh, Director
SMERC performs research; creates innovations; and demonstrates advanced Internet-of-Things, sense-and-control technologies, and data-enabled machine learning to enable development of the next-generation electric utility grid—the smart grid. SMERC also furnishes thought leadership through its ESmart Consortium between utilities, government, policy makers, technology providers, electric vehicle manufacturers, energy technology companies, Department of Energy research laboratories, and universities, so as to collectively work on envisioning, planning, and executing the smart grid of the future. This grid will enable integration of renewable energy sources. It will also reduce losses; improve efficiencies; increase grid flexibility; allow for integration of electric and autonomous vehicles; reduce power outages; allow for competitive energy pricing; and overall become more responsive to market, consumer, and societal needs. SMERC is currently working on electric vehicle integration (C2V and V2G), automated demand response (ADR), microgrids, distributed energy resources, renewable integration, battery energy storage integration, and autonomous vehicle infrastructure.
Thermal Systems and Fluid Mechanics

Nanoscale thermal systems; thermal hydraulic/hydraulic; fluid dynamics, heat, and mass transfer in the presence of magnetic fields (MHD flows); neutronics; radiation transport; plasma-material interactions; experiments, modeling and analysis

Robert N. Candler, PhD (Stanford, 2006)
MEMS/NEMS for compact free-electron lasers, miniature medical devices, nanoscale magnetic structures and devices, additive manufacturing, fundamental limits of micro- and nano-scale devices

Gregory P. Carman, PhD (Virginia Tech, 1991)
Electromagnetoelectricity models including micromagnetics, elastodynamics, and Maxwell coupled solutions. Characterization of piezoelectric ceramics, magnetostriective shape memory alloys, and multiferric materials.

Yong Chen, PhD (UC Berkeley, 1996)
Nanoscale science and engineering, micro- and nano-fabrication, self-assembly phenomena, microscale and nanoscale electronic, mechanical, optical, biological, and sensing devices, circuits and systems

Eric Pei-Yu Chiou, PhD (UC Berkeley, 2005)
BioMEMS, biophotonics, electrokinetics, optical manipulation, optoelectronic devices

Vijay K. Dhir, PhD (U. Kentucky, 1972)
Two-phase heat transfer, boiling and condensation, thermal hydraulics of nuclear reactors, microgravity heat transfer, soil remediation, high-power density electronic cooling

Jeffrey D. Eldredge, PhD (Caltech, 2002)
Numerical simulations of fluid dynamics, bio-inspired locomotion in fluids, transition and turbulence of high-speed flows, aerodynamically generated sound, vorticity-based numerical methods, simulations of biomedical flows

Timothy S. Freer, PhD (Cornell, 1998)
Heat and mass transfer, interfacial transport, nanomaterial synthesis, nano-/micro-device fabrication, non-equilibrium thermodynamics, subcontinuum modeling and measurements of heat and charge transport, electrochemical and thermal energy storage, mechanics and transport in granular materials and porous media, plasma science and technology, aerodynamic space thermal systems

Rajit Gadh, PhD (Carnegie Mellon, 1981)
Smart grids, electric vehicles and grid integration, microgrid, distributed energy resource, solar- and renewable-grid integration, demand response, autonomous electric vehicle, machine learning from transportation data, radio frequency identification (RFID), Internet of Things

Vijay Gupta, PhD (MIT, 1989)
Experimental mechanics, fracture of engineer- ing solids, mechanisms of film and surface, failure mechanisms and characterization of composite materials, ice mechanics

Dennis W. Hong, PhD (Purdue, 2002)
Analysis and visualization of contact force solution space for mobile robots

Tetsuya Iwasaki, PhD (Purdue, 1993)
Dynamical systems, robust and optimal control, non-linear oscillators, resonance entrainment, modeling and analysis of neuronal oscillators, central pattern generators, body-fluid interaction during undulatory and oscillatory swimming

Y. Sungtaek Ju, PhD (Stanford, 1999)
Heat and mass transfer, energy, energy-water nexus, MEMS and nanotechnology

Ann R. Karagozian, PhD (Caltech, 1982)
Fluid mechanics and combustion with applications to air breathing, rocket propulsion, and energy-generation systems, focusing on control of improved thermal efficiency, and reduced emissions

H. Pirouz Kavehpour, PhD (MIT, 2003)
Microscale fluid mechanics, transport phe- nomena in biological systems, biofluids, coating flows and physics of contact line phenomena, complex fluids, non-isothermal flows, energy systems and energy storage

Chang-Jin (CJ) Kim, PhD (UC Berkeley, 1991)
Microelectromechanical systems (MEMS), micro/nano devices and fabrication technologies, microfluidics especially involving surface tension and droplets

Adrienne Lavine, PhD (UC Berkeley, 1984)
Heat transfer, thermomechanical behavior of shape memory alloys, thermal aspects of manufacturing processes, natural and mixed convection

Xiaochun Li, PhD (Stanford, 2001)
Computational fluid dynamics in semiconductor manufacturing

Jaime Marian, PhD (UC Berkeley, 2002)
Computational material modeling and simu- lation in solid mechanics, irradiation damage, plasticity, phase transformations, thermody- namics and kinetics of alloy systems, algo- rithm and method development for bridging time and length scales and parallel computing applications

Robert T. M’Closkey, PhD (Caltech, 1995)
Nonlinear control theory and design with application to mechanical and aerospace systems, real-time implementation

Ali Mosleh, PhD, NAE (UCLA, 1981)
Reliability engineering, physics of failure mod- eling and system life, resilient systems design, prognostics and health moni- toring, hybrid systems simulation, theories and techniques for risk and safety analysis

Jayathi Y. Murthy, PhD (U. Minnesota, 1984)
Nanoscale heat transfer, computational fluid dynamics, simulation of fluid flow and heat transfer for industrial applications, sub-micron thermal transport, multiscale multiphysics simulations and uncertainty quantifications

Laurent G. Pilon, PhD (Purdue, 2002)
Interfacial and transport phenomena, radiation transfer, materials synthesis, multi-phase flow, heterogeneous media

Jacob Rosen, PhD (Tel Aviv U., Israel, 1997)
Natural integration of a human arm/powered exoskeleton system

Jason L. Speyer, PhD (Harvard, 1968)
Stochastic and deterministic control and estimation with application to aerospace systems; guidance, flight control, and flight mechanics

Kunihiko (Sam) Taira, PhD (Caltech, 2008)
Development of computation fluid dynamics that incorporate unsteady aerodynamics, flow control, and network theory

Tsu-Chin Tsao, PhD (UC Berkeley, 1988)
Mechatronics and control with applications in mechanical systems, manufacturing, vehicles, medical robots, and energy

Richard E. Witz, PhD (Caltech, 2005)
Electric propulsion (ion, Hall, electrosprays, cathodes); micro-electric propulsion; partially ionized plasma discharges; miniature plasma devices; spacecraft/space mission design; wind energy; solar thermal energy; thermal energy storage

Xiaolin Zhong, PhD (Stanford, 1991)
Computational fluid dynamics, advanced high-order CFD methods, hypersonic flow, numerical simulation of transient hypersonic flow with nonequilibrium real-gas effects, instability and turbulence boundary layers

Professors Emeriti

Peter F. Friedmann, ScD (MIT, 1972)
Aeroelastodynamics of helicopters and fixed-wing aircraft, structural dynamics of rotating systems, rotor dynamics, unsteady aero- dynamics, active control of structural dynamics, structural optimization with aeroelastic con- straints

Nasr M. Ghoniem, PhD (U. Wisconsin, 1977)
Mechanics of materials in severe environ- ments (nuclear, aerospace, transportation); radiation interactions (e.g., laser, ions, plasma, electrons, and neutrons); multiscale modeling; physics and mechanics of material defects; fusion energy; materials for space propulsion

James S. Gibson, PhD (U. Texas Austin, 1975)
Control and identification of dynamical sys- tems; optimal and adaptive control of distrib- uted systems, including flexible structures and fluid flows; active control, identification, and noise cancellation

Chih-Ming Ho, PhD (Johns Hopkins, 1974)
Molecular fluidic phenomena, microelectro- mechanical systems (MEMS), bio/nano tech- nologies, biomolecular sensing arrays, control of cellular complex systems, rapid search of combinatorial medicine

J. John Kim, PhD (Stanford, 1978)
Numerical simulation of turbulent and transi- tional flows, physics and control of turbulent flows, application of modern control theories to flow control

Ajit K. Mal, PhD (Calcutta U., India, 1964)
Mechanics of solids, composite materials, wave propagation, nondestructive evaluation, structural health monitoring

Anthony F. Mills, PhD (UC Berkeley, 1965)
Convective heat and mass transfer, condensation heat transfer, turbulent flows, ablation and transpiration cooling, perforated plate heat exchangers

D. Lewis Mingori, PhD (Stanford, 1966)
Dynamics and control, stability theory, non- linear methods, applications to space and ground vehicles

Peter A. Monkewitz, PhD (ETH Zürich, Switzer- land, 1977)
Fluid mechanics, internal acoustics and noise produced by turbulent jets

Philip F. O’Brien, MS (UCLA, 1949)
Industrial engineering, environmental design, thermal and luminous engineering systems
Lucien A. Schmit, Jr., MS (MIT, 1950)
Structural mechanics, optimization, automated design methods for structural systems and components, application of finite element analysis techniques and mathematical programming methods in structural design, analysis and synthesis methods for fiber composite structural components

Owen I. Smith, PhD (UC Berkeley, 1977)
Combustion and combustion-generated air pollutants, gas dynamics and chemical kinetics of combustion systems, semiconduc-
tor chemical vapor deposition

Richard Stern, PhD (UCLA, 1964)
Experimentation in noise control, physical acoustics, engineering acoustics, medical acoustics

Russell A. Westmann, PhD (UC Berkeley, 1962)
Mechanics of solid bodies, fracture mechanics, adhesive mechanics, composite materials, electrodynamics, mixed boundary value problems

Daniel C.H. Yang, PhD (Rutgers, 1982)
Robotics and mechanisms; CAD/CAM systems, computer-controlled machines

Elisa Franco, PhD (U. Trieste, Italy, 2007; Caltech, 2011)
Convergence of structural biology, dynamics, and controls using specialized biomolecular frameworks

Jonathan B. Hopkins, PhD (MIT, 2010)
Design and manufacturing of microstructural architectures, flexure systems, and compliant mechanisms; screw theory kinematics; precision machine design; novel micro- and nano-fabrication processes; MEMS

Yongjie Hu, PhD (Harvard, 2011)
Heat transfer and electron transport in nanostructures; interfaces and packaging; thermal, electronic, optoelectronic, and thermoelectric devices and systems; energy conversion, storage, and thermal management; ultrafast optical special scopey and high-frequency electronics; nanomaterials design, processing, and manufacturing

Veronica J. Santos, PhD (Cornell, 2007)
Grasp and hand biomechanics, haptics, human-machine systems, machine learning, machine perception, neural control of movement, prosthetics, robotic, stochastic modeling, tactile sensor

Raymond M. Spearrin, PhD (Stanford, 2015)
Spectroscopy and gas dynamics, advanced optical sensors including laser absorption and fluorescence with experimental application to propulsion, energy systems and other reacting flow fields

Tyler R. Clites, PhD (MIT, 2018); joint program
Assistant Professors

Elisa Franco, PhD (U. Trieste, Italy, 2007; Caltech, 2011)
Associate Professors

Lucien A. Schmit, Jr., MS (MIT, 1950)

Richard Stern, PhD (UCLA, 1964)

Owen I. Smith, PhD (UC Berkeley, 1977)

Daniel C.H. Yang, PhD (Rutgers, 1982)

Elisa Franco, PhD (U. Trieste, Italy, 2007; Caltech, 2011)

Yongjie Hu, PhD (Harvard, 2011)

Veronica J. Santos, PhD (Cornell, 2007)

Raymond M. Spearrin, PhD (Stanford, 2015)

Assistant Professors

Tyler R. Clites, PhD (MIT, 2018); joint program

Elisa Franco, PhD (U. Trieste, Italy, 2007; Caltech, 2011)

Yongjie Hu, PhD (Harvard, 2011)

Veronica J. Santos, PhD (Cornell, 2007)

Raymond M. Spearrin, PhD (Stanford, 2015)

Lecturers

Ravneesh C. Amar, PhD (UCLA, 1974)
Heat transfer and thermal science

Amiya K. Chatterjee, PhD (UCLA, 1976)
Wave propagation and penetration dynamics

Robert J. Kinsey, PhD (UCLA, 1991)
Modeling, simulation, and analysis of spacecraft dynamics and pointing control systems; nonlinear dynamics of spacecraft mechanisms; current engineering methods for spacecraft conceptual design

Daman M. Toohy, MS (MIT, 2004)
Guidance, navigation, and control for autonomous aircraft, launch vehicles, and missile systems, adaptive control techniques, automatic control reallocation for aircraft and re-entry vehicles

Adjunct Professors

Portonovo S. Ayyaswamy, PhD (UCLA, 1971)
Multiphase, multiscale flow and heat/mass transfer

Dan M. Goebel, PhD (UCLA, 1981)
Fluid cathode, magnetic-multipole ion sources for neutral beam injection

Vinay K. Goyal, PhD (Virginia Tech, 2002)
Analytical modeling of the mechanics of nuclear and advanced tokamak mechanics of composite materials, failure theories, finite elements of elastomeric and metallic materials, fatigue and fracture, non-destructive evaluation, computational mechanics, shape memory alloys, additive manufacturing, advanced mechanisms

Leslie M. Lackman, PhD (UC Berkeley, 1967)
Structural analysis and design, composite structures, engineering management

Christopher S. Lynch, PhD (UC Santa Barbara, 1992)
Field coupled materials, constitutive behavior, thermo-electro-mechanical properties, sensor and actuator applications, fracture mechanics and failure analysis

Wilbur J. Marner, PhD (U. South Carolina, 1969)
Thermal sciences, system design

Neil G. Siegel, PhD (USC, 2011)
Organizing complex projects around critical skills and mitigating risks arising from system dynamic behavior

Adjunct Associate Professor

Abdon E. Sepulveda, PhD (UCLA, 1990)
Optimal placement of actuators and sensors in control augmented structural optimization

M20. Introduction to Computer Programming with MATLAB (4) (Same as Computer Engineering M20) Lec-
ture, two hours; discussion, two hours; laboratory, two hours; outside study, six hours. Requisite: Mathem-atics 33A. Fundamentals of computer program-
ing taught in context of MATLAB programming. Examples and exercises from engineering, mathe-
matics, and physical sciences. Letter grading.

Mr. Jawed (F,W,Sp)

82. Mathematics of Engineering. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: Mathematics 33A. Recommended requisite: course M20. Methods of solving ordinary differential equations in engineering. Review of matrix algebra. Solutions of systems of first- and second-

Mr. Mai (F,W,Sp)

94. Introduction to Computer-Aided Design and Drafting. (4) Lecture, two hours; laboratory, four hours. Fundamentals of computer graphics and two- and three-dimensional modeling on computer-aided design and drafting systems. Students use one or more online computer systems to design and display various objects. Letter grading.

Mr. Gadh (F,W,Sp)

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower-division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (ex-
cluding this course). Individual contract required; consult Undergraduate Research Center. May be re-
peated. P/NP grading.

Mechanical and Aerospace Engineering Courses

Lower-Division Courses

1. Undergraduate Seminar. (1) Seminar, one hour; outside study, two hours. Introduction by faculty members and industry lecturers to mechanical and aerospace engineering disciplines through current and emerging applications in aerospace, medical instrumentation, automotive, entertainment, energy, and manufacturing industries. P/NP grading.

Mr. Eidridge (F)

19. Fiat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of critical thinking and topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

Mr. Kavehpour (F,W,Sp)

104. Introduction to Engineering Thermodynamics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: Chemistry 20B, Mathematics 32B. Thermal, Mechanical Thermodynamics. Concepts of equilibrium, temperature, and reversibility. First law and concept of energy; second law and concept of entropy. Equations of state and
107. Introduction to Modeling and Analysis of Dynamic Systems. Course 4 (4) Lecture, four hours; discussion, one hour; laboratory, two hours; outside study, five hours. Enforced requisites: courses M20 (or Computer Engineering M20) and M110E. Introduction to modeling of physical systems, with examples of mechanical, fluid, and electrical systems. Description of these systems with coverage of impulse response, convolution, frequency response, first- and second-order system transient response analysis, and numerical solution. Nonlinear differential equation descriptions with discussion of equilibrium solutions, small signal linearization, large signal response. Block diagram representation and response of interconnected systems. Hands-on experiments reinforce lecture material. Letter grading. Ms. Lavine (F)

C1310. Microscopic Energy Transport. (4) Lecture, four hours; discussion, eight hours; prerequisite: course 105D. Exploration of basic principles of transport of energy in natural and fabricated structures by three carriers: electrons, phonons, and molecules. Study of statistical properties of heat carriers, common Landauer framework for heat flow, scattering and propagation of heat carriers, derivation of classical laws from microscopic transport equations, and derivation from classical laws at small scales. Concurrently scheduled with course C231G. Letter grading. Mr. Ju (Sp)

C133A. Engineering Thermodynamics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: courses 103, 105A. Application of thermodynamic principles to engineering processes. Energy conversion systems. Rankine cycle and other cycles, refrigeration, psychrometry, reactive and non-reactive fluid systems. Elements of thermodynamic design. Letter grading. Mr. Fisher (F)

135. Fundamentals of Nuclear Science and Engineering. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 82, Chemistry 20A. Review of nuclear reactions and associated topics. Concurrently scheduled with course C296A. Letter grading. Mr. Karagözian, Mr. Spearrin (Not offered 2021-22)

C135B. Mechanical Design for Power Transmission. (4) Lecture, four hours; discussion, eight hours. Enforced requisite: course 156A or 166A. Design of mechanical components and assemblies for mechanical and aerospace power transmission applications. Analysis and component performance, component matching, advanced and design considerations. Concurrently scheduled with course C225P. Letter grading. Ms. Karagözian, Mr. Spearrin (F)

C150R. Rocket Propulsion Systems. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: courses 102, 103, 105A. Rocket propulsion concepts, including chemical rockets (liquid, gas, and solid propellants), hybrid rocket engines, electric (ion, plasma) rockets, nuclear rockets, and solar-powered issues in launch vehicle technologies. Concurrently scheduled with course C225R. Letter grading. Ms. Karagözian, Mr. Wirz (Sp)

154A. Preliminary Design of Aircraft. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 154A, 155B. Aircraft performance, stability, and control; some basic ingredients needed for design of aircraft. Effects of airplane flexibility on stability derivatives. Letter grading. Mr. Wirz (F)

154S. Flight Mechanics, Stability, and Control of Aircraft. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Requisites: courses 150A, 155B. Aircraft performance, flight mechanics, stability, and control; some basic ingredients needed for design of aircraft. Effects of airplane flexibility on stability derivatives. Letter grading. Mr. Wirz (F)

155. Intermediate Dynamics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 102. Axioms of Newtonian mechanics, generalized coordinates, Lagrange equation, variational principles; conservation laws; central forces; equilibrium solutions, small signal linearization, large signal response, first- and second-order system transient response, and deviation from classical laws at small scale. Concluding discussion of basic laws of mechanics and statistical principles. Discussion of equilibrium solutions, small signal linearization, large signal response. Block diagram representation and response of interconnected systems. Hands-on experiments reinforce lecture material. Letter grading. Mr. Wirz (W)

156A. Advanced Strength of Materials. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 82, 101. Not open to students with credit for course 166A. Concepts of stress, strain, and modulus of elasticity; stresses in loaded beams with symmetric and asymmetric cross sections. Torsion of cylinders and thin-walled structures, shear flow. Stresses in pressure vessels, stress-concentration and shrink-fit problems, curved beams. Contact stresses. Stress and strain, plastic deformation, fatigue, elastic instability. Letter grading. Mr. Mal (F/W/Sp)

C156B. Mechanical Design for Power Transmission. (4) Lecture, four hours; discussion, eight hours. Enforced requisite: course 156A or 166A. Material selection in mechanical design. Load and stress analysis. Deflection and stiffness. Failure due to static loading, fatigue failure. Design for safety factors and reliability. Applications of failure prevention in design of power transmission shafting. Design project involving computer-aided design (CAD) and finite element analysis (FEA). Concurrently scheduled with course C226A. Letter grading. (Not offered 2021-22)

157. Mechanical and Aerospace Engineering Laboratory. (4) Laboratory, eight hours; outside study, eight hours. Requisites: courses 102, 103, 105A, Electrical Engineering 100. Methods of measurement of basic quantities and performance of basic experiments in fluid mechanics, structures, and thermodynamics. Primarily serves as a resource, recording equipment, signal processing, and data analysis. Letter grading. Mr. Ju (F/W/Sp)

157A. Aerospace Design Laboratory. (4) Lecture, two hours; laboratory, six hours; outside study, four hours. Requisites: courses 150A, 157. Reevaluate procedures before studying and applying the various aspects of the aerospace design methodology.
161A. Introduction to Astronautics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Recommended preparation: course 102. Recommended: course 82, Spaceflight, including two-body and three-body dynamics, Kepler's laws, and lunar and planetary orbits. Ground track and taxonomy of common orbits. Orbital and transfer maneuvers, patched conics, perturbation theory, low-thrust trajectories, spacecraft pointing, and spacecraft power, instruments, communications, navigation, navigation isolation devices, vibrations of continuous systems. Letter grading. Mr. Tsao (Sp)

161B. Introduction to Space Technology. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Recommended requisites: courses 155, 171A. First year is models of serial and parallel manipulators, including review of spatial descriptions and transformations along with direct and inverse kinematics, Jacobian matrix (velocities), and linkages. Euler formulation, Lagrangian formulation, trajectory generation, redundancy in parallel manipulators. Concurrently scheduled with course C263B. Letter grading. Mr. Rosen (W)

162B. Compliant Mechanism Design. (4) Lecture, four hours; outside study, eight hours. Requisite: linear algebra. Advanced compliant mechanism synthesis approaches, modeling techniques, and optimization tools. Fundamentals of flexible constraint theory, passive and active compliant designs, progressive geometry, screw theory kinematics, and freedom and constraint topologies. Applications: precision motion stages, general purpose flexure bearings, microfabrication, bistable systems, MEMS, optical mounts, and nanoscale positioning systems. Hands-on exercises include build-your-own flexure kits, CAD and FEA simulations, and term project. Concurrently scheduled with course C194A. Letter grading. Mr. Hopkins (W)

162D. Mechanical Engineering Design I. (4) Lecture, two hours; laboratory, four hours; outside study, six hours. Enforced requisites: courses 94, 156A or 156BA, 162A or 171A. Limited to seniors. First of two mechanical engineering capstone design courses. Lectures on engineering project management, design of thermal systems, mechatronics, mechanical systems, and mechanical components. Students work in teams to begin their two-term design project. Laboratory modules include CAD design, CAD analysis, mechatronics, and conceptual design for team project. Letter grading. Ms. Santos (Sp)

162E. Mechanical Engineering Design II. (4) Lecture, two hours; laboratory, four hours; outside study, six hours. Enforced requisite: course 162D. Limited to seniors. Second of two mechanical engineering capstone design courses. Students design projects in teams, building on previous experience developed in course 162D. Students work in teams to complete their two-term design project. Laboratory modules include CAD design, CAD analysis, mechatronics and conceptual design for team project. Letter grading. Mr. Hopkins (W)

166A. Analysis of Aerospace Structures. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 82, 101. Not open to students with credit for course 156A. Introduction to two-dimensional elastic, stress-strain laws, yield and fatigue; bending of beams; torsion of beams; warping; torsion of thin-walled cross sections; shear flow, shear-lag; combined bending torsion of thin-walled, stiffened structures used in aerospace vehicles; elements of plate theory; buckling of columns. Letter grading.

166C. Design of Composite Structures. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 166A, Sensors, and actuators, and control schemes for robotic systems, including computed torque control, linear feedback control, impedance and force feedback control, and advanced control topics from nonlinear and adaptive control, hybrid control, nonholonomic systems, vision-based control, and perception. Concurrently scheduled with course C263C. Letter grading. Ms. Santos (Sp)

Ms. Franco, Mr. Iwasaki (F,W,Sp)

174. Probability and Its Applications to Risk, Reliability, and Quality Control. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course 171A. Introduction to probability theory; random variables, distributions, functions of random variables, models of failure components, reliability, redundancy, complex systems, stress-strength models, fault tree analysis, statistical quality control by variables and by attributes, acceptance sampling. Letter grading.

175A. Probability and Stochastic Processes in Engineering Systems. (4) Lecture, four hours; outside study, eight hours. Enforced requisites: courses 82, 107. Probability spaces, random variables, stochastic processes and processes, expectation, correlation, stationarity, second-order stationarity, mean minimum variance estimator (Kalman filter) with applications. Concurrently scheduled with course C271A. Letter grading. Mr. Speyer (F)

181A. Complex Analysis and Integral Transforms. (4) Lecture, four hours; outside study, eight hours. Enforced requisite: course 82. Complex variables, analytic functions, conformal mapping, contour integral, singularities, residues, Cauchy integrals; Laplace, inverse, convolution, Fourier transform; applications of Fourier transform, convolution, FFT, applications in dynamics, vibrations, structures, and heat conduction. Letter grading.

Mr. Eldredge (Not offered 2021-22)

Mr. Eldredge, Mr. Tairo (Not offered 2021-22)

182C. Numerical Methods for Engineering Applications. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: courses 20 (or Civil Engineering 20) or Com-
183A. Introduction to Manufacturing Processes.
(Lecture, three hours; laboratory, four hours; outside study, five hours. Enforced requisite: Materials Science 104. Manufacturing fundamentals. Materials in manufacturing, Solidification processes. Metal forming, structure, removal processes. Welding/joining. Rapid prototyping, Electronics manufacturing. Microelectromechanical systems (MEMS) and nanotechnology. Letter grading.) Mr. Gadh (Sp)

183B. Introduction to Microscale and Nanoscale Manufacturing. (Same as Bioengineering M153, Chemical Engineering M153, and Electrical and Computer Engineering M153S). Lecture, three hours; laboratory, four hours; outside study, five hours. Enforced requisite: Chemistry 20A, Physics 1A, 1B, 1C, 4AL. Introduction to general manufacturing methods, mechanisms, constraints, and microfabrication and nanofabrication. Focus on concepts, physics, and instruments of various microfabrication and nanofabrication techniques that have been broadly applied in industry and academia, including various photolithography technologies, physical and chemical deposition methods, and physical and chemical etching methods. Hands-on experience for fabricating microstructures and nanostructures in modern clean-room environment. Letter grading.) Mr. Chen, Mr. Chiu (FW)

C183C. Rapid Prototyping and Manufacturing. (Lecture, four hours; laboratory, two hours; outside study, six hours. Enforced requisite: course 183A. Rapid prototyping and additive manufacturing, rapid manufacturing and other applications of rapid technologies: micro/nano-scale additive manufacturing has emerged as popular manufacturing technology to accelerate product creation in last two decades. Machine for layered manufacturing builds parts directly from CAD models. This novel manufacturing technology enables building of parts that have traditionally been impossible to fabricate because of their complex shapes or of variety in materials. In analogy to speed and flexibility of desktop prototyping is also called desktop manufacturing, with actual three-dimensional solid objects instead of mere two-dimensional images. Methodology of rapid prototyping has also been extended into micro/nano-scale to produce three-dimensional functional miniature components. Concurrently scheduled with course 229TA. Letter grading.) Mr. Li (W)

185. Introduction to Radio Frequency Identification and Its Application in Manufacturing and Supply Chain. (Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course 220 or Civil Engineering 220 or Computer Science 31. Manufacturing today requires assembling of individual components into assembled products, shipping of such products, and eventually sale, use, maintenance, and recycling of such products. Radio frequency identification (RFID) chip instilled on components, subassemblies, and assemblies of products allow them to be tracked automatically as they move and transform through manufacturing supply chain. It requires extremely small memory and small CPU that allows information about product status to be written, stored, and transmitted wirelessly. Tag data can then be forwarded by reader to enterprise software applications, and in turn, four hours; outside study, six hours. Enforced requisite: Physics 1C. Fundamental principles of optical systems. Geometric optics and aberration theory. Diffraction and interference. Fourier optics, beam optics. Propagation of light, Shell’s law, and Huygen principle. Refraction and reflection. Plane waves, spherical waves, ray tracing, wave front, aperture, phase, polarization. Lenses and aberrations, lens laws and formation of images, resolution and primary aberrations. Simple optical instruments, thin and thick lenses, apertures, stop, pupils. Design of telescopes, microscope design, projection system design. Interference, Young’s slit experiment and fringe visibility, Michelson interferometer, multiple-beam interference, image formation, film coatings. Diffraction theory, Fraunhofer and Fresnel diffraction, Fresnel zone plate. Fiber optics, waveguides and modes, fiber coupling, types of fiber: single and multimode. Concurrently scheduled with course 228E. Letter grading.) Mr. Chiu (Sp) (N) (Formerly numbered 2262-22) C187L. Nanoscale Fabrication, Characterization, and Biodeposition Laboratory. (Lecture, two hours; laboratory, three hours; outside study, seven hours. Multidisciplinary course that introduces laboratory techniques of nanoscale fabrication, characterization, and biodeposition. Basic physical, chemical, and biological principles related to these techniques, top-down and bottom-up (self-assembly) nanofabrication, nanocharacterization (AEM, SEM, etc.), and optical and electrochemical biosensors. Students encouraged to create their own ideas in self-designed experiments. Concurrently scheduled with course C286L. Letter grading.) Mr. V. Y. Chen (Sp)

188. Special Courses in Mechanical and Aerospace Engineering. (2 to 4) Lecture, two to four hours; outside study, four to eight hours. Special topics in mechanical and aerospace engineering for undergraduate students taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated once for credit with topic or instructor change. P/NP or letter grading.) (F)

194. Research Group Seminars: Mechanical and Aerospace Engineering. (2 to 4) Seminar, two hours. Designed for graduate students who are part of research group. Research methods and current literature in field. Student presentation of project results in research specialty. May be repeated for credit. P/NP or letter grading. (F)

199. Directed Research in Mechanical and Aerospace Engineering. (2 to 8) Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation under guidance of faculty mentor. Culminating paper or project required. May be repeated for credit. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading. (FW;SP)

Graduate Courses

231A. Convective Heat Transfer Theory. (Lecture, four hours; outside study, eight hours. Required: courses 131A, 182B. Recommended: course 250A. Conservation equations for flow of real fluids. Analysis of heat transfer in laminar and turbulent, incompressible and compressible flows. Internal and external flows; free convection, Variable wall temperature; effects of variable fluid properties. Analogies among convective transfer processes. Letter grading.) Ms. Lavine (W)

231B. Radiation Heat Transfer. (Lecture, four hours; outside study, eight hours. Required: course 105D. Radiative properties of materials and radiative energy transfer. Emphasis on fundamental concepts, including energy levels and electromagnetic waves as well as analytical methods for calculating radiative properties and radiation transfer in absorbing, emitting, and scattering media. Applications cover laser-matter interactions in addition to traditional areas such as combustion and thermal insulation. Letter grading.) Mr. Pilon (Sp)

231C. Phase Change Heat Transfer and Two-Phase Flow. (Lecture, four hours; outside study, eight hours. Required: courses 131A, 150A. Two-phase flow, boiling, and condensation. Generalized constitutive equations for two-phase flow. Phenomenological theories of boiling and condensation, including forced flow effects. Letter grading.) Ms. Lavine (W)

C231G. Microscopic Energy Transport. (Formerly numbered 231G.) Lecture, four hours; outside study, eight hours. Requisite: course 105D. Exploration of basic principles of energy in natural and fabricated structures by three carriers: electrons, phonons, and molecules. Study of statistical properties of heat carriers, common Landauer framework for heat flow, microtransport, and propagation of heat carriers, derivation of classical laws from microscopic transport equations, and deviation from classical laws at small scale. Term project. Concurrently scheduled with course C131G. Letter grading.) Mr. Fisher (F)

233. Nanoscience for Energy Technologies. (Lecture, four hours; outside study, eight hours. Introduction to fundamental principles of energy transport, conversion, and storage at nanoscale, and recent development for these energy technologies involving nanotechnology. Focus on basics of thermal science, solid state, quantum mechanics, electrostatics, and applications. Case studies given for examples that connect technological application, fundamental challenge, and scientific-solution-based nanotechnology to improve device performance and energy efficiency. Letter grading.) Mr. Abdou (Not offered 2021-22)

235A. Nuclear Reactor Theory. (Lecture, four hours; outside study, eight hours. Underlying physics and mathematics of nuclear reactor (fission) core design, diffusion theory, reactor kinetics, slowing down and thermalization, multiplegroup methods, introduction to transport theory. Letter grading.) Mr. Hu (Not offered 2021-22)

236. Energy and Environment. (Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course 105A or equivalent. Global energy use and supply, electrical power generation, fossil fuel and nuclear power plants, renewable energy such as biomass, bioethanol, solar, wind, and ocean, fuel cells, transportation, energy conservation, air and water pollution, global warming. Concurrently scheduled with course C136. Letter grading.)

C237. Design and Analysis of Smart Grids. (Lecture, four hours; outside study, eight hours. Demand response; transactive/price-based load control; home-area network, smart energy profile; advanced metering infrastructure; energy integration; solar and wind generation interconnectivity and correction; microgrids; grid stability; energy storage and electric vehicles; monitoring, distribution and transmission systems; grid center-centric technologies; sensors, communications, and computing; wireless, wireline, and powerline communications for smart grids; grid modeling, stability, and control; frequency and voltage regulation; ancillary services; wide-area situational awareness, phasor measurements; analytical methods and tools for monitoring and control. Concurrently scheduled with course C137. Letter grading.)

M237E. Fluid Plasma Physics and Analysis. (Same as Electrical and Computer Engineering M287.) Lecture, four hours; outside study, eight hours. Fundamentals of plasmas at thermal nuclear burning conditions. Fokker/Plank equation and applications to heating by neutral beams, RF, and fusion reaction products. Bremsstrahlung, synchrotron, and atomic radiation processes. Plasma surface interactions. Fluid description of burning plasma. Dynamics, storage and control of tokamaks, tandem mirrors, and alternate concepts. Letter grading.) Mr. Abdou (Not offered 2021-22)

237D. Fusion Engineering and Design. (Lecture, four hours; outside study, eight hours. Outlining fusion reations and fuel cycles. Principles of inertial and magnetic fusion. Plasma requirements for controlled fusion. Plasma-surface interactions. Fusion reactor concepts and technological components. Analysis and design of high heat flux components, energy...
239B. Seminar: Current Topics in Transport Phenomena. (2-4) Seminar, two to four hours; outside study, four to eight hours. Designed for graduate mechanical and aerospace engineering students. Lectures, discussions, student presentations, and projects in areas of current interest in transport phenomena. May be repeated for credit. S/U grading.

Mr. Ju (Sp)

239F. Special Topics in Transport Phenomena. (2 to 4) Lecture, two to four hours; outside study, four to eight hours. Designed for graduate mechanical and aerospace engineering students. Advanced study in areas of current interest in transport phenomena. May be repeated for credit. S/U grading.

Ms. Karagozian (Sp)

242. Introduction to Multiferroic Materials. (4) Lecture, four hours; outside study, eight hours. Overview of different types of multiferroic materials, including strain mediated. Basic crystal structure of single-phase multiferroics, as well as fundamentals of physics underlying ferroelectricity and ferromagnetism. Material science description of these materials, with focus on linear and nonlinear behavior with associated mechanisms. Presentation of case studies. Presentation of analytical tools necessary to predict material response ranging from constitutive relations to governing equations, including elastodynamics and Maxwell’s. Artificial neural networks, used to explain several devices manufactured with multiferroics, including magnetometers, memory devices, motors, and antennas. Letter grading.

Mr. Caman (Sp)

250A. Foundations of Fluid Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 150A, 150D. Introduction to basic concepts of fluid mechanics. Development and application of fundamental principles of fluid mechanics at graduate level, with emphasis on incompressible flow. Linearized and hydrodynamic stability, constitutive equations, exact solutions on the Navier-Stokes equations, vorticity dynamics, decomposition of flow fields, potential flow. Letter grading.

Mr. Eldredge, Mr. J. Kim (W)

250B. Viscous and Turbulent Flows. (4) Lecture, four hours; outside study, eight hours. Requisite: course 150A. Fundamental principles of fluid dynamics applied to study of fluid resistance. States of fluid motion discussed in order of advancing Reynolds number; wakes, boundary layers, instability, transition, and turbulent shear flows. Letter grading.

Ms. Karagozian (Sp)

250C. Compressible Flows. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 150A, 150B. Effects of compressibility in viscous and in-viscous flows. Steady and unsteady inviscid subsonic and supersonic flows; method of characteristics; small disturbance theories (linearized and hypersonic); shock dynamics. Letter grading.

Ms. Karagozian, Mr. Zhong (F)

Ms. Karagozian, Mr. Zhong (F)

250E. Spectral Methods in Fluid Dynamics. (4) Lecture, four hours; outside study, eight hours. Enforced requisites: courses 82, 182B, 182C, 250A, 250B. Introduction to basic concepts and techniques of various spectral methods applied to solving partial differential equations. Particular emphasis on techniques of solving unsteady three-dimensional Navier-Stokes equations. Topics include spectral representation of functions, discrete Fourier transform, etc.

Letter grading.

Ms. Karagozian, Mr. J. Kim (Not offered 2021-22)

250F. Hypersonic and High-Temperature Gas Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisites: course 250C. Molecular and chemical description of equilibrium and nonequilibrium hypersonic and high-temperature gas flows, chemical thermodynamics and statistical thermodynamics for calculation gas properties, equilibrium and nonequilibrium flow processes, nonequilibrium flows of real gases, and computational fluid dynamics methods for nonequilibrium hypersonic flows. Letter grading.

Mr. Zhong (Not offered 2021-22)

2520G. Fluid Dynamics of Biological Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 103. Mechanics of aquatic locomotion; insect and bird flight aerodynamics; pulsatile flow in circulatory system; rheology of blood; transport in microcirculation; role of fluid dynamics in arterial diseases. Concurrently scheduled with course C150G. Letter grading.

Mr. Eldredge (Not offered 2021-22)

Mr. Eldredge (Not offered 2021-22)

Mr. Kaveshpour (Not offered 2021-22)

252P. Aircraft Propulsion Systems. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 105A, 150A. Thermodynamics, airframe, propulsion, control, system cycle analysis and component performance, component matching, advanced aircraft engine topics. Concurrently scheduled with course C150P. Letter grading.

Mr. Karagozian (Sp)

252R. Rocket Propulsion Systems. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: courses 103, 105A. Rocket propulsion concepts, including chemical rockets (liquid, gas, and solid propellants), hybrid rocket engines, electric (ion, plasma) rockets, nuclear rockets, and solar-powered vehicles. Current issues in launch vehicle technologies. Concurrently scheduled with course C150P. Letter grading.

Mr. Karagozian, Mr. Wiz (Sp)

252A. Stability of Fluid Motion. (4) Lecture, four hours; outside study, eight hours. Requisite: course 150A. Mechanisms by which laminar flows can become unstable and lead to complex flow patterns, such as turbulence. Linear stability theory; thermal, centrifugal, and shear instabilities; boundary layer instability. Nonlinear aspects: sufficient criteria for stability, subcritical and supercritical states, transition to turbulence. Letter grading.

Mr. Zhong (Not offered 2021-22)

252B. Turbulence. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 250A, 250B. Characteristics of turbulent flows, conservation and transport equations, statistical description of turbulent flows, scales of turbulent motion, simple turbulent flows, free-shear flows, wall-bounded flows, turbulence modeling, numerical simulations of turbulent flows, and turbulence control. Letter grading.

(Not offered 2021-22)

Ms. Karagozian (Not offered 2021-22)

252D. Combustion Rate Processes. (4) Lecture, four hours; outside study, eight hours. Requisite: course 250C. Basic combustion kinetics; molecular collisions, distribution functions and averaging, semiempirical and ab initio potential surfaces, trajectory calculations, statistical reaction rate theories. Practical examples of large-scale chain mechanisms from combustion chemistry of several elements, etc. Letter grading.

Ms. Karagozian (Not offered 2021-22)

252P. Plasma and Ionized Gases. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 82, 102, 150A, 182B. Neutral and charged particle motion, magnetohydrodynamics, two-fluid plasma treatments, ion and electron diffusion, gas diffusion, Child-Langmuir law, basic plasma devices, electron emission and work function, thermal distributions, vacuum and vacuum systems, space-charge, particle collisions and ionization, plasma discharges, sheaths, and electric arcs. Letter grading.

Mr. Wiz (Sp)

254A. Special Topics in Aerodynamics. (4) Lecture, four hours; outside study, eight hours. Enforced requisites: courses 82, 150A, 150B, 182B, 182C. Special topics of current interest in advanced aerodynamics. Examples include transonic flow, hypersonic flow, sonic booms, and unsteady aerodynamics. Letter grading.

Mr. Zhong (Not offered 2021-22)

255A. Advanced Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 150A, 150B, 165, 182B. Advanced dynamics description of these materials, with focus on linear and nonlinear behavior with associated mechanisms. Presentation of case studies. Presentation of analytical tools necessary to predict material response ranging from constitutive relations to governing equations, including elastodynamics and Maxwell’s. Artificial neural networks, used to explain several devices manufactured with multiferroics, including magnetometers, memory devices, motors, and antennas. Letter grading.

Mr. Caman (Sp)
Kinematics and dynamics of rigid bodies; procession and nutation of spinning bodies. Letter grading. (Not offered 2021-22)

255B. Mathematical Methods in Dynamics. (4) Lecture; four hours; outside study, eight hours. Requisite: course 255A. Concepts of stability; state-space representation; stability by Lyapunov's direct method; the Hamiltonian as a Lyapunov function; nonautonomous systems; averaging and perturbation methods of nonlinear analysis; parametric excitation and nonlinear resonance. Application to mechanical systems. Letter grading. Mr. M. Clokey (Not offered 2021-22)

256A. Linear Elasticity. (4) (Same as Civil Engineering M230A) Lecture; four hours; outside study, eight hours. Requisite: course 156A or 166A. Linear elastic theory, two-dimensional problems of solid mechanics. Cartesian tensors; infinitesimal strain tensor; Cauchy stress tensor; strain energy; equilibrium equations; linear constitutive relations; plane elastic problems; holes, corners, inclusions; cracks; three-dimensional problems of Kelvin, Bousinesq, and Cerruti. Introduction to boundary integral equation method. Letter grading. Mr. W. J. Wu, Mr. Mal (F)

256B. Nonlinear Elasticity. (4) (Same as Civil Engineering M230B) Lecture; four hours; outside study, eight hours. Requisite: course M256A. Kinematics of deformation, material and spatial coordinates, deformation measures, strain measures for nonlinear and linear elastic materials, strain displacement relations; balance laws, Cauchy and Piola stresses, Cauchy equations of motion, balance of energy, stored energy; constitutive relations; anisotropy, heterogeneity, plasticity, thermodynamics; linearization of field equations; solution of selected problems. Letter grading. Mr. W. J. Wu, Mr. Mal (W)

256C. Plasticity. (4) (Same as Civil Engineering M230C) Lecture; four hours; outside study, eight hours. Requisites: courses M256A, M256B. Classical rate-independent plasticity theory, yield functions, flow rules and thermodynamics. Classical rate-dependent viscoplasticity, Perzyna and Duvern/Lions types of viscoplasticity. Thermoplasticity and creep. Return mapping algorithms for plasticity and viscoplasticity. Finite element implementations. Letter grading. Mr. Gupta (Not offered 2021-22)

256F. Analytical Fracture Mechanics. (4) Lecture; four hours; outside study, eight hours. Requisite: course M256A. Review of modern fracture mechanics, elementary stress analyses; analytical and numerical methods for calculation of crack tip stress intensity factors; engineering applications in stiffened structures, pressure vessels, plates, and shells. Letter grading. Mr. Gupta (Not offered 2021-22)

257A. Elastodynamics. (4) (Same as Earth, Planetary, and Space Sciences M224A) Lecture; four hours; outside study, eight hours. Requisites: courses M256A, M256B. Equations of linear elasticity, Cauchy equation of motion, constitutive relations, boundary and initial conditions, principle of energy. Sources and waves in bounded isotropic, anisotropic, and dissipative solids. Wave problems. Guided waves in layered media. Applications to dynamic fracture, nondestructive evaluation (NDE), and mechanics of earthquakes. Letter grading. Mr. Mal (Not offered 2021-22)

258A. Nanomechanics and Micromechanics. (4) Lecture; four hours; outside study, eight hours. Requisite: course M256A. Analytical and computational modeling methods to derive microstructural mechanical properties of nanoscale materials at scales ranging from atomistic through microstructure or transitional and up to continuum. Discussion of atomistic simulation methods (e.g., molecular dynamics, micromechanics, and kinetic Monte Carlo) and their applications at nanoscale. Development and applications of dislocation dynamics and statistical mechanics methods in areas of nanostructures and microstructures; self-organization of intergranular amorphous polymer and polyethylene plastic deformation, material instabilities, and failure phenomena. Presentation of technical applications of these emerging modeling techniques to surfaces and interfaces, boundaries, dislocations, and defects; surface growth, quantum dots, nanotubes, nanoclusters, thin films (e.g., optical thermal barrier coatings and ultra-nanograin materials), nano-identification, smart (active) materials, nanotechnology and microelectronics. Letter grading. Mr. Ghoniem (Not offered 2021-22)

259A. Seminar: Advanced Topics in Fluid Mechanics. (4) Seminar; four hours; outside study, eight hours. Advanced study of topics in fluid mechanics, with intensive study of selected topics involving assignments in research problems leading to term paper or oral presentation (possible help from guest lecturers). Letter grading. Mr. Kavelhoun, Mr. Spearrin (F,Sp)

259B. Seminar: Advanced Topics in Solid Mechanics. (4) Seminar; four hours; outside study, eight hours. Advanced study in various fields of solid mechanics on topics which may vary from term to term. Topics include dynamics, elasticity, plasticity, and stability. Letter grading. Mr. Mal (Sp)

260. Current Topics in Mechanical Engineering. (2 to 4) Seminar; two to four hours; outside study, four to eight hours. Designed for graduate mechanical and aerospace engineering students. Lectures, discussions, and student presentations and projects in areas of current interest in mechanical engineering. May be repeated for credit. S/U grading.

261B. Finite Element Analysis for Solids and Structures. (4) Lecture; four hours; outside study, eight hours. Requisite: course 156A or M256A, or consent of instructor. Strongly recommended prereq: course M256A. Application of finite element method to classical and state-of-art modeling and design problems for solids and structures. Introduction of commercial/mainstream finite element program—ABAQUS—and demonstration of how to use it in an advanced way. Topics include review of finite element method, static and dynamic linear elasticity, finite deformation of hyperelastic materials, instability analysis, fracture, and implementation of user-defined subroutines in ABAQUS. Term projects using computers. Letter grading. Mr. Mal (Sp)

262. Mechanics of Intelligent Material Systems. (4) Lecture; four hours; outside study, eight hours. Recommended prerequisite: course 156A. Kinematical models and mathematical models of shape memory and piezoelectric materials, including spatial descriptions and transformations (Euler angles, Denavit-Hartenberg/ DH parameters, equivalent angle vector), frame assignment procedure, direct kinematics, inverse kinematics (geometric and algebraic approaches), mechanical design topics, Concurrently scheduled with course C163A. Letter grading. Mr. Carman (Sp)

C263A. Kinematics of Robotic Systems. (4) Formerly numbered 263A) Lecture; four hours; discussion; two hours; outside study, six hours. Recommended requisite: courses 155, 171A. Kinematical models, manipulator robots, including spatial descriptions and transformations (Euler angles, Denavit-Hartenberg/ DH parameters, equivalent angle vector), frame assignment procedure, direct and inverse kinematics, linear and angular velocities, Jacobian matrix (velocity and force), velocity propagation method, force propagation method, explicit formulation of Jacobian matrix, manipulator dynamics (Newton/ Euler formulation, Lagrangian formulation), trajectory generation, and introduction to parallel manipulators. Concurrently scheduled with course C163B. Letter grading. Mr. Rosen (W)

C263C. Control of Robotic Systems. (4) (Formerly numbered 263C) Lecture; four hours; discussion, two hours; outside study, eight hours. Enforced requisite: course C263B. Sensors, actuators, and control schemes for robotic systems, including computed torque control, linear feedback control, impedance and admittance control, and control schemes for nonlinear control and adaptive control, hybrid control, nonholonomic systems, vision-based control, and perception. Concurrently scheduled with course C163C. Letter grading. Mr. Zengos (Sp)

263D. Advanced Topics in Robotics and Control. (4) Lecture; four hours; outside study, eight hours. Enforced requisite: course 263C. Current and advanced topics in robotics and control, including kinematics, dynamics, control and mechanical design, advanced sensors and actuators, flexible links, manipulability, redundant manipulators, human-robot interaction, teleoperation, haptics. Letter grading. Mr. Mal (Not offered 2021-22)

M269A. Dynamics of Structures. (4) (Same as Civil Engineering M237A) Lecture; four hours; outside study, eight hours. Requisite: course 169A. Principles of dynamics. Determination of normal modes and frequencies of different system solutions. Transient and steady state response. Emphasis on derivation and solution of governing equations using matrix formulation. Letter grading. Mr. Mal (Not offered 2021-22)

269B. Advanced Dynamics of Structures. (4) Lecture; four hours; outside study, eight hours. Requisite: course M269A. Analysis of linear and nonlinear response of structures to dynamic loads. Stresses and deflections in structures. Structural damping and self-induced vibrations. Letter grading. Mr. Mal (Not offered 2021-22)

269D. Aeroelastic Effects in Structures. (4) Lecture; four hours; outside study, eight hours. Requisite: course M269A. Presentation of field of aeroelastics from unified viewpoint applicable to flight structures, suspension bridges, buildings, and other structures. Derivation of aerodynamic operators and unsteady airloads from governing variational principles. Flow induced instability and response of structural systems. Letter grading. Mr. Mal (Not offered 2021-22)

M270A. Linear Dynamic Systems. (4) (Same as Chemical Engineering M280A and Electrical and Computer Engineering M240A) Lecture; four hours; outside study, eight hours. Requisite: course 171A or Electrical and Computer Engineering 141. State-space description of linear time-invariant (LT) and time-varying (TV) systems in discrete and continuous time. Linear algebra concepts such as eigenvalues and eigenvectors, singular values, Cayley/ Hamilton theorem, Jordan form; solution of state equations; stability; controllability, observability, realizability, and minimality. Stabilization design via state feedback and observers; separation principle. Connections with transfer function techniques. Letter grading. Mr. Rosen (W), Mr. M. Clokey (F)

270B. Linear Optimal Control. (4) Lecture; four hours; outside study, eight hours. Requisite: course M270A or Electrical Engineering M240A. Existence and uniqueness of solutions to linear quadratic (LQ) optimal control problems for discrete- and continuous-time dynamical systems, finite-time and infinite-time problems; Hamiltonian systems and optimal control; algebraic and differential Riccati equations; implications of stabilizability, observability, detectability, and observability. Letter grading. Mr. Gibson (W)

M270C. Optimal Control. (4) (Same as Chemical Engineering M280C and Electrical and Computer Engineering M240C) Lecture; four hours; outside study, eight hours. Requisite: course 270B. Application of variational methods, Pontryagin maximum principle, Hamilton/Jacobi/Bellman equation (dynamical programming) to optimal control of dynamical systems modeled by nonlinear ordinary differential equations. Letter grading. Mr. Speyer (Sp)
crack propagation. Applications in design of high-temperature components such as turbine blades, pressure vessels, heat exchangers, connecting rods. Design project involving CAD and FEM modeling. Letter grading. Mr. Ghoniem (Not offered 2021-22)

C297A. Rapid Prototyping and Manufacturing. (4) Lecture, four hours; laboratory, two hours; outside study, six hours. Recommended requisite: level of knowledge in manufacturing equivalent to course 183A and CAD capability. Rapid prototyping (RP), solid freeform fabrication, or additive manufacturing has emerged as popular manufacturing technology to accelerate product creation in last two decades. Machine for layered manufacturing builds parts directly from CAD models. This novel manufacturing technology enables building of parts that have traditionally been impossible to fabricate because of their complex shapes or of variety in materials. In analogy to speed and flexibility of desktop publishing, rapid prototyping is also called desktop manufacturing, with actual three-dimensional solid objects instead of mere two-dimensional images. Methodology of rapid prototyping has also been extended into meso-/micro-scale to produce three-dimensional functional miniature components. Concurrently scheduled with course C183C. Letter grading. Mr. Li (W)

M297B. Material Processing in Manufacturing. (4) (Same as Materials Science M297B) Lecture, four hours; outside study, eight hours. Enforced requisite: course 183A. Thermodynamics, principles of material processing: phase equilibria and transitions, transport mechanisms of heat and mass, nucleation and growth of microstructure. Applications in casting/solidification, welding, consolidation, chemical vapor deposition, infiltration, composites. Letter grading. Mr. Li (Not offered 2021-22)

M297C. Composites Manufacturing. (4) (Same as Materials Science M297C) Lecture, four hours; outside study, eight hours. Requisites: course 166C, Materials Science 151. Matrix materials, fibers, fiber preforms, elements of processing, autoclave/compression molding, filament winding, pultrusion, resin transfer molding, automation, material removal and assembly, metal and ceramic matrix composites, quality assurance. Letter grading. Mr. Ghoniem (Not offered 2021-22)

298. Seminar: Engineering. (2 to 4) Seminar, to be arranged. Limited to graduate mechanical and aero- space engineering students. Seminars may be organized in advanced technical fields. If appropriate, field trips may be arranged. May be repeated with topic change. Letter grading. (F,W)

M299A. Seminar: Systems, Dynamics, and Control Topics. (2) (Same as Chemical Engineering M297 and Electrical and Computer Engineering M248S) Seminar, two hours; outside study, six hours. Limited to graduate engineering students. Presentations of research topics by leading academic researchers from fields of systems, dynamics, and control. Students who work in these fields present their papers and results. S/U grading. (Not offered 2021-22)

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: apprentice personnel employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. Mr. Eldredge (F,W,Sp)

495. Teaching Assistant Training Seminar. (2) Seminar, two hours; outside study, four hours. Preparation: appointment as teaching assistant in department. Seminar on communication of mechanical and aerospace engineering principles, concepts, and methods; teaching assistant preparation, organization, and presentation of material, including use of visual aids; grading, advising, and rapport with students. S/U grading. Mr. Eldredge (F)

596. Directed Individual or Tutorial Studies. (2 to 8) Tutorial, to be arranged. Limited to graduate mechanical and aerospace engineering students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies. Supervised investigation of advanced technical problems. S/U grading.

597A. Preparation for MS Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate mechanical and aerospace engineering students. Reading and preparation for MS comprehensive examination. S/U grading.

597B. Preparation for PhD Preliminary Examinations. (2 to 16) Tutorial, to be arranged. Limited to graduate mechanical and aerospace engineering students. S/U grading.

597C. Preparation for PhD Oral Qualifying Examination. (2 to 16) Tutorial, to be arranged. Limited to graduate mechanical and aerospace engineering students. Preparation for oral qualifying examination, including preliminary research on dissertation. S/U grading.

598. Research for and Preparation of MS Thesis. (2 to 12) Tutorial, to be arranged. Limited to graduate mechanical and aerospace engineering students. Supervised independent research for MS candidates, including thesis prospectus. S/U grading.

599. Research for and Preparation of PhD Dissertation. (2 to 16) Tutorial, to be arranged. Limited to graduate mechanical and aerospace engineering students and graduate students. Usually taken after students have been advanced to candidacy. S/U grading.

Overview

The one-year Master of Engineering (MEng) is a self-supporting, professional degree designed to develop future engineering leaders. Tailored to those who wish to pursue technical management positions, the degree addresses the needs of both students and industry with high-tech skill set and management savvy. Students in the program develop technical mastery in emerging research areas, learning business and technology management skills while creating real-world projects with industry input.

Graduate Study

For admission information, see Graduate Programs Admission on page 27.

The following introductory information is based on 2021-22 program requirements for UCLA graduate degrees. Complete program requirements are available at Program Requirements for UCLA Graduate Degrees. Students are subject to the detailed degree requirements as published in program requirements for the year in which they enter the program.

Master of Engineering

Course Requirements

Students must complete nine courses (36 units of graduate and upper-division undergraduate coursework) in or related to the major subject areas:

- 5 core engineering technology courses related to the concentration (20 units)
- 3 professional development electives (12 units)
- 1 capstone project (4 units)

Students take two technical courses and one engineering professional development course in fall (12 units), two technical courses in winter (8 units), one technical and one en-
engineering professional development course in spring (8 units), and one engineering professional development and one capstone project course in summer (8 units).

Areas of Study

Artificial Intelligence (AI)
Guy Van den Broeck, PhD (Computer Science), Area Director
The artificial intelligence program integrates faculty expertise from the departments of Computer Science, Computer Science and Engineering, and Electrical and Computer Engineering. Study focuses on building smart machines capable of reasoning, learning, and acting intelligently; and performing tasks that typically require human intelligence.

Autonomous Systems
Tsu-Chin Tsao, PhD (Mechanical and Aerospace Engineering), Area Director
The autonomous systems program integrates faculty expertise from the departments of Computer Science, Electrical and Computer Engineering, and Mechanical and Aerospace Engineering. Study focuses on recent advances including dynamic systems and controls, embedded and cyber-physical systems, machine learning, and optimization. It also explores important autonomous system technologies including autonomous electric vehicles, smart grids, robotics, transportation networks, and more.

Data Science
Jung-hoo (John) Cho, PhD (Computer Science), Area Director
The data science program integrates faculty expertise from the departments of Computer Science, Computer Science and Engineering, and Electrical and Computer Engineering. Study focuses on unifying data mining and analysis, distributed and parallel systems, machining learning, and statistics to understand and analyze large amounts of data.

Digital Health Technology
Eleazar Eskin, PhD (Computer Science), Area Director
The digital health technology program integrates faculty expertise from the departments of Bioengineering, Computational Medicine, Computer Science, Electrical and Computer Engineering, and the David Geffen School of Medicine. Study focuses on digital health tools that have vast potential to improve the ability to accurately diagnose and treat disease, and to enhance health care delivery.

Green Energy Systems
Bruce S. Dunn, PhD (Materials Science and Engineering), Area Director
The green energy systems program integrates faculty expertise from the departments of Chemical and Biomolecular Engineering, Electrical and Computer Engineering, Materials Science and Engineering, and Mechanical and Aerospace Engineering. Study focuses on renewable energy and energy storage, including energy generation (fuel cells, solar energy, and other renewables); smart grid systems and grid integration; and storage systems (batteries, supercapacitors, and large-scale storage).

Internet of Things (IoT) Systems
Mani B. Srivastava, PhD (Computer Science, Electrical and Computer Engineering), Area Director
The Internet of Things program integrates faculty expertise from the departments of Computer Science and Electrical and Computer Engineering. Study focuses on the foundation needed to design, implement, and fabricate systems for the Internet of Things—where actuation, communication, computing, and sensing capabilities are embedded in and coupled with physical spaces and humans.

Translational Medicine
Song Li, PhD (Bioengineering), Area Director
The translational medicine program integrates faculty expertise from the departments of Bioengineering, Chemical and Biomolecular Engineering, Computational Medicine, the School of Dentistry, and the David Geffen School of Medicine. Study focuses on improving human health and longevity by translating discoveries in biomedical sciences into disease therapies. Translational medicine facilitates the development of diagnostic tools and therapeutics, and the application of systems biology and data sciences to biomedical problems.

Master of Science in Engineering Online Programs

Overview
The primary purpose of the Master of Science in Engineering online degree programs is to enable employed engineers and computer scientists to augment their technical education beyond the Bachelor of Science degree and to enhance their value to the technical organizations in which they are employed. The training and education that the programs offer are of significant importance and usefulness to engineers, their employers, California, and the nation. It is at the MS level that engineers have the opportunity to learn a specialization in depth, and those engineers with advanced degrees may also renew and update their knowledge of the technology advances that continue to occur at an accelerating rate.

The MS programs are addressed to those highly qualified employed engineers who, for various reasons, do not attend the on-campus MS programs and who are keenly interested in developing up-to-date knowledge of cutting-edge engineering and technology.

Graduate Study
For admission information, see Graduate Programs [Admission] on page 27.

The following introductory information is based on 2021-22 program requirements for UCLA graduate degrees. Complete program requirements are available at Program Requirements for UCLA Graduate Degrees. Students are subject to the detailed degree requirements as published in program requirements for the year in which they enter the program.

MS in Engineering Online Programs

Course Requirements
The programs consist of nine courses that make up a program of study. At least five courses must be at the 200 level, and one must be a directed study course. The latter course satisfies the University of California
requirement for a capstone event (in the on-campus program the requirement is covered by a comprehensive examination or a thesis); the directed study course consists of an engineering design project that is better suited for the working engineer/computer scientist.

The programs are structured in a manner that allows employed engineers/computer scientists to complete the requirements at a part-time pace (e.g., one 100/200-level course per term). Courses are scheduled so that the programs can be completed within two academic years plus one additional term.

Areas of Study

Data Science Engineering Program

Junghoo (John) Cho, PhD (Computer Science), Area Director

Vwani P. Roychowdhury, PhD (Electrical and Computer Engineering), Area Director

The exponential growth of data generated by machines and humans present unprecedented challenges and opportunities. From the analysis of this big data, businesses can learn key insights about their customers to make informed business decisions. Scientists can discover previously unknown patterns hidden deep inside the mountains of data. In this program, students will learn key techniques used to design and build big data systems and gain familiarity with data-mining and machine-learning techniques that are the foundations behind successful information search, predictive analysis, smart personalization, and many other technology-based solutions to important problems in business and science.

Environment and Water Resources Program

Jennifer A. Jay, PhD (Civil and Environmental Engineering), Area Director

Plentiful high-quality water is fundamental for society. However, drought, climate change, contamination, and growing populations pose challenges for water sustainability. Engineers are needed worldwide to find novel solutions in providing access to clean water. Key elements in this degree program are surface and groundwater processes; hydroclimatlogy; watershed response to disturbance; remote sensing for hydrologic applications; membrane separation in aqueous systems; aquatic chemistry; environmental microbiology; and the chemical fate, geochemical modeling, and transport of contaminants in the environment.

Mechanics of Structures Program

Ajit K. Mal, PhD (Mechanical and Aerospace Engineering), Area Director

The main objective of the mechanics of structures program is to provide students with the opportunity to develop the knowledge required for the analysis and synthesis of modern engineered structures. The fundamental concepts of linear and nonlinear elasticity, plasticity, fracture mechanics, finite element analysis, mechanics of composites, and structural vibrations are developed in a series of undergraduate and graduate courses.

These concepts are then applied in solving industry-relevant problems in a number of graduate-level courses. Students develop hands-on experience in using popular finite element packages for solving realistic structural analysis problems.

Reliability Engineering Program

Ali Mosleh, PhD, NAE (Civil and Environmental Engineering, Materials Science and Engineering, Mechanical and Aerospace Engineering), Area Director

The program is designed with a fresh perspective that addresses the current needs of the industry for ensuring reliability of engineered products and services, but also anticipates future needs and pushes frontiers into the realms of machine learning, advanced prognostics and health monitoring, and advanced methods to tackle reliability of complex cyber-physical-human (CPH) systems.

Systems Engineering Program

Jenn-Ming Yang, PhD (Materials Science and Engineering), *Interim Area Director*

Systems engineering has broad applications that include software, hardware, materials, and electrical and mechanical systems. A set of four core courses is offered that form the foundation of the system engineering program. The sequence of courses is designed for working professionals who are faced with design, development, support, and maintenance of complex systems.

MS in Engineering – Aerospace

Xiaolin Zhong, PhD (Mechanical and Aerospace Engineering), Area Director

The objective of this program is to provide students with a broad knowledge of major technical areas of aerospace engineering in order to fulfill the current and future needs of the aerospace industry. The major technical areas of this program include aerodynamics and computational fluid dynamics (CFD), propulsion, systems and control, and structures and dynamics. Undergraduate and graduate courses in the area of aerospace engineering cover a wide range of fundamental concepts of the science and engineering of aerodynamics, space technology, compressible flow, computational aerodynamics, aircraft and rocket propulsion systems, digital control of physical systems, linear dynamic systems, linear optimal control, design of aerospace structures, dynamics of structures, robust control system analysis and design, and probability and stochastic processes in dynamical systems.

MS in Engineering – Computer Networking

Songwu Lu, PhD (Computer Science), Area Director

Three undergraduate elective courses complement the basic background of the undergraduate computer science degree with concepts in security, sensors, and wireless communications. The graduate courses expose students to key applications and research areas in the network and distributed systems field. Two required graduate courses cover the Internet and emerging sensor embedded systems. The electives probe different applications domains, including wireless mobile networks, security, network management, distributed P2P systems, and multimedia applications.
MS in Engineering – Electrical
Izhak Rubin, PhD (Electrical and Computer Engineering), Area Director
The electrical engineering program covers a broad spectrum of specializations in communications and telecommunication, control systems, electromagnetics, embedded computing systems, engineering optimization, integrated circuits and systems, microelectromechanical systems (MEMS), nanotechnology, photonics and optoelectronics, plasma electronics, signal processing, and solid-state electronics.

MS in Engineering – Electronic Materials
Ya-Hong Xie, PhD (Materials Science and Engineering), Area Director
The electronic materials program provides students with a knowledge set that is highly relevant to the semiconductor industry. The program has four essential attributes: theoretical background, applied knowledge, exposure to theoretical approaches, and introduction to the emerging field of microelectronics, namely organic electronics. All faculty members have industrial experience and are currently conducting active research in these subject areas.

MS in Engineering – Integrated Circuits
Dejan Markovic, PhD (Electrical and Computer Engineering), Area Director
The integrated circuits program includes analog integrated circuit (IC) design, design and modeling of VLSI circuits and systems, RF circuit and system design, signal coding and synchronization, VLSI signal processing, and communication system design. Summer courses are not yet offered in this program; therefore it cannot currently be completed in two calendar years.

MS in Engineering – Manufacturing and Design
Xiaochun Li, PhD (Mechanical and Aerospace Engineering), Area Director
An advanced program of study that covers fundamental and applied topics in modern manufacturing and mechanical design. The program includes finite element methods in design, mechanics of intelligent material systems, nano- and micro-manufacturing, material processing, rapid prototyping, composites manufacturing, design with composites, digital control, design of power transmission systems, design of high-temperature components, and design of smart grids. The program prepares students with the higher educational background and the competence that are necessary for today’s rapidly changing technology needs.

MS in Engineering – Materials Science
Suneel Kodambaka, PhD (Materials Science and Engineering), Area Director
Materials engineering is concerned with the design, fabrication, and testing of engineering materials that must simultaneously fulfill dimensional properties, quality control, and economic requirements. Several manufacturing steps may be involved: (1) primary fabrication, such as solidification or vapor deposition of homogeneous or composite materials; (2) secondary fabrication, including shaping and microstructural control by operations such as mechanical working, machining, sintering, joining, and heat treatment; and (3) testing, which measures the degree of reliability of a processed part, destructively or non-destructively.

MS in Engineering – Mechanical
Ajit K. Mal, PhD (Mechanical and Aerospace Engineering), Area Director
An advanced program of study that covers fundamental and applied topics in modern manufacturing and mechanical design. The program includes finite element methods in design, mechanics of intelligent material systems, nano- and micro-manufacturing, material processing, rapid prototyping, composites manufacturing, design with composites, digital control, design of power transmission systems, design of high-temperature components, and design of smart grids. The program prepares students with the higher educational background and the competence that are necessary for today’s rapidly changing technology needs.

MS in Engineering – Signal Processing and Communications
Izhak Rubin, PhD (Electrical and Computer Engineering), Area Director
The program provides training in a set of related topics in signal processing and communications. Students receive advanced training in multimedia systems from the fundamentals of media representation and compression through transmission of signals over communications links and networks.
Schoolwide Programs and Courses

6426 Boelter Hall
Box 951601
Los Angeles, CA 90095-1601
310-825-9580
School website

Graduate Study

For information on admission to the schoolwide engineering programs, and requirements for the Engineering degree and certificate of specialization, see Graduate Programs Admission on page 27.

Engineering Courses

Lower-Division Courses

2. Technology and Society. (2) Lecture, two hours; discussion, one hour; outside study, four hours. Designed to engage engineering students in process of formal career development. Explores compo- nents of internship/job application and practice preparing relevant materials. Prepares students for career-related social interactions. Development of skills and insites to success. Writing, research. Offered every other year. (W)

96A. Introduction to Engineering Design. (2) Lecture, one hour; laboratory, one hour; outside study, four hours. Introduction to engineering design while building teamwork and communication skills and examination of engineering majors offered at UCLA and of engineering careers. Hands-on experience with state-of-art Internet of Things (IoT) technology to offer students opportunity to rapidly develop innovative and inspiring systems that provide ideal introduction to computing systems and IoT applications specific to their major field. IoT technology has become one of most important advances in technology history with applications ranging from wearable devices for healthcare to residential monitoring systems, natural resource protection and management, intelligent vehicles and transportation systems, robotics systems, and energy conservation. Completion of hands-on engineering design projects, preparation of short report describing projects, and presentation of results. Letter grading.

96C. Introduction to Engineering Design: Internet of Things. (2) Lecture, one hour; laboratory, one hour; outside study, four hours. Recommended for undergraduate Aerospace Engineering, Bioengineering, Computer Science, Electrical Engineering, and Mechanical Engineering majors. Introduction to engineering design while building teamwork and communication skills and examination of engineering majors offered at UCLA and of engineering careers. Hands-on experience with state-of-art Internet of Things (IoT) technology to offer students opportunity to rapidly develop innovative and inspiring systems that provide ideal introduction to computing systems and IoT applications specific to their major field. IoT technology has become one of most important advances in technology history with applications ranging from wearable devices for healthcare to residential monitoring systems, natural resource protection and management, intelligent vehicles and transportation systems, robotics systems, and energy conservation. Completion of hands-on engineering design projects, preparation of short report describing projects, and presentation of results. Letter grading.

Mr. Kaiser (F,Sp)

96E. Introduction to Engineering Design: Electromechanical Engineering. (2) Lecture, two hours; outside study, four hours. Introduction to fundamental concepts and principles of computer science, with focus on fundamental computer programming principles, methodologies, and techniques. Basic concepts of programming and C++ computing language. Offered in summer only. P/NP grading.

96R. Introduction to Engineering Design: Rockets. (2) Lecture, two hours; outside study, four hours. Introduction to fundamental concepts and principles of computer science, with focus on fundamental computer programming principles, methodologies, and techniques. Basic concepts of programming and C++ computing language. Offered in summer only. P/NP grading.

21. Computing Immersion Summer Experience. (2) Seminar, 32 hours. Designed primarily for new students to help them understand UCLA, its culture, structure, and academic policies and to facilitate their transition from high school to college. Examination of research on first-year experience of college students, studying at UCLA versus high school, policies and procedures, and campus resources. Advanced preparation and early exposure to Fall Quarter mathematics, chemistry, and computer science curricula. Collaborative learning experiences and community-building activities are integral processes to both day and evening programs. Intensive classroom instruction and collaborative learning workshops. Offered in summer only. P/NP grading.

22. Summer Bridge Review for Enhancing Engi- neering Students. (2) Seminar, 32 hours. Designed primarily for new students to help them understand UCLA, its culture, structure, and academic policies and to facilitate their transition from high school to college. Examination of research on first-year experience of college students, studying at UCLA versus high school, policies and procedures, and campus resources. Intensive introduction of advanced topics covered in upper-division engineering courses. Offered in summer only. P/NP grading.

23. Finding Industry Internship. (2) Seminar, two hours; outside study, four hours. Designed to engage engineering students in process of formal career development. Explores compo- nents of internship/job application and practice preparing relevant materials. Prepares students for career-related social interactions. Development of skills and insites to success. Writing, research. Offered every other year. (W)

24. Finding Undergraduate Research Opportunity. (2) Seminar, two hours; outside study, four hours. Designed to engage engineering students in process of formal career development. Explores compo- nents of internship/job application and practice preparing relevant materials. Prepares students for career-related social interactions. Development of skills and insites to success. Writing, research. Offered every other year. (W)

25. Communicating Undergraduate Research Results. (2) Seminar, two hours; outside study, four hours. Designed to engage engineering students in process of formal career development. Explores compo- nents of internship/job application and practice preparing relevant materials. Prepares students for career-related social interactions. Development of skills and insites to success. Writing, research. Offered every other year. (W)

87. Introduction to Engineering Disciplines. (4) Lecture, four hours; discussion, four hours; outside study, four hours. Introduction to engineering as professional opportunity for freshman students by exploring difference between engineering disciplines and functions engineers perform. Development of skills and techniques for academic excellence through team process. Investigation of national need underlying current effort to increase participation of historically underrepresented groups in U.S. technological workforce. Letter grading.

Mr. Welz (W)

95. Internship Studies in Engineering. (1 to 4) Tu- torial, one hour. Limited to first years/lophorhones. Internship studies course supervised by associate dean or designated faculty members. Further supervision to be provided by organization for which students are doing internship. Students may be required to meet on regular basis with supervisor and provide periodic reports of their experience. May not be applied toward major requirements. May be repeated for credit. Individual contract with associate dean required. (W,Sp)

96A. Introduction to Engineering Design. (2) Lecture, one hour; laboratory, one hour; outside study, four hours. Introduction to engineering design while building teamwork and communication skills and examination of engineering majors offered at UCLA and of engineering careers. Completion of hands-on engineering design projects, preparation of short report describing projects, and presentation of results. Specific project details and relevant majors explored vary with instructor. May be repeated once for credit or instructor change. Letter grading.

Mr. Reiher (W,Sp)

96B. Introduction to Engineering Design: Digital Imaging. (2) Lecture, one hour; laboratory, one hour; outside study, four hours. Recommended for undergraduate Aerospace Engineering, Bioengineering, Computer Science, Electrical Engineering, and Mechanical Engineering majors. Introduction to engineering design while building teamwork and communication skills and examination of engineering majors offered at UCLA and of engineering careers. Hands-on experience with state-of-art solid-state imaging devices. How to focus, expose, record, and manipulate telecopic images. Development of photographic technology from early chemical experiments to wide spread use of cell phone camera. Completion of hands-on engineering design projects, preparation of short report describing projects, and presentation of results. Letter grading.

Mr. Tsatsou (Sp)

96C. Introduction to Engineering Design: Internet of Things. (2) Lecture, one hour; laboratory, one hour; outside study, four hours. Recommended for undergraduate Aerospace Engineering, Bioengineering, Computer Science, Electrical Engineering, and Mechanical Engineering majors. Introduction to engineering design while building teamwork and communication skills and examination of engineering majors offered at UCLA and of engineering careers. Hands-on experience with state-of-art Internet of Things (IoT) technology to offer students opportunity to rapidly develop innovative and inspiring systems that provide ideal introduction to computing systems and IoT applications specific to their major field. IoT technology has become one of most important advances in technology history with applications ranging from wearable devices for healthcare to residential monitoring systems, natural resource protection and management, intelligent vehicles and transportation systems, robotics systems, and energy conservation. Completion of hands-on engineering design projects, preparation of short report describing projects, and presentation of results. Letter grading.

Mr. Tsatsou (Sp)

96E. Introduction to Engineering Design: Elect- rocardiogram. (2) Lecture, 90 minutes; laboratory, 90 minutes; outside study, three hours. Students learn and use concepts and techniques in electrical circuit design and analysis, cardiac electrophysiology, bio- physics, microcontrollers, and computer programming. Students work in teams to design, construct, and test circuit boards capable of measuring human electrocardiograms by capturing data with microcontrol- ler, with computer analysis and display. Students present their designs orally and in writing. Letter grading.

(W,Sp)

96R. Introduction to Engineering Design: Rockets. (2) Lecture, 90 minutes; laboratory, 90 minutes; outside study, three hours. Introduction to basic concepts in aerospace engineering, computer-aided design, finite element analysis, machining, electric motor performance, steering linkages, and general mechanical design and assembly to work in teams and construct and test go-karts. Students present their designs orally and in writing. Letter grading.

(W,Sp)

96T. Introduction to Engineering Design: Electromechanical Engineering. (2) Lecture, two hours; outside study, two hours. Introduction to basic concepts in aerospace engineering, computer-aided design, finite element analysis, 3D printing, carbon fiber laser cutting, test equipment, general design and as- sembly, and machine shop fabrication. Concepts applied to team-based design, construction, and testing of small 3D-printed rockets and larger, high-power rockets. Students present their designs orally and in writing, and evaluate their performance against other student teams. Rockets fired from Mojave Desert launch site in class field trip. No prior ex- perience or coursework needed. Study led by experi- enced undergraduate members of Bruin Rocket Project. Meetings, design and fabrication home- work, make use of Makerspace facilities and tools. Letter grading.

(W,Sp)

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower-division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (ex- cluding this course). Individual contract required; consult Undergraduate Research Center. May be re- peated. P/NP grading.

Upper-Division Courses

102. Synthetic Biosystems and Nanosystems Design. (4) Lecture, four hours; outside study, eight hours. Requisites: course M101, Life Sciences 3. Introduction to current progress in engineering to inte-
grate biosciences and nanosciences into synthetic systems, where biological components are reengineered and rewired to perform desirable functions in both intracellular and cell-free environments. Discussion of basic technologies and systems analysis that deal with dynamic behavior, noise, and uncertainty. Design project in which students are challenged to design novel biosystems and nanosystems for non-trivial task required. Letter grading.

Mr. Liao M103. Environmental Nanotechnology: Implications and Applications. (4) Same as Civil Engineering M165s. Lecture, four hours; discussion, two hours; outside study, six hours. Recommended requisites: course M101. Introduction to potential implications of nanotechnology to environmental protection. Technical contents include three multidisciplinary areas: (1) physical, chemical, and biological properties of nanomaterials, (2) transport, reactivity, and toxicity of nanoscale materials in natural environmental systems, and (3) use of nanotechnology for energy and water production, plus environmental protection, monitoring, and remediation. Letter grading. Mr. Hoek (Sp)

110. Introduction to Technology Management and Economics for Engineers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Focus on fundamentals of micro-level (firm and industry) and macro-level (government, international) economics as they relate to technology management. How individuals, firms, and governments impact successful commercialization of high technology products and services. Letter grading.

Mr. Monbouquette (F,W)

111. Introduction to Finance and Marketing for Engineers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Critical components of finance and marketing analysis and practice as they impact management of technology commercialization. Internal (within firm) and external (in marketplace) marketing and financing of high-technology innovation. Concepts include present value, future value, discounted cash flow, internal rate of return, return on assets, return on equity, return on investment, interest rates, cost of capital, and product, price, positioning, and promotion. Use of market research, segmentation, and forecasting in management of technological innovation. Letter grading.

Mr. Monbouquette (FSp)

112. Laboratory to Market, Entrepreneurship for Engineers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Critical components of entrepreneurship, finance, marketing, human resources, and accounting disciplines as they impact management of technology commercialization. Topics include intellectual property management, team building, market forecasting, and entrepreneurial finance. Students work in small teams studying technology management plans to bring new technologies to market. Students select from set of available technology concepts, many generated at UCLA, that are in need of plans for movement from laboratory to market. Letter grading.

Mr. Monbouquette (W,Sp)

113. Product Strategy. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Designed for juniors/seniors. Introduction to current management of new product development. Topics include product strategy, product platform, and product lines; competitive strategy, vectors of differentiation, product pricing, first-to-market versus fast-follower; growth strategy, growth through acquisition, and new ventures; product portfolio management. Case studies, class projects, group discussions, and guest lectures by speakers from industry. Letter grading.

Mr. Pao

116. Statistics for Management Decisions. (4) Lecture, four hours; outside study, eight hours. Management as well as engineering decisions nearly always take place in environment characterized by uncertainty. Probability provides mathematical framework for understanding how to make rational decisions when outcomes of actions are uncertain. Application of probability to problem of reasoning from sample data, encompassing estimation, hypothesis testing, and regression analysis. Discussion of specific analytical techniques needed in later courses in program. Development of basic understanding of statistical analysis. Letter grading. Ms. Dolecek

120. Entrepreneurship for Scientists and Engineers. (4) Lecture, two hours; outside study, four hours. Designed for seniors and graduate students. Identification of business opportunities and outline of basic requisites for viable business plans, followed by specific topics related to securing basic assets and resources needed to execute those plans. P/NP grading.

Mr. Wesel

160. Entrepreneurship and Venture Initiation for Engineers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Limited to students with credit for Management 160. Focus on process and methodology for starting new venture. Introduction to entrepreneurship from perspective of entrepreneurship: Examination of core concepts and frameworks on idea generation, market analysis, fundraising, corporate structures, and financial accounting for entrepreneurial endeavors. Focus on fundamentals of building business, and also emphasis on inherent experiential nature of entrepreneurship and need for constant learning on this subject. Letter grading.

163. Entrepreneurship and New Product Development for Engineers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Limited to juniors/seniors. Not open to students with credit for Management 163. Designed to deepen understanding of innovations and innovative processes related to creating new products. Inquiry into why, what, and how of making new products. New products are essential to any business (start-up or well-established) and thriving economies. Making successful new products requires various types of innovation. Availability of digital technologies and global outsourcing have accelerated pace of these innovations. Letter grading.

Mr. Wesel

180. Engineering and Complex Systems. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Designed for junior/senior engineering majors. Holistic view of engineering discipline, covering lifecycle of engineering, processes, and techniques used in industry. Considerations in developing systems engineering perspective in which aspects of electrical, mechanical, material, and software engineering are incorporated. Three specific cases studies in communication, sensor, and processing systems to help students understand these concepts. Special attention paid to link material covered to engineering curriculum offered by UCLA to help students integrate and enhance their understanding of knowledge already acquired. Motivation of students to continue their learning and reinforce lifelong learning habits. Letter grading.

Mr. Wesel

181EW, 182EW, 185EW. Technology and Society. (4) Lecture, four hours; discussion, three hours; outside study, five hours. Enforced requisites: English Composition 3 or 3E. Not open for credit to students with credit for course 181EW, 182EW, or 185EW. Places engineering in broader societal context through examination of some of key ethical, legal, and regulatory issues and frameworks relevant to design and deployment of emerging technology products and services. Historical examination of ethical and legal frameworks and in relation to technology. Exploration of series of specific contemporary technology-related topics to examine their broader ramifications. Topics include driverless cars, algorithms and artificial intelligence, global supply chain for engineering products, cryptocurrencies and blockchain, net neutrality, and impact of technology on employment. Offers students tools enabling them to think more proactively and holistically about ethical and societal dimensions of their work as technology creators. Satisfies engineering writing requirement. Letter grading. Mr. Villasenor (F,W,Sp)

183EW. Engineering and Society. (4) Lecture, four hours; discussion, three hours; outside study, five hours. Enforced requisites: English Composition 3 or 3E. Not open for credit to students with credit for course 183EW. Limited to sophomore/junior/senior engineering students. Professional and ethical considerations in practice of engineering, impact of technology on society and on development of moral and ethical values. Contemporary environmental, biological, legal, and other issues created by new technologies. Emphasis on research and writing within engineering environments. Writing and revision of about 20 pages total, including two individual technical essays and one team-written research report. Readings address technical issues and writing form. Satisfies engineering writing requirement. Letter grading.

Mr. Wesel (F,W,Sp)

185EW. Art of Engineering Endeavors. (4) Lecture, four hours; discussion, three hours; outside study, five hours. Enforced requisites: English Composition 3 or 3E. Not open for credit to students with credit for course 185EW. Designed for junior/senior engineering students. Nontechnical skills and experiences necessary for engineering career success. Importance of group dynamics and on development of personal and professional skills. Teamwork and effective group skills in engineering environments. Organization and control of multidisciplinary complex engineering projects. Forms of leadership and qualities and characteristics of effective leaders. How engineering, computer sciences, and technology relate to major ethical and social issues. Societal demands on practice of engineering. Emphasis on research and writing in engineering environments. Satisfies engineering writing requirement. Letter grading.

Mr. Wesel

188. Special Courses in Engineering. (4) Seminar, four hours; outside study, eight hours. Special topics in engineering for undergraduate students taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated for credit with topic or instructor change. Letter grading.

Mr. Wesel

188EW. Experimental Courses in Engineering. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: English Composition 3 or 3E. Not open for credit to students with credit for course 188EW, 183EW, or 185EW. Emphasis on research and chemical engineering projects. Discussion of nature of these issues; their ethical, legal, and social considerations in practice of engineering related to these issues. Writing and revision of about 20
Graduate Courses

200. Program Management Principles for Engineers and Professionals. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Practical review of major elements of project management, including planning, scheduling, budgeting, and controlling project scope, cost, and schedule. Satisfies engineering writing requirement. Letter grading.

201. Systems Engineering. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. System engineering process. Coverage of key elements: system requirements and flow down, product development cycle, functional analysis, system synthesis and tradeoff, risk, and systems engineering methodology. Letter grading.

202. Reliability, Maintainability, and Supportability. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Overview of engineering disciplines critical to this function—reliability, maintainability, and supportability—and their relationships, taught using probability theory. Topics also include fault detection and isolation, tests, fault tolerant PNP systems. Discussion of 6-sigma process, one effective design and manufacturing methodology, to ensure system reliability, maintainability, and supportability. Mr. Lynch, Mr. Wesel (W)

203. System Architecture. (4) Lecture, four hours; outside study, eight hours. Requisite: course 201. Designed for graduate students with BS degrees in engineering. Focus on construction of major system architecture. Speech, reading, discussion, examination. Mr. Lynch, Mr. Wesel (W)

204. Trusted Systems Engineering. (4) Lecture, four hours; outside study, eight hours. Designed to provide students with the knowledge to establish security and manage the confidentiality, integrity, and availability of systems. Letter grading.

205. Model-Based Systems Engineering. (4) Lecture, four hours; outside study, eight hours. Model-based systems engineering (MBSE) and systems modeling language (SysML) taught through lectures and readings to provide students with conceptual framework and vocabulary. Individual projects enable students to develop basic skills for creating SysML requirements and structural and behavioral diagrams. In group project students learn how to package, compartmentalize, and integrate smaller efforts while being constrained to meet schedules. Industry-recognized credentials may be obtained as course requirements. Management Information Systems (OMG) Certified Systems Modeling Professional (CSMP), and OMG Certified Systems Modeling Professional (OCSMP) tests, such as Model User and Model Builder. Ms. Morris (F)

206. Engineering for Systems Assurance. (4) Lecture, four hours; outside study, eight hours. Recommended requisites: course 204, Computer Science 236. Systems are constructed to perform complex functions and services. How to understand needs of users, analysis of requirements and derived requirements, creation of various system architecture products, and design and integration of various components into systems that perform these functions and services. System assurance addresses confidence that systems meet specified operational requirements based on evidence provided by applying assurance techniques. Letter grading.

210. Operations and Supply Chain Management. (4) Lecture, four hours; outside study, eight hours. Introduction to and strategic issues and decisions involved in managing enterprises. Operational processes, science and technology that transform inputs into goods and utilizes them to provide service, or does both. Conceptual framework and set of analytical tools provided to enable students to better understand why processes behave as they do. Mr. Lynch, Mr. Wesel (W)

211. Financial Management. (4) Lecture, four hours; outside study, eight hours. Introduction to concepts reflecting material generally covered in certain MBA core and elective courses. Integration of both theoretical and practical considerations. Letter grading.

212. Intellectual Property Law and Strategy. (4) Lecture, four hours; outside study, eight hours. Prior knowledge of legal doctrines or materials not required. Intellectual property law is not just topic for lawyers. Engineers who have design responsibilities must understand how legal system in some instances provides protection and in others stands as obstacle to what would otherwise be most efficient design choice. Mr. Lynch, Mr. Wesel (W)

213. Data and Business Analytics. (4) Lecture, four hours; outside study, eight hours. Coverage of wide variety of spreadsheet models that can be used to support engineers and business professionals. Emphasis on mastery of Excel spreadsheet modeling as integral part of analytic decision making. Management models include data modeling, regression and forecasting, linear programming, network and distribution models, integer programming, nonlinear programming, and Monte Carlo simulation. Problems from operations, finance, and marketing taught by spreadsheet examples and describe general managerial situations from various industries. Development of spreadsheet models to facilitate decision making. Letter grading.

214. Management Communication. (4) Activity, 10 hours. Preparations: completion of four or five units in business communication and interpersonal communication skills. Letter grading.

215. Entrepreneurship for Engineers. (4) Lecture, four hours; outside study, eight hours. Limited to graduate engineering students. Topics in starting and developing high-tech enterprises and intended for students who wish to complement their technical education with introduction to entrepreneurship. Letter grading.

299. Capstone Project. (4) Activity, 10 hours. Preparation: completion of four or five units in business communication and interpersonal communication skills. Letter grading.

375. Teaching Apprentice Practicum. (1 to 4) Seminars to be arranged. Preparation: prior apprenticeship personal employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading.
470A-470D. Engineer in Technical Environment. (3 each) Lecture, three hours; outside study, six hours. Limited to Engineering Executive Program students. Theory and application of quantitative methods in analysis and synthesis of engineering systems for purpose of making management decisions. Optimization of outputs with respect to dollar costs, time, material, energy, information, and manpower. Case studies and individual projects. S/U or letter grading.

471A-471B-471C. Engineer in General Environment. (3–3–1.5) Lecture, three hours (courses 471A, 471B) and 90 minutes (course 471C). Limited to Engineering Executive Program students. Influences of human relations, laws, social sciences, humanities, and fine arts on development and utilization of natural and human resources. Interaction of technology and society past, present, and future. Change agents and resistance to change. S/U or letter (471A) grading; In Progress (471B) and S/U or letter (471C) grading.

472A-472D. Engineer in Business Environment. (3–3–3–1.5) Lecture, two and one half hours; outside study, six hours. Limited to Engineering Executive Program students. Language of business for engineering executive. Accounting, finance, business economics, business law, and marketing. Laboratory in organization and management problem solving. Analysis of actual business problems of firm, community, and nation, provided through cooperation and participation with California business corporations and government agencies. In Progress (472A, 472C) and S/U or letter grading (credit to be given on completion of courses 472B and 472D).

473A-473B. Analysis and Synthesis of Large-Scale System. (3–3) Lecture, two and one half hours; outside study, six hours. Limited to Engineering Executive Program students. Problem area of modern industry or government is selected as class project, and its solution is synthesized using quantitative tools and methods. Project also serves as laboratory in organization for goal-oriented technical group. In Progress (473A) and S/U (473B) grading.

495A. Teaching Assistant Training Seminar. (4) Seminar, four hours; outside study, eight hours. Preparation: appointment as teaching assistant. Limited to graduate engineering students. Seminar on communication of engineering principles, concepts, and methods, preparation, organization of material, presentation, use of visual aids, grading, advising, and rapport with students. S/U grading. (F)

M495I. Teaching Preparation Seminar: Writing for Engineers. (4) (Same as English Composition M495I.) Seminar, two and one half hours; outside study, nine and one half hours. Required of all teaching assistants for engineering writing courses not exempt by appropriate departmental or program training. Training and mentoring, with focus on composition pedagogy, assessment of student writing, guidance of revision process, and specialized writing problems that may occur in engineering writing contexts. Practical concerns of preparing students to write course assignments, marking and grading essays, and conducting peer reviews and conferences. S/U grading. (F, W, Sp)

M495J. Supervised Teaching of Writing for Engineers. (2) (Same as English Composition M495J.) Seminar, one hour; outside study, five hours. Enforced requisite: course M495I. Required of all teaching assistants in their initial term of teaching engineering writing courses. Mentor in group and individual meetings. Continued focus on composition pedagogy, assessment of student writing, guidance of revision process, and specialized writing problems that may occur in engineering writing contexts. Practical concerns of preparing students to write course assignments, marking and grading essays, and conducting peer reviews and conferences. S/U grading. (F, W, Sp)

501. Cooperative Program. (2 to 8) Tutorial, to be arranged. Preparation: consent of UCLA graduate adviser and graduate dean, and host campus instructor, department chair, and graduate dean. Used to record enrollment of UCLA students in courses taken under cooperative arrangements with USC. S/U grading.
Center for Domain-Specific Computing (CDSC)

National Science Foundation (NSF) Expeditions in Computing Program and InTrans Program

Jason (Jingsheng) Cong, PhD (Computer Science), Director

CDSC looks beyond parallelization and focuses on domain-specific customization as the next disruptive technology to bring orders-of-magnitude power-performance efficiency improvement. CDSC develops a general methodology for creating novel, customizable computing platforms; and associated compilation tools and runtime management environment to support domain-specific computing. Its recent focus is on design and implementation of accelerator-rich architectures, from single chips to data centers; and actively exploring the use of emerging computing technologies such as neuromorphic computing and quantum computing. It also develops highly automated compilation tools and runtime management software for customizable heterogeneous platforms including multicore CPUs, many-core GPUs, FPGAs, and quantum computers. By combining these capabilities, CDSC researchers are able to deliver a supercomputer-in-a-box or -in-a-cluster. This approach has been successfully applied to multiple application domains such as machine learning, big data analytics, medical imaging, and bioinformatics.

Center for Synthetic Control Across Length-scales for Advancing Rechargeables (SCALAR)

Department of Energy (DOE) Energy Frontier Research Center

Sarah Tolbert, PhD (Chemistry and Biochemistry, Materials Science and Engineering), Director

SCALAR aims to use the power of synthetic materials chemistry to design materials, interfaces, and architectures that address long-standing problems in electrochemical energy storage systems. A vital aspect of the SCALAR program is the simultaneous design of new functional materials at the atomic, nanoscale, and electrode levels in an effort to bring about meaningful advances in battery performance. The electrochemical energy storage problems that SCALAR addresses fall into three areas: increasing the fundamental charge storage properties of electrode materials, reducing resistive losses in materials and electrodes, and improving the reversibility and cycling stability of electrode materials. SCALAR further takes advantage of the dynamic Southern California region, which houses a large number of world-class research universities. Four of them—Caltech, UC Santa Barbara, UC San Diego, and University of Southern California—and the Stanford Linear Accelerator Center national laboratory, join lead institution UCLA to make a regional hub for battery research that leverages all partners’ proximity and complementary facilities.

Center for Translational Applications of Nanoscale Multiferroic Systems (TANMS)

National Science Foundation (NSF) Engineering Research Center

Gregory P. Carman, PhD (Mechanical and Aerospace Engineering), Director; Jane P. Chang, PhD (Chemical and Biomolecular Engineering), Deputy Director

TANMS is a 10-year program, focused on miniaturizing electromagnetic devices, using a three-pillar strategy involving research, translation, and education. The research strategy engages the world’s best researchers from the five TANMS campuses (California State University, Northridge; Northeastern University; UC Berkeley; UCLA; and University of Texas at Dallas) to understand and develop new nanoscale multiferroic devices. The fundamental research activities work synergistically with the center’s 11 industrial partners to translate the advancements into applications such as ultra-efficient memory, electrically small antennas, and motors to manipulate individual T-cells. These research and translational efforts rely on a workforce of postgraduate, graduate, undergraduate, and K-12 students supporting the education mission of producing the next generation of engineering leaders. The TANMS program relies on an inclusive atmosphere where all are welcome in the center’s quest to change the world.

Center of Excellence for Green Nanotechnologies (CEGN)

Kang L. Wang, PhD (Electrical and Computer Engineering), Director

CEGN undertakes frontier research and development in the areas of nanotechnology in energy and nanoelectronics. It tackles major issues of scaling, energy efficiency, energy generation, and energy storage faced by the electronics industry. CEGN researchers are innovating novel solutions through a number of complementary efforts that minimize power usage and cost without compromising electronic device performance. The approach is based on the integration of magnetic, carbon-based, organic, and optoelectronic materials and devices.
King Abdulaziz City for Science and Technology (KACST) in Saudi Arabia and UCLA Samueli collaborate in CEGN under KACST’s established Joint Center of Excellence Program (JCEP) to promote educational, technology transfer, and research exchanges. KACST has an agreement with UCLA for research in nanoelectronics and clean energy for the next three years. KACST is both Saudi Arabia’s national science agency and its premier national laboratory. CEGN was awarded an additional $11 million through 2022 in its recent renewal effort, expanding on the work that was originally funded at $3.7 million.

Named Data Networking Project

National Science Foundation (NSF) Future Internet Architecture (FIA) Program
Lixia Zhang, PhD (Computer Science), Principal Investigator

While the Internet has far exceeded expectations, it has also stretched initial assumptions, often creating tussles that challenge its underlying communication model. The TCP/IP architecture was designed to create a communication network where packets are communicated endpoints. Sustained growth in e-commerce, digital media, social networking, and smartphone applications has led to dominant use of the Internet as a distribution network. Solving distribution problems through a point-to-point communication protocol is complex and error-prone.

The **Named Data Networking Project** investigates a new Internet architecture, called named data networking (NDN), that changes the host-centric TCP/IP architecture to a data-centric architecture. This conceptually simple shift has far-reaching implications for how we design, develop, deploy, and use networks and applications. Today’s TCP/IP architecture uses addresses to communicate; NDN directly uses application data names to fetch data. TCP/IP secures the data container and communication channels; NDN directly secures the data, decoupling trust in data from trust in hosts. The project takes an application-driven, experimental approach to design and build a variety of applications on NDN to drive the development and deployment of the architecture and its supporting modules, test prototype implementations, and encourage community use, experimentation, and feedback into the design.

The new Future Internet Architectures—Next Phase (FIA-NP) program began in May 2014. The Named Data Networking Project is now under FIA-NP funding.

Smart Grid Energy Research Center (SMERC)

Rajit Gadh, PhD (Mechanical and Aerospace Engineering), Director

SMERC performs research, develops technology, creates innovations, and demonstrates advanced technologies to enable the development of the next generation of the electric utility grid—the smart grid. SMERC is currently working on electric vehicle-to-grid integration (VIG and V2G), microgrids, distributed renewable integration including solar and wind, energy storage integration within microgrids, autonomous electric vehicles, distributed energy resources, automated demand response, cybersecurity, and consumer behavior. SMERC also furnishes thought leadership through partnership between utilities, renewable energy companies, technology providers, electric vehicle and electric appliance manufacturers, Department of Energy (DOE) research laboratories, and universities, so as to collectively work on envisioning, planning, and executing the smart grid of the future. The partnership recently launched the Energy for a Smart Grid (ESmart) Industry Consortium. It is expected that this smart grid will enable integration of renewable energy sources, allow for integration of electric vehicles and energy storage, improve grid efficiency and resilience, reduce power outages, allow for competitive energy pricing, and overall become more responsive to market, consumer, and societal needs. SMERC was a participant in the Los Angeles Department of Water and Power (LADWP) Regional Smart Grid Demonstration Project, which was funded by DOE at an estimated $120 million for LADWP and its partners combined. Also, a SMERC electric vehicle microgrid demonstration project was funded by the California Energy Commission.

WIN Institute of Neurotronics (WINs)

Nanoelectronics Research Initiative National Institute of Excellence

Kang L. Wang, PhD (Electrical and Computer Engineering), Director

Successor to the Western Institute of Nanoelectronics, **WINs** focuses on cutting-edge research including nanostructures for high-efficiency solar cells, patterned nanostructures for integrated active optoelectronics on silicon, and carbon nanotube circuits.

Through the multidisciplinary research efforts of WINs, the National Institute of Standards and Technology (NIST) awarded UCLA $6 million to build the Western Institute of Nanotechnology–Green Engineering and Metrology (WIN-GEN) located within the Engineering building suite on campus.
BS in Aerospace Engineering Curriculum
Aeronautics Track

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Qtr</td>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A—Differential and Integral Calculus¹</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 1—Undergraduate Seminar²</td>
<td>1</td>
</tr>
<tr>
<td>2nd Qtr</td>
<td>Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory¹</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B—Integration and Infinite Series³</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics IA—Mechanics²</td>
<td>5</td>
</tr>
<tr>
<td>3rd Qtr</td>
<td>Mathematics 32A—Calculus of Several Variables¹</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B/4AL—Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory¹</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective³</td>
<td>5</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Qtr</td>
<td>Mathematics 32B—Calculus of Several Variables¹</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1C/4BL—Electrodynamics, Optics, and Special Relativity/Electricity and Magnetism Laboratory¹</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective³</td>
<td>5</td>
</tr>
<tr>
<td>2nd Qtr</td>
<td>Materials Science and Engineering 104—Science of Engineering Materials²</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A—Linear Algebra and Applications¹</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 101—Statics and Strength of Materials²</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 105A—Introduction to Engineering Thermodynamics²</td>
<td>4</td>
</tr>
<tr>
<td>3rd Qtr</td>
<td>Mechanical and Aerospace Engineering M20 (Intro to Computer Programming with MATLAB) or Computer Science 31 (Intro to Computer Science I)²</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 82—Mathematics of Engineering²</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 102—Dynamics of Particles and Rigid Bodies²</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 103—Elementary Fluid Mechanics²</td>
<td>4</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Qtr</td>
<td>Electrical and Computer Engineering 100—Electrical and Electronic Circuits²</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 105D—Transport Phenomena²</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 166A—Analysis of Aerospace Structures³</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td>2nd Qtr</td>
<td>Mechanical and Aerospace Engineering 107—Introduction to Modeling and Analysis of Dynamic Systems²</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 150A—Intermediate Fluid Mechanics²</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective³</td>
<td>5</td>
</tr>
<tr>
<td>3rd Qtr</td>
<td>Mechanical and Aerospace Engineering 150B—Aerodynamics²</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering C150R (Rocket Propulsion Systems) or 161A (Intro to Astronautics) or 161B (Intro to Space Technology)²</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 171A—Introduction to Feedback and Control Systems²</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective³</td>
<td>5</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Qtr</td>
<td>Aerospace Engineering Elective²</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering C150P—Aircraft Propulsion Systems²</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 154S—Flight Mechanics, Stability, and Control of Aircraft²</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>2nd Qtr</td>
<td>Mechanical and Aerospace Engineering 154A—Preliminary Design of Aircraft</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 157—Basic Mechanical and Aerospace Engineering Laboratory²</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>3rd Qtr</td>
<td>Mechanical and Aerospace Engineering 157A—Fluid Mechanics and Aerodynamics Laboratory²</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective³</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL 180

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 50.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
4. See list of electives on page 113.
BS in Aerospace Engineering Curriculum
Space Track

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A—Chemical Structure(^1)</td>
<td>4</td>
</tr>
<tr>
<td>English Composition 3—English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 31A—Differential and Integral Calculus(^1)</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 1—Undergraduate Seminar(^2)</td>
<td>1</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B/20L—Chemical Energetics and Change/General Chemistry Laboratory(^1)</td>
<td>7</td>
</tr>
<tr>
<td>Mathematics 31B—Integration and Infinite Series(^1)</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A—Mechanics(^1)</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mathematics 32A—Calculus of Several Variables(^1)</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B/4AL—Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory(^1)</td>
<td>7</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective(^3)</td>
<td>5</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

1st Quarter	
Mathematics 32B—Calculus of Several Variables\(^1\)	4
Physics 1C/4BL—Electrodynamics, Optics, and Special Relativity/Electricity and Magnetism Laboratory\(^1\)	7
UCLA Samueli GE Elective\(^3\)	5

2nd Quarter	
Materials Science and Engineering 104—Science of Engineering Materials\(^2\)	4
Mathematics 33A—Linear Algebra and Applications\(^1\)	4
Mechanical and Aerospace Engineering 101—Statics and Strength of Materials\(^2\)	4
Mechanical and Aerospace Engineering 105A—Introduction to Engineering Thermodynamics\(^2\)	4
3rd Quarter	
Mechanical and Aerospace Engineering M20 (Intro to Computer Programming with MATLAB) or Computer Science 31 (Intro to Computer Science I)\(^2\)	4
Mechanical and Aerospace Engineering 82—Mathematics of Engineering\(^2\)	4
Mechanical and Aerospace Engineering 102—Dynamics of Particles and Rigid Bodies\(^2\)	4
Mechanical and Aerospace Engineering 103—Elementary Fluid Mechanics\(^2\)	4

JUNIOR YEAR

1st Quarter	
Electrical and Computer Engineering 100—Electrical and Electronic Circuits\(^2\)	4
Mechanical and Aerospace Engineering 105D—Transport Phenomena\(^2\)	4
Mechanical and Aerospace Engineering 166A—Analysis of Aerospace Structures\(^3\)	4
UCLA Samueli Ethics Course	4

2nd Quarter	
Mechanical and Aerospace Engineering 107—Introduction to Modeling and Analysis of Dynamic Systems\(^2\)	4
Mechanical and Aerospace Engineering 150A—Intermediate Fluid Mechanics\(^2\)	4
UCLA Samueli GE Elective\(^3\)	5

3rd Quarter	
Mechanical and Aerospace Engineering 150B (Aerodynamics) or C150P (Aircraft Propulsion Systems)\(^2\)	4
Mechanical and Aerospace Engineering C150R—Rocket Propulsion Systems\(^2\)	4
Mechanical and Aerospace Engineering 171A—Introduction to Feedback and Control Systems\(^2\)	4
UCLA Samueli GE Elective\(^3\)	5

SENIOR YEAR

1st Quarter	
Aerospace Engineering Elective\(^4\)	4
Mechanical and Aerospace Engineering 157—Basic Mechanical and Aerospace Engineering Laboratory\(^4\)	4
Mechanical and Aerospace Engineering 161A—Introduction to Astronautics\(^2\)	4
Technical Breadth Course\(^3\)	4

2nd Quarter	
Mechanical and Aerospace Engineering 161B—Introduction to Space Technology\(^2\)	4
Technical Breadth Course\(^3\)	4
UCLA Samueli GE Elective\(^3\)	4

3rd Quarter	
Mechanical and Aerospace Engineering 157A—Fluid Mechanics and Aerodynamics Laboratory\(^2\)	4
Mechanical and Aerospace Engineering 161C—Spacecraft Design\(^2\)	4
Technical Breadth Course\(^3\)	4

TOTAL

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 50.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
4. See list of electives on page 113.
BS in Bioengineering Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Bioengineering 10 — Introduction to Bioengineering</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Chemistry and Biochemistry 30A — Organic Chemistry I: Structure and Reactivity</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B/4AL—Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory</td>
<td>7</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Bioengineering 100 — Bioengineering Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30B — Organic Chemistry II: Reactivity, Synthesis, and Spectroscopy</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1C — Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemistry and Biochemistry 30AL—General Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Life Sciences 7A—Cell and Molecular Biology</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A—Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Bioengineering 167L—Bioengineering Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 31 (Introduction to Computer Science I) or Mechanical and Aerospace Engineering M20 (Introduction to Computer Programming with MATLAB)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Life Sciences 7C—Physiology and Human Biology</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B—Differential Equations</td>
<td>4</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Electrical and Computer Engineering 100 — Electrical and Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>2nd</td>
<td>Bioengineering 120 — Biomedical Transducers</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Bioengineering 175 — Machine Learning and Data-Driven Modeling in Bioengineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Bioengineering 110 — Biotransport and Bioreaction Processes</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Bioengineering 176 — Principles of Biocompatibility</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Bioengineering 177A — Bioengineering Capstone Design I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Bioengineering Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Bioengineering Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Bioengineering 177B — Bioengineering Capstone Design II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Bioengineering 180 — System Integration in Biology, Engineering, and Medicine</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Bioengineering Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Bioengineering Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>181</td>
</tr>
</tbody>
</table>

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 74.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
4. Bioengineering electives include C101, C102, C104, C105, C106, C107, 121, C131, C139A, C139B, CM140, CM145, C147, C155, CM178, C179, 180L, M182, C183, C185, CM186, CM187, 199 (8 units maximum).
BS in Chemical Engineering Curriculum
Chemical Engineering Core Option

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 10 — Introduction to Chemical and Biomolecular Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30A — Organic Chemistry I: Structure and Reactivity</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B/4AL — Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory</td>
<td>7</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR	
1st Quarter	
Chemical Engineering 100 — Fundamentals of Chemical and Biomolecular Engineering	4
Mathematics 32B — Calculus of Several Variables	4
Physics 1C — Electrodynamics, Optics, and Special Relativity	5
2nd Quarter	
Chemical Engineering 45 — Biomolecular Engineering Fundamentals	4
Chemical Engineering 102A — Thermodynamics I	4
Chemistry and Biochemistry 30B — Organic Chemistry II: Reactivity, Synthesis, and Spectroscopy	4
Mathematics 33A — Linear Algebra and Applications	4
3rd Quarter	
Chemical Engineering 102B — Thermodynamics II	4
Civil and Environmental Engineering M20 — Introduction to Computer Programming with MATLAB	4
Mathematics 33B — Differential Equations	4
UCLA Samueli GE Elective	5

JUNIOR YEAR	
1st Quarter	
Chemical Engineering 101A — Transport Phenomena	4
Chemical Engineering 109 — Numerical and Mathematical Methods in Chemical and Biological Engineering	4
UCLA Samueli GE Elective	5
2nd Quarter	
Chemical Engineering 101B — Transport Phenomena II: Heat Transfer	4
Chemical Engineering 104A — Chemical and Biomolecular Engineering Laboratory I	4
UCLA Samueli GE Elective	5
3rd Quarter	
Chemical Engineering 101C — Mass Transfer	4
Chemical Engineering 103 — Separation Processes	4
UCLA Samueli GE Elective	5

SENIOR YEAR	
1st Quarter	
Chemical Engineering 104B — Chemical and Biomolecular Engineering Laboratory II	6
Chemical Engineering 106 — Chemical Reaction Engineering	4
Technical Breadth Course	4
2nd Quarter	
Chemical Engineering 107 — Process Dynamics and Control	4
Chemical Engineering 108A — Process Economics and Analysis	4
Technical Breadth Course	4
UCLA Samueli GE Elective	5
3rd Quarter	
Chemical Engineering 108B — Chemical Process Computer-Aided Design and Analysis	4
Technical Breadth Course	4

TOTAL 180

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 64.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
BS in Chemical Engineering Curriculum
Biomedical Engineering Option

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 10—Introduction to Chemical and Biomolecular Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A—Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 31A—Differential and Integral Calculus</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B/20L—Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>Mathematics 31B—Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A—Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30A—Organic Chemistry I: Structure and Reactivity</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32A—Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B/4AL—Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 100—Fundamentals of Chemical and Biomolecular Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32B—Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C—Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 45—Biomolecular Engineering Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 102A—Thermodynamics I</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A—Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 102B—Thermodynamics II</td>
<td>4</td>
</tr>
<tr>
<td>Civil and Environmental Engineering M20—Introduction to Computer Programming with MATLAB</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33B—Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101A—Transport Phenomena</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 109—Numerical and Mathematical Methods in Chemical and Biological Engineering</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101B—Transport Phenomena: Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 104A—Chemical and Biomolecular Engineering Laboratory I</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101C—Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 103—Separation Processes</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 104B—Chemical and Biomolecular Engineering Laboratory II</td>
<td>6</td>
</tr>
<tr>
<td>Chemical Engineering 106—Chemical Reaction Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering CM145—Molecular Biotechnology for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering Biomedical Elective</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 107—Process Dynamics and Control</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 108A—Process Economics and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 108B—Chemical Process Computer-Aided Design and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
</tbody>
</table>

| TOTAL | 180 |

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 64.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
BS in Chemical Engineering Curriculum

Biomolecular Engineering Option

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 10 — Introduction to Chemical and Biomolecular Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30A — Organic Chemistry I: Structure and Reactivity</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B/4AL — Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 100 — Fundamentals of Chemical and Biomolecular Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30AL — General Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C — Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 45 — Biomolecular Engineering Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 102A — Thermodynamics I</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30B — Organic Chemistry II: Reactivity, Synthesis, and Spectroscopy</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 102B — Thermodynamics II</td>
<td>4</td>
</tr>
<tr>
<td>Civil and Environmental Engineering M20 — Introduction to Computer Programming with MATLAB</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101A — Transport Phenomena</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 109 — Numerical and Mathematical Methods in Chemical and Biological Engineering</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101B — Transport Phenomena II: Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 104A — Chemical and Biomolecular Engineering Laboratory I</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101C — Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering C125 — Bioseparations and Bioprocess Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering C115 — Biochemical Reaction Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering CM145 — Molecular Biotechnology for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering Biomolecular Elective</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 104D — Molecular Biotechnology Laboratory: From Gene to Product</td>
<td>6</td>
</tr>
<tr>
<td>Chemical Engineering 107 — Process Dynamics and Control</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 108A — Process Economics and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 108B — Chemical Process Computer-Aided Design and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
</tbody>
</table>

TOTAL 180

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 64.
2. Counts as Engineering Concepts for ABET, total units Engineering Concepts = 75
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
BS in Chemical Engineering Curriculum
Environmental Engineering Option

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 10 — Introduction to Chemical and Biomolecular Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30A — Organic Chemistry I: Structure and Reactivity</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B/4AL — Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 100 — Fundamentals of Chemical and Biomolecular Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30AL — General Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C — Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 45 — Biomolecular Engineering Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 102A — Thermodynamics I</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30B — Organic Chemistry II: Reactivity, Synthesis, and Spectroscopy</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 102B — Thermodynamics II</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 104A — Chemical and Biomolecular Engineering Laboratory I</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>4</td>
</tr>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101A — Transport Phenomena</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 109 — Numerical and Mathematical Methods in Chemical and Biological Engineering</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101B — Transport Phenomena II: Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 104A — Chemical and Biomolecular Engineering Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101C — Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 103 — Separation Processes</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 104B — Chemical and Biomolecular Engineering Laboratory III</td>
<td>6</td>
</tr>
<tr>
<td>Chemical Engineering 106 — Chemical Reaction Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 107 — Process Dynamics and Control</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 108A — Process Economics and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 108B — Chemical Process Computer-Aided Design and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering Environmental Elective</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL 180

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 64.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
BS in Chemical Engineering Curriculum
Semiconductor Manufacturing Engineering Option

FRESHMAN YEAR
1st Quarter
- Chemical Engineering 10 — Introduction to Chemical and Biomolecular Engineering\(^1\)
- Chemistry and Biochemistry 20A — Chemical Structure\(^1\)
- Mathematics 31A — Differential and Integral Calculus\(^1\)

2nd Quarter
- Chemistry and Biochemistry 208/20L — Chemical Energetics and Change/General Chemistry Laboratory\(^1\)
- Mathematics 31B — Integration and Infinite Series\(^1\)
- Physics 1A — Mechanics\(^1\)

3rd Quarter
- Chemistry and Biochemistry 30A — Organic Chemistry I: Structure and Reactivity\(^1\)
- Mathematics 32A — Calculus of Several Variables\(^1\)
- Physics 1B/4AL — Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory\(^1\)

SOPHOMORE YEAR
1st Quarter
- Chemical Engineering 100 — Fundamentals of Chemical and Biomolecular Engineering\(^2\)
- Chemistry and Biochemistry 30AL — General Chemistry Laboratory II\(^1\)
- Mathematics 32B — Calculus of Several Variables\(^1\)
- Physics 1C — Electrodynamics, Optics, and Special Relativity\(^1\)

2nd Quarter
- Chemical Engineering 45 — Biomolecular Engineering Fundamentals\(^2\)
- Chemical Engineering 102A — Thermodynamics I\(^2\)
- Chemistry and Biochemistry 30B — Organic Chemistry II: Reactivity, Synthesis, and Spectroscopy\(^1\)
- Mathematics 33A — Linear Algebra and Applications\(^1\)

3rd Quarter
- Chemical Engineering 102B — Thermodynamics II\(^2\)
- Civil and Environmental Engineering M20 — Introduction to Computer Programming with MATLAB\(^2\)
- Mathematics 33B — Differential Equations\(^1\)
- UCLA Samueli Ethics Course

JUNIOR YEAR
1st Quarter
- Chemical Engineering 101A — Transport Phenomena \(^2\)
- Chemical Engineering 109 — Numerical and Mathematical Methods in Chemical and Biological Engineering\(^2\)
- UCLA Samueli GE Elective\(^3\)

2nd Quarter
- Chemical Engineering 101B — Transport Phenomena II: Heat Transfer\(^2\)
- Chemical Engineering 104A — Chemical and Biomolecular Engineering Laboratory I\(^2\)
- UCLA Samueli GE Elective\(^3\)

3rd Quarter
- Chemical Engineering 101C — Mass Transfer\(^2\)
- Chemical Engineering 103 — Separation Processes\(^2\)
- UCLA Samueli GE Elective\(^3\)

SENIOR YEAR
1st Quarter
- Chemical Engineering 106 — Chemical Reaction Engineering\(^2\)
- Chemical Engineering or Materials Science and Engineering Elective\(^2\)
- Technical Breadth Course\(^1\)

2nd Quarter
- Chemical Engineering 104C/104CL — Semiconductor Processing/Laboratory\(^2\)
- Chemical Engineering 107 — Process Dynamics and Control\(^2\)
- Chemical Engineering 108A — Process Economics and Analysis\(^2\)
- Technical Breadth Course\(^1\)

3rd Quarter
- Chemical Engineering 108B — Chemical Process Computer-Aided Design and Analysis\(^2\)
- Chemical Engineering C116 — Surface and Interface Engineering\(^2\)
- Technical Breadth Course\(^1\)
- UCLA Samueli GE Elective\(^3\)

TOTAL
180

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 64.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
BS in Civil Engineering Curriculum

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A—Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>Civil and Environmental Engineering 1—Civil Engineering and Infrastructure</td>
<td>2</td>
</tr>
<tr>
<td>English Composition 3—English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 31A—Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B/20L—Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>Mathematics 31B—Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A—Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mathematics 32A—Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B/4AL—Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering 91 (Statics) or Mechanical and Aerospace Engineering 101 (Statics and Strength of Materials)</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32B—Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C—Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
<tr>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering 102—Dynamics of Particles and Bodies</td>
<td>2</td>
</tr>
<tr>
<td>Civil and Environmental Engineering C104 (Structure, Processing, and Properties of Civil Engineering Materials) or Materials Science and Engineering 104 (Science of Engineering Materials)</td>
<td>4</td>
</tr>
<tr>
<td>Civil and Environmental Engineering 108—Introduction to Mechanics of Deformable Solids</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A—Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering M20 (Introduction to Computer Programming with MATLAB) or Computer Science 31 (Introduction to Computer Science)</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33B (Differential Equations) or Mechanical and Aerospace Engineering 82 (Mathematics of Engineering)</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 103—Elementary Fluid Mechanics</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering 120—Principles of Soil Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>Civil and Environmental Engineering 135A—Elementary Structural Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Civil and Environmental Engineering 150—Introduction to Hydrology</td>
<td>4</td>
</tr>
<tr>
<td>Civil and Environmental Engineering 153—Introduction to Environmental Engineering Science</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 102A (Thermodynamics I) or Mechanical and Aerospace Engineering 105A (Introduction to Engineering Thermodynamics)</td>
<td>4</td>
</tr>
<tr>
<td>Major Field Elective</td>
<td>4</td>
</tr>
<tr>
<td>Natural Science Course</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering 103—Applied Numerical Computing and Modeling in Civil and Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Civil and Environmental Engineering 110 (Introduction to Probability and Statistics for Engineers) or Civil and Environmental Engineering C111 (Machine Learning and Artificial Intelligence for Civil Engineering)</td>
<td>4</td>
</tr>
<tr>
<td>Major Field Electives (2)</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering 190—Professional Practice</td>
<td>2</td>
</tr>
<tr>
<td>Major Field Electives (2)</td>
<td>8</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Major Field Electives (2)</td>
<td>8</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Major Field Elective</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>183</td>
</tr>
</tbody>
</table>

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 56.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
4. Must include required courses for two of the major field areas listed on page 51.
BS in Computer Engineering Curriculum

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 1 (Freshman Computer Science Seminar) or Electrical and Computer Engineering 1 (Undergraduate Seminar)</td>
<td>1</td>
</tr>
<tr>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 32 — Introduction to Computer Science II</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 33 — Introduction to Computer Organization</td>
<td>5</td>
</tr>
<tr>
<td>Engineering 96C — Introduction to Engineering Design: Internet of Things</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B — Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

1st Quarter	
Electrical and Computer Engineering 3 — Introduction to Electrical Engineering	4
Mathematics 32B — Calculus of Several Variables	4
Mathematics 33A — Linear Algebra and Applications	4
Physics 4AL (Mechanics Laboratory) or 4BL (Electricity and Magnetism Laboratory)	2
2nd Quarter	
Computer Science 35L — Software Construction Laboratory	4
Computer Science M51A or Electrical and Computer Engineering M16 — Logic Design of Digital Systems	4
Electrical and Computer Engineering 100 — Electrical and Electronic Circuits	4
Mathematics 33B — Differential Equations	4
3rd Quarter	
Electrical and Computer Engineering 102 — Systems and Signals	4
Mathematics 61 — Introduction to Discrete Structures	4
Physics 1C — Electrodynamics, Optics, and Special Relativity	5

JUNIOR YEAR

1st Quarter	
Computer Science 111 — Operating Systems Principles	5
Probability Elective	4
UCLA Samueli Ethics Course	4
2nd Quarter	
Computer Science 118 (Computer Network Fundamentals) or Electrical and Computer Engineering 132B (Data Communications and Telecommunication Networks)	4
Computer Science M152A or Electrical and Computer Engineering M116L — Introductory Digital Design Laboratory	2
Computer Science 180 — Introduction to Algorithms and Complexity	4
Electrical and Computer Engineering 115C — Digital Electronic Circuits	4
3rd Quarter	
Computer Science M151B or Electrical and Computer Engineering M116C — Computer Systems Architecture	4
Computer Science Elective	4
Electrical and Computer Engineering Elective	4
UCLA Samueli GE Elective	4

SENIOR YEAR

1st Quarter	
Electrical and Computer Engineering 113	4
Electrical and Computer Engineering Elective	4
Technical Breadth Course	4
UCLA Samueli GE Elective	5
2nd Quarter	
Computer Science Elective	4
Electrical and Computer Engineering Design Course	4
Technical Breadth Course	4
UCLA Samueli GE Elective	5
3rd Quarter	
Electrical and Computer Engineering Design Course	4
Technical Breadth Course	4
UCLA Samueli GE Elective	5

TOTAL 181

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 49.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
4. See the list of electives on page 66 or list of electives on page 88.
BS in Computer Science Curriculum

Freshman Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Computer Science 1 — Freshman Computer Science Seminar</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>Computer Science 32 — Introduction to Computer Science II</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Computer Science 35L — Software Construction Laboratory</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Science M51A or Electrical and Computer Engineering M16 — Logic Design of Digital Systems</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics 61 — Introduction to Discrete Structures</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physics 1C — Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physics 4AL (Mechanics Laboratory) or 4BL (Electricity and Magnetism Laboratory)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td>Computer Science 111 — Operating Systems Principles</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Science M152A or Electrical and Computer Engineering M116L — Introductory Digital Design Laboratory</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Computer Science 118 — Computer Network Fundamentals</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Science 180 — Introduction to Algorithms and Complexity</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Science and Technology Elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>Computer Science 131 — Programming Languages</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Science M131B or Electrical and Computer Engineering M116C — Computer Systems Architecture</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Probability Elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td>Computer Science 181 — Introduction to Formal Languages and Automata Theory</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Science Elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Computer Science 130 (Software Engineering) or 152B (Digital Design Project Laboratory)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Science Elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Science and Technology Elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>Computer Science Electives (2)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td>Computer Science Elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Science and Technology Elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additional coursework to meet 180-unit requirement</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL 180

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 49.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
4. See list of electives on page 65.
5. Any excess or available units not already applied to another degree requirement will satisfy this unit.
BS in Computer Science and Engineering Curriculum

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 1 — Freshman Computer Science Seminar¹</td>
<td>1</td>
</tr>
<tr>
<td>Computer Science 31 — Introduction to Computer Science I²</td>
<td>4</td>
</tr>
<tr>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 31A — Differential and Integral Calculus¹</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 32 — Introduction to Computer Science II²</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 31B — Integration and Infinite Series¹</td>
<td>4</td>
</tr>
<tr>
<td>Physics IA — Mechanics²</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 33 — Introduction to Computer Organization²</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 32A — Calculus of Several Variables¹</td>
<td>4</td>
</tr>
<tr>
<td>Physics 18 — Oscillations, Waves, Electric and Magnetic Fields¹</td>
<td>5</td>
</tr>
<tr>
<td>SOPHOMORE YEAR</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 35L — Software Construction Laboratory²</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science M51A or Electrical and Computer Engineering M16 — Logic Design of Digital Systems²</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32B — Calculus of Several Variables¹</td>
<td>4</td>
</tr>
<tr>
<td>Physics TC — Electrodynamics, Optics, and Special Relativity²</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mathematics 33A — Linear Algebra and Applications¹</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 61 — Introduction to Discrete Structures¹</td>
<td>4</td>
</tr>
<tr>
<td>Physics 4AL (Mechanics Laboratory) or 4BL (Electricity and Magnetism Laboratory)²</td>
<td>2</td>
</tr>
<tr>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 180 — Introduction to Algorithms and Complexity²</td>
<td>4</td>
</tr>
<tr>
<td>Electrical and Computer Engineering 3 — Introduction to Electrical Engineering²</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33B — Differential Equations¹</td>
<td>4</td>
</tr>
<tr>
<td>Probability Elective¹</td>
<td>4</td>
</tr>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 111 — Operating Systems Principles²</td>
<td>5</td>
</tr>
<tr>
<td>Electrical and Computer Engineering 100 — Electrical and Electronic Circuits²</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective³</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 131 — Programming Languages²</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science M152A or Electrical and Computer Engineering M116L — Introductory Digital Design Laboratory²</td>
<td>2</td>
</tr>
<tr>
<td>Electrical and Computer Engineering 102 — Systems and Signals²</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective³</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 118 — Computer Network Fundamentals²</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science M151B or Electrical and Computer Engineering M116C — Computer Systems Architecture¹</td>
<td>4</td>
</tr>
<tr>
<td>Electrical and Computer Engineering 115C — Digital Electronic Circuits²</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course¹</td>
<td>4</td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 152B — Digital Design Project Laboratory²</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science 181 — Introduction to Formal Languages and Automata Theory²</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science Elective¹</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective³</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science Elective¹</td>
<td>4</td>
</tr>
<tr>
<td>Electrical and Computer Engineering Elective¹</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course¹</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective³</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science Elective¹</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective³</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course¹</td>
<td>4</td>
</tr>
<tr>
<td>Additional coursework to meet 180 unit requirement</td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL | **180**

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 49.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
4. See list of electives on page 65.
5. Any excess or available units not already applied to another degree requirement will satisfy this unit.
BS in Electrical Engineering Curriculum

FRESHMAN YEAR

1st Quarter

Computer Science 31—Introduction to Computer Science

English Composition 3—English Composition, Rhetoric, and Language

Mathematics 31A—Differential and Integral Calculus

2nd Quarter

Chemistry and Biochemistry 20A—Chemical Structure

Computer Science 32—Introduction to Computer Science II

Mathematics 31B—Integration and Infinite Series

Physics 1A—Mechanics

3rd Quarter

Electrical and Computer Engineering M16 (or Computer Science M51A)—Logic Design of Digital Systems

Mathematics 32A—Calculus of Several Variables

Physics 18/4AL—Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory

SOPHOMORE YEAR

1st Quarter

Electrical and Computer Engineering 3—Introduction to Electrical Engineering

Mathematics 32B—Calculus of Several Variables

Mathematics 33A—Linear Algebra and Applications

Physics 1C—Electrodynamics, Optics, and Special Relativity

2nd Quarter

Electrical and Computer Engineering 10 (Circuit Theory I) and 11L (Circuits Laboratory I)

Electrical and Computer Engineering 102—Systems and Signals

Mathematics 33B—Differential Equations

Physics 4BL—Electricity and Magnetism Laboratory

3rd Quarter

Electrical and Computer Engineering 2—Physics for Electrical Engineers

Electrical and Computer Engineering 110 (Circuit Theory II) and 111L (Circuits Laboratory II)

UCLA Samueli Ethics Course

UCLA Samueli GE Elective

JUNIOR YEAR

1st Quarter

Electrical and Computer Engineering 113—Digital Signal Processing

Electrical and Computer Engineering 131A—Probability and Statistics

UCLA Samueli GE Elective

2nd Quarter

Electrical and Computer Engineering 101A—Engineering Electromagnetics

Electrical and Computer Engineering Core Course

UCLA Samueli GE Elective

3rd Quarter

Electrical and Computer Engineering Core Course

Electrical and Computer Engineering Core Course

Electrical and Computer Engineering Core Course

Electrical and Computer Engineering Core Course or Computer Science 33 (Introduction to Computer Organization)

SENIOR YEAR

1st Quarter

Electrical and Computer Engineering Core Course

Electrical and Computer Engineering Design Course

Electrical and Computer Engineering Elective

Technical Breadth Course

2nd Quarter

Electrical and Computer Engineering Design Course

Electrical and Computer Engineering Elective

Technical Breadth Course

UCLA Samueli GE Elective

3rd Quarter

Electrical and Computer Engineering or UCLA Samueli Elective

Technical Breadth Course

UCLA Samueli GE Elective

TOTAL 182

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 47.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
4. See the list of electives on page 86.
BS in Materials Engineering Curriculum
Materials Engineering Option

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Materials Science and Engineering 10 — Freshman Seminar: New Materials</td>
<td>1</td>
</tr>
<tr>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 104 — Science of Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B — Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 110/110L — Introduction to Materials Characterization A/Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C — Electrodynamics, Optics, and Special Relativity</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 90L — Physical Measurement in Materials Engineering</td>
<td>2</td>
</tr>
<tr>
<td>Materials Science and Engineering 150 — Introduction to Polymers</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering M20 (Intro to Computer Programming with MATLAB) or Computer Science 31 (Intro to Computer Science I)</td>
<td>4</td>
</tr>
<tr>
<td>Electrical and Computer Engineering 100 — Electrical and Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33B (Differential Equations) or Mechanical and Aerospace Engineering 82 (Mathematics of Engineering)</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Engineering Laboratory Course</td>
<td>2</td>
</tr>
<tr>
<td>Materials Science and Engineering 130 — Phase Relations in Solids</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 101 — Statics and Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 131/131L — Diffusion and Diffusion-Controlled Reactions/Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>Materials Science and Engineering 143A — Mechanical Behavior of Materials</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering 108 — Introduction to Mechanics of Deformable Solids</td>
<td>4</td>
</tr>
<tr>
<td>Materials Science and Engineering 132 — Structures and Properties of Metallic Alloys</td>
<td>4</td>
</tr>
<tr>
<td>Materials Engineering Laboratory Course</td>
<td>2</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>Materials Science and Engineering 160 — Introduction to Ceramics and Glasses</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td>Upper-Division Mathematics Course</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>Materials Science and Engineering 120 — Physics of Materials</td>
<td>4</td>
</tr>
<tr>
<td>Materials Science and Engineering 140A — Materials Selection and Engineering Design A</td>
<td>3</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 140B — Materials Selection and Engineering Design B</td>
<td>3</td>
</tr>
<tr>
<td>Materials Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>180</td>
</tr>
</tbody>
</table>

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 54.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
4. See counselor in 6426 Boelter Hall for details.
5. See the list of approved mathematics courses on page 105.
BS in Materials Engineering Curriculum
Electronic Materials Option

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A—Chemical Structure¹</td>
<td>4</td>
</tr>
<tr>
<td>English Composition 3—English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Materials Science and Engineering 10—Freshman Seminar: New Materials²</td>
<td>1</td>
</tr>
<tr>
<td>Mathematics 31A—Differential and Integral Calculus¹</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B/20L—Chemical Energetics and Change/General Chemistry Laboratory¹</td>
<td>7</td>
</tr>
<tr>
<td>Mathematics 31B—Integration and Infinite Series¹</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A—Mechanics¹</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 104—Science of Engineering Materials²</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32A—Calculus of Several Variables¹</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B—Oscillations, Waves, Electric and Magnetic Fields¹</td>
<td>5</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective³</td>
<td>5</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR	
1st Quarter	
Materials Science and Engineering 110/110L—Introduction to Materials Characterization A/Laboratory³	6
Mathematics 32B—Calculus of Several Variables¹	4
Physics 1C—Electrodynamics, Optics, and Special Relativity¹	5
2nd Quarter	
Electrical and Computer Engineering 101A—Engineering Electromagnetics¹	4
Materials Science and Engineering 90L—Physical Measurement in Materials Engineering³	2
Materials Science and Engineering 122—Principles of Electronic Materials Processing³	4
Mathematics 33A—Linear Algebra and Applications¹	4
3rd Quarter	
Civil and Environmental Engineering 120 (Intro to Computer Programming with MATLAB) or Computer Science 31 (Intro to Computer Science I)³	4
Electrical and Computer Engineering 100—Electrical and Electronic Circuits³	4
Mathematics 33B (Differential Equations) or Mechanical and Aerospace Engineering 82 (Mathematics of Engineering)³	4
UCLA Samueli GE Elective³	5

JUNIOR YEAR	
1st Quarter	
Electronic Materials Laboratory Course³	2
Materials Science and Engineering 120 (Phases of Materials)³	4
Mechanical and Aerospace Engineering 101—Statics and Strength of Materials³	4
Technical Breadth Course³	4
2nd Quarter	
Materials Science and Engineering 120 (Materials of Solids)³	4
Materials Science and Engineering 131/131L—Diffusion and Diffusion-Controlled Reactions/Laboratory²	6
UCLA Samueli GE Elective³	5
3rd Quarter	
Materials Science and Engineering 121/121L—Materials Science of Semiconductors/Laboratory³	6
Materials Science and Engineering 132—Structures and Properties of Metallic Alloys³	4
Electronic Materials Elective³	4

SENIOR YEAR	
1st Quarter	
Electrical and Computer Engineering 131B—Principles of Semiconductor Device Design³	4
Technical Breadth Course³	4
UCLA Samueli GE Elective³	5
Upper-Division Mathematics Course¹,³	4
2nd Quarter	
Electronic Materials Elective (Materials Science and Engineering 150—Introduction to Polymers or 160—Introduction to Ceramics and Glasses)²,³	4
Materials Science and Engineering 140A—Materials Selection and Engineering Design A³	3
Technical Breadth Course³	4
UCLA Samueli Ethics Course	4
3rd Quarter	
Electronic Materials Elective³,²	4
Electronic Materials Laboratory Course²,³	2
Materials Science and Engineering 140B—Materials Selection and Engineering Design B³	3
UCLA Samueli GE Elective³	4
TOTAL	
182	

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 54.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
4. See counselor in 6426 Boelter Hall for details.
5. See the list of approved mathematics courses on page 105.
BS in Mechanical Engineering Curriculum

Freshman Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemistry and Biochemistry 20A—Chemical Structure(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3—English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A—Differential and Integral Calculus(^1)</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemistry and Biochemistry 20B/20L—Chemical Energetics and Change/General Chemistry Laboratory(^1)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B—Integration and Infinite Series(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A—Mechanics(^1)</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Mathematics 32A—Calculus of Several Variables(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B/4AL—Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory(^1)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective(^1)</td>
<td>5</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Materials Science and Engineering 104—Science of Engineering Materials(^2)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B—Calculus of Several Variables(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1C/4BL—Electrodynamics, Optics, and Special Relativity/Electricity and Magnetism Laboratory(^1)</td>
<td>7</td>
</tr>
<tr>
<td>2nd</td>
<td>Mathematics 33A—Linear Algebra and Applications(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 94—Introduction to Computer-Aided Design and Drafting(^2)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 101—Statics and Strength of Materials(^2)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 105A—Introduction to Engineering Thermodynamics(^2)</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Mechanical and Aerospace Engineering M20 (Intro to Computer Programming with MATLAB) or Computer Science 31 (Intro to Computer Science I)(^2)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 82—Mathematics of Engineering(^2)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 102—Dynamics of Particles and Rigid Bodies(^2)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 103—Elementary Fluid Mechanics(^2)</td>
<td>4</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Electrical and Computer Engineering 100—Electrical and Electronic Circuits(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 156A—Advanced Strength of Materials(^2)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 183A (Intro to Manufacturing Processes) or M183B (Intro to Microscale and Nanoscale Manufacturing)(^2)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Mechanical and Aerospace Engineering 105D—Transport Phenomena(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 107—Introduction to Modeling and Analysis of Dynamic Systems(^2)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective(^1)</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Mechanical and Aerospace Engineering 131A (Intermediate Heat Transfer) or 133A (Engineering Thermodynamics)(^2)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 157—Basic Mechanical and Aerospace Engineering Laboratory(^2)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 162A—Introduction to Mechanisms and Mechanical Systems(^2)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course(^1)</td>
<td>4</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Electrical and Computer Engineering 110L—Circuit Measurements Laboratory(^2)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 171A—Introduction to Feedback and Control Systems(^2)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective(^1)</td>
<td>5</td>
</tr>
<tr>
<td>2nd</td>
<td>Mechanical and Aerospace Engineering 162D—Mechanical Engineering Design I(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering Elective(^2)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective(^1)</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Mechanical and Aerospace Engineering 162E—Mechanical Engineering Design II(^2)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering Elective(^2)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective(^1)</td>
<td>5</td>
</tr>
</tbody>
</table>

Total: 181

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 50.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
Index

A
ABET, 113, 114, 115
academic excellence workshops, 14
academic policies, 16
academic residence requirement, undergraduate, 22
active materials laboratory, 117
additive manufacturing and metamaterials laboratory, 117
administrative officers, 4
admission to the school
freshman, 19
graduate student, 27
undergraduate, 19
advanced placement examination credit, 19, 20–21, 24
advising, 7
CEED, 14
undergraduate, 24
aerospace engineering, see mechanical and aerospace engineering department, 112
AI in imaging and neuroscience research laboratory, 72
American Indian science and engineering society (AISES), 14
anatomical engineering group, 117
architecture specialization laboratory (PolyArch), 73
Ash student health center, 10
automated reasoning group, 71
autonomous intelligent networked systems center (CAINS), 75
autonomous vehicle systems instrumentation laboratory (AVSIL), 117

B
bachelor of science degree requirements, 21
beam control laboratory, 117
big data and genomics laboratory, 72
biocybernetics laboratory, 72
bioengineering department, 28
 bachelor of science degree, 29
course descriptions, 34
curriculum, 141
 faculty areas of thesis guidance, 33
 fields of study, 30
doctorate, 26
graduate study, 30
undergraduate study, 29
bioinformatics minor, 67
biomechatronics laboratory, 117
biomolecular engineering laboratories, 43
bionics laboratory, 117
boiling heat transfer laboratory, 117
bridge review for enhancing engineering students (BREES), 14
building earthquake instrumentation network, 55

C
calendar, 8
career services, 10
ceramic processing laboratory, 107
chemical and biomolecular engineering department, 40
 bachelor of science degree, 40
course descriptions, 45
curriculum, 142–146
 facilities, 43
 faculty areas of thesis guidance, 45
 fields of study, 30
 doctorate, 26
 graduate study, 42
 undergraduate study, 40
chemical kinetics, catalysis, reaction engineering, and combustion laboratory, 43
chemistry of construction materials laboratory, 56
Chen research group, 118
circuits laboratories, 92
civil and environmental engineering department, 50
 bachelor of science degree, 51
civil engineering curriculum, 147
 course descriptions, 57
environmental engineering minor, 51
 facilities, 55
 instructional laboratories, 55
 research laboratories, 55
 faculty areas of thesis guidance, 56
 fields of study, 50
 doctorate, 52
 graduate study, 51
 undergraduate study, 50
clean energy research center Los Angeles (CERC-LA), 92
cognitive systems laboratory, 71
collaborative center for aerospace sciences (CCAS), 118
computer science department, 64
 bachelor of science degree, 65
bioinformatics minor, 67
 computing resources, 76
 course descriptions
 bioinformatics, 77
 78
curriculum, 148–150
 facilities, 71
 artificial intelligence laboratories, 71
machine learning laboratory, 72
computer graphics and vision laboratory (GraViLab), 73
computer science department, 64
courses degrees
 bachelor of science degrees, 65
bioinformatics minor, 67
course descriptions
 bioinformatics, 77
computer science, 78
curriculum, 148–150
facilities, 71
artificial intelligence laboratories, 71
computational systems biology laboratories, 72
computer science centers, 75
computer systems architecture laboratories, 73
graphics and vision laboratories, 73
information and data management laboratories, 74
network systems laboratories, 74
software systems laboratories, 74
faculty areas of thesis guidance, 76
 fields of study, 69
doctorate, 26
graduate study, 68
undergraduate study, 65
computing resources, 9
concurrent systems laboratory, 73
connection laboratory, 74
continuing education, UCLA extension, 9
correspondence directory, 7
counseling
 academic, 7, 24
CEED, 14
curricula tables, BS degrees
 aerospace engineering
 aeronautics track, 139
 space track, 140
bioengineering, 141
chemical engineering
 biomedical option, 143
 biomolecular option, 144
 core option, 142
 environmental option, 145
 semiconductor manufacturing option, 146
civil engineering, 147
computer engineering, 148
computer science and engineering, 150
computer science, 149
civil engineering, 148
electrical engineering, 151
materials engineering
 electronic materials option, 153
 materials option, 152
mechanical engineering, 154
cybernetic control laboratory (CyCLab), 118

D
Dashew international student center, 10
Davoyan research laboratory, 118
degrees
bachelor of science (BS), 21
doctoredge, 26
master of engineering (MEng), 26
master of science (MS), 26
master of science in engineering online, 26
department requirements, undergraduate, 23
departmental scholar program, 15
design and manufacturing laboratory, 118
digital arithmetic and reconfigurable architecture laboratory, 73
disabilities, services for students with, 10
disclosure of student records, 17
domain-specific computing center (CDSC), 75, 137
dynamic nuclear acid systems laboratory, 118

e-health research laboratory (ER Lab), 73
electrical and computer engineering department, 86
bachelor of science degrees, 87
course descriptions, 96
heterogeneous integration and performance scaling center (CHIPs), 92
high-frequency electronics center, 92
Ho systems laboratory, 118
honorary societies, 15
honors
dean’s honors list, 24
Latin honors, 25
Hu research laboratory (H-Lab), 118
hydrology laboratory, 55
hypoaxons and computational aerodynamics group, 119

I
information and computation security center (CICS), 75
information and data management group, 74
institutes, externally funded, 137
intelligent sensing and connectivity laboratory (ICON Lab), 74
international student services, 10
internet research laboratory (IRL), 74

L
large-scale machine learning group (BigML), 72
large-scale structure test facility, 56
large-scale systems group, 74
laser laboratory, 93
laser spectroscopy and gas dynamics laboratory, 119
library facilities
science and engineering library (SEL), 9
university library system, 9
living accommodations, 11
living soft material engineering laboratory, 119
loans, 12

M
machine intelligence group (MINT), 72
machine learning and genomics laboratory, 73
master of engineering program, 129
graduate study, 129
master of science in engineering online programs, 130
ggraduate study, 130
materials and plasma chemistry laboratory, 44
materials degradation characterization laboratory, 119
materials in extreme environments laboratory (MATRIX), 119
materials science and engineering department, 104
bachelor of science degree, 105
course descriptions, 108
curriculum, 152, 153
facilities, 107
faculty areas of thesis guidance, 107
fields of study, 107
doctored, 27
graduate study, 106
undergraduate study, 105
mechanical and aerospace engineering department, 112
bachelor of science degree, 113
centers, facilities, and laboratories, 117
course descriptions, 122
curriculum
aerospace, 139, 140
mechanical, 154
facultv areas of thesis guidance, 121
fields of study, 116
doctored, 27
undergraduate study, 114
undergraduate study, 113
mechanical testing laboratory, 107
mechanical vibrations laboratory, 55
mechanics of soft materials laboratory, 119
mechatronics and controls laboratory, 119
MESA schools program, 13
metallographic and materials characterization laboratory, 119
multiscale thermosciences laboratory (MTSL), 119

N
named data networking project, 138
nanoelectronics research facility (Nanolab), 93
nano-materials laboratory, 107
nanoparticle technology and air quality engineering laboratory, 44
nanoscale transport research group, 120
national science foundation (NSF), 14, 138
national society of black engineers (NSBE), 14
natural language processing group, 72
network design automation laboratory, 74
networked and application systems group (NAS), 74
neurotronics institute (WINs), 138
nondestructive testing laboratory, 107
non-discrimination, 16

O
official publications, 16
online master of science in engineering, 130
optofluidics systems laboratory, 120
organic electronic materials processing laboratory, 107
organizations, 14
P
Peng’s language understanding and synthesis laboratory (PLUS), 72
photonics and optoelectronics laboratories, 93
physics of amorphous and inorganic soils laboratory (PARISlab), 56
Pilon research group, 120
plasma and beam assisted manufacturing laboratory, 120
plasma and space propulsion laboratory, 120
plasma electronics facilities, 93
policies, academic, 16
policies and regulations, undergraduate, 23
polymer and separations research laboratory, 44
precollege outreach programs, 13
prizes and awards, 15
process systems engineering laboratory, 45
reinforced concrete laboratory, 55
research centers, externally funded, 137
robotics and mechanisms laboratory (RoMeLa), 120

scalable analytics institute (ScAI), 75
scholarship requirement, undergraduate, 22
scholarships, 11, 14
school requirements, undergraduate, 22
schoolwide programs and courses, 133
 graduate study, 133
scifacturing laboratory, 120
semiconductor and optical characterization laboratory, 107
sensors and instrumentation laboratory, 119
services for students with disabilities, 10
shop services center, 9
simulations of flow physics and acoustics laboratory (SOFia), 120
smart grid energy research center (SMERC), 120, 138
societies, student and honorary, 15
 society of Latino engineers and scientists (SOLES), 14
 society of women engineers (SWE), 15
software engineering and analysis laboratory (SEAL), 74
software systems group, 75
soil mechanics laboratory, 55, 56
solid-state electronics facilities, 93
special programs, activities, and awards, 13
statistical and relational artificial intelligence laboratory (StarAI), 72
statistical machine learning laboratory, 72
structural design and testing laboratory, 55
student health center, 10
student organizations, 14
student records, disclosure of, 17
student societies, 15
student study center, 14
study list, 23
summer bridge program, 14
synthetic control across lengthscales for advancing rechargeables center (SCALAR), 137

teaching assistantships, 12
technical breadth requirement, undergraduate, 22
thin film deposition laboratory, 107
thin films, interfaces, composites, characterization laboratory, 121
translational applications of nanoscale multiferroic systems center (TANMS), 117, 137
translational research center, Koç, 93

unit requirement, undergraduate, 22
university requirements, undergraduate, 22

VAST laboratory, 73
vision and image sciences collective, 73
vision laboratory, 73
vision, cognition, learning, and art center, 73

web information systems laboratory, 74
WIN institute of neurotronics (WINs), 138
wireless health institute (WHI), 75, 93
wireless networking group (WiNG), 74
women in engineering, 15
work-study programs, 12
writing requirement, undergraduate, 22

X-ray diffraction laboratory, 107
X-ray photoelectron spectroscopy and atomic force microscopy facility, 107