2023-2024
ANNOUNCEMENT
UNIVERSITY OF CALIFORNIA, LOS ANGELES
OCTOBER 2, 2023

Bioengineering
Chemical and Biomolecular Engineering
Civil and Environmental Engineering
Computer Science
Electrical and Computer Engineering
Materials Science
Mechanical and Aerospace Engineering
Master of Engineering (MEng)
Master of Science in Engineering Online (MSOL)
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message from the Dean</td>
<td>3</td>
</tr>
<tr>
<td>Henry Samueli School of Engineering and Applied Science</td>
<td>4</td>
</tr>
<tr>
<td>Administrative Officers</td>
<td>4</td>
</tr>
<tr>
<td>The Campus</td>
<td>4</td>
</tr>
<tr>
<td>Endowed Chairs</td>
<td>5</td>
</tr>
<tr>
<td>The Engineering Profession</td>
<td>5</td>
</tr>
<tr>
<td>Correspondence Directory</td>
<td>8</td>
</tr>
<tr>
<td>Academic and Admission Calendar</td>
<td>9</td>
</tr>
<tr>
<td>General Information</td>
<td>10</td>
</tr>
<tr>
<td>Facilities and Services</td>
<td>10</td>
</tr>
<tr>
<td>Library Facilities</td>
<td>10</td>
</tr>
<tr>
<td>Services</td>
<td>10</td>
</tr>
<tr>
<td>Fees and Financial Support</td>
<td>12</td>
</tr>
<tr>
<td>Fees and Expenses</td>
<td>12</td>
</tr>
<tr>
<td>Living Accommodations</td>
<td>12</td>
</tr>
<tr>
<td>Financial Aid</td>
<td>12</td>
</tr>
<tr>
<td>Special Programs, Activities, and Awards</td>
<td>14</td>
</tr>
<tr>
<td>Center for Excellence in Engineering and Diversity (CEED)</td>
<td>14</td>
</tr>
<tr>
<td>Student and Honorary Societies</td>
<td>15</td>
</tr>
<tr>
<td>Prizes and Awards</td>
<td>16</td>
</tr>
<tr>
<td>Departmental Scholar Program</td>
<td>16</td>
</tr>
<tr>
<td>Exceptional Student Admissions Program</td>
<td>16</td>
</tr>
<tr>
<td>Policies and Regulations</td>
<td>16</td>
</tr>
<tr>
<td>Student Representation</td>
<td>16</td>
</tr>
<tr>
<td>Official Publications</td>
<td>16</td>
</tr>
<tr>
<td>Grades</td>
<td>16</td>
</tr>
<tr>
<td>Nondiscrimination</td>
<td>16</td>
</tr>
<tr>
<td>Harassment</td>
<td>17</td>
</tr>
<tr>
<td>Disclosure of Student Records</td>
<td>18</td>
</tr>
<tr>
<td>Undergraduate Programs</td>
<td>19</td>
</tr>
<tr>
<td>Admission</td>
<td>19</td>
</tr>
<tr>
<td>Requirements for BS Degrees</td>
<td>21</td>
</tr>
<tr>
<td>Policies and Regulations</td>
<td>23</td>
</tr>
<tr>
<td>Honors</td>
<td>25</td>
</tr>
<tr>
<td>Graduate Programs</td>
<td>26</td>
</tr>
<tr>
<td>Master of Science Degrees</td>
<td>26</td>
</tr>
<tr>
<td>Master of Science in Engineering Online Degree</td>
<td>26</td>
</tr>
<tr>
<td>Master of Engineering Degree</td>
<td>26</td>
</tr>
<tr>
<td>Engineer Degree</td>
<td>26</td>
</tr>
<tr>
<td>Doctorate Degrees</td>
<td>26</td>
</tr>
<tr>
<td>Admission</td>
<td>27</td>
</tr>
<tr>
<td>Departments and Programs of the School</td>
<td>28</td>
</tr>
<tr>
<td>Bioengineering</td>
<td>28</td>
</tr>
<tr>
<td>Chemical and Biomolecular Engineering</td>
<td>40</td>
</tr>
<tr>
<td>Civil and Environmental Engineering</td>
<td>50</td>
</tr>
<tr>
<td>Computer Science</td>
<td>64</td>
</tr>
<tr>
<td>Electrical and Computer Engineering</td>
<td>86</td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td>105</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering</td>
<td>113</td>
</tr>
<tr>
<td>Master of Engineering Program</td>
<td>130</td>
</tr>
<tr>
<td>Master of Science in Engineering Online Programs</td>
<td>131</td>
</tr>
<tr>
<td>Schoolwide Programs and Courses</td>
<td>133</td>
</tr>
<tr>
<td>Bachelor of Science Degree Curriculum Tables</td>
<td>139</td>
</tr>
<tr>
<td>Index</td>
<td>155</td>
</tr>
</tbody>
</table>

Published by UCLA Academic Publications, Box 951429, Los Angeles, CA 90095-1429
© 2023 Regents of the University of California
UCLA®, University of California, Los Angeles®, and all related trademarks are the property of the Regents of the University of California.

All announcements herein are subject to revision. Every effort has been made to ensure the accuracy of the information presented in the Announcement of the UCLA Henry Samueli School of Engineering and Applied Science. However, all courses, course descriptions, instructor designations, and curricular degree requirements described herein are subject to change or deletion without notice. More details on graduate programs are available in various Graduate Division materials online.

Cover: Students prepare materials for an experiment at a drill press in the school Makerspace laboratory. The 9,000-square-foot facility offers use of its equipment and tools at no charge to Samueli engineering students.
A Message from the Dean

UCLA Samueli offers a world-class education—a rigorous engineering and computer science curriculum to build fundamental knowledge, multidisciplinary collaborations with academia and industry, and a problem-solving approach to real-world challenges. The school has always been, and will continue to be, at the forefront of engineering and computer science. Across the school, we conduct groundbreaking research in areas such as sustainable energy, climate technologies, quantum computing, artificial intelligence and robotics, resilient built environment, advanced materials and engineering in medicine.

UCLA Samueli students engage in hands-on research with world-renowned faculty, in state-of-the-art laboratories and makerspaces. There are wonderful internship opportunities at the world’s leading companies, and students get to network with exceptional industry professionals and leaders, many of whom are UCLA Engineering alumni.

With more than 50 engineering student-led organizations and 1,000 more student clubs across the campus, UCLA students can find shared interest in innovation, entrepreneurship, mentorship, recreation, arts and culture, scholarship, community service, and many more areas. These groups offer a wonderful community in which our students can pursue both their academic and extracurricular interests. Along the way, students are sure to form friendships with fellow Bruins that will last a lifetime.

UCLA is a vibrant community with many highly ranked programs in law, medicine, public policy, social sciences, physical sciences, arts, and many more—all on one campus. These disciplines bring an academic breadth and depth to UCLA as students and faculty work on multiple cross-disciplinary projects together.

Ultimately, what makes UCLA truly special is its people—students who bring a diversity of backgrounds, talents, and perspectives to create an environment in which everyone can succeed and be at their best. At UCLA Samueli, we are committed to creating an equitable and inclusive community where everyone in our student body feels welcome.

As engineers and computer scientists, we are natural problem solvers. There is no shortage of pressing problems with tremendous societal impacts to solve in the 21st century—from the need for accessible health care and quality education to responsible artificial intelligence, and to sustainable energy and environment. We need to address these and many other challenges by sharing our collective resources and adopting a collaborative approach that incorporates the best ideas of every discipline. Only by working together can we build a truly inclusive engineering community, one in which we celebrate our unique experiences and help one another engineer positive change that will benefit many generations to come.

On behalf of the entire UCLA Samueli community, welcome to our school.

Fiat Lux! Go Bruins!

Ah-Hyung “Alissa” Park
Ronald and Valerie Sugar Dean
Henry Samueli School of Engineering and Applied Science
Henry Samueli School of Engineering and Applied Science

Administrative Officers

Ah-Hyung “Alissa” Park, PhD, Professor and Dean
Jia-Ming Liu, PhD, Professor and Associate Dean, Academic Personnel
Robert N. Candler, PhD, Professor and Associate Dean, Research and Physical Resources
Veronica J. Santos, PhD, Professor and Associate Dean, EDI and Faculty Affairs
Richard D. Wesel, PhD, Professor and Associate Dean, Academic and Student Affairs
Jenn-Ming Yang, PhD, Professor and Associate Dean, International Initiatives and Online Programs

Jeffrey Goldman, PhD, Assistant Dean, Chief Financial Officer
Christine Wei-li Lee, MS, Assistant Dean, Chief Marketing Communications Officer
Tessa S. Mazler, MPA, Assistant Dean, External Affairs
Panagiotis D. Christofides, PhD, Professor and Chair, Chemical and Biomolecular Engineering Department
Yu Huang, PhD, Professor and Chair, Materials Science and Engineering Department
Song Li, PhD, Professor and Chair, Bioengineering Department
Todd D. Millstein, PhD, Professor and Chair, Computer Science Department
Ertugrul Taciroglu, PhD, Professor and Chair, Civil and Environmental Engineering Department
C.K. Ken Yang, PhD, Professor and Chair, Electrical and Computer Engineering Department
Xiaolin Zhong, PhD, Professor and Chair, Mechanical and Aerospace Engineering Department

The Campus

UCLA is a large urban university situated between the city and the sea, at the foot of the Santa Monica Mountains. Less than six miles from the Pacific Ocean, it is bordered by Sunset and Wilshire Boulevards. As the city has grown physically and culturally, so has the campus, whose students and faculty members mirror the cultural and racial diversity of today’s Los Angeles. UCLA is one of the most widely respected and recognized universities in the world, and its impact on society can be felt to the far reaches of the globe. Students come from around the world to receive a UCLA education, and its alumni go on to become leaders in their fields, from visionary startup founders to heads of international corporations.

UCLA is recognized as the West’s leading center for the arts, culture, and medical research. Each year, more than half a million people attend visual and performing arts programs on campus; while more than 370,000 patients from around the world come to the Ronald Reagan UCLA Medical Center for treatment. The 419-acre University campus houses the College of Letters and Science and 12 professional schools. There are more than 47,800 students enrolled in 141 undergraduate degree programs and more than 265 graduate degree programs.

UCLA is rated one of the best public research universities in the U.S. and among a handful of top U.S. research universities, public and private. The chief executive of UCLA is Chancellor Gene D. Block. He oversees all aspects of the UCLA three-part mission of education, research, and service.

Southern California has grown to become one of the nation’s dominant industry centers, and the UCLA Henry Samueli School of Engineering and Applied Science is uniquely situated as a hub of engineering research and professional training for this region and beyond.

The School

The College of Engineering (as it was known then) was established in 1943 when California Governor Earl Warren signed a bill to provide instruction in engineering at the UCLA campus. It welcomed its first students in 1945, and was renamed the Henry Samueli School of Engineering and Applied Science in 2000 in honor of the generous support of the school’s triple alumnus Henry Samueli.

Counted among the faculty are more than 30 National Academy of Engineering members, and more than 80 recipients of the National Science Foundation’s early career award. While no ranking can fully capture the success of a leading public research institution, the school is consistently ranked in the top 10 among U.S. public engineering schools, and its online master’s program has consistently been ranked first or second nationally.

The goal of UCLA Samueli is to engineer as much positive change as possible through the impact that engineers and computer scientists can have on society. As part of its academic program, the school focuses on research that targets today’s greatest societal challenges, education that empowers students to become future change agents, and innovation that helps bring great ideas to the market.

UCLA Samueli is a tightly knit community of nearly 200 full-time faculty members, more than 6,500 undergraduate and graduate students, and 40,000 active alumni. Known as the birthplace of the Internet, UCLA Samueli is also where countless other fields took some of their first steps—from artificial intelligence to reverse osmosis, from mobile communications to human prosthetics. In 2021, a group of UCLA Samueli engineers became the first university team to win an X Prize. The grand prize, awarded for technology developed to capture CO2 emissions in concrete, included $7.5 million in prize money.

The school has identified six critical areas of research where it can have the greatest positive impact in the years and decades to come. These include robotics and cyber-physical systems; sustainable and resilient urban systems; engineering in medicine; big data, artificial intelligence, and machine learning; cybersecurity and future Internet; and advanced materials and manufacturing.

UCLA Samueli is well known for the research advances its laboratories and alumni have brought to the world. By defining these critical areas of research for the twenty-first century, the school is able to offer its resources and create a relevant educational structure for its students to galvanize the next generation of global leaders.

UCLA Samueli offers 40 academic and professional degree programs. The Bachelor of Science degree is offered in Aerospace Engineering, Bioengineering, Chemical

The undergraduate curricula leading to these degrees offer students a solid foundation in engineering and applied science, and prepare graduates for immediate practice of the profession as well as advanced studies. In addition to engineering courses, students complete about one year of study in the humanities, social sciences, or fine arts.

Master of Science and Doctor of Philosophy degrees are offered in Aerospace Engineering, Bioengineering, Chemical Engineering, Civil Engineering, Computer Science, Electrical and Computer Engineering, Manufacturing Engineering (MS only), Materials Science and Engineering, and Mechanical Engineering.

In addition, UCLA Samueli also offers the Engineer degree, which is more advanced than the regular master's, but does not require the research effort and orientation involved in a doctoral dissertation.

The school has two self-supporting, professional degree programs. The online Master of Science in Engineering degree program includes 11 individual degrees. In 2021, the school launched a one-year, full-time, on-campus professional degree, the Master of Engineering. Eight cross-disciplinary areas of study are offered including artificial intelligence, autonomous systems, data science, digital health technology, green energy systems, integrated circuits (IC) design, Internet of Things (IoT) systems, and translational medicine.

Endowed Chairs

Endowed professorships or chairs, funded by gifts from individuals or corporations, support the research and educational activities of distinguished faculty members. The following endowed chairs have been established in the Henry Samueli School of Engineering and Applied Science.

Armond and Elena Hairapetian Chair in Engineering and Medicine
Ben Rich–Lockheed Martin Chair in Advanced Aerospace Technologies
Betsy Wood Knapp Chair for Innovation and Creativity
Carol and Lawrence E. Tannas, Jr., Endowed Chair in Engineering
Carol and Lawrence E. Tannas, Jr., Endowed Term Chair in Engineering
Charles P. Reames Endowed Chair in Electrical Engineering
Collins Aerospace Term Chair for Excellence in Engineering
Collins Aerospace Term Chair for Innovation
Evalyn Knight Chair in Engineering
Fang Lu Endowed Chair in Engineering
J.M. Maguire Term Chair in Engineering
John P. and Claudia H. Schauermein Term Chair in Engineering
Jonathan B. Postel Chair in Computer Systems
Jonathan B. Postel Chair in Networking
L.M.K. Boelter Chair in Engineering
Leonard Kleinrock Term Chair in Computer Science
Levi James Knight, Jr. Chair for Innovation
Levi James Knight, Jr. Term Chair for Excellence
Mukund Padmanabhan Term Chair
Mukund Padmanabhan Term Chair in Electrical Engineering
Neria and Manizheh Yomtoubian Endowed Chair in Cancer and Risk Sciences
Nippon Sheet Glass Company Chair in Materials Science
Norman E. Friedmann Chair in Knowledge Sciences
Northrop Grumman Chair in Electrical Engineering
Northrop Grumman Chair in Electrical Engineering/Electromagnetics
Northrop Grumman Opto-Electronic Chair in Electrical Engineering
Presidential Chair in Chemistry
Presidential Endowed Chair in Structural Engineering
Pritzker Chair in Sustainability
Ralph M. Parsons Foundation Chair in Chemical Engineering
Raytheon Company Chair in Electrical Engineering
Raytheon Company Chair in Mechanical Engineering
Richard G. Newman AECOM Endowed Chair in Civil Engineering
Ronald and Valerie Sugar Dean of Henry Samueli School of Engineering and Applied Science
Ronald and Valerie Sugar Endowed Chair in Engineering
Sabol-Scott Term Chair in Civil and Environmental Engineering
Symantec Term Chair in Computer Science
Tatsuo Itoh Endowed Chair in Electrical and Computer Engineering
Traugott and Dorothea Frederking Endowed Chair
Vijay K. Dhir Chair in Engineering
Volgenau Chair for Engineering Excellence
Volgenau Chair for Engineering Innovation
Volgenau Endowed Chair in Engineering
William D. Van Vorst Chair in Chemical Engineering
William Frederick Seyer Chair in Materials Electrochemistry
Wintek Endowed Chair in Electrical Engineering

The Engineering Profession

The following describes the challenging types of work UCLA Samueli graduates might perform based on their program of study.

Aerospace Engineering

Aerospace engineers conceive, design, develop, test, and supervise the construction of aerospace vehicle systems such as commercial and military aircraft, helicopters and other types of rotorcraft, and space vehicles and satellites, including launch systems. They are employed by aerospace companies, airframe and engine manufacturers, government agencies such as NASA and the military services, and research and development organizations.

Working in a high-technology industry, aerospace engineers are generally well versed in applied mathematics and the fundamental engineering sciences, particularly fluid mechanics and thermodynamics, dynamics and control, and structural and solid mechanics. Aerospace vehicles are complex systems. Proper design and construction involves the coordinated application of technical disciplines, including aerodynamics, structural analysis and design, stability and control, aeroelasticity, performance analysis, and propulsion systems technology.

Aerospace engineers use computer systems and programs extensively, and should have at least an elementary understanding of modern electronics. They work in a challenging and highly technical atmosphere and are likely to operate at the forefront of scientific discoveries, often stimulating these discoveries and providing the inspiration for the creation of new scientific concepts.

The BS program in Aerospace Engineering emphasizes fundamental disciplines and therefore provides a solid base for professional career development in industry and graduate study in aerospace engineering. Graduate education prepares students for careers at the forefront of aerospace technology. The PhD degree provides a strong background for employment by government laboratories, such as NASA, and industrial research laboratories supported by the major aerospace companies. It also provides the appropriate background for academic careers.
Bioengineering

At the interface of engineering, medicine, and basic sciences, bioengineering has emerged and established itself internationally as an engineering discipline in its own right. Such an interdisciplinary education is necessary to develop a quantitative engineering approach to tackle complex medical and biological problems, as well as to invent and improve the ever-evolving experimental and computational tools that are required in this engineering approach. UCLA has a long history of fostering interdisciplinary training and is a superb environment for bioengineers. UCLA boasts the top hospital in the western U.S., nationally ranked medical and engineering schools, and numerous nationally recognized programs in the basic sciences. Rigorously trained bioengineers are in demand in research institutions, academia, and industry. Their careers may follow a bioengineering concentration, but the ability of bioengineers to cut across traditional boundaries will facilitate their innovation in new areas.

Chemical and Biomolecular Engineering

Chemical and biomolecular engineers use their knowledge of mathematics, physics, chemistry, biology, and engineering to meet the needs of our technological society. They design, research, develop, operate, and manage within the biochemical and chemical industries and are leaders in the fields of energy and the environment, nanotechnology, systems engineering, biotechnology and biomolecular engineering, and advanced materials processing. They are in charge of the chemical processes used by virtually all industries, including the pharmaceutical, biotechnology, biofuel, food, aerospace, automotive, water treatment, and semiconductor industries. Architectural engineering, and construction firms employ chemical engineers for equipment and process design. It is also their mission to develop the clean and environmentally friendly technologies of the future.

Major areas of fundamental interest within chemical engineering are:

- Applied chemical kinetics, which involves the design of chemical and biochemical reactors and processes and the creation of catalysts that accelerate reaction kinetics and modeling
- Transport phenomena, which involves the exchange of momentum, heat, and mass in physical and biological systems and has applications to the separation of valuable materials from mixtures, or of pollutants from gas and liquid streams
- Thermodynamics, which is fundamental to physical, chemical, and biological processes
- Process design and synthesis, which provide the overall framework and computing technology for integrating chemical engineering knowledge into industrial application and practice

Civil and Environmental Engineering

Civil engineers plan, design, construct, and manage a range of physical systems, such as buildings, bridges, dams and tunnels, transportation systems, water and waste-water treatment systems, coastal and ocean engineering facilities, and environmental engineering projects, related to public works and private enterprises. Thus, civil and environmental engineering embraces activities in traditional areas and in emerging problem areas associated with modern industrial and social development.

The civil engineering profession demands rigorous scientific training and a capacity for creativity and growth into developing fields. In Southern California, besides employment in civil engineering firms and governmental agencies for public works, civil engineering graduates often choose other industries for assignments based on their engineering background. Graduates are also qualified for positions outside engineering where their broad engineering education is a valuable asset.

The curriculum leading to a BS in Civil Engineering provides an excellent foundation for entry into professional practice, as well as for graduate study in civil engineering and other related fields.

Computer Science and Engineering

Students specializing in the computer science and engineering undergraduate program are educated in a range of computer system concepts. As a result, students at the BS level are qualified for employment as applications programmers, systems programmers, digital system designers, digital system marketing engineers, and project engineers.

Undergraduate students can major in the computer science and engineering program, the computer science program, or the computer engineering program.

Graduate degree programs in computer science prepare students for leadership positions in the computer field. In addition, they prepare graduates to deal with the most difficult problems facing the computer science field. University or college teaching generally requires the graduate degree.

Electrical and Computer Engineering

The electrical and computer engineering discipline is concerned with the useful applications of electromagnetic phenomena (light, magnetism, electricity, information processing). Courses and research at UCLA span the entire stack from basic physics, electronic and photonic devices, antennas, integrated circuits, signal processing and machine learning, control, communications systems, to vast networks such as the electrical grid and the Internet. These are the main automated tools used by our society to sense, make decisions, and take action in the world using the data collected according to the priorities established by people. The Electrical and Computer Engineering Department is a recognized leader in education and research related to these subjects.

Manufacturing Engineering

Manufacturing engineering is an interdisciplinary field that integrates the basic knowledge of materials, design, processes, computers, and system analysis. The manufacturing engineering program is part of the Mechanical and Aerospace Engineering Department.

Specialized areas are generally classified as manufacturing processes, manufacturing planning and control, and computer-aided manufacturing.

Manufacturing engineering as an engineering specialty requires the education and experience necessary to understand, apply, and control engineering procedures in manufacturing processes and production methods of industrial commodities and products. It involves the generation of manufacturing systems, the development of novel and specialized equipment, research into the phenomena of fabricating technologies, and manufacturing feasibility of new products.

Coursework, independent studies, and research are offered in the manufacturing processes area, leading to an MS degree. This includes computer-aided design and computer-aided manufacturing, robotics, metal forming and metal cutting analysis, nondestructive evaluation, and design and optimization of manufacturing processes.
Materials Engineering

Materials engineering is concerned with the structure and properties of materials used in modern technology. Advances in technology are often limited by available materials. Solutions to energy problems depend largely on new materials, such as solar cells or materials for batteries for electric cars.

Two programs within materials engineering are available at UCLA:

• In the materials engineering program, students become acquainted with metals, ceramics, polymers, and composites. Such expertise is highly sought by the aerospace and manufacturing industries. Materials engineers are responsible for the selection and testing of materials for specific applications. Traditional fields of metallurgy and ceramics have been merged in industry, and this program reflects the change.

• In the electronic materials option of the materials engineering program, students learn the basics of materials engineering with a concentration in electronic materials and processing. The optional program requires additional coursework, which includes five to eight electrical and computer engineering courses.

In order to enter a career in research and development of new materials (such as new energy devices), an MS or PhD degree is desirable.

Mechanical Engineering

Mechanical engineering is a broad discipline finding application in virtually all industries and manufactured products. The mechanical engineer applies principles of mechanics, dynamics, and energy transfer to the design, analysis, testing, and manufacture of consumer and industrial products. A mechanical engineer usually has specialized knowledge in areas such as design, materials, fluid dynamics, solid mechanics, heat transfer, thermodynamics, dynamics, control systems, manufacturing methods, and human factors. Applications of mechanical engineering include design of machines used in the manufacturing and processing industries; mechanical components of electronic and data processing equipment; engines and power-generating equipment; components and vehicles for land, sea, air, and space; and artificial components for the human body. Mechanical engineers are employed throughout the engineering community as individual consultants in small firms providing specialized products or services, as designers and managers in large corporations, and as public officials in government agencies.

Mechanical engineers apply their knowledge to a wealth of systems, products, and processes including energy generation, utilization, and conservation; power and propulsion systems (power plants, engines); and commercial products found in the automotive, aerospace, chemical, or electronics industries.

The BS program in Mechanical Engineering provides excellent preparation for a career in mechanical engineering and a foundation for advanced graduate studies. Graduate studies in one of the specialized fields of mechanical engineering prepare students for a career at the forefront of technology. The PhD degree provides a strong background for employment by government laboratories, industrial research laboratories, and academia.

Correspondence Directory

Henry Samueli School of Engineering and Applied Science

School website
Office of Academic and Student Affairs
6426 Boelter Hall

Bioengineering Department
5121 Engineering V

Chemical and Biomolecular Engineering Department
5531 Boelter Hall

Civil and Environmental Engineering Department
5731 Boelter Hall

Computer Science Department
277 Engineering VI

Electrical and Computer Engineering Department
58-121 Engineering IV

Materials Science and Engineering Department
3111 Engineering V

Mechanical and Aerospace Engineering Department
48-121 Engineering IV

Master of Engineering Online Program
4732 Boelter Hall

Master of Science in Engineering Online Program
4732 Boelter Hall

Continuing Education in Engineering
UCLA Extension
10960 Wilshire Boulevard, Suite 1600

Engineering and Science Career Services
UCLA Career Center
501 Westwood Plaza, Strathmore Building

Academic Counselors

Aerospace Engineering
Kenneth Duckworth, 310-206-8712
Flannery Weiss, 310-825-5146
Michel M. Campbell, 310-825-5760
Monica Charpie, 310-206-2891
Jan J. LaBuda, 310-825-2514
Anandrea Suarez, 310-825-5146

Bioengineering
Erkki Corpuz, 310-825-9442
Leo Cerutti, 310-825-5146
Victoria Moraga, 310-825-9602

Chemical and Biomolecular Engineering
Leo Cerutti, 310-825-5146
Erkki Corpuz, 310-825-9442
Julia Ramirez, 310-206-6397

Civil Engineering
Anandrea Suarez, 310-825-5146
Maggie Cazares, 310-825-1704
Erkki Corpuz, 310-825-9442
Jan J. LaBuda, 310-825-2514
Leo Cerutti, 310-825-5146

Computer Engineering
Maggie Cazares, 310-825-1704
Cynthia Moraga, 310-825-7105
Mary Anne Geber, 310-825-2036
Victoria Moraga, 310-825-9602
Flannery Weiss, 310-825-5146

Computer Science
Flannery Weiss, 310-825-5146
Michel M. Campbell, 310-825-5760
Maggie Cazares, 310-825-1704
Kenneth Duckworth, 310-206-8712
Mary Anne Geber, 310-825-2036
Jan J. LaBuda, 310-825-2514
Cynthia Moraga, 310-825-7105
Victoria Moraga, 310-825-9602
Monica Charpie, 310-206-2891

Computer Science and Engineering
Flannery Weiss, 310-825-5146
Cynthia Moraga, 310-825-7105
Michel M. Campbell, 310-825-5760
Maggie Cazares, 310-825-1704
Monica Charpie, 310-206-2891
Kenneth Duckworth, 310-206-8712
Mary Anne Geber, 310-825-2036
Jan J. LaBuda, 310-825-2514
Victoria Moraga, 310-825-9602

Electrical Engineering
Mary Anne Geber, 310-825-2036
Maggie Cazares, 310-825-1704
Jan J. LaBuda, 310-825-2514

University of California, Los Angeles

UCLA website
Undergraduate Admission
1147 Murphy Hall
Graduate Diversity, Inclusion, and Admissions
1248 Murphy Hall
Financial Aid and Scholarships
A129J Murphy Hall
Registrar’s Office
1105 Murphy Hall
Dashew Center for International Students and Scholars
106 Bradley Hall
Summer Sessions
1332 Murphy Hall

University of California Systemwide Admissions
Academic and Admission Calendar

<table>
<thead>
<tr>
<th>Event</th>
<th>Fall 2023</th>
<th>Winter 2024</th>
<th>Spring 2024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filing period for undergraduate applications: apply online at</td>
<td>November 1–30,</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>University of California Admissions</td>
<td>2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last day to file Application for Graduate Admission or readmission</td>
<td>Consult department</td>
<td>Consult department</td>
<td>Consult department</td>
</tr>
<tr>
<td>with complete credentials and application fee, online or with UCLA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate Diversity, Inclusion, and Admissions (DIA), 1248 Murphy</td>
<td>Consult department</td>
<td>Consult department</td>
<td>Consult department</td>
</tr>
<tr>
<td>Hall, Los Angeles, CA 90024-1419</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First day for continuing students to check MyUCLA for assigned</td>
<td>June 5, 2023</td>
<td>October 23</td>
<td>January 11</td>
</tr>
<tr>
<td>enrollment appointments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MyUCLA enrollment appointments begin</td>
<td>June 20</td>
<td>November 6</td>
<td>February 12</td>
</tr>
<tr>
<td>Last day to file Undergraduate Readmission Application</td>
<td>August 15</td>
<td>November 25</td>
<td>February 25</td>
</tr>
<tr>
<td>Registration fee payment deadline</td>
<td>September 20</td>
<td>December 20</td>
<td>March 20</td>
</tr>
<tr>
<td>Quarter begins</td>
<td>September 25</td>
<td>January 3, 2024</td>
<td>March 27</td>
</tr>
<tr>
<td>Instruction begins</td>
<td>September 28</td>
<td>January 8</td>
<td>April 1</td>
</tr>
<tr>
<td>Last day for undergraduates to add classes through MyUCLA</td>
<td>October 20</td>
<td>January 26</td>
<td>April 19</td>
</tr>
<tr>
<td>Last day for undergraduates to drop nonimpacted classes without</td>
<td>October 27</td>
<td>February 2</td>
<td>April 26</td>
</tr>
<tr>
<td>transcript notation through MyUCLA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last day for undergraduates to change grading basis on optional</td>
<td>November 10</td>
<td>February 16</td>
<td>May 10</td>
</tr>
<tr>
<td>P/NP courses without fee or petition through MyUCLA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instruction ends</td>
<td>December 8</td>
<td>March 15</td>
<td>June 7</td>
</tr>
<tr>
<td>Final examinations</td>
<td>December 11–15</td>
<td>March 18–22</td>
<td>June 10–14</td>
</tr>
<tr>
<td>Quarter ends</td>
<td>December 15</td>
<td>March 22</td>
<td>June 14</td>
</tr>
<tr>
<td>Engineering Commencement (tentative)</td>
<td>—</td>
<td>—</td>
<td>June 15–16</td>
</tr>
<tr>
<td>Winter campus closure (tentative)</td>
<td>December 27–29</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Academic and administrative holidays</td>
<td>September 4</td>
<td>January 15</td>
<td>March 29</td>
</tr>
<tr>
<td></td>
<td>November 10</td>
<td>February 19</td>
<td>May 27</td>
</tr>
<tr>
<td></td>
<td>November 23–24</td>
<td>—</td>
<td>June 19</td>
</tr>
<tr>
<td></td>
<td>December 25–26</td>
<td>—</td>
<td>July 4</td>
</tr>
<tr>
<td></td>
<td>January 1–2, 2024</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Dates are subject to change. See UCLA Registrar’s Office calendars for most current information.
General Information

Facilities and Services
Teaching and research facilities at UCLA Samueli are in Boelter Hall, Engineering IV, Engineering V, and Engineering VI, located in the southern part of the UCLA campus. Boelter Hall houses classrooms and laboratories for undergraduate and graduate instruction, the Office of Academic and Student Affairs, the SEASnet computer facility, specialized libraries, offices of faculty and administration, Shop Services Center, and the Student and Faculty Shop. The California NanoSystems Institute (CNSI) building hosts additional school collaborative research activities.

Library Facilities
University Library System
The UCLA Library, a campuswide network of libraries serving programs of study and research in many fields, is among the top-10-ranked research libraries in the U.S. Total collections number more than 12 million volumes, three million E-books, 175,000 serial titles, two thousand databases, and more than three million media resources. Materials are available through the digital UC Library Search, which contains records for all its holdings and other campus collections.

Science and Engineering Library
The combined Science and Engineering Library (SEL) collections contain more than half a million print volumes; subscriptions to nearly 5,400 print or digital journals, many with full archival access; a large collection of online technical reports; and tens of thousands of e-books. The library offers access to online databases covering each discipline.

Services
Computing Resources
Nicodemus Ribowo, SEASnet Director
UCLA Samueli maintains an advanced computing facility and local-area network to support its education, research, and administrative activities. A total of 118 full-time positions and five lab consultants support the school’s computing needs.

A network of over 158 enterprise servers supply a wide array of critical services. Eight Network Appliance NFS servers supply reliable storage for users’ personal data and e-mail, and offer nearly instant recovery of deleted files through regular snapshots.

More than 100 Unix/Linux servers, including 20 virtual machines, supply both administrative and instructional support to ensure smooth operation of approximately 700 Unix and Windows workstations. The Unix servers handle back-end services such as DNS, authentication, virtualization, software licensing, web servers, interactive login, database, e-mail, class applications, and security monitoring.

Thirty Windows servers make up the backbone for all instructional computing labs, and allow students to work remotely with resource-intensive and computationally intensive applications. There are four computer labs and one instructional computer lab with 200 Windows workstations.

A high-speed network that links the entire infrastructure ensures latency-free operation for users from UCLA and around the world. It consists of dual fiber uplinks to a Cisco core router, which feeds and routes 20 networks and over 100 switches. The network serves over 8,000 users across four buildings.

For backup and disaster recovery, cloud backups are used to back up servers and selected user workstations regularly, and incremental backups are done to online disk storage.

The servers are protected by two high-capacity UPS units along with several racked UPS for short-term power outages. Campus emergency power keeps critical equipment running during extended downtime.

Faculty and staff have access to Microsoft Office software at no charge through the Microsoft Campus and School Agreement (CASA). Adobe software is available to all faculty, staff, and students through a campuswide Adobe agreement. Microsoft Azure Dev Tools for Teaching, Autodesk, and Ansys programs offer additional software at no charge to all UCLA engineering students.

The school’s manufacturing engineering program operates a group of workstations dedicated to CAD/CAM instruction; and the Computer Science Department operates a network of SUN, Windows, and Macintosh workstations. The school is connected to the Internet through high-speed networks. Computing resources at the national supercomputer centers are also available.

Shop Services Center
The Shop Services Center is available to faculty, staff, and students for projects.

Continuing Education
UCLA Extension
10960 Wilshire Boulevard, Suite 1600
Digital Technology 310-206-6794
Engineering 310-825-4100

Engineering and Digital Technology Department
Varaz Shahmirian, PhD, Director
Vivian Tasklakian, MBA, Program Director

The UCLA Extension Engineering and Digital Technology department offers one of the nation’s largest selections of engineering continuing education programs. The department offers custom engineering courses in structural analysis, aerospace manufacturing, and mixed-signal integrated circuit design at corporations nationwide. The acclaimed 5-day Technical Management Program has been offered for more than 60 years.

The Digital Technology program offers over 200 courses annually in applications programming, data science, database management, cybersecurity, systems analysis, and Web technology.
The Engineering program offers over 250 courses annually, including 10 certificate programs in advanced plumbing systems design, agile project management, biotechnology engineering, blockchain technology, communication systems, construction management, contract management, government cost estimating and pricing, Lean Six Sigma, medical device engineering, project management, and supply chain management. In addition, the department offers EIT and PE review courses in mechanical engineering. Engineering and technical management courses are offered in person and online.

Career Services
UCLA Career Center
501 Westwood Plaza, Strathmore Building 310-206-1915

The UCLA Career Center assists UCLA Samueli undergraduate and graduate students in exploring career possibilities, preparing for graduate and professional school, obtaining employment and internship leads, and developing skills for conducting a successful job search.

Services include individual in-person and remote career counseling, career assessments, workshops, industry-specific programming, employer information sessions, career fairs, and targeted networking opportunities. Annual engineering and technical fairs, held in fall and winter quarters, feature more than 100 top national and local employers. Using a Handshake account, students can discover internship and job opportunities, schedule career counseling appointments, access career resources, and register for events.

Career Center drop-in hours (Tuesday through Thursday from 10 a.m. to 12 p.m. and 1 p.m. to 3 p.m.) offer support in person or virtually with resumes, cover letters, and the job/internship search and interview process. The center is open Monday through Friday from 9 a.m. to 5 p.m. An engineering-specific pop-up event takes place on a weekly basis beginning in the sixth week of each regular quarter in 6288 Boelter Hall.

Health Services
Ashe Student Health and Wellness Center
221 Westwood Plaza
310-825-4073

The Ashe Student Health and Wellness Center in Westwood Plaza is a full-service medical clinic available to all registered UCLA students. Most services are subsidized by registration fees, and a current BruinCard is required for service. Its clinical staff of physicians, nurse practitioners, and nurses is board certified. It offers primary care, specialty clinics, and physical therapy. The center has its own laboratory and radiology sections. It operates the Bruin Health Pharmacy and U See LA Optometry in nearby Ackerman Union. Visits, core laboratory tests, X-rays, and preventive immunizations are all prepaid for students with the University of California Student Health Insurance Plan (UCSHIP).

The cost of services received outside the Ashe Center, such as emergency room services, is each student’s financial responsibility. Students are required to purchase medical insurance either through the UCLA-sponsored UCSHIP or other plans that provide adequate coverage. Adequate medical insurance is a condition of registration.

Contact the Ashe Center for specific information on its primary care, women’s health, immunization, health clearance, optometry, travel medicine, and mind-body clinics, as well as dental care available to students at discounted rates. For emergency care when the Ashe Center is closed, students may obtain treatment at the Ronald Reagan UCLA Medical Center emergency room on a fee-for-service basis.

Mental Health Services
Counseling and Psychological Services
221 Wooden Center West
310-825-0768

Services for mental health range from routine counseling and psychotherapy to crisis counseling. Counseling and Psychological Services (CAPS) offers short-term personal counseling and psychotherapy in 221 Wooden Center West, 310-825-0768.

Psychologists, clinical social workers, and psychiatrists assist with situational stresses and emotional problems from the most mild to severe. These may include problems with interpersonal relationships, academic stress, loneliness, difficult decisions, sexual issues, anxiety, depression, or other concerns affecting the personal growth of students.

In addition, Campus Assault Resources and Education (CARE) counselors—individuals who provide information, support, and resources for members of the UCLA community who have been raped, sexually assaulted, stalked, or involved in a dating or domestic violence incident—can discuss options and alternatives, help identify and assist in contacting the most appropriate support services, and answer any questions that may arise.

Service is confidential and available to regularly enrolled students. Students are seen individually by appointment or may choose from a number of groups offered each term. Emergency and walk-in counseling is also available.

Services for Students with Disabilities
Center for Accessible Education
A255 Dashew Hall
310-825-1681

The Center for Accessible Education (CAE) offers academic support services to regularly enrolled students with documented permanent or temporary disabilities in compliance with Section 504 of the Rehabilitation Act of 1973, the Americans with Disabilities Act (ADA) of 1990, and UCLA policies. Services include campus orientation and accessibility, notetakers, reader service, sign-language interpreters, registration assistance, test-taking facilitation, special parking assistance, real-time captioning, assistive listening devices, on-campus transportation, adaptive equipment, support groups and workshops, tutorial referral, special materials, housing appeals, referral to the Disabilities and Computing Program, and processing of California Department of Rehabilitation authorizations.

There is no fee for any of these services. All contacts and assistance are handled confidentially.

Disabilities and Computing Program
4909 Math Sciences
310-206-7133

The Disabilities and Computing Program (DCP) supplies adaptive technology and information-access support and services to students, faculty, and staff with disabilities. Applications include voice input, Braille, large print, screen-reading software, and learning disability software. Consulting and training for individuals and departments are available. The program also offers Web accessibility evaluations and guidelines.

International Student Services
Dashew Center for International Students and Scholars
106 Bradley International Hall
310-825-1681

The Dashew Center for International Students and Scholars assists students with questions about immigration, employment, government regulations, financial aid, academic and administrative procedures, cultural adjustment, and personal matters. The center seeks to improve student and community relationships; helps international students with language, housing, and personal concerns; and sponsors cultural, educational, and social programs. It also offers visa assistance for faculty members, researchers, and post-doctoral scholars.
Fees and Financial Support

Fees and Expenses
See the Registrar fees web page for fee breakdown by term.

Students who are not legal residents of California (out-of-state and international students) pay nonresident supplemental tuition. See the UCLA General Catalog Policies and Regulations section or the Registrar’s website residence section for information on how to determine residence for tuition purposes. Inquiries may be directed to the Residence Deputy, UCLA Registrar’s Office, 1113 Murphy Hall, Box 951429, Los Angeles, CA 90095-1429.

In addition to systemwide and campus-based fees, students should be prepared to pay living expenses for the academic period.

Living Accommodations
UCLA Housing Services
360 De Neve Drive, Box 951383
Los Angeles, CA 90095-1383
310-206-7011

Housing in Los Angeles, both on and off campus, is in great demand. Students should make arrangements early. Newly admitted students should access the UCLA Housing website for information about costs, locations, and eligibility for both private and UCLA-sponsored housing.

Information about campus residence halls and suites, and applications for on-campus housing, are available from the UCLA Housing website.

Financial Aid
Financial Aid and Scholarships
A129J Murphy Hall
310-206-0400

Undergraduate Students
Financial aid at UCLA includes scholarships, grants, loans, and work-study programs. With the exception of certain scholarships, awards are based on need as determined by national financial aid criteria. California residents must file the Free Application for Federal Student Aid (FAFSA). Students who are not citizens or permanent residents but who are eligible for Assembly Bill 540 nonresident fee waivers may be eligible to qualify for scholarships, UCLA grant aid, and additional state aid if they complete a California Dream Act application.

Applications for the following academic year are available in January. The priority application deadline for financial aid is March 2. To qualify for aid, students must also comply with standards for satisfactory academic progress; information is available on the Forms and Publications web page.

Federal, state, and University financial aid programs require that applicants be U.S. citizens or permanent residents. Financial aid is not available to international students with F-1 or F-2 student, G series, H series, J-1 or J-2 exchange visitor visas. Information on international student financial support options is available on the Apply for Aid web page.

Scholarships
Entering students apply for scholarships on their UC admission application. All UCLA undergraduate scholarship awards are made on a competitive basis, with consideration given to academic excellence, achievement, scholastic promise, and financial need. Scholarships are awarded to entering and continuing undergraduates. The term and amount of the award vary; students are expected to maintain academic excellence in their coursework.

Regents Scholarships are awarded to students with an outstanding academic record and a high degree of promise. Regents Scholars receive a yearly honorarium if they have no financial need. If financial need is established, other scholarships and/or grants are awarded to cover that need.

UCLA Samueli Scholarships, administered by the Office of Academic and Student Affairs, are awarded to entering and continuing undergraduate students based on criteria including financial need, academic excellence, community service, extracurricular activities, and research achievement. The school works with alumni, industry, and individual donors to establish scholarships to benefit engineering students. In 2022-23, the school awarded 179 undergraduate scholarship awards totaling more than $650,000. The majority of these scholarships are publicized in the summer, with additional scholarships promoted throughout the academic year as applicable. For more information on all available scholarships, see the school undergraduate scholarships web page.

Detailed information on other scholarships is available from Financial Aid and Scholarships.

Grants
Cal Grants A and B are awarded by the California Student Aid Commission to entering and continuing undergraduate students who are U.S. citizens or eligible noncitizens and California residents, based on financial need and academic achievement. Cal Grant A awards are applied toward tuition and fees. Cal Grant B awards help with living expenses, books, supplies, and transportation costs; and tuition and fees beginning in the second year.

Federal Pell Grants are federal aid awards designed to provide financial assistance to U.S. citizens or eligible noncitizens to attend post-high school educational institutions. Students who complete a FAFSA are automatically considered for a Pell Grant.

Detailed information on other grants for students with demonstrated need is available from Financial Aid and Scholarships.

Loans
Financial Education, Loan, and Support Services
106 Strathmore Building,
555 Westwood Plaza
310-206-5549

Federal loans are available to undergraduate or graduate students who are U.S. citizens or eligible noncitizens and who carry at least a half-time academic workload. Information on loan programs is available from Financial Aid and Scholarships.

First-time borrowers must complete a debt management session before funds are released. Loan recipients must complete an exit interview before leaving UCLA for any reason. This interview helps students understand their loan agreement and plan for loan repayment. Failure to complete an exit interview results in a hold being placed on all university services and records. In addition, if the campus-based loans become delinquent following separation from UCLA, all university services and records will be withheld. For more information concerning loans and repayment, contact Financial Education, Loan, and Support Services.

Work-Study Programs
Under Federal Work-Study, the federal government pays a portion of the student’s wage and the employer pays the balance. When possible, work is related to student educational objectives. Hourly pay rates comply with minimum wage laws and vary with the nature of the work, experience, and capabilities. Employment may be on or off campus. To be eligible, undergraduate and graduate students must demonstrate financial need and be a U.S. citizen or eligible noncitizen. Submission of the FAFSA is required.
Community Service is a component of the Federal Work-Study program. Students who secure a community service position are eligible to petition for an increase in work-study funds up to a total of $5,000 while at the same time reducing their loan by the amount of the increase. Most community service positions are located off campus.

Details about the types of work-study programs and their requirements are available from Financial Aid and Scholarships.

Graduate Students

A high percentage of UCLA Samueli graduate students receive departmental financial support.

Merit-Based Support

Three major types of merit-based support are available in the school:

1. Fellowships from University, private, or corporate funds
2. Employment as a teaching assistant
3. Employment as a graduate student researcher

Fellowships usually supply stipends competitive with those of other major universities, plus tuition and nonresident supplemental tuition (where applicable). These stipends may be supplemented by a teaching assistantship or graduate student researcher appointment. The awards are generally reserved for new students.

Teaching assistantships are awarded to students on the basis of scholarship and promise as teachers. Appointees serve under the supervision of regular faculty members.

Graduate student researcher (GSR) appointments are awarded to students on the basis of scholastic achievement and promise as creative scholars. Appointees perform research under the supervision of a faculty member in research work. Full-time employment in summer and inter-term breaks is possible, depending on the availability of research funds from contracts or grants.

Since a graduate student researcher appointment constitutes employment in the service of a particular faculty member who has a grant, students must take the initiative in obtaining desired positions.

GSR appointments are generally awarded after one year of study at UCLA.

Applicants for departmental financial support must be accepted for admission to UCLA Samueli in order to be considered in the annual competition. Applicants should check the deadline for submitting the online application for admission and the Fellowship Application for Entering Graduate Students with their preferred department.

Need-Based Aid

Unlike support based solely on merit and administered by the school, the University also offers work-study and low-interest loans based exclusively on financial need.

Need-based awards are administered by Financial Aid and Scholarships. Financial aid applicants must file the Free Application for Federal Student Aid (FAFSA).

Continuing graduate students should contact Financial Aid and Scholarships in December for information on application procedures for the following academic year.

International graduate students are not eligible for need-based University financial aid or long-term student loans.

School of Engineering Fellowships

Fellowship packages offered by the school may include fellowship contributions from the following sources:

- Atlantic Richfield Company (ARCO) Fellowship. Chemical and Biomolecular Engineering Department; supports study in chemical engineering
- Balu and Mohini Balakrishnan Endowed Fellowship. Supports doctoral study in any engineering department
- William and Mary Beedle Fellowship. Chemical and Biomolecular Engineering Department; supports study in chemical engineering
- Boeing Fellowship. Supports graduate study in mechanical and aerospace engineering
- John J. and Clara C. Boelter Fellowship. Supports study in engineering
- Broadcom Fellowship. Electrical and Computer Engineering Department; supports doctoral students who have passed the preliminary examination and are doing research that explores new possibilities in state-of-the-art 22-nm CMOS technology
- Broadcom Foundation First-Year Fellowship. Supports first-year doctoral students in electrical engineering
- Deutsch Company Fellowship. Supports engineering research on problems that aid small business in Southern California

Venky Harinarayan Fellowship. Supports doctoral study in computer science
- IBM Doctoral Fellowship. Supports doctoral study in computer science
- Intel Fellowship. Computer Science Department; supports doctoral study in selected areas of computer science
- The Kalosworks.org Fellowship. Supports graduate students in electrical engineering who have a GPA of at least 3.0 and have demonstrated financial need
- Les Knesel Scholarship Fund. Materials Science and Engineering Department; supports master’s or doctoral study in ceramic engineering
- Guru Krupa Foundation Fellowships in Electrical Engineering. Multiple fellowships to support graduate study with preference for those conducting research in integrated circuits and embedded systems or signals and systems, and who have an undergraduate degree in electrical engineering from the Indian Institutes of Technology (IIT) or the Indian Institute of Science, Bangalore
- T.H. Lin Graduate Fellowship. Civil and Environmental Engineering Department; supports study by an international student in structural mechanics
- Living Rocks Electrical Engineering Fellowship. Supports graduate study with preference for students conducting research in the areas of integrated circuits and embedded systems or signals and systems, and who have an undergraduate degree in electrical engineering from National Taiwan University, National Tsing Hua University, or National Chiao Tung University in Taiwan
- Living Spring Fellowship. Electrical and Computer Engineering Department; supports graduate study with preference for those conducting research in integrated circuits and embedded systems or signals and systems, and who have an undergraduate degree in electrical engineering from National Taiwan University, National Tsing Hua University, or National Chiao Tung University in Taiwan
- Microsoft Fellowship. Supports doctoral study in computer science
- National Consortium for Graduate Degrees for Minorities in Engineering and Science (GEM) Fellowships. Support study in engineering and science to highly qualified individuals from communities where human capital is virtually untapped
- Northrop Grumman Fellowship. Supports graduate study in mechanical and aerospace engineering
- H.J. Orchard Memorial Fellowship. Supports graduate study in electrical engineering
Qualcomm Innovation Fellowship. Supports doctoral students across a broad range of technical research areas based on Qualcomm core values of innovation, execution, and teamwork.

Raytheon Fellowship. Supports graduate study in electrical engineering with preference for U.S. citizens.

Martin Rubin Scholarship. Supports two undergraduate and/or graduate students pursuing degrees in civil engineering with an interest in transportation engineering.

Henry Samueli Fellowship. Electrical and Computer Engineering Department; supports master’s and doctoral students.

Henry Samueli Fellowship. Mechanical and Aerospace Engineering Department; supports master’s and doctoral students.

Texaco Scholarship. Civil and Environmental Engineering Department; supports research in environmental engineering.

Dr. Robert K. Williamson Graduate Fellowship. Supports graduate study in mechanical and aerospace engineering.

Many other companies in the area also make arrangements for their employees to work part-time and to study at UCLA for advanced degrees in engineering or computer science. In addition, the Graduate Division offers other fellowship packages including the Dissertation Year, Eugene V. Cota-Robles, and Graduate Opportunity Fellowships.

Special Programs, Activities, and Awards

Center for Excellence in Engineering and Diversity (CEED)
The UCLA Samueli Center for Excellence in Engineering and Diversity (CEED) seeks to create a community of collaborative and sustainable partnerships that offer academic and professional development support to disadvantaged and underrepresented engineering and computer science undergraduate and graduate students. CEED also supports precollege students in local middle and high schools who are interested in science, computer science, engineering, mathematics, and technology by offering opportunities to learn through hands-on projects.

Precollege Outreach Programs

MESA College Prep Program. Through CEED, UCLA Samueli partners with middle and high school principals to implement the MESA College Prep services program, which focuses on outreach and student development in engineering, mathematics, science, and computer science. At individual school sites, four mathematics and science teachers serve as College Prep advisers and coordinate the activities and instruction for 1000 students. Advisers work as a team to deliver services that include SAT preparation. College Prep prepares students for local and regional engineering and science competitions and provides mathematics and science tutoring, computer science workshops, college admission workshops, field trips, and exposure to high-tech careers. The goal of the MESA College Prep Program is to increase the numbers of urban and educationally underserved students who are competitively eligible for UC admission, particularly in engineering and computer science.

The UCLA MESA Center currently serves students in 25 middle and high schools in the Los Angeles and Inglewood unified school districts.

Undergraduate Programs

CEED currently supports some 365 underrepresented and educationally disadvantaged engineering students. Components of the undergraduate program include:

CEED Summer Bridge. A two-week intensive residential summer program, CEED Summer Bridge provides advanced preparation and exposure for fall quarter classes in mathematics, chemistry, and computer science.

Freshman Course. Designed to give CEED freshmen exposure to the engineering profession, “Engineering 87—Introduction to Engineering Disciplines” also teaches the principles of effective study and team/community-building skills, time management, and research experiences.

Academic Excellence Workshops (AEW). Providing an intensive mathematics/science approach to achieving mastery through collaborative learning and facilitated study groups, workshops meet twice a week for two hours and are facilitated by a PhD student.

Bridge Review for Enhancing Engineering Students (BRES). A 14-day intensive summer program designed to provide CEED students with the skills and knowledge to gain sufficient mastery, understanding, and problem-solving skills in the core engineering courses. Current CEED students and incoming CEED transfer students take part in lectures and collaborative, problem-solving workshops facilitated by UCLA graduate students.

Academic Advising and Counseling. A CEED counselor assists in the selection of course combinations, professors, and course loads and meets regularly with students to assess progress and discuss individual concerns.

Structured Study Nights. Weekly tutoring sessions are provided for introductory mathematics, science, computer, and core engineering courses.

Career Development. Presentations by corporate representatives and field trips to major company locations are offered. Other services include summer and full-time job placement and assistance.

Cluster Systems. Common class sections that team students, Cluster Systems facilitate group study and successful academic excellence workshops.

Student Study Center. A study area open 24 hours a day, the Student Study Center also houses a computer room and is used for tutoring, presentations, and engineering student organizations.

Scholarships/Financial Aid

UCLA Samueli is a university member for the GEM fellowship consortium. The CEED Industry Advisory Board and alumni provide significant contributions to program services and scholarships. Information may be obtained from the CEED director.

Student Organizations

UCLA Samueli CEED supports student chapters of three engineering organizations: the American Indian Science and Engineering Society (AISES), the National Society of Black Engineers (NSBE), and the Society of Latino Engineers and Scientists (SOLES), the UCLA chapter of the Society of Hispanic Professional Engineers (SHPE). These organizations are vital elements of the program.

American Indian Science and Engineering Society (AISES)

AISES encourages American Indians to pursue careers as scientists and engineers while preserving their cultural heritage. The goal of AISES is to promote unity and cooperation and to provide a basis for the advancement of American Indians while providing financial assistance and educational opportunities. AISES devotes most of its energy to its outreach program where members conduct monthly science academies with elementary and precollege students from Indian reservations. Serving as mentors and role models for younger
students enables UCLA AISES students to further develop professionalism and responsibility while maintaining a high level of academics and increasing cultural awareness.

National Society of Black Engineers (NSBE)

Chartered in 1980 to respond to the shortage of blacks in science and engineering fields and to promote academic excellence among black students in these disciplines, **UCLA NSBE** offers academic assistance, tutoring, and study groups while sponsoring ongoing activities such as guest speakers, company tours, and participation in UCLA events such as Career Day and Engineers Week. NSBE also assists students with employment. Through the various activities sponsored by NSBE, students develop leadership and interpersonal skills while enjoying the college experience. UCLA NSBE was recently named small chapter of the year by the national organization.

Society of Latino Engineers and Scientists (SOLES)

Recognized as the national chapter of the year five times over the past ten years by the Society of Hispanic Professional Engineers (SHPE), **SOLES** promotes engineering as a viable career option for Latino students. SOLES is committed to the advancement of Latinos in engineering and science through endeavors to stimulate intellectual pursuit through group studying, tutoring, and peer counseling for all members. This spirit is carried into the community with active recruitment of high school students into the field of engineering.

SOLES also strives to familiarize the UCLA community with the richness and diversity of the Latino culture and the scientific accomplishments of Latinos. SOLES organizes cultural events such as Latinos in Science, Cinco de Mayo, and co-sponsors the Women in Science and Engineering (WISE) Day with AISES and NSBE. By participating in campus events such as Career Day and Engineers Week, the organization’s growing membership strives to fulfill the needs of the individual and the community.

Women in Engineering

Women make up about 36 percent of the UCLA Samueli undergraduate enrollment and 24 percent of the graduate enrollment. Today’s opportunities for women in engineering are excellent, as both employers and educators try to change the image of engineering as a males-only field. Women engineers are in great demand in all fields of engineering.

Society of Women Engineers (SWE)

The **Society of Women Engineers** (SWE), recognizing that women in engineering are still a minority, has established a UCLA student chapter that sponsors field trips and engineering-related speakers (often professional women) to introduce the various options available to women engineers. The UCLA chapter of SWE, in conjunction with other Los Angeles schools, also publishes an annual résumé book to help women students find jobs; and presents a career day for women high school students.

Student and Honorary Societies

Professionally related societies and activities at UCLA provide valuable experience in leadership, service, recreation, and personal satisfaction. The faculty of the school encourages students to participate in such societies and activities where they can learn more about the engineering profession in a more informal setting than the classroom. For more information, see student clubs and organizations.

- **American Indian Science and Engineering Society (AISES)**
- **American Institute of Aeronautics and Astronautics (AIAA)**
- **American Institute of Chemical Engineers (AIChE)**
- **American Society of Civil Engineers (ASCE)**
- **American Society of Mechanical Engineers/BattleBots® (ASME)**
- **American Water Works Association (AWWA)**
- **Arab American Association of Engineers and Architects (AAAEE)**
- **Association for Computing Machinery (ACM)**
- **Bioengineering Graduate Association (BCA)**
- **Biomedical Engineering Society (BMES)**
- **Blockchain at UCLA**
- **Bruin Consulting** (Student-founded independent management consulting group)
- **Bruin Entrepreneurs** (Startup group offering programs and events)
- **Bruin Home Solutions**
- **Bruin Racing**
 - Baja SAE
 - Formula SAE
 - Supermileage
- **Bruin Spacecraft Group**
- **Building Engineers and Mentors (BEAM)**
- **California Geotechnical Engineers Association (CalGeo)**
- **Chi Epsilon** (Civil engineering honor society)
- **CruX** (Neurotechnology group)
- **Design Build Fly (DBF)**
- **Design Create Solar**
- **Earthquake Engineering Research Institute (EERI)—Structural Engineers Association of Southern California (SEAOSC)**
- **Engineering Ambassador Program**
- **Engineering Graduate Student Association (ECSA)**
- **Engineering Society, University of California (ESUC)**
- **Eta Kappa Nu** (Electrical engineering/computer science and engineering honor society)
- **exploretech.la** (annual event for underserved high-school students)
- **Graduate Student Committee of the Society of Women Engineers (GradSWE)**
- **Institute of Electrical and Electronic Engineers (IEEE)**
- **IEEE Electron Devices Society (EDS)**
- **IEEE Electronics Packaging Society (EPS)**
- **IEEE Women Advancing Technology through Teamwork (WATT)**
- **Institute of Transportation Engineers (ITE)**
- **International Society for Pharmaceutical Engineering (SPE)**
- **Korean-American Scientists and Engineers Association (BruinKSEA)**
- **LA Blueprint**
- **Materials Research Society (MRS)**
- **MentorSEAS**
- **National Society of Black Engineers (NSBE)**
- **Nova**
- **Phi Sigma Rho** (Engineering social sorority)
- **Pilipinos in Engineering and Science (PIES)**
- **QWER Hacks**
- **Renewable Energy Association (REA)**
- **Rocket Project at UCLA**
- **Society of Asian Scientists and Engineers (SASE)**
- **Society of Latino Engineers and Scientists (SOLES)**
- **Society of Women Engineers (SWE)**
- **Tau Beta Pi** (Engineering honor society)
- **Theta Tau** (Professional engineering fraternity)
- **Triangle** (Social fraternity of engineers, architects, and scientists)
- **UCLA 3D4E**
- **UCLA DevX**
- **Uncrewed Aerial Systems at UCLA (UAS@UCLA)**
- **Undergraduate Student Association (USA)** (Campuswide group offering governance, social, academic, and community programs)
- **Upsilon Pi Epsilon** (International computing and information honor society)
Prizes and Awards

Each year, outstanding students are recognized for their academic achievement and exemplary record of contributions to the school. Recipients are acknowledged in the UCLA Samueli annual commencement program, as well as by campuswide announcement.

The Russell R. O’Neill Distinguished Service Award is presented annually to an upper-division student in good academic standing who has made outstanding contributions through service to the undergraduate student body, student organizations, the school, and to the advancement of the undergraduate engineering program, through service and participation in extracurricular activities.

The Harry M. Showman Engineering Prize is awarded to a UCLA engineering student or students who most effectively communicate the achievements, research results, or social significance of any aspect of engineering to a student audience, the engineering professions, or the general public.

The Engineering Achievement Award for Student Welfare is given to undergraduate and graduate engineering students who have made outstanding contributions to student welfare through participation in extracurricular activities and who have given outstanding service to the campus community.

Additional awards may be given to those degree candidates who have achieved academic excellence. Criteria may include such items as grade-point average, creativity, research, and community service.

Departmental Scholar Program

Exceptionally promising juniors or seniors may be nominated as Departmental Scholars to pursue engineering bachelor’s and master’s degree programs simultaneously.

Minimum qualifications include the completion of 24 courses (96 quarter units) at UCLA, or the equivalent at a similar institution; a minimum 3.7 grade-point average (GPA) in the major field upper-division courses and a minimum 3.7 cumulative GPA; and the requirements in preparation for the major. To obtain both the bachelor’s and master’s degrees, Departmental Scholars fulfill the requirements for each program. Students may not use any one course to fulfill requirements for both degrees.

For eligibility criteria and application deadlines, see the Departmental Scholar Program web page.

Exceptional Student Admissions Program

There is an Exceptional Student Admissions Program (ESAP) for outstanding UCLA Samueli undergraduates who wish to enter the school graduate program upon completion of the BS degree. ESAP is an alternative to the Departmental Scholar Program. In contrast to that program, an ESAP-admitted student would be an enrolled graduate student and eligible for consideration of graduate fellowships and teaching assistant positions if available.

For eligibility criteria and graduate application deadlines, see the Exceptional Student Admissions Program web page.

Policies and Regulations

Student Representation

The student body takes an active part in shaping policies of the school through elected student representatives on the school Executive Committee.

Official Publications

This Announcement of the Henry Samueli School of Engineering and Applied Science contains detailed information about the school, areas of study, degree programs, and course listings. The UCLA General Catalog, however, is the official and binding document for the guidance of students. UCLA students are responsible for complying with all rules, regulations, policies, and procedures described in the Catalog.

For rules and regulations on graduate study, see the Graduate Education website.

Grades

Grading Policy

Instructors should announce their complete grading policy in writing at the beginning of the term, along with the syllabus and other course information, and make that policy available on the course website. Once the policy is announced, it should be applied consistently for the entire term.

Grade Disputes

A student who believes that a grade has been given unfairly should first discuss the issue with the instructor of the course. If the dispute cannot be resolved between the student and the instructor, the student may refer the issue to the Associate Dean for Academic and Student Affairs, 6426 Boelter Hall.

The associate dean may form an ad hoc committee to review the complaint. The ad hoc committee members are recommended by the appropriate department chair and the associate dean. The student receives a copy of the ad hoc committee report as well as a copy of the associate dean’s recommendation. The student file will contain no reference to the dispute.

The associate dean informs the students of their rights with respect to complaints and appeals at UCLA.

Nondiscrimination

The University of California, in accordance with applicable federal and state laws and University policies, does not discriminate on the basis of race, color, national origin, religion, sex, gender identity, pregnancy (including pregnancy, childbirth, and medical conditions related to pregnancy and childbirth), physical or mental disability, medical condition (cancer-related or genetic characteristics), ancestry, marital status, age, sexual orientation, citizenship, or service in the uniformed services (including membership, application for membership, performance of service, application for service, or obligation for service in the uniformed services). The University also prohibits sexual harassment and harassment on any of the above bases. This nondiscrimination policy covers admission, access, and treatment in University programs and activities.

Students may grieve any action that they believe discriminates against them on the ground of race, color, national or ethnic origin, alienage, sex, religion, age, sexual orientation, gender identity, marital status, veteran status, or perceived membership in any of these categories which results in injuries to the student by contacting the Office of the Dean of Students by e-mail, or in person at 1104 Murphy Hall. Refer to UCLA Procedure 230.1 Student Grievances Regarding Violations of Anti-Discrimination Laws or University Policies on Discrimination, also available in 1104 Murphy Hall, for more information.

Inquiries regarding the University student-related nondiscrimination policies may be directed to the Office of the Dean of Students by e-mail, in person at 1104 Murphy Hall, or by phone at 310-825-3871. A staff member is available at this office to support students who need information or assistance in filing a discrimination complaint.
In accordance with applicable federal and state laws and University policy, including Title II of the Americans with Disabilities Act, Section 504 of the Rehabilitation Act of 1973, and University of California policy P1C10S-20 (Policy on Educational Rights and Responsibilities), UCLA does not discriminate on the basis of physical or mental disability. Retaliation for participation in University procedures relating to complaints of discrimination is also prohibited. This nondiscrimination policy covers admission, access, and treatment in University programs and activities. UCLA is committed to prohibiting disability-based discrimination and harassment, and retaliation, performing a prompt and equitable investigation of complaints alleging discrimination, and properly remedying discrimination when it occurs. Examples of discrimination against students with disabilities include, but are not limited to: failure to engage with the student in a discussion of reasoning accommodations; failure to implement approved reasonable accommodations such as the provision of notes or extra time on tests; and exclusion of a qualified student from any course, course of study, or other educational program or activity because of the student’s disability. Disability-based harassment is conduct which is sufficiently severe, pervasive, or persistent so as to interfere with or limit an individual’s ability to participate in or benefit from the services, activities, or opportunities offered by the University.

UCLA has issued Procedure 230.2 Student Grievance Regarding Violations of Anti-Discrimination Laws or University Policies on Discrimination on Basis of Disability. Students may grieve any action that they believe discriminates against them on the basis of disability by contacting the Office of the Dean of Students by e-mail, or in person at 1104 Murphy Hall. Refer to this procedure for more information.

Title IX prohibits sex discrimination, including sexual harassment and sexual violence, in any education program or activity receiving financial assistance from the federal government. Inquiries regarding the application of Title IX may be directed to the Title IX Office, 2255 Murphy Hall, 310-206-3417, or the U.S. Department of Education Office for Civil Rights.

Harassment

Sexual Harassment

The University of California is committed to creating and maintaining a community where all persons who participate in University programs and activities can work and learn together in an atmosphere free from all forms of harassment, exploitation, or intimidation. Every member of the University community should be aware that the University is strongly opposed to sexual harassment and that such behavior is prohibited both by law and by the UC Policy on Sexual Violence and Sexual Harassment (PDF) (hereafter referred to as the SVSH Policy). The University will respond promptly and effectively to reports of sexual harassment and will take appropriate action to prevent, correct and, if necessary, discipline behavior that violates the SVSH Policy. See the Title IX sexual harassment prevention website.

Definitions

For detailed definitions of sexual harassment, refer to the SVSH Policy.

Complaint Resolution

An individual who believes that they have been sexually harassed may contact Title IX Director Mohammed Cato, 2255 Murphy Hall, 310-206-3417. If a student reports sexual harassment or sexual violence to a responsible employee, as defined under the SVSH Policy, the responsible employee must report it to the Title IX Office.

Responsible employees include academic personnel, faculty members, and most other employees who are not defined as a confidential resource under the SVSH Policy. Title IX prohibits sex discrimination, including sexual harassment and sexual violence, in any education program or activity receiving federal financial assistance. Inquiries regarding Title IX may be directed to the Title IX Office by e-mail, or at 2255 Murphy Hall, 310-206-3417; or the U.S. Department of Education Office for Civil Rights.

Other Forms of Harassment

The University strives to create an environment that fosters the values of mutual respect and tolerance and is free from discrimination based on race, ethnicity, sex, religion, sexual orientation, disability, age, and other personal characteristics. Certainly harassment, in its many forms, works against those values and often corrodes a person’s sense of worth and interferes with one’s ability to participate in University programs or activities. While the University is committed to the free exchange of ideas and the full protection of free expression, the University also recognizes that words can be used in such a way that they no longer express an idea, but rather injure and intimidate, thus undermining the ability of individuals to participate in the University community. The University of California Policies Applying to Campus Activities, Organizations, and Students (PDF) (hereafter referred to as Policies) presently prohibit a variety of conduct by students which, in certain contexts, may be regarded as harassment or intimidation.

For example, harassing expression which is accompanied by physical abuse, threats of violence, or conduct that threatens the health or safety of any person on University property or in connection with official University functions may subject an offending student to University discipline under the provisions of the Policies.

Similarly, harassing conduct, including symbolic expression, which also involves conduct resulting in damage to or destruction of any property of the University or property of others while on University premises may subject a student to University discipline under the provisions of Section 102.04 of the Policies.

Further, under specific circumstances described in Section 102.11 of the Policies, students may be subject to University discipline for misconduct which may consist solely of expression. Copies of these Policies are available in the Office of Student Conduct, 1104 Murphy Hall.

Complaint Resolution

One of the necessary measures in our efforts to assure an atmosphere of civility and mutual respect is the establishment of procedures which provide effective informal and formal mechanisms for those who believe that they have been victims of any of the above misconduct.

Many incidents of harassment and intimidation can be effectively resolved through informal means. For example, an individual may wish to confront the alleged offender immediately and firmly. An individual who chooses not to confront the alleged offender and who wishes help, advice, or information is urged to contact the Office of Student Conduct.

In addition to providing support for those who believe they have been victims of harassment, the Office of Student Conduct can help students to consider which of the available options is the most useful for the particular circumstances.

With regard to the Universitywide Student Conduct Harassment Policy, complainants should be aware that not all conduct which is offensive may be regarded as a violation of this policy and may, in fact, be protected expression. Thus, the application of formal institutional discipline to such protected expression may not be legally permissible. Nevertheless, the University is committed to reviewing any complaint of harassing or intimidating conduct by a student and intervening on behalf of the complainant to the extent possible.
Disclosure of Student Records

Pursuant to the Federal Family Educational Rights and Privacy Act (FERPA), the California Information Practices Act, and the University of California Policies Applying to the Disclosure of Information from Student Records, students at UCLA have the right to

1. inspect and review records pertaining to themselves in their capacity as students, except as the right may be waived or qualified under federal and state laws and University policies
2. have withheld from disclosure, absent their prior written consent for release, personally identifiable information from their student records, except as provided by federal and state laws and University policies
3. inspect records maintained by UCLA of disclosures of personally identifiable information from their student records
4. seek correction of their student records through a request to amend the records or, if such request is denied, through a hearing
5. file complaints with the U.S. Department of Education regarding alleged violations of the rights accorded them by FERPA

UCLA, in accordance with federal and state laws and University policies, has designated the following categories of personally identifiable information as public information that UCLA may release and publish without the student’s prior consent: name, e-mail address, telephone numbers, major field of study, dates of attendance, number of enrolled course units, degrees and honors received, the most recent previous educational institution attended, participation in officially recognized activities (including intercollegiate athletics), and the name, weight, and height of participants on intercollegiate athletic teams.

As a matter of practice, UCLA does not publish student telephone numbers in the campus online directory unless released by the student. The term public information in this policy is synonymous with the term directory information in FERPA.

Students who do not wish certain items (i.e., name, e-mail address, telephone numbers, major field of study, dates of attendance, number of course units in which enrolled, and degrees and honors received) of this public information released and published may so indicate through MyUCLA. To restrict the release and publication of additional items in the category of public information, complete the UCLA FERPA Restriction Request form available from the Registrar’s Office, 1113 Murphy Hall.

Student records that are the subject of federal and state laws and University policies may be maintained in a variety of offices, including the Registrar’s Office, Office of Student Conduct, Career Center, Division of Graduate Education, External Affairs Department, and offices of a student’s College or school and major department. Students are referred to the online UCLA Campus Directory, which lists all the offices that may maintain student records, together with each office campus address and telephone number. Students have the right to inspect their student records in any such office, subject to the terms of federal and state laws and University policies. Inspection of student records maintained by the Registrar’s Office is by appointment only and must be arranged three working days in advance. Call 310-825-1091, option 6; or inquire at the Registrar’s Office, 1113 Murphy Hall.

A copy of applicable federal and state laws and University policies may be requested from the Information Practices office by e-mail, or by calling 310-794-8741. Information concerning student hearing rights may be obtained from that office, and from the Office of Student Conduct, 1206 Murphy Hall.
Undergraduate Programs

The Henry Samueli School of Engineering and Applied Science offers 10 four-year curricula listed below (see the departmental listings for complete descriptions of the programs), in addition to undergraduate minors in Bioinformatics, Data Science Engineering, and Environmental Engineering:

- Bachelor of Science in Aerospace Engineering
- Bachelor of Science in Bioengineering
- Bachelor of Science in Chemical Engineering
- Bachelor of Science in Civil Engineering
- Bachelor of Science in Computer Engineering
- Bachelor of Science in Computer Science
- Bachelor of Science in Computer Science and Engineering
- Bachelor of Science in Electrical Engineering
- Bachelor of Science in Materials Engineering
- Bachelor of Science in Mechanical Engineering

The aerospace engineering, bioengineering, chemical engineering, civil engineering, computer science and engineering, electrical engineering, materials engineering, and mechanical engineering programs are accredited by the Engineering Accreditation Commission of ABET. The computer science and computer science and engineering curricula are accredited by the Computing Accreditation Commission of ABET. The undergraduate program in computer engineering, established in fall 2017, will be submitted to ABET for accreditation during the next ABET visit in 2024.

Admission

Applicants to UCLA Samueli must satisfy the general UC admission requirements. See the undergraduate admission website for details. Applicants must apply directly to the school by selecting one of the majors within the school or the undeclared engineering option. In the selection process many elements are considered, including grades and academic preparation.

Students applying as freshmen or transfers must submit their applications during the November 1 through 30 filing period. In addition, it is essential that official test scores be received no later than the date in January when the December test scores are normally reported.

Fulfilling the admission requirements, however, does not assure admission to the school. Limits have had to be set for the enrollment of new undergraduate students. Thus, not every applicant who meets the minimum requirements can be admitted.

Admission as a Freshman

Freshman applicants must meet the UC subject and scholarship requirements described on the undergraduate admission website. UC requirements specify a minimum of three years of mathematics, including the topics covered in elementary and advanced algebra and two- and three-dimensional geometry. Additional study in mathematics, concluding with calculus or precalculus in the senior year, is strongly recommended and typical for applicants to UCLA Samueli.

Credit for Advanced Placement Examinations

Students may fulfill part of the school requirements with credit allowed at the time of admission for College Board Advanced Placement (AP) Examinations with scores of 3, 4, or 5. Students with AP Examination credit may exceed the 213-unit maximum by the amount of this credit. AP Examination credit for freshmen entering fall quarter 2023 fulfills UCLA Samueli requirements as indicated in the AP credit table.

Students who have completed 36 quarter units after high school graduation at the time of the examination receive no AP Examination credit.

Admission as a Transfer Student

Admission as a junior-level transfer student is competitive. The University of California requires applicants to have completed a minimum of 60 transferable semester units (90 quarter units) and two transferable English courses prior to enrolling at UCLA. In addition, to be considered all applicants to UCLA Samueli majors must have at least a 3.4 grade-point average in their college work. Many of the majors in the school are impacted. Excellent grades, especially for courses in preparation for the major, are expected.

Completion of the required courses in preparation for the major is critical for admission. Articulation agreements between California community colleges and UCLA Samueli include college-specific course numbers for these requirements and can be found on the ASSIST website. Applicants who are lacking two or more of the courses are unlikely to be admitted.

Applicants should have completed the following lower-division minimum subject requirements:

1. Mathematics, including calculus I and II, calculus III (multivariable), differential equations, and linear algebra. The Aerospace Engineering and Mechanical Engineering majors do not require differential equations, but it is recommended.
2. Calculus-based physics courses in mechanics, electricity and magnetism, and waves, sound, heat, optics, and modern physics.
3. Chemistry, including two terms of general chemistry. Bioengineering and Chemical Engineering majors are also required to complete two terms of organic chemistry. The Computer Science and Computer Science and Engineering majors do not require chemistry. Electrical Engineering majors must complete only one term of chemistry.
4. Computer programming: applicants to the Computer Science, Computer Science and Engineering, and Electrical Engineering majors may take any C++, C, or Java course to meet the admission requirement, but to be competitive the applicant must take a C++ course equivalent to UCLA Computer Science 31. Applicants to Chemical Engineering may take any C++, C, Java, or MATLAB course to satisfy the admission requirement, but lack of a MATLAB course equivalent to UCLA Mechanical and Aerospace Engineering M20 or Civil and Environmental Engineering M20 will delay time to graduation. Applicants to all other engineering majors may take any C++, C, Java, or MATLAB course to satisfy the admission requirement, but the MATLAB course equivalent to Mechanical and Aerospace Engineering M20 or Civil and Environmental Engineering M20 is preferred.
5. One year of biology for applicants to the Bioengineering major is recommended.
6. English composition courses, including one course equivalent to English Composition 3 at UCLA and a second UC transferable English composition course.
Advanced Placement (AP) Examination Credit

All units and course equivalents to AP examinations are lower division. If an AP examination has been given UCLA course equivalency (e.g., Economics 2), it may not be repeated at UCLA for units or grade points.

<table>
<thead>
<tr>
<th>AP EXAMINATION</th>
<th>SCORE</th>
<th>UCLA LOWER-DIVISION UNITS AND COURSE EQUIVALENTS</th>
<th>CREDIT ALLOWED FOR UNIVERSITY AND GE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art History</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Art, Studio</td>
<td></td>
<td>8 units maximum for all tests</td>
<td></td>
</tr>
<tr>
<td>Drawing Portfolio</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Two-Dimensional Design Portfolio</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Three-Dimensional Design Portfolio</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Biology</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Chemistry</td>
<td>3</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>4 excess units plus 4 units</td>
<td>4 units may be applied toward Chemistry 20A</td>
</tr>
<tr>
<td>Computer Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Science A Test</td>
<td>3, 4, or 5</td>
<td>2 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Computer Science AB Test</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Computer Science Principles</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Economics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroeconomics</td>
<td>3 or 4</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Economics 2 (4 excess units)</td>
<td>No application</td>
</tr>
<tr>
<td>Microeconomics</td>
<td>3 or 4</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Economics 1 (4 excess units)</td>
<td>No application</td>
</tr>
<tr>
<td>English</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language and Composition</td>
<td>3</td>
<td>8 excess units</td>
<td>Satisfies Entry-Level Writing requirement</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>English Composition 3 (5 units) plus 3 excess units</td>
<td>Satisfies Entry-Level Writing requirement</td>
</tr>
<tr>
<td>Literature and Composition</td>
<td>3</td>
<td>8 excess units</td>
<td>Satisfies Entry-Level Writing requirement</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>English Composition 3 (5 units) plus 3 excess units</td>
<td>Satisfies Entry-Level Writing requirement</td>
</tr>
<tr>
<td>Environmental Science</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Geography, Human</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Government and Politics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparative</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>United States</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>Satisfies American History and Institutions requirement</td>
</tr>
<tr>
<td>History</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>United States</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>Satisfies American History and Institutions requirement</td>
</tr>
<tr>
<td>World</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Languages and Literatures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese Language and Culture</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>French Language</td>
<td>3</td>
<td>French 3 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>French 4 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>French 5 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>French Literature</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
</tbody>
</table>
UCLA SamueI Advanced Placement Examination Score-to-Credit Conversion (cont.)

<table>
<thead>
<tr>
<th>AP Examination</th>
<th>Score</th>
<th>UCLA Lower-Division Units and Course Equivalents</th>
<th>Credit Allowed for University and GE Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>German Language</td>
<td>3</td>
<td>German 3 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>German 4 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>German 5 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Japanese Language and Culture</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Latin Literature</td>
<td>3</td>
<td>Latin 1 (4 units)</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>Latin 3 (4 units)</td>
<td>No application</td>
</tr>
<tr>
<td>Spanish Language</td>
<td>3</td>
<td>Spanish 3 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Spanish 4 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Spanish 5 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Spanish Literature</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
<td>8 units maximum for both tests</td>
<td></td>
</tr>
<tr>
<td>Mathematics AB Test: Calculus</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4 units</td>
<td>May be applied toward Mathematics 31A</td>
</tr>
<tr>
<td>Mathematics BC Test: Calculus</td>
<td>3</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4 excess units plus 4 units</td>
<td>4 units may be applied toward Mathematics 31A</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8 units</td>
<td>Mathematics 31A plus 4 units that may be applied toward Mathematics 31B</td>
</tr>
<tr>
<td>Music Theory</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Physics</td>
<td></td>
<td>8 units maximum for all tests</td>
<td></td>
</tr>
<tr>
<td>Physics 1</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Physics 2</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Physics B Test</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Physics C Test: Electricity/Magnetism</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Physics C Test: Mechanics</td>
<td>3</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>4 units</td>
<td>May be applied toward Physics 1A</td>
</tr>
<tr>
<td>Psychology</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>Psychology 10 (4 excess units)</td>
<td>No application</td>
</tr>
<tr>
<td>Statistics</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
</tbody>
</table>

Lower-Division Courses in Other Departments

- Chemistry and Biochemistry 20A. Chemical Structure (4 units)
- Chemistry and Biochemistry 20B. Chemical Energetics and Change (4 units)
- Chemistry and Biochemistry 20L. General Chemistry Laboratory (3 units)
- English Composition 3. English Composition, Rhetoric, and Language (5 units)
- Mathematics 31A. Differential and Integral Calculus (4 units)
- Mathematics 31B. Integration and Infinite Series (4 units)
- Mathematics 32A, 32B. Calculus of Several Variables (4 units each)
- Mathematics 33A. Linear Algebra and Applications (4 units)
- Mathematics 33B. Differential Equations (4 units)
- Physics 1A. Physics for Scientists and Engineers: Mechanics (5 units)
- Physics 1B. Physics for Scientists and Engineers: Oscillations, Waves, Electric and Magnetic Fields (5 units)
- Physics 1C. Physics for Scientists and Engineers: Electrodynamics, Optics, and Special Relativity (5 units)
- Physics 4AL. Physics Laboratory for Scientists and Engineers: Mechanics (2 units)
- Physics 4BL. Physics Laboratory for Scientists and Engineers: Electricity and Magnetism (2 units)

The courses in chemistry, mathematics, and physics are those required as preparation for majors in these subjects. Transfer students should select equivalent courses required for engineering or physical sciences majors.

Requirements for BS Degrees

The Henry Samueli School of Engineering and Applied Science awards BS degrees to students who have satisfactorily completed four-year programs in engineering studies. Students must meet University requirements, school requirements, and department requirements for the Bachelor of Science degree.
University Requirements

The University of California has two requirements that undergraduate students must satisfy in order to graduate: (1) Entry-Level Writing or English as a Second Language, and (2) American History and Institutions. These requirements are discussed in detail in the Undergraduate Study section of the UCLA General Catalog.

School Requirements

The Henry Samueli School of Engineering and Applied Science has seven requirements that must be satisfied for the award of the degree: unit, scholarship, academic residence, writing, technical breadth, ethics, and general education.

Unit Requirement

To receive a bachelor’s degree in any UCLA Samueli major, students must complete a minimum of 180 units. The maximum allowed is 213 units. After 213 quarter units, enrollment may not normally be continued in the school without special permission from the associate dean. This regulation does not apply to Departmental Scholars.

Scholarship Requirement

In addition to the requirement of at least a 2.0 (C) grade-point average (GPA) in all courses taken at any UC campus, students must achieve at least a 2.0 GPA in all upper-division courses offered in satisfaction of the subject and elective requirements of the curriculum. A 2.0 minimum GPA in upper-division mathematics, upper-division core courses, and the major field is also required for graduation. Grade-point averages are not rounded up.

Academic Residence Requirement

Of the last 48 units completed for the BS degree, 36 must be earned in residence at UCLA Samueli on this campus. No more than 16 of the 36 units may be completed in summer sessions at UCLA.

Writing Requirement

Students must complete the UC Entry-Level Writing or English as a Second Language (ESL) requirement prior to completing the school writing requirement. Students admitted to the school are required to complete a two-term writing requirement—Writing I and Engineering Writing. Both courses must be taken for a letter grade, and students must receive a C or better grade in each (a C– grade is not acceptable).

General Education Requirements

General education (GE) is more than a checklist of required courses. It is a program of study that reveals to students the ways that research scholars in the arts, humanities, social sciences, and natural sciences create and evaluate new knowledge; introduces students to the important ideas and themes of human cultures; fosters appreciation for the many perspectives and diverse voices that may be heard in a democratic society; and develops the intellectual skills that give students the dexterity they need to function in a rapidly changing world.

This entails the ability to make critical and logical assessments of information, both traditional and digital; deliver reasoned and persuasive arguments; and identify, acquire, and use the knowledge necessary to solve problems.

Students may take one GE course per term on a Passed/Not Passed (P/NP) basis if they are in good academic standing. For details on P/NP grading, see Grades in the Academic Policies section of the UCLA General Catalog or consult with the Office of Academic and Student Affairs.

GE courses used to satisfy the engineering writing and/or ethics requirements must be taken for a letter grade.

Foundations of Knowledge

General education courses are grouped into three foundational areas: Foundations of the Arts and Humanities, Foundations of Society and Culture, and Foundations of Scientific Inquiry.

Five courses (24 units minimum) are required. Engineering writing requirement courses also approved for GE credit may be applied toward the relevant GE foundational areas. Transfer applicants may complete courses in addition to those above that satisfy degree requirements. Engineering and computer science courses appropriate for each major may be found on the ASSIST website.

Students must meet with a counselor in the Office of Academic and Student Affairs to determine the applicability of GE cluster courses toward the engineering writing or GE requirements.

Courses listed in more than one category can fulfill GE requirements in only one of the categories.
Foundations of the Arts and Humanities

Two 5-unit courses selected from two different subgroups:
- Literary and Cultural Analysis
- Philosophical and Linguistic Analysis
- Visual and Performance Arts Analysis and Practice
Courses in this area supply perspectives and intellectual skills necessary to comprehend and think critically about our situation in the world as human beings. In particular, courses furnish the basic means to appreciate and evaluate the ongoing efforts of humans to explain, translate, and transform their diverse experiences of the world through such media as language, literature, philosophical systems, images, sounds, and performances. The courses introduce students to the historical development and fundamental intellectual and ethical issues associated with the arts and humanities and may also investigate the complex relations between artistic and humanistic expression and other facets of society and culture.

Foundations of Society and Culture

Two 5-unit courses, one from each subgroup:
- Historical Analysis
- Social Analysis
Courses in this area introduce students to the ways in which humans organize, structure, rationalize, and govern their diverse societies and cultures over time. Courses focus on a particular historical question, societal problem, or topic of political and economic concern in an effort to demonstrate how issues are objectified for study, how data is collected and analyzed, and how new understandings of social phenomena are achieved and evaluated.

Foundations of Scientific Inquiry

One course (4 units minimum) from the Life Sciences subgroup or one course from Bioengineering CM145, Chemical Engineering CM145, Chemistry and Biochemistry 153A, or Civil and Environmental Engineering M166, Environmental Health Sciences M166:
- Life Sciences
This requirement is automatically satisfied for Bioengineering and Chemical Engineering majors. The requirement is satisfied for Civil Engineering majors by the natural science requirement.
Courses in this area ensure that students gain a fundamental understanding of how scientists formulate and answer questions about the operation of both the physical and biological world. Courses also deal with some of the most important issues, developments, and methodologies in contemporary science, addressing such topics as the origin of the universe, environmental degradation, and the decoding of the human genome. Through lectures, laboratory experiences, writing, and intensive discussions, students consider the important roles played by the laws of physics and chemistry in society, biology, Earth and environmental sciences, and astrophysics and cosmology.

Foundations Course Lists

Creating and maintaining a general education curriculum is a dynamic process; consequently, courses are frequently added to the list. For the most current list of approved courses that satisfy the Foundations of Knowledge GE plan, consult with an academic counselor or see the GE Requirement web page.

Intersegmental General Education Transfer Curriculum

Transfer students from California community colleges have the option to fulfill UCLA lower-division GE requirements by completing the Intersegmental General Education Transfer Curriculum (IGETC) prior to transfer. The curriculum consists of a series of subject areas and types of courses that have been agreed on by the University of California and the California community colleges. Although GE or transfer core courses are degree requirements rather than admission requirements, students are advised to fulfill them prior to transfer. The IGETC significantly eases the transfer process, as all UCLA GE requirements are fulfilled when students complete the IGETC courses. Students who select the IGETC must complete it entirely before enrolling at UCLA. Otherwise, they must fulfill UCLA Samueli GE requirements. The school does not accept partial IGETC.

Department Requirements

UCLA Samueli departments generally set two types of requirements that must be satisfied for award of a degree: preparation for the major (lower-division courses) and the major (upper-division courses). Preparation for the major courses should be completed before beginning upper-division work.

Preparation for the Major

A major requires completion of a set of courses known as preparation for the major. Each department sets its own preparation for the major requirements; see the Departments and Programs chapter of this announcement.

The Major

Students must complete their major with a scholarship grade-point average of at least 2.0 (C) in all courses in order to remain in the major. Each course in the major department must be taken for a letter grade. See the Departments and Programs chapter of this announcement for details on each major.

Policies and Regulations

Degree requirements are subject to policies and regulations, including the following:

Student Responsibility

Students should take advantage of academic support resources, but they are ultimately responsible for keeping informed of and complying with the rules, regulations, and policies affecting their academic standing.

Study List

Study lists require approval of the dean of the school or a designated representative. It is the student’s responsibility to present a study list that reflects satisfactory progress toward the Bachelor of Science degree, according to standards set by the faculty. Study lists or programs of study that do not comply with these standards may result in enforced withdrawal from UCLA or other academic action.

Undergraduate students in the school are expected to enroll in at least 12 units each term. Students enrolling in fewer than 12 units must obtain approval by petition to the dean before enrolling in classes. The normal program is 16 units per term. Students may not enroll in more than 21 units per term unless an Excess Unit Petition is approved in advance by the dean.

Minimum Progress

Full-time UCLA Samueli undergraduate students must complete a minimum of 36 units in three consecutive terms in which they are registered.
Credit Limitations

Advanced Placement Examinations

Students may fulfill part of the school requirements with credit allowed at the time of admission for College Board Advanced Placement (AP) Examinations with scores of 3, 4, or 5. Students with AP Examination credit may exceed the 213-unit maximum by the amount of this credit.

AP Examination credit for freshmen entering in fall quarter fulfills requirements as published. Some portions of AP Examination credit are evaluated by corresponding UCLA course number. If students take the equivalent UCLA course, a deduction of UCLA unit credit is made prior to graduation. See the AP credit table.

Students who have completed 36 quarter units after high school graduation at the time of the examination receive no AP Examination credit.

College Level Examination Program

Credit earned through the College Level Examination Program (CLEP) may not be applied toward the bachelor’s degree.

Community College/ Lower Division Transfer Limitation

Effective for students admitted fall 2017 and later, after completing 105 lower-division quarter units toward the degree in all institutions attended, students are allowed no further unit credit for courses completed at a community college or for lower-division courses completed at any institution outside of the University of California. The University of California does not grant transfer credit for community college or lower-division courses beyond 105 quarter units, but students may still receive subject credit for this coursework to satisfy lower-division requirements. Units earned through Advanced Placement (AP), International Baccalaureate (IB), and/or A-Level examinations are not included in the limitation. Units earned at any UC campus (through extension, summer, cross-campus, UCEAP, Intercampus Visitor Program, and regular academic year enrollment) are not included in the limitation. To convert semester units into quarter units, multiply the semester units by 1.5; for example, 12 semester units x 1.5 = 18 quarter units. To convert quarter units into semester units, multiply the quarter units by .666; for example, 12 quarter units x .666 = 7.99 or 8 semester units.

Foreign Language

No credit is granted toward the bachelor’s degree for college foreign language courses equivalent to quarter levels one and two if the equivalent of level two of the same language was completed with satisfactory grades in high school.

Repetition of Courses

For undergraduate students who repeat a total of 16 or fewer units, only the most recently earned letter grades and grade points are computed in the grade-point average (GPA). After repeating 16 units, the GPA is based on all letter grades assigned and total units attempted. The grade assigned each time a course is taken is permanently recorded on the transcript.

- To improve the GPA, students may repeat only those courses in which they receive a grade of C– or lower; NP or U grades may be repeated to gain unit credit. Courses in which a letter grade is received may not be repeated on a P/NP or S/U basis. Courses originally taken on a P/NP or S/U basis may be repeated on the same basis or for a letter grade.
- Repetition of a course more than once requires the approval of the College or school or the dean of the Division of Graduate Education and is granted only under extraordinary circumstances.
- Degree credit for a course is given only once, but the grade assigned each time the course is taken is permanently recorded on the transcript.
- There is no guarantee that in a later term a course can be repeated (such as in cases when a course is deleted or no longer offered). In these cases, students should consult with their academic counselor to determine if there is an alternate course that can be taken to satisfy a requirement. The alternate course would not count as a repeat of the original course.

Minors and Double Majors

UCLA Samueli students in good academic standing may be permitted to have a minor or double major. The second major must be outside the school (e.g., Electrical Engineering major and Economics major). If approved, no more than 20 upper-division units may be shared by both majors. UCLA Samueli students are not permitted to have a double major with two school majors (e.g., Chemical Engineering and Civil Engineering). Students may file an Undergraduate Request to Double Major or Add Minor form online through the petition process web page. The school determines final approval of a minor or double major request; review is done on a case-by-case basis, and filing the request does not guarantee approval. Students interested in a minor or double major should schedule an appointment with an academic counselor online if they have any questions about the process of applying.

While minor and double major requests are considered, specializations are not considered.

Advising

It is mandatory for all students entering undergraduate programs to have their course of study approved by an academic counselor. After the first term, curricular and career advising is accomplished on a formal basis. First-year students are assigned a faculty adviser in their particular specialization.

In addition, undergraduate students are assigned, by major, to an academic counselor in the Office of Academic and Student Affairs who provides them with advice regarding general requirements for degrees, and UC, UCLA, and school regulations and procedures. It is the student’s responsibility to periodically meet with their academic counselor, as well as with their faculty adviser, to discuss curriculum requirements, programs of study, and any other academic matters of concern.

Curricula Planning Procedure

Students normally follow the curriculum in effect when they enter the school. California community college transfer students may also select the curriculum in the UCLA General Catalog in effect at the time they began their community college work in an engineering program, provided attendance has been continuous since that time. Students admitted to UCLA in fall quarter 2012 and thereafter use the Degree Audit system, which can be accessed through MyUCLA.

UCLA Samueli undergraduate students following a Catalog year prior to fall quarter 2012 should schedule an appointment with their academic counselor online to review course credit and degree requirements and for program planning. The student’s regular faculty adviser is available to assist in planning electives and for discussions regarding career objectives. Students should discuss their elective plan with the adviser and obtain the adviser’s approval.

Students should also see any member or members of the faculty specially qualified
in their major for advice in working out a program of major courses.

Students are assigned to advisers by majors and major fields of interest. A specific adviser, or an adviser in a particular engineering department, may be requested by logging in to MyEngineering and clicking on the My Advisors link.

Academic counselors in the Office of Academic and Student Affairs assist students with UCLA procedures and answer questions related to general requirements.

Honors

Dean’s Honors List

The Dean’s Honors list recognizes high scholastic achievement in any one term. The following criteria are used to note Dean’s Honors on student records: a 3.862 grade-point average (GPA) in any one term, with at least 15 units (12 units of letter grade). The minimum GPA required is subject to change on an annual basis. Students are not eligible for Dean’s Honors in any given term if they receive an Incomplete (I) or a Not Passed (NP) grade, or repeat a course. Only courses applicable to an undergraduate degree are considered toward eligibility for Dean’s Honors. Dean’s Honors are automatically recorded on the transcript for the appropriate term.

Latin Honors

Students who have achieved scholastic distinction may be awarded the bachelor's degree with honors. Students eligible for 2023-24 honors at graduation must have completed 90 or more units for a letter grade at the University of California and must have attained a cumulative grade-point average (GPA) at graduation that places them in the top 20 percent of the school (GPA of 3.862 or better) for cum laude, the top 10 percent (GPA of 3.934 or better) for magna cum laude, and the top five percent (GPA of 3.972 or better) for summa cum laude. The minimum GPAs required are subject to change on an annual basis. Required GPAs in effect in the graduating year determine student eligibility.

Based on grades achieved in upper-division courses applied to a specific UCLA Samueli degree requirement, engineering students must also have a 3.862 GPA for cum laude, 3.934 for magna cum laude, and 3.972 for summa cum laude. For all designations of honors, students must have a minimum 3.25 GPA in their major field upper-division courses. Upper-division courses that are not applied to a specific school BS degree requirement are excluded from these upper-division averages.
Graduate Programs

The Henry Samueli School of Engineering and Applied Science offers courses leading to the Master of Science and Doctor of Philosophy degrees, Master of Science in Engineering online degree, Master of Engineering degree, and Engineer degree. The school is divided into seven departments that encompass the major engineering disciplines: aerospace engineering, bioengineering, chemical engineering, civil engineering, computer science, electrical and computer engineering, manufacturing engineering, materials science and engineering, and mechanical engineering. Graduate students are not required to limit their studies to a particular department and are encouraged to consider related offerings in several departments.

Also, a one-year program leading to a Certificate of Specialization is offered in various fields of engineering and applied science. Graduate degree information is updated annually at Program Requirements for UCLA Graduate Degrees.

Master of Science Degrees

The Henry Samueli School of Engineering and Applied Science offers the MS degree in Aerospace Engineering, Bioengineering, Chemical Engineering, Civil Engineering, Computer Science, Electrical and Computer Engineering, Manufacturing Engineering, Materials Science and Engineering, and Mechanical Engineering. The thesis plan requires seven formal courses and a thesis, which may be written while the student is enrolled in two individual study courses. The comprehensive examination plan requires nine formal courses and a comprehensive examination. In some fields students may be allowed to use the PhD major field examination to satisfy the MS comprehensive examination requirement. Full-time students complete MS programs in an average of five terms of study (about a year and a half). To remain in good academic standing, an MS student must obtain a 3.0 grade-point average overall and a 3.0 GPA in graduate courses.

Concurrent Degree Program

A concurrent degree program between UCLA Samueli and the Anderson Graduate School of Management allows students to earn two master’s degrees simultaneously: the MBA and the MS in Computer Science. Contact the Office of Academic and Student Affairs for details.

Master of Science in Engineering Online Degree

The primary purpose of the Master of Science in Engineering Online self-supporting degree program is to enable employed engineers and computer scientists to augment their technical education beyond the Bachelor of Science degree and to enhance their value to the technical organizations in which they are employed.

The individual degrees include:
- Engineering (online MS)
- Engineering – Aerospace (online MS)
- Engineering – Computer Networking (online MS)
- Engineering – Electrical (online MS)
- Engineering – Electronic Materials (online MS)
- Engineering – Integrated Circuits (online MS)
- Engineering – Manufacturing and Design (online MS)
- Engineering – Materials Science (online MS)
- Engineering – Mechanical (online MS)
- Engineering – Signal Processing and Communications (online MS)
- Engineering – Structural Materials (online MS)

Master of Engineering Degree

The one-year Master of Engineering (MEng) is a self-supporting, professional degree designed to develop future engineering leaders. Tailored to those who wish to pursue technical management positions, the degree addresses the needs of both students and industry with high-tech skill set and management savvy. Students in the program develop technical mastery in emerging research areas, learning business and technology management skills while creating real-world projects with industry input.

Doctorate Degrees

The PhD programs prepare students for advanced study and research in the major areas of engineering and computer science. To complete the PhD all candidates must fulfill the minimum requirements of the Division of Graduate Education. Major and minor fields may have additional course and examination requirements. For more information, contact the individual departments. To remain in good academic standing, a PhD student must obtain an overall grade-point average of 3.25.

Established Fields of Study for the PhD

Students may propose other fields of study when the established fields do not meet their educational objectives.

Bioengineering Department

- Biomedical data sciences
- Biomedical devices and instrumentation
- Biomedical image processing (biomedical imaging hardware development and biomedical signal and image processing)
- Molecular, cellular, and tissue engineering
- Neuroengineering

Chemical and Biomolecular Engineering Department

- Chemical engineering

Civil and Environmental Engineering Department

- Civil engineering materials
- Environmental engineering
- Geotechnical engineering
- Hydrology and water resources engineering
• Structures (structural mechanics and earthquake engineering)
• Transportation engineering

Computer Science Department
• Artificial intelligence
• Computational systems biology
• Computer networks
• Computer science theory
• Computer system architecture
• Data science computing
• Graphics and vision
• Software systems

Electrical and Computer Engineering Department
• Circuits and embedded systems
• Physical and wave electronics
• Signals and systems

Materials Science and Engineering Department
• Ceramics and ceramic processing
• Computational Materials Science
• Electronic and optical materials
• Soft Materials
• Structural materials

Mechanical and Aerospace Engineering Department
• Applied mathematics (established minor field only)
• Applied plasma physics (minor field only)
• Data science and machine learning (minor field only)
• Design, robotics, and manufacturing (DROM)
• Fluid mechanics
• Micro-nano engineering
• Structural and solid mechanics
• Systems and control
• Thermal science and engineering

For more information on specific research areas, contact the individual faculty member in the field that most closely matches the area of interest.

Admission
Applications for admission are invited from graduates of recognized colleges and universities. Selection is based on promise of success in the work proposed, which is judged largely on the previous college record.

Candidates whose engineering background is judged to be deficient may be required to take additional coursework that may not be applied toward the degree. The adviser helps plan a program to remedy any such deficiencies, after students arrive at UCLA. Entering students normally are expected to have completed the BS degree requirements with at least a 3.0 grade-point average in all coursework taken in the junior and senior years.

Students entering the PhD program are expected to have completed the requirements for the master’s degree with at least a 3.25 grade-point average, and to have demonstrated creative ability. Normally the MS degree is required for admission to the PhD program. Exceptional students, however, can be admitted to the PhD program without having an MS degree.

For information on the proficiency in English requirements for international graduate students, see Graduate Admission in the Graduate Study section of the UCLA General Catalog.

To submit a graduate application, see the school graduate admissions web page. From there, connect to the site of the preferred department or program and go to the online graduate application.

Graduate Record Examination
Educational Testing Service
P.O. Box 6000, Princeton, NJ 08541-6000

Applicants to UCLA Samueli graduate programs may be required to take the General Test of the Graduate Record Examination (GRE). Students are advised to check with their department of interest to see if the GRE is required for that program. Specific information about the GRE may be obtained from the department of interest.

Obtain applications for the GRE by contacting Educational Testing Service.
Departments and Programs of the School

Bioengineering
5121 Engineering V
Box 951600
Los Angeles, CA 90095-1600
310-267-4985
Department e-mail
Department website
Song Li, PhD, Chair
Dino Di Carlo, PhD, Graduate Vice Chair
Jacob J. Schmidt, PhD, Undergraduate Vice Chair

Faculty Roster

Professors
Pei-Yu Chiou, PhD
Mark S. Cohen, PhD, in Residence
Linda L. Demer, MD, PhD
Timothy J. Deming, PhD
Dino Di Carlo, PhD (Armond and Elena Hairapetian Professor of Engineering and Medicine)
Elisa Franco, PhD
Robin L. Garrell, PhD
Tzung K. Hsiai, MD, PhD, in Residence
Daniel T. Kamei, PhD
Andrea M. Kasko, PhD
H. Pirouz Kavehpour, PhD
Chang-Jin (CJ) Kim, PhD (Volgenau Endowed Professor of Engineering)
Debiao Li, PhD, in Residence
Song Li, PhD
Wentai Liu, PhD
Arash Naeim, MD, PhD, in Residence (Neria and Manizheh Yormtobian Endowed Professor of Cancer and Risk Sciences)
Aydogan Ozcan, PhD (Volgenau Professor of Engineering Innovation)
Jacob Rosen, PhD
Jacob J. Schmidt, PhD
Vivek Shetty, DDS, DrMedDent
Kalyanam Shivkumar, MD, PhD, in Residence
Maie A. St. John, MD, PhD
Ren Sun, PhD
Yi Tang, PhD (Ralph M. Parsons Foundation Professor of Chemical Engineering)
Michael A. Teitel, PhD
Cun-Yu Wang, DDS, PhD (Dr. No-Hee Park Professor of Dentistry)
Paul S. Weiss, PhD (Presidential Professor of Chemistry)
Gerard C.L. Wong, PhD
Yang Yang, PhD

Professors Emeriti
Chih-Ming Ho, PhD (Ben Rich Lockheed Martin Professor Emeritus of Aeronautics)
Edward R.B. McCabe, MD, PhD (Mattle Executive Endowed Professor Emeritus of Pediatrics)
Benjamin M. Wu, DDS, PhD

Associate Professors
Corey W. Arnold, PhD, in Residence
Liang Gao, PhD
Weizhe Hong, PhD
William Hsu, PhD, in Residence
Shantanu H. Joshi, PhD, in Residence
Aaron S. Meyer, PhD
Dan Ruan, PhD, in Residence

Assistant Professors
Jun Chen, PhD
Tyler R. Olters, PhD
Mireille Kamariza, PhD
Neil Y.C. Lin, PhD
Jaimie Marie Stewart, PhD
Jennifer L. Wilson, PhD
Holden H. Wu, PhD, in Residence

Adjunct Professors
Sophia N. Barbarie, PhD
Keisuke Goda, PhD
Zhen Gu, PhD

Adjunct Associate Professors
Stephanie K. Seidlits, PhD
Bill J. Tawil, MBA, PhD

Adjunct Assistant Professor
Chase Linsley, PhD

Affiliated Faculty

Professors
Peyman Benharash, MD (Cardiothoracic Surgery)
Alex A.T. Bui, PhD (Radiological Sciences)
Dean Buonomano, PhD (Neurobiology, Psychology)
Gregory P. Carman, PhD (Materials Science and Engineering, Mechanical and Aerospace Engineering)
Yong Chen, PhD (Materials Science and Engineering, Mechanical and Aerospace Engineering)
Aichi Chien, PhD (Radiological Sciences)
Thomas Chou, PhD (Computational Medicine, Mathematics)
Joseph L. Demer, MD, PhD (Neurology, Ophthalmology)
Joseph J. DiStefano III, PhD (Computer Science, Medicine-Endocrinology)
Bruce S. Dunn, PhD (Materials Science and Engineering)
Peyman Golshani, MD, PhD, in Residence (Neurology, Psychiatry and Biobehavioral Sciences)
Thomas G. Graeber, PhD (Molecular and Medical Pharmacology)
Vijay Gupta, PhD (Materials Science and Engineering, Mechanical and Aerospace Engineering)
Y. Sungtaek Ju, PhD (Mechanical and Aerospace Engineering)
Jody E. Kreiman, PhD, in Residence (Head and Neck Surgery, Linguistics)
Rajesh Kumar, PhD, in Residence (Anesthesiology and Perioperative Medicine, Radiological Sciences)
Min Lee, PhD (Dentistry)
Daniel S. Levi, PhD (Pediatrics)
Zili Liu, PhD (Psychology)

Dejan Markovic, PhD (Electrical and Computer Engineering)
Sotiris C. Masmanidis, PhD (Neurobiology)
Heather D. Maynard, PhD (Chemistry and Biochemistry)
Harold G. Mombouquette, PhD (Chemical and Biomolecular Engineering)
Kim-Lien Nguyen, MD, in Residence (Medicine-VA, Radiological Sciences)
Ichiro Nishimura, DDS, DMSc, DMD (Dentistry)
Matteo Pellegrini, PhD (Human Genetics: Medicine-Dermatology; Molecular, Cell, and Developmental Biology)
Laurent Pilon, PhD (Environment and Sustainability, Mechanical and Aerospace Engineering)
Dario L. Ringach, PhD (Neurobiology, Psychology)
Amy C. Rowat, PhD (Integrative Biology and Physiology)
Veronica J. Santos, PhD (Mechanical and Aerospace Engineering)
Ladan Shams, PhD (Psychology)
Chia B. Soo, MD (Orthopaedic Surgery, Plastic Surgery)
Ricky K. Taira, PhD, in Residence (Radiological Sciences)
James G. Tidball, PhD (Integrative Biology and Physiology, Pathology and Laboratory Medicine)
Hsian-Rong Tseng, PhD (Molecular and Medical Pharmacology)
Michael R. van Dam, PhD (Molecular and Medical Pharmacology)
David T.W. Wong, DMD, DMSc (Dentistry-Oral Biology)
Lily Wu, PhD, MD (Molecular and Medical Pharmacology, Pediatrics, Urology)
Xinshu Grace Xiao, PhD (Integrative Biology and Physiology)
Zhaoyan Zhang, PhD, in Residence (Head and Neck Surgery)
Z. Hong Zhou, PhD (Microbiology, Immunology, and Molecular Genetics)

Professors Emeriti
Victor R. Edgerton, PhD (Integrative Biology and Physiology, Neurobiology)
Alan Garfinkel, PhD (Integrative Biology and Physiology, Medicine-Cardiology)
Bahram Jalali, PhD (Electrical and Computer Engineering)
William J. Kaiser, PhD (Electrical and Computer Engineering)
Elliott M. Landaw, MD, PhD (Integrative Biology and Physiology, Neurobiology)
Victor R. Edgerton, PhD (Integrative Biology and Physiology, Neurobiology)

Associate Professors
Aydin Babakhani, PhD (Electrical and Computer Engineering)
Louis S. Bouchard, PhD (Chemistry and Biochemistry, Physics and Astronomy)
that benefits society and to train future leaders in the wide range of possible bioengineering careers by producing graduates who are well grounded in the fundamental sciences, adept at addressing open-ended problems, and highly proficient in rigorous analytical engineering tools necessary for lifelong success.

Undergraduate Study

Bioengineering BS

The bioengineering program is accredited by the Engineering Accreditation Commission of ABET.

Capstone Major

The Bioengineering major is a designated capstone major. Utilizing knowledge from previous courses and new skills learned from the capstone courses, undergraduate students work in teams to apply advanced knowledge of mathematics, science, and engineering principles to address problems at the interface of biology and engineering and to develop innovative bioengineering solutions to meet specific sets of design criteria. Coursework entails construction of student designs, project updates, presentation of projects in written and oral format, and team competition.

Educational Objectives

The goal of the bioengineering curriculum is to train future leaders by providing students with the fundamental scientific knowledge and engineering tools necessary for graduate study in engineering or scientific disciplines, continued education in professional schools, or employment in industry. There are five major program educational objectives: graduates (1) participate in graduate, professional, and continuing education activities that demonstrate an appreciation for lifelong learning; (2) demonstrate professional, ethical, societal, environmental, and economic responsibility (e.g., by active membership in professional organizations); (3) demonstrate the ability to identify, analyze, and solve complex, open-ended problems by creating and implementing appropriate designs; (4) work effectively in teams consisting of people of diverse disciplines and cultures; and (5) be effective written and oral communicators in their professions or graduate/professional schools.

Learning Outcomes

The Bioengineering major has the following learning outcomes:

- Application of advanced knowledge of mathematics, science, and engineering principles to address problems at the interface of biology and engineering
- Design of a system, component, or process to meet desired needs
- Function as a productive member of a multidisciplinary team
- Effective oral and written communication
- Identification, formulation, and solution of engineering problems

Preparation for the Major

Required: Bioengineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Civil and Environmental Engineering M20 or Computer Science 31 or Mechanical and Aerospace Engineering M20; Life Sciences 7A (satisfies GE life sciences requirement) and 7C; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL.

The Major

Students must complete the following courses:

1. Bioengineering 100, 110, 120, 167L, 175, 176, 180, Electrical and Computer Engineering 100; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; two capstone design courses (Bioengineering 177A, 177B)
2. Six additional major field elective courses (24 units) from Bioengineering C101, C102, C104, C105, C106, C107, 121, 122, C131, C132, C135, C139A, C139B, CM140, CM145, C147, C153, C155, 170, CM178, C179, 180L, M182, C183, C185, C186, CM187, 199 (8 units maximum)

Three of the major field elective courses and the three technical breadth courses may also be selected from one of the following tracks. Bioengineering majors cannot take bioengineering technical breadth courses to fulfill the technical breadth requirement.

- Biomaterials and Regenerative Medicine: Bioengineering C104, C105, CM140, C147, C183, C185, 199 (8 units maximum), Materials Science and Engineering 104, 110, C111, 120, 130, 132, 143A, 150, 151, 160, 161. The above materials science and engineering courses may be used to satisfy the technical breadth requirement.

- Biomedical Devices: Bioengineering C131, M153, 199 (8 units maximum), Electrical and Computer Engineering 102, Mechanical and Aerospace Engineering 187L. The electrical and computer engineering or mechanical and aerospace engineering courses listed above may be used to satisfy the technical breadth requirement.

For Bioengineering 199 to fulfill a track requirement, the research project must fit within the scope of the track field, and the
research report must be approved by the supervisor and vice chair.

For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 22 or the GE Requirement web page.

Graduate Study

For admission information, see Graduate Programs Admission on page 27.

The following introductory information is based on 2023-24 program requirements for UCLA graduate degrees. Complete program requirements are available at Program Requirements for UCLA Graduate Degrees. Students are subject to the detailed degree requirements as published in program requirements for the year in which they enter the program.

The Bioengineering Department offers Master of Science (MS) and Doctor of Philosophy (PhD) degrees in Bioengineering.

Bioengineering MS

Course Requirements

A minimum of 13 courses (44 units) is required.

For the comprehensive plan, at least 11 courses must be from the 200 series, three of which must be Bioengineering 299 courses. Students must also take two 598 courses involving work on the thesis and one 495 course.

To remain in good academic standing, MS students must maintain an overall grade-point average of 3.0 and a grade-point average of 3.0 in graduate courses.

Comprehensive Examination Plan

The comprehensive examination plan is available in all fields, and requirements vary for each field. Specific details are available from the graduate adviser. Students who fail the examination may repeat it once only, subject to the approval of the faculty examination committee. Students who fail the examination twice are not permitted to submit a thesis and are subject to termination.

Thesis Plan

Every master's degree thesis plan requires the completion of an approved thesis that demonstrates student ability to perform original, independent research. New students who select this plan are expected to submit the name of the thesis adviser to the graduate adviser by the end of their first term in residence. The thesis adviser serves as chair of the thesis committee.

A research thesis (8 units of Bioengineering 598) is to be written on a bioengineering topic approved by the thesis adviser. The thesis committee consists of the thesis adviser and two other qualified faculty members who are selected from a current list of designated members for the graduate program.

Bioengineering PhD

Course Requirements

To complete the PhD degree, all students must fulfill minimum University requirements. Students must pass the University Oral Qualifying Examination and final oral examination, and complete the courses in Group I and Group II under Fields of Study below. Also see Course Requirements under Bioengineering MS Students must maintain a grade-point average of 3.25 or better in all courses.

Written and Oral Qualifying Examinations

Academic Senate regulations require all doctoral students to complete and pass University written and oral qualifying examinations prior to doctoral advancement to candidacy. Under Senate regulations the University Oral Qualifying Examination is open only to students and appointed members of their doctoral committees. In addition to University requirements, some graduate programs have other precandidacy examination requirements. What follows are the requirements for this doctoral program.

To remain in good standing in the program, PhD students are expected to take the University Oral Qualifying Examination within six academic quarters and two summer quarters (i.e., two years) following matriculation. The nature and content of the examination are at the discretion of the doctoral committee, but ordinarily include a broad inquiry into the student's preparation for research. The doctoral committee also reviews the prospectus of the dissertation, the written component of the qualifying examination, prior to the oral qualifying examination.

A doctoral committee consists of a minimum of four qualified UCLA faculty members. All committee nominations and reconstitutions adhere to the Minimum Standards for Doctoral Committee Constitution.

A final oral examination (defense of the dissertation) is required of all students.

Fields of Study

Biomedical Data Sciences

The biomedical data sciences (BDS) field trains students to be experts in the use of computational, statistical, and machine learning tools for solving biomedical problems. BDS is intended for science and engineering students interested in how data
science tools can operate alongside other areas of bioengineering to solve problems in areas including pattern recognition, prediction, control, measurement, and visualization. Students are trained in the algorithmic and statistical fundamentals of the field. Directed interdisciplinary training prepares students to be practitioners in the application of data science to analyze clinical imaging, molecular and cellular systems, medical devices, electronic health record data, and the many other areas of biomedicine that routinely generate data. In parallel to learning fundamentals, students develop expertise in these application areas, providing them additional expertise in real-world problem solving. In total, this area fosters the development of students who go on to become data scientists with the unique ability to actively interface with practitioners in other areas of bioengineering and medicine.

Biomedical Devices and Instrumentation

The biomedical devices and instrumentation (BDIMI) field is designed to train bioengineers interested in the applications and development of instrumentation used in medicine and biotechnology. Examples include the use of lasers in surgery and diagnostics, new microelectrical machines for surgery, sensors for detecting and monitoring of disease, microfluidic systems for cell-based diagnostics, new tool development for basic and applied life sciences research, and controlled drug delivery devices. The principles underlying each instrument and specific clinical or biological needs are emphasized. Graduates are targeted principally for employment in academia; government research laboratories; and the biotechnology, medical devices, and biomedical industries.

Biomedical Imaging

The biomedical imaging (BI) field consists of the following two subfields: biomedical imaging hardware development (BIHD) and biomedical signal and image processing (BSIP).

Biomedical Imaging Hardware Development (BIHD)

The BIHD subfield prepares students for a career in developing imaging hardware for medical diagnosis and intervention applications. Students learn the physical basis of biomedical imaging modalities such as optical imaging, CT, and MRI. The students will also be trained with hands-on experiences to build state-of-the-art imaging devices and test their performance in real-world medical imaging scenarios. Through the structured curriculum and lab activities, the students experience the excitement of cutting-edge hardware research, hone skills in analytical thinking and communications, and gain knowledge of imaging techniques that are used in the biomedical field.

Biomedical Signal and Image Processing (BSIP)

The BSIP subfield prepares students for a career in the acquisition and analysis of biomedical signals; and enables students to apply quantitative methods applied to extract meaningful information for both clinical and research applications. The BSIP program is premised on the fact that a core set of mathematical and statistical methods are held in common across signal acquisition and imaging modalities and across data analyses regardless of their dimensionality. These include signal transduction, characterization and analysis of noise, transform analysis, feature extraction from time series or images, quantitative image processing and imaging physics. Students in the BSIP program have the opportunity to focus their work over a broad range of modalities including electrophysiology; optical imaging methods; MRI, CT, PET, and other tomographic devices; and/or on the extraction of image features such as organ morphometry or neurofunctional signals, and detailed anatomic/functional feature extraction. The career opportunities for BSIP trainees include medical instrumentation, engineering positions in medical imaging, and research in the application of advanced engineering skills to the study of anatomy and function.

Molecular, Cellular, and Tissue Engineering

The molecular, cellular, and tissue engineering (MCTE) field covers novel therapeutic development across all biological length scales from molecules to cells to tissues. At the molecular and cellular levels, this research area encompasses the engineering of biomaterials, ligands, enzymes, protein-protein interactions, intracellular trafficking, biological signal transduction, genetic regulation, cellular metabolism, drug delivery vehicles, and cell-cell interactions, as well as the development of chemical/biological tools to achieve this. At the tissue level, the field encompasses two subfields—biomaterials and tissue engineering. The properties of bone, muscles, and tissues, the replacement of natural materials with artificial compatible and functional materials such as polymers, composites, ceramics, and metals, and the complex interactions between implants and the body are studied at the tissue level. The research emphasis is on the fundamental basis for diagnosis, disease treatment, and redesign of molecular, cellular, and tissue functions. In addition to quantitative experiments required to obtain spatial and temporal information, quantitative and integrative modeling approaches at the molecular, cellular, and tissue levels are also included within this field. Although some of the research remains exclusively at one length scale, research that bridges any two or all three length scales is also an integral part of this field. Graduates are targeted principally for employment in academia, government research laboratories, and the biotechnology, pharmaceutical, and biomedical industries.

Neuroengineering

The neuroengineering (NE) field is designed to enable students with a background in biological sciences to develop and execute projects that make use of state-of-the-art technologies including microelectromechanical systems (MEMS), signal processing, and photonics. Students with a background in engineering develop and execute projects that address problems that have a neuroscientific base, including locomotion and pattern generation, central control of movement, and the processing of sensory information. Trainees develop the capacity for the multidisciplinary teamwork, in intellectually and socially diverse settings, that is necessary for new scientific insights and dramatic technological progress in the twenty-first century. Students take a curriculum designed to encourage cross-fertilization of neuroscience and engineering. The goal is for neuroscientists and engineers to speak each others’ language and move comfortably among the intellectual domains of the two fields.

Faculty Areas of Thesis Guidance

Professors

Pei-Yu Chiou, PhD (UC Berkeley, 2005)
Optofluidics systems

Mark S. Cohen, PhD (Rockefeller, 1985)
Rapid methods of MR imaging, fusion of electrophysiology and iMRI, advanced approaches to MR data analysis, ultra-low field MRI using SQUID detection, low energy focused ultrasound for neurostimulation

Linda L. Demer, MD, PhD (Johns Hopkins, 1983)
Vascular biology, biomaterialization, vascular calcification, mesenchymal stem cells

Timothy J. Deming, PhD (UC Berkeley, 1993)
Polymer synthesis, polymer processing, supramolecular materials, organometallic catalysis, biomimetic materials, polypeptides

Dino Di Carlo, PhD (UC Berkeley, 2006)
Microfluidics, biomedical microdevices, cellular diagnostics, cell analysis and engineering

Elisa Franco, PhD (U. Trieste, Italy, 2007)
Convergence of structural biology, dynamics and controls using specialized biomolecular frameworks
Tzung K. Hsiai, MD (U. Chicago, 1993), PhD (UCLA, 2001)
Cardiovascular mechanotransduction, MEMS and nanosensors, vascular endothelial dynamics, molecular imaging of atherosclerotic lesions, proteomic and genotypic signatures (RNS and ROS), and reactive oxygen species (ROS)

Daniel T. Kamei, PhD (MIT, 2001)
Molecular cell bioengineering, rational design of molecular therapeutics, systems-level analyses of cellular processes, drug delivery, diagnostics

Andrea M. Kasko, PhD (U. Akron, 2004)
Polymer synthesis, biomaterials, tissue engineering, cellular-material interactions

H. Pirouz Kavehpour, PhD (U. Virginia, 2002)
Development and clinical application of fast MR imaging techniques for the evaluation of the cardiovascular system

Song Li, PhD (UC San Diego, 1997)
Stem cell engineering, tissue engineering and vascular remodeling, mechanobiology/mechanotransduction

Wentai Liu, PhD (U. Michigan, 1983)
Neural engineering

Arash A. Naeim, MD (UCCLA, 1995), PhD (RAND Graduate School, 1992)
Remote monitoring, wearable sensors, big data analytics, clinical informatics, health care analytics

Aydogan Ozcan, PhD (Stanford, 2005)
Photonics, nano- and biotechnology

Jacob Rosen, PhD (Tel Aviv U., Israel, 1997)
Natural integration of a human arm/powered exoskeleton system

Jacob J. Schmidt, MD (U. Minnesota, 1999)
Bioengineering and biophysics at micro and nanoscales, membrane protein engineering, biological-inorganic hybrid devices

Vivek Shetty, DDS, DrMedDent (U. Regensburg, Germany, 1992)
Mobile health, biosensors, salivary diagnostics, value-based health care

Kalyanam Shivkumar, MD (U. Madras, India, 1990), PhD (UCCLA, 1999)
Mechanisms of cardiac arrhythmias in humans, complex catheter ablation, medical technology for cardiovascular therapeutics

Maia A. St. John, MD, PhD (Yale, 1999)
Novel diagnostic and treatment modalities for head and neck cancer

Yi Tang, PhD (Caltech, 2002)
Biosynthesis of proteins/polypeptides with unnatural amino acids, synthesis of novel anti-biotics/antitumor products

Michael A. Teitell, MD (UCCLA, 1993), PhD (UCCLA, 1991)
Immune system development and cancer; regulation of gene expression in development and malignancy; linking RNA processing with mitochondrial homeostasis, metabolism and proliferation; nanoscale evaluation of malignant transformation

Molecular signaling (NF-κB and Wnt) tumor-invasive growth and metastasis, adult mesenchymal stem cells, dental stem cells and regenerative medicine, inflammation and innate immunity

Paul S. Weiss, PhD (UC Berkeley, 1986)
Atomic-scale surface chemistry and physics, molecular devices, nanolithography, bio-physics and neuroscience, nanometer-scale electronics and storage, surface interactions, surface motion, dynamics, and direct manipulation, extending capabilities of scanning tunneling microscope, molecular-scale control and measurement of composition and properties in membranes

Gerald C.L. Wong, PhD (UC Berkeley, 1994)
Antimicrobials and antibiotic-resistant pathogens, bacterial communities, cystic fibrosis, apoptosis proteins and cancer therapeutics, disinfection and air purification, self-assembly in biology and biotechnology, physical chemistry of solvation, soft condensed matter physics, biophysics

Yang Yang, PhD (U. Massachusetts Lowell, 1992)
Conjugated polymers and applications in optoelectronic devices such as light-emitting diodes, photodiodes, and field-effect transistors

Professors Emeriti

Chih-Ming Ho, PhD (Johns Hopkins, 1974)
Molecular fluidic phenomena, microelectromechanical systems (MEMS), bionano technologies, biomolecular sensor arrays, control of cellular complex systems, rapid search of combinatorial medicine

Edward R.B. McCabe, PhD (USC, 1972), MD (USC, 1974)
Stem cell identification, regenerative medicine, systems biology

Benjamin M. Wu, DDS (U. Pacific, 1987), PhD (MIT, 1997)
Biomaterials, cell-material interactions, material processing, tissue engineering, prosthetic and regenerative dentistry

Associate Professors

Corey W. Arnold, PhD (UCLA, 2009)
Computational medical imaging, machine learning, quantitative phenotyping, disease prediction, graphical modeling, natural language processing, data visualization

Liang Gao, PhD (Rice, 2011)
Biomedical optics, tissue imaging, ultra-fast optics, hyperspectral imaging

Weizhe Hong, PhD (Stanford, 2011)
Signal and image processing, systems model ling, machine learning

William Hsu, PhD (UCLA, 2009)
Deep and reinforcement learning, data integration, clinical data science, imaging informatics

Shantanu H. Joshi, PhD (Florida State, 2007)
Shape data analysis, MRI analysis (functional MRI, Diffusion MRI) modeling methods

Aaron S. Meyer, PhD (MIT, 2014)
Molecular cell bioengineering, systems-level cellular signaling analysis, model-driven analysis and design, cancer and innate immune signaling

Dan Ruan, PhD (U. Michigan Ann Arbor, 2008)
Signal and image processing, system modeling and optimization, time series, data science and informatics

Assistant Professors

Jun Chen, PhD (Georgia Tech, 2016)
Biomaterials, biomedical devices, wearable bioelectronics, smart textiles, nanogenator, body area network

Tyler R. Cittes, PhD (MIT, 2018)
joint program certificate, Harvard Medical-MIT (2018)
Bionic systems to rehabilitate and augment human function; movement biomechanics; neural interfacing and control; advancements in orthopaedic and plastic surgery

Mireille Kamariza, PhD (Stanford, 2019)
Molecular engineering, biosensor designs, RNA & CRISPR technologies, chemical mycobiology

Neil Y.C. Lin, PhD (Cornell, 2016)
Soft tissue mechanics, mechanobiology, tissue morphogenesis, cell engineering

Jaimie Marie Stewart, PhD (UC Riverside, 2018)
Design and synthesis of RNA nano- and microstructures, RNA nanotechnology, RNA therapeutics, nucleic acid nanotechnology, bioactive RNA assemblies, biomolecular sensors, nucleic acid self-assembly

Jennifer L. Wilson, PhD (MIT, 2016)
Drug target prioritization using downstream protein effects

Holden H. Wu, PhD (Stanford, 2009)
Signal and image processing, magnetic resonance imaging, MRI-guided interventions, nanotheranostics

Adjunct Professors

Sophia N. Barbarie, PhD (UCLA, 2006)
Orthopedic biomechanics

Zhen Gu, PhD (UCLA, 2010)
Drug delivery, biomaterials, cell therapy, micro- and nanobiotechnology

Adjunct Associate Professors

Stephanie K. Seiditt, PhD (U. Texas Austin, 2010)
Neural tissue engineering, spinal cord injury, gene therapy, hydrogels, cell-material interactions, high-throughput biological techniques, nervous system extracellular matrix, neural stem cells and development

Bill J. Tawil, MBA (California Lutheran, California Lutheran, 2006), PhD (McGill, 1992)
Skin tissue engineering, bone tissue engineering, vascular tissue engineering, wound healing

Adjunct Assistant Professor

Chase Linsley, PhD (UCLA, 2015)
Biomaterials, tissue engineering, drug delivery, additive manufacturing

Affiliated Faculty

For areas of thesis guidance, see the faculty adviser web page.

Bioengineering Courses

Lower-Division Courses

10. Introduction to Bioengineering. (2, Lecture, two hours; discussion, one hour; outside study, three hours. Preparation: high school biology, chemistry, mathematics, physics. Introduction to scientific and technological bases for established and emerging subfields of bioengineering, including biosensors, bioinstrumentation, and biosignal processing, biomechanics, biomaterials, tissue engineering, biotechnology, biological imaging, biomedical optics and lasers, neurons, neuroscience, and biocomputational machines. Letter grading.
Mr. Deming (F)

19. Fiat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower-division students under guidance of faculty

32 / Bioengineering Department
Upper-Division Courses

100. Bioengineering Fundamentals. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: Mathematics 32A, Physics 1A. Fundamental basis for analysis and design of biological and biomedical devices and systems. Classical and statistical thermodynamic analysis of biological systems. Material, energy, charge, and force balances. Introduction to network analysis. Letter grading. Mr. Kamei (W)

C102. Human Physiological Systems for Bioengineering I. (4) Lecture, three hours; laboratory, two hours. Preparation: human molecular biology, biochemistry, and cell biology. Not open for credit to Physiology or Medicine majors. Broad overview of basic biological activities and organization of human body in system (organ/tissue) to system basis, with particular emphasis on molecular basis. Modeling/simulation of functional aspect of biological system included. Actual demonstration of biomedical instruments, as well as visits to biomedical facilities. Concurrently scheduled with course C202. Letter grading. Mr. Kamei (Sp)

C104. Physical Chemistry of Biomacromolecules. (4) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 20A, 20B, 30A, Life Sciences 7A. To understand biological materials and design synthetic replacements, it is imperative to understand their physical chemistry. Biomacromolecules such as protein or DNA can be analyzed and characterized by applying fundamentals of polymer chemistry. Investigation of polymer structure and conformation, bulk and solution thermodynamics and phase behavior, polymer networks, and viscoelasticity. Application of engineering principles to problems involving biocompatible polymers such as protein conformation, solvation of charged species, and separation and characterization of biomacromolecules. Concurrently scheduled with course C204. Letter grading. Mr. Wong (F)

C105. Engineering of Bioconjugates. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: Chemistry 20A, 20B, 20L. Highly recommended; one organic chemistry course and a course in general chemistry. Bioconjugates are biomolecules modified to interact with others. Illustration of these ideas using examples from bioengineering. Topics include Nernst/Planck and Poisson/Boltzmann equations, Nernst potential, Donnan equilibrium, GHK equations, energy barriers in ion channels, cable equations, action potentials, Hodgkin-Huxley equations, ion channel propagation, axon geometry and conduction, dendritic integration. Concurrently scheduled with course C206. Letter grading. Mr. Schmidt (F)

C107. Polymer Chemistry for Bioengineers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course C104 or C105. Fundamental concepts of polymer synthesis, including step-growth, chain growth (ionic, radical, metal catalyzed) and ring-opening, with focus on factors that can be used to control chain length, chain length distribution, and chain-end functionality, chain copolymerization, and stereoregion in polymers. Emphasis on polymerizations that use different polymerization techniques. Concepts of step-growth, chain-growth, ring-opening, and coordination polymerization, and effects of synthesis route on polymer properties. Lectures include both theory and practical issues demonstrated through examples. Concurrently scheduled with course C207. Letter grading. Mr. Deming (W)

110. Biotransport and Bioreaction Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: course 100, Mathematics 33B. Introduction to analysis of fluid flow, heat transfer, mass transfer, binding events, and biochemical reactions in systems of interest to bioengineers, including cells, tissues, organs, human body, extracorporeal devices, tissue engineering systems, and bioartificial organs. Introduction to pharmacokinetics analysis. Letter grading. Mr. Schmidt (F)

120. Biomedical Transducers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: Chemistry 30A, Electrical Engineering 100, Mathematics 32B, Physics 1C. Principles of transduction, design characteristics for different measurements, reliability and performance characteristics, and data processing and recording. Emphasis on silicon-based microfabricated and nanofabricated sensors. Novel materials, biocompatibility, biofabrication devices, and intuitor design and interfacing control. Letter grading. Mr. Schmidt (W)

121. Introduction to Microcontrollers. (4) Lecture, one hour; discussion, one hour; laboratory, three hours. Requisites: Civil and Environmental Engineering 200 or Mechanical and Aerospace Engineering M20 or Computer Science 31, and Electrical and Computer Engineering 100, or equivalent. Project-based hands-on introduction to basic and advanced concepts involved in development of project using microcontrollers for projects in robotics and motion, light and sound, sensing and data acquisition, signal amplification and filtering, communication with specialty integrated circuits, and computer interface using Java-based processing language. Uses of Arduino platform to explore digital and analog input/output, SPI and I2C, interrupts, timing, use and writing of software libraries, and other advanced topics. Students construct and analyze first-order passive filters, operational amplifier (op-amp) circuits, and related circuitry to equip them to make creative software and hardware projects as well as develop their own instrumentation for subsequent laboratory or design work. Project-based homework has small theory component. Includes final design project. Letter grading. Mr. Schmidt (Sp)

122. Introduction to Medical Imaging. (4) Lecture, four hours; discussion, one hour; outside study, four hours. Requisites: Mathematics 33A, Physics 1C, or consent of instructor. Introduction of principles and survey of technology and applications in field of biomedical imaging. Concurrently scheduled with course C239A. Letter grading. Mr. Schmidt (Not Offered 2023-24)

132. Nanogenerators for Bioengineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Addresses fundamentals, materials, processes, and micro/nanofabrication for nanogenerators. Shows key biomedical applications, in particular, nanogenerators made for circulatory system, neural system, cell modulation, microbeastion, and biodegradable electronics. Functionality of nanogenerators can serve for energy, sensing, and therapy purposes in bioengineering. Nanogenerators can be key components to realize autonomous intelligent control and therapeutic system on human body for personalized health care to conquer medical fields in Internet of Things era. Letter grading.

C135. Orthopaedic Biomechanical Engineering. (4) Formerly numbered 125.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Physics 1A, 1B. Overview of central topics of orthopaedic biomechanical engineering, with focus on orthopaedic implant performance and how to evaluate new and existing implants. Topics include orthopaedic and biomechanical terminology and basic anatomy; introduction to free body diagrams and stress analysis; mechanics of fracture patterns and fracture fixation; biomechanics of total joint replacement; contemporary bearing materials and tribology; design and optimization of orthopaedic implants; and introduction to spine biomechanics, spine implants, and pure moment testing. Concurrently scheduled with course C235. Letter grading.

C139A. Biomolecular Materials Science I. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Overview of chemical and physical foundations of biomolecular materials science that concern materials aspects of molecular biology, cell biology, and bioengineering. Understanding of different types of interactions that exist between biomolecules, such as van der Waals interactions, entropically modulated electrostatic interactions, hydrophobic interactions, solvation interactions, polymer-mediated interactions, depletion interactions, molecular recognition, and others. Illustration of these ideas using examples from bioengineering and biomechanical engineering. Students should be able to make simple calculations and estimates that allow them to engage broad spectrum of bioengineering problems, such as those in drug and gene delivery and tissue engineering. May be taken independently for credit. Concurrently scheduled with course C239A. Letter grading. Mr. Wong (W)

C139B. Biomolecular Materials Science II. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Course C139A prerequisite. Overview of chemical and physical founda-
tions of biomolecular materials science that concern material properties, from biology to engineering. Understanding of different basic types of biomolecules, with emphasis on nucleic acids, proteins, and lipids. Study of how biological and engineering systems form via self-assembly and how these structures impart vital biological function. Illustration of these ideas using examples from bioengineering and biomolecular engineering. Focus on topics including drug delivery, gene therapy, cancer therapeutics, emerging pathogens, and relation of self-assembly to disease states. May be taken independently for credit. Concurrently scheduled with course C225. Letter grading. Mr. Wong (Sp)

CM140. Introduction to Biomechanics. (4) (Same disease states. May be taken independently for العناصر الميكانيكية وانتقالات الطاقة في النظام.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: Mechanical and Aerospace Engineering 101, 102, and 156A or 166A. Introduction to mechanical functions of human body; skeletal adaptations to optimize load transfer, mobility, and function. Dynamics and kinematics. Fluid mechanics: mechanics, heat and mass transfer. Power generation. Laboratory simulations and tests. Concurrently scheduled with course CM240. Letter grading. (W)

CM145. Molecular Biotechnology for Engineers. (4) (Same as Chemical Engineering CM145.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: Chemical Engineering 45. Selected topics in molecular biology that form foundation of genomic biology and biotechnological tools. Topics include recombinant DNA technology, molecular research tools, manipulation of gene expression, directed mutagenesis, and protein engineering. Concurrently scheduled with course CM180. Letter grading. Mr. Wu (Sp)

C147. Applied Tissue Engineering: Clinical and Industrial Perspective. (4) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisite: course CM102, Chemistry 20A, 20B, 20L, Life Sciences 7A. Overview of central topics of tissue engineering, with a focus on how to build artificial tissues into regulated clinically viable products. Topics include bioreactors, selection, cell sources, delivery methods, FDA requirements, and regulatory aspects. Preparation: general background on cell biology and technical proficiency. Letter grading.

M153. Introduction to Microscale and Nanoscale Manufacturing. (4) (Same as Chemical Engineering M153, and Mechanical and Aerospace Engineering M183B.) Lecture, three hours; laboratory, four hours; outside study, five hours. Enforced requisites: Chemistry 20A, Physics 1A, 1B, 1C, 4AL. Introduction to general manufacturing processes, microfabrication, and microfabrication and nanofabrication. Focus on concepts, physics, and instruments of various microfabrication and nanofabrication techniques that have been broadly applied in industry and academia, including various photolithography technologies, physical and chemical deposition methods, and physical and chemical etching methods. Hands-on experience for experimental microfabrication and nanofabrication processes in modern clean-room environment. Letter grading. (F)

C155. Fluid-Particle and Fluid-Structure Interactions in Microflows. (4) Lecture, four hours; laboratory, one hour; outside study, seven hours. Enforced requisites: course 110. Introduction to Navier-Stokes equations, assumptions, and simplifications. Analytical framework for calculating simple flows and numerical methods to solve and gain intuition for complex flows. Forces on particles in Stokes flow and finite-inertia flows. Flows induced by structures and particles in confined flows. Particle-structure interactions and fluid dynamic forces: fluid-flow fractionation, inertial focusing, structure-induced separations. Application concepts in internal biological flows and separations for biotechnology. Helps students acquaint themselves with fluid mechanics vocabulary and techniques, design and model microfluidic systems to manipulate fluids, cells, and particles, and develop strong intuition for how fluid and particle behaviors are structurally microfluidic systems. Lectures, seminars, and discussions on aspects of computational fluid dynamics. Sourcing and ordering of materials and supplies relevant to student projects. Exploration of different experimental and computational methods. Letter grading. Mr. Gao, Ms. Seidlits (F)

C166. Wearable Bioelectronics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: passage of human health care from an era of revolution, driven by unprecedented level of personalization enabled by advances in technology, specifically, transformation of wearable devices from medical devices to consumer devices which augment or enhance the body’s functions. Understanding of how and why wearable sensors are used in different fields of healthcare. Introduction of cutting-edge research in field of wearable bioelectronics. Lecture, three hours; laboratory, six hours; outside study, five hours. Enforced requisites: Chemistry 20L, Biophysics 105. Bioelectronics: fundamentals, materials, devices, and applications. Hands-on experience with electronic and biosensing devices, including building and testing key applications including device fabrication, manufacturing, and testing new applications. Concurrently scheduled with course C286. Letter grading.

167L. Bioengineering Laboratory. (4) Lecture, two hours; laboratory, one hour; outside study, four hours. Enforced requisites: Chemistry 20L. Laboratory experiments in fluorescence microscopy, bioconjugation, soft lithography, and cell culture culminate in design of engineered surface for cell growth. Introduction to techniques used in laboratories and their underlying physical or chemical properties. Preparation: general background in cell biology and cell biology. Letter grading.

170. Cell Engineering and Laboratory. (4) Lecture, four hours; laboratory, four hours; outside study, four hours. Preparation: general background in cell biology and cell biology. Letter grading.

177B. Bioengineering Capstone Design II. (4) Lecture, two hours; laboratory, six hours; outside study, four hours. Enforced requisites: courses 167L, 176. Lectures, seminars, and discussions on aspects of biomedicine and therapeutic principles. Exploration of topics such as need finding, intellectual property, entrepreneurship, regulation, and project management. Working in teams, students develop innovative solutions to address current problems in medicine and biology. Preparation: general background in cell biology and cell biology. Letter grading.

CM178. Introduction to Biomaterials. (4) (Same as Materials Science CM180.) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisite: Chemistry 20A, 20B, and 20L. Introduction to biomaterials, including molecules and materials used in medical device and therapeutic design, including meetings with scientific/scientific advisers and guest lectures from scientists in industry. Working in teams, students develop innovative solutions to address current problems in medicine and biology. Preparation: general background in cell biology and cell biology. Letter grading. Ms. Kasko (F)

180. System Integration in Biology, Engineering, and Medicine I. (4) Lecture, three hours; discussion, two hours; outside study, seven hours. Enforced requisites: courses 100, 110, 120, Life Sciences 7A, Physics 1C. Corequisite: course 180L. Part I of two-part series. Molecular basis of normal physiology and biomechanics, and principles of cardiovascular and pulmonary systems. Fundamental engineering principles of selected medical therapeutic devices. Letter grading. Mr. Wu (W)

Mr. Kamei (F)

C202. Harmful Physiological Systems for Bioengineering. (4) Lecture, three hours; laboratory, two hours. Preparation: human molecular biology, biochemistry, and cell biology. Not open for credit to students who have completed the requirements for the B.S. degree in molecular biology. Course 198A. Overview of biophysical and biochemical activities of human body in the context of specific disease processes. Emphasis will be placed on understanding how the body works and how it can be manipulated to benefit human health. Course 198A. Concurrently scheduled with course CM287. Letter grading. (Sp)

C188. Directed Research in Bioengineering. (2 to 8) Tutorial, to be arranged. Enforced requisites: Honors Collegium 101E. Limited to junior/senior USIE facilitators. Directed research experience in the areas of student's interest and faculty mentor while facilitating USIE 88S course. Individually supervised. May be repeated for credit. Letter grading.

Ms. Seidits (F)

C189. Directed Research in Bioengineering. (2 to 8) Tutorial, to be arranged. Enforced requisites: Honors Collegium 101E. Supervised individual research or investigation under guidance of faculty mentor. Culminating paper or project required. May be repeated for credit with subject approval. Individually supervised. Enrollment petitions available in Office of Academic and Student Affairs. Letter grading. (F,W,Sp)

Graduate Courses

Mr. Kamei (F)

C202. Harmful Physiological Systems for Bioengineering. (4) Lecture, three hours; laboratory, two hours. Preparation: human molecular biology, biochemistry, and cell biology. Not open for credit to students who have completed the requirements for the B.S. degree in molecular biology. Course 198A. Overview of biophysical and biochemical activities of human body in the context of specific disease processes. Emphasis will be placed on understanding how the body works and how it can be manipulated to benefit human health. Course 198A. Concurrently scheduled with course CM287. Letter grading. (Sp)

C204. Physical Chemistry of Biomacromolecules. (4) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 20A, 20B, 30A, Life Sciences 7A. To understand biological materials and design synthetic replacements, it is imperative to understand their physical chemistry. Bio macromolecules such as protein or DNA can be analyzed and characterized by applying fundamentals of polymer physical chemistry. Investigation of polymer structure and conformation, bulk and solution thermodynamics and phase behavior, polymer networks, and viscoelasticity. Application of engineering principles to problems involving biomacromolecules such as protein conformational and chemical changes, polymers, and separation and characterization of biomacromolecules. Concurrently scheduled with course C104. Letter grading.

Mr. Wong (F)

C205. Engineering of Bioconjugates. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: Chemistry 20A, 20B, 20L. Highly recommended: one organic chemistry course. Bioconjugate chemistry is science of coupling biomolecules for wide range of applications. Oligonucleotides may be coupled to one surface in gene chip, or one protein may be coupled to one polymer to enhance its stability in serum. Wide variety of bioconjugates are used in delivery of pharmaceuticals, in sensors, in medical diagnostics, and in tissue engineering. Basic concepts of chemical ligation, including choice and design of conjugate linkers depending on type of biomolecule applied procedure, such as degradable versus nondegradable linkers. Presentation and discussion of design and synthesis of synthetic bioconjugates for some specific applications. Individually supervised. Concurrently scheduled with course C105. Letter grading.

Mr. Deming (F)

C206. Topics in Bioelectricity for Bioengineers. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: Chemistry 20B, Life Sciences 7A, Mathematics 3B. Physical and biological processes associated with biological membranes and channel proteins, with specific emphasis on electrophysiology. Basic physiology of biological systems and its application to electrical media, building on complexity to ultimately address action potentials and signal propagation in nerves.
C207. Polymer Chemistry for Bioengineers. (4)
Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course C204 or C205. Fundamentals of polymer synthesis, including step-growth, chain growth (ionic, radical, metal-catalyzed), and ring-opening, with focus on factors that can be used to control chain length, chain microstructure, and functionality. Concurrently scheduled with course C106. Letter grading.
Mr. Schmidt (F)

C220. Chemistry and Physics of Medical Imaging. (4)
Lecture, two hours; discussion, one hour; outside study, four hours. Requisite: course 221. Introduction to basic anatomy and physiology. Topics include chest, cardiac, neurology, gastrointestinal/genitourinary, endocrine, and musculoskeletal systems. Letter grading. Ms. Alwan (W)

M209. Signal and Image Processing for Biomedicine. (4) (Same as Physics and Biology and Medicine M209.) Lecture, four hours; laboratory, four hours. Preparation: linear algebra and statistics. Preparation: basic calculus or linear algebra and un

M215. Biochemical Reaction Engineering. (4) (Same as Chemical Engineering CM215.) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: Chemical Engineering 101C. Use of previously learned concepts of biological chemistry, thermodynamics, transport phenomena, and reaction kinetics to develop tools needed for technical design and economic analysis of biological reactors. Letter grading. Mr. Liao (Sp)

M217. Biomedical Imaging. (4) (Same as Electrical and Computer Engineering M217.) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: Electrical and Computer Engineering 114 or 211A. Optical imaging modalities in biomedicine. Other nonoptical imaging modalities discussed briefly for comparison purposes. Letter grading.

M219. Principles and Applications of Magnetic Resonance Imaging. (4) (Same as Physics and Biology in Medicine M219.) Lecture, three hours; discussion, one hour; outside study, five hours. Preparation: linear algebra, calculus through integral calculus, vectors, and partial derivatives. Introduction to magnetic resonance imaging (MRI), physics, and image formation. Emphasis on hardware, Bloch equations, analytic expressions, image contrast mechanisms, spin and gradient echoes, Fourier transform imaging methods, struc
ture of pulse sequences, and various scanning pa

M220. Introduction to Medical Informatics. (2) Lecture, two hours; outside study, four hours. Designed for graduate students. Introduction to research topics and issues in medical informatics for students new to the field. Definition of this emerging field of study, current research efforts, and future directions in research. Key issues in medical informatics to expose students to different application domains, such as information system architectures, data and process modeling, information extraction and representations, information retrieval and visualization, health services research, telemedicine. Emphasis will be on research en
deavors and applications. S/U grading.
Mr. Kangarloo (F)

221. Human Anatomy and Physiology for Medical and Imaging Informatics. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Introduction to basic human anatomy and physiology, with particular emphasis on understanding and visualization of anatomy and physiology through medical images. Topics relevant to acquisition, representation, and dissemination of anatomical knowledge in computerized clinical applications. Topics include chest, cardiac, neurology, gastrointestinal/genitourinary, endocrine, and musculoskeletal systems. Concepts of step-growth, chain growth (ionic, radical, metal-catalyzed), and ring-opening, with focus on factors that can be used to control chain length, chain microstructure, and functionality. Letter grading. Mr. El-Saden (F)

223A-223B-223C. Programming Laboratories for Medical and Imaging Informatics I, II, III. (4–4–4) Lecture, two hours; discussion, one hour; outside study, eight hours. Designed for graduate students. Programming laboratories to support coursework in other medical and imaging informatics core curriculum courses. Exposure to programming concepts for medical applications, with focus on basic abstraction techniques used in image processing and medical information system infrastructures. Letter grading.

223A. Requisites: Computer Science 31, 32. Program in Computing 20A, 20B. Course 223A is requisite to 223B, which is requisite to 223C. Introduction to medical image manipulation and decision support systems. Introduction to principles of medical image analysis and decision support, automatic recognition, and hearing aids. Applications to speech synthesis, indexing and querying, and classification (machine/deep learning). Survey of clinical applications of these techniques and ongoing challenges. Letter grading.
Mr. Kangarloo (Sp)

M225. Bioseparations and Bioprocess Engineering. (4) (Same as Chemical Engineering CM225.) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced corequisite: Chemical Engineering 101C. Separation strategies, unit operations, and economic factors used to design processes for isolating and purifying materials like whole cells, enzymes, food additives, or pharmaceuticals that are products of biological reactors. Letter grading.
Mr. Liao (Sp)

M226. Medical Knowledge Representation. (4) (Same as Information Studies M226.) Seminar, four hours; outside study, eight hours. Designed for graduate students. Issues related to medical knowledge representation and its application to medical processes. Topics include data structures used for representing knowledge (conceptual graphs, frame-based models), different data models for representing spatial-temporal information, rule-based implementations, current statistical methods for discovery of knowledge (data mining, statistical classifiers, and hierarchical classification), and basic information retrieval. Review of work in building ontologies, with focus on problems in implementation and definition. Common medical ontologies, coding schemes, and standardized indices/terminologies (SNOMED, UMLS). Letter grading.
Mr. Bui (F)

M227. Medical Information Infrastructures and Internet Technologies. (4) (Same as Information Studies M227.) Lecture, four hours; outside study, eight hours. Designed for graduate students. Introduction to networking, computer information infrastructures in medical environment. Exposure to basic concepts related to networking at various levels: low-level (TCP/IP services), medium-level (network topologies), and high-level (grid/cloud computing, Web-based services) implementations. Commonly used medical communication protocols (HL7, DICOM) and current medical information systems (e.g., RIS, PACS). Advances in networking, including wireless health systems, peer-to-peer topologies, grid/cloud computing, introduction to security and encryption in networked environments. Letter grading.
Mr. Kangarloo (W)
M229. Advanced Topics in Magnetic Resonance Imaging (Physics and Biomedical Engineering C229.) Lecture, four hours. Requisite: course M219. Designed for students interested in pursuing research related to development or translation of new magnetic resonance (MR) techniques. Coverage of state-of-the-art methods and understanding of recent MR developments that have had high impact on field, involve novel pulse sequence design or image reconstructions, and expand imaging of anatomy or function in ways that surpasses what is currently possible with any modality. Topics include in-depth sequence simulation, RF pulse design, rapid image acquisition, parallel imaging, compressed sensing, image reconstruction, dynamic contrast, motion encoding and compensation, chemical-shift imaging and understanding, and understanding/avoiding artifacts. Programming exercises in MATLAB to provide hands-on experience. Letter grading.

C231. Nanopore Sensing. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 100, 120, Life Sciences 7A, Physics 1A, 1B, 1C, Analysis of sensors based on measurements of fluctuating ionic conductance through artificial or protein nanopores. Physics of pore conductance. Applications to single molecule detection and DNA sequencing. Review of current literature and applications. History and instrumentation of resistive pulse sensing, theory and instrumentation of electrical measurements in electrolytes, nanopore fabrication, ionic conductance through a nanopore and ionic motion, patch clamp and single channel measurements and instrumentation, noise issues, protein engineering, molecular sensing, DNA sequencing, membrane engineering, and future directions of field. Concurrently scheduled with course C131. Letter grading. Mr. Schmidt (F)

M233A. Medtech Innovation I: Entrepreneurial Opportunities in Medical Technology. (4) (Same as Management M271A.) Lecture; three hours; outside study, nine hours. Requisite: course M233A. Designed for graduate and professional students in engineering, dentistry, design, law, management, and medicine. Focus on understanding how to identify unmet clinical needs, properly filtering through these needs using various acceptance criteria, and selecting promising needs for which potential medtech solutions are explored. Students work in groups to expedite traditional research and development processes and to invent and implement new medtech devices that increase quality of clinical care and result in improved patient outcomes in hospital system. Introduction to intellectual property basics and various medtech business models. Letter grading. Mr. Lu, Mr. Shivkumar (W)

M233B. Medtech Innovation II: Prototyping and New Venture Development. (4) (Same as Management M271B.) Lecture; three hours; outside study, nine hours. Requisite: course M233A. Designed for graduate and professional students in engineering, dentistry, design, law, management, and medicine. Development of medtech solutions for unmet clinical needs previously identified in course M233A. Steps necessary to commercialize viable medtech solutions. Exploration of concept selection, business plan necessary to commercialize viable medtech solutions, prototyping, and validation of products, and understanding/avoiding design flaws. Concurrently scheduled with course M233A. Letter grading. Mr. Wu (Sp)

C240. Introduction to Biomechanics. (4) (Same as Mechanical and Aerospace Engineering CM240.) Lecture, four hours; discussion, one hour; outside study, six hours. Requisites: Mechanical and Aerospace Engineering 101, 102, and 156A or 156A. Introduction to mechanical functions of human body; skeletal adaptations to optimize load transfer, mobility, and function; kinematics, Fluid mechanics applications. Heat and mass transfer. Power generation. Laboratory simulations and tests. Concurrently scheduled with course CM140. Letter grading.

242. Biophotonics. (4) Lecture, four hours; outside study, eight hours. Introduction of principles and survey applications in field of biophotonics. Letter grading.

CM245. Molecular Biotechnology for Engineers. (4) (Same as Chemical Engineering CM245.) Lecture, four hours; discussion, one hour; outside study, seven hours. Selected topics in molecular biology that form foundation of biotechnology and biomedical technology today. Topics include recombinant DNA technology, molecular research tools, manipulation of gene expression, directed mutagenesis and protein engineering, DNA-based diagnostics and DNA microarrays, antibody based diagnostics, genomics and bioinformatics, isolation of human genes, gene therapy, and tissue engineering. Concurrency required with course CM245. Letter grading. Mr. Gupta (W)

256. Drug Delivery Devices: Innovation and Translation. (4) Lecture, four hours; outside study, eight hours. Introduction to modern topics in drug delivery devices, relevant bioengineering topics. Topics provide comprehensive and critical examination of current and emerging research and development on drug delivery devices, with emphasis on innovation and translation. Topics include invasive drug delivery systems, drug delivery reservoirs, MEMS and micro/nanorobots for drug delivery, nanomedicine/device combination products, and development and regulation of drug delivery devices. Students acquire theoretical and practical knowledge of drug delivery devices. Students gain ability to identify advanced approaches for drug delivery mediated by devices in effective and safe manner, from systemic administration to site-specific release; design appropriate mechanisms, materials, and structures for engi...
neering drug delivery devices to deliver different therapeutics for different diseases, and propose new methods and relevant experiments to validate efficacy of certain drug delivery devices. Letter grading.

M260. Neuroengineering. (4) (Same as Electrical and Computer Engineering M255 and Neuroscience M230.) Lecture, four hours; laboratory, two hours; outside study, five hours. Requisites: Mathematics 32A, Physics 1B or 5C. Introduction to principles and technologies of bioelectricity and neural signal recording, processing, and transmission. Topics include bioelectricity, electrophysiology (action potentials, local field potentials, EEG, ECoG), intracellular and extracellular recording, microelectrode technology, neural signal processing, signal processing and analysis techniques (band filtering, spike detection, spike sorting, stimulation artifact removal), brain-computer interfaces, deep-brain stimulation, and prosthetics. Letter grading. Mr. Liu (F).

M263. Anatomy of Central Nervous System. (4) (Same as Neuroscience M203.) Lecture, 75 minutes; discussion/laboratory, two hours. Prior to first laboratory meeting, students must complete Bloodborne Pathogens training course and complete UCLA Health and Safety training. Study of anatomical locations of brain structures, between ascending and descending sensory and motor systems from spinal cord to cerebral cortex. Covers cranial nerves and brainstem anatomy along with anatomy of ventricular and vascular systems. Subcortical forebrain areas covered in detail. Integrated anatomy laboratory includes brain dissections and overview of tools for MRI analysis. Letter grading.

C266. Wearable Bioelectronics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Practice of human health care may be on cusp of revolution, driven by unprecedented level of personalization enabled by advances in technology, specifically, transformation of wearable devices from consumer electronics for monitoring and tracking health to devices for wearable bioelectronics, showcasing key applications including device fabrication, manufacturing, and clinical translation. Concurrently scheduled with course C166. Letter grading.

271. Biotechnology of Cellular Therapies. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Examination of how to design cells and cellular systems to perform therapeutic tasks in complex physiological environments. Discussion of immune system as case study of engineering functionality based on certain required specifications (e.g., not attacking self, recognizing of pathogens, preventing cancer). Lecture, four hours; laboratory, two hours. Covers state-of-the-art and emerging biosensors in context of molecular diagnostics. Students learn relevant biology and biochemistry, and develop practical skills and numerical simulation skills. Students gain understanding of the interface between bioparticle, biofluids, and electronics. Topics include biosensor performance parameters, modes of detection, sample preparation challenges, and technical challenges for emerging wearable biosensing platforms, as well as proteomics, genomics, and DNA sequencing technologies. Letter grading.

275. Machine Learning and Data-Driven Modeling in Biomedical Engineering Research. (4) Lecture, four hours; laboratory, two hours; outside study, six hours. Requisites: Civil Engineering M20 or Mechanical and Aerospace Engineering M20 or Computer Science M270, 33A. Overview of foundational data analysis and machine-learning methods in bioengineering, focusing on how these techniques can be applied to interpret experimental observations, make predictions, estimate parameters, compare distributions, cross-validation, analysis of variance, reproducible computational workflows, dimensionality reduction, regression, hidden Markov models, and clustering. Students gain theoretical and practical knowledge of and relationships between ascending and descending sensory and motor systems from spinal cord to cerebral cortex. Covers cranial nerves and brainstem anatomy along with anatomy of ventricular and vascular systems. Subcortical forebrain areas covered in detail. Integrated anatomy laboratory includes brain dissections and overview of tools for MRI analysis. Letter grading.

CM271. Introduction to Biocompatibility. (4) (Same as Materials Science CM280.) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 20A, 20B, and 20L, or Materials Science 104. Engineering materials used in medicine and dentistry for fabrication of damaged natural tissues. Topics include relationships between material properties, suitability to task, surface chemistry, processing and treatment methods, and biocompatibility. Concurrently scheduled with course CM178. Letter grading. Ms. Kasko (F).

C279. Biomaterials-Tissue Interactions. (4) Lecture, three hours; outside study, nine hours. Requisites: course CM278. In-depth exploration of host cellular responses to biomaterials: vascular responses, in-face, and clotting, biocompatibility, animal models, inflammation, infection, extracellular matrix, cell adhesion, and role of mechanical forces. Concurrently scheduled with course CM178. Letter grading.

Mr. Wu (Not Offered 2023-24)

281. Advanced Biomaterials Design and Methods. (4) Lecture, four hours; outside study, eight hours. Requisites: course C205. Builds upon basic concepts of chemical ligations covered in course C205, and focuses on current state-of-the-art methods and designs for precise bioconjugate formation, especially in context of living cells. Focus on recently developed bioconjugate technologies for protein and designs for precise bioconjugate formation, especially in context of living cells. Focus on recently developed bioconjugate technologies for protein and design...
M296B. Optimal Parameter Estimation and Experiment Design for Biomedical Systems. (Same as Biomechanics M270, Computer Science M296B, and Medicine M270L). Lecture, four hours; outside study, eight hours. Requisite: course CM286 or M296A or Biomechanics 220. Estimation methodology and model parameter estimation algorithms for fitting dynamic system models to biomedical data. Model discrimination methods. Theory and algorithms for designing optimal experiments for developing and quantifying models, with special focus on optimal sampling schedule design for kinetic models. Exploration of PC software for model building and optimal experiment design via applications in physiology and pharmacology. Letter grading.

Mr. DiStefano (W)

M296C. Advanced Topics and Research in Biomedical Systems Modeling and Computing. (4) (Same as Computer Science M296C and Medicine M270E.) Lecture, four hours; outside study, eight hours. Requisite: course M296B. Research techniques and experience on special topics involving models, modeling methods, and model/computing in biological and medical sciences. Review and critique of literature. Research problem searching and formulation. Approaches to solutions. Individual MS- and PhD-level project training. Letter grading.

Mr. DiStefano (Sp)

M296D. Introduction to Computational Cardiology. (4) (Same as Computer Science M296D.) Lecture, four hours; outside study, eight hours. Requisite: course CM186. Introduction to mathematical modeling and computer simulation of cardiac electrophysiological process. Ionic models of action potential (AP). Theory of AP propagation in one-dimensional and two-dimensional cardiac tissue. Simulation on sequential and parallel supercomputers, choice of numerical algorithms, to optimize accuracy and to provide computational stability. Letter grading.

Mr. Kogan (F,Sp)

298. Special Studies in Bioengineering. (4) Lecture, four hours; outside study, eight hours. Study of selected topics in bioengineering taught by resident and visiting faculty members. May be repeated for credit. Letter grading.

299. Seminar: Bioengineering Topics. (2) Seminar, to be arranged. Limited to graduate bioengineering students. Supervised independent research for MS candidates, including thesis prospectus. S/U grading.

597A. Preparation for MS Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate bioengineering students. Reading and preparation for MS comprehensive examination. S/U grading.

597B. Preparation for PhD Preliminary Examination. (2 to 16) Tutorial, to be arranged. Limited to graduate bioengineering students. Preparation for oral qualifying examination, including preliminary research on dissertation. S/U grading.

598. Research for and Preparation of MS Thesis. (2 to 12) Tutorial, to be arranged. Limited to graduate bioengineering students. Supervised independent research for MS candidates, including thesis prospectus. S/U grading.

599. Research for and Preparation of PhD Dissertation. (2 to 16) Tutorial, to be arranged. Limited to graduate bioengineering students. Usually taken after students have been advanced to candidacy. S/U grading.
Chemical and Biomolecular Engineering

Overview

The Department of Chemical and Biomolecular Engineering conducts undergraduate and graduate programs of teaching and research that focus on the areas of biomolecular engineering, systems engineering, and advanced materials processing and span the general themes of energy/environmental and economical design objectives, with consideration of environmental, social, and ethical issues, as well as sustainable development goals. In addition, they should be able to apply their knowledge of mathematics, physics, chemistry, biology, and chemical and biological engineering to analysis and design of chemical and biochemical processes and products; function on multidisciplinary teams; identify, formulate, and solve complex chemical and biological engineering problems; and communicate effectively, both orally and in writing.

Educational Objectives

The chemical and biomolecular engineering undergraduate program educational objectives are to produce chemical and biomolecular engineering alumni who (1) draw readily on a rigorous education in mathematics, physics, chemistry, and biology in addition to the fundamentals of chemical engineering to creatively solve problems in chemical and biological technology; (2) incorporate social, ethical, environmental, and economic considerations, including the concept of sustainable development, into chemical and biomolecular engineering practice; (3) work collaboratively in multidisciplinary teams to tackle complex multifaceted problems that may require different approaches and viewpoints to arrive at a successful solution; and (4) pursue careers in chemical and biomolecular engineering and related fields as demonstrated by professional success at positions within industry, government, or academia.

Learning Outcomes

The Chemical Engineering major has the following learning outcomes:

- Ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- Ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare; as well as global, cultural, social, environmental, and economic factors
- Ability to communicate effectively with a range of audiences
- Ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- Ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives

Chemical Engineering BS

The chemical engineering curricula offer a high quality, professionally oriented education in modern chemical engineering. The biomedical engineering, biomolecular engineering, environmental engineering, and semiconductor manufacturing engineering options provide students with an opportunity for exposure to a subfield of chemical and biomolecular engineering. In all cases, balance is sought between engineering science and practice.

The chemical engineering program is accredited by the Engineering Accreditation Commission of ABET.

Capstone Major

The Chemical Engineering major is a designated capstone major. The capstone project requires students to first work individually and learn how to integrate chemical engineering fundamentals taught in prior required courses; then work in groups to produce a paper design of a realistic chemical process using appropriate software tools. Graduates should be able to design a chemical or biological system, component, or process that meets technical and economical design objectives, with
• Ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

• Ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Chemical Engineering Core Option

Preparation for the Major

Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Civil and Environmental Engineering M20 or Mechanical and Aerospace Engineering M20; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL.

The Major

Required: Chemical Engineering 45, 100, 101A, 101B, 101C, 102A, 102B, 103, 104A, 104B, 106, 107, 109; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; two capstone analysis and design courses (Chemical Engineering 108A, 108B); and two elective courses (8 units) from Chemical Engineering 110, 111, 112, 113, CM104, CM115, CM116, CM118, CM119, CM121, CM125, CM128, CM135, CM140.

For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 22 or the GE Requirement web page.

Biomedical Engineering Option

Preparation for the Major

Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Civil and Environmental Engineering M20 or Mechanical and Aerospace Engineering M20; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL.

The Major

Required: Chemical Engineering 45, 100, 101A, 101B, 101C, 102A, 102B, 104A, 104D, 107, 109, CM115, CM125, CM145; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; two capstone analysis and design courses (Chemical Engineering 108A, 108B); and one biomolecular elective course (4 units) from Bioengineering C105, C183, Chemical Engineering C112, Chemistry and Biochemistry C105, 153A, or C159 (another chemical engineering elective may be substituted with approval of the faculty adviser).

For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 22 or the GE Requirement web page.

Biomolecular Engineering Option

Preparation for the Major

Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Civil and Environmental Engineering M20 or Mechanical and Aerospace Engineering M20; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL.

The Major

Required: Chemical Engineering 45, 100, 101A, 101B, 101C, 102A, 102B, 103, 104A, 104B, 106, 107, 109; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; two capstone analysis and design courses (Chemical Engineering 108A, 108B); and one elective course (4 units) from chemical engineering.

Semiconductor Manufacturing Engineering Option

Preparation for the Major

Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Civil and Environmental Engineering M20 or Mechanical and Aerospace Engineering M20; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL.

The Major

Required: Chemical Engineering 45, 100, 101A, 101B, 101C, 102A, 102B, 103, 104A, 104C, 104CL, 106, 107, 109; C116; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; two capstone analysis and design courses (Chemical Engineering 108A, 108B); and one elective course (4 units) from chemical engineering.
or from Materials Science and Engineering 104, 120, 121, 122, or 150.

For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 22 or the GE Requirement web page.

Graduate Study

For admission information, see Graduate Programs Admission on page 27.

For additional information regarding the BS, MS, and PhD in Chemical Engineering, refer to the Chemical and Biomolecular Engineering Department brochure.

The following introductory information is based on 2023-24 program requirements for UCLA graduate degrees. Complete program requirements are available at Program Requirements for UCLA Graduate Degrees. Students are subject to the detailed degree requirements as published in program requirements for the year in which they enter the program.

The Department of Chemical and Biomolecular Engineering offers Master of Science (MS) and Doctor of Philosophy (PhD) degrees in Chemical Engineering.

Chemical Engineering MS

Areas of Study

The semiconductor manufacturing specialization requires that students have advanced knowledge, assessed in a comprehensive examination, of processing semiconductor devices on the nanoscale.

Course Requirements

The requirements for the MS degree are a thesis, nine courses (36 units), and a minimum 3.0 grade-point average in the graduate courses. Chemical Engineering 200, 210, and 220 are required. Two other courses must be taken from regular offerings in the department, while two Chemical Engineering 598 courses involving work on the thesis may also be selected. The remaining two courses may be taken from those offered by the department or any other field in life sciences, physical sciences, mathematics, or engineering. At least 24 units must be in letter-graded 200-level courses.

All MS degree candidates are required to enroll in Chemical Engineering 299 during each term in residence.

Undergraduate Courses. No lower-division courses may be applied toward graduate degrees. In addition, the following upper-division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199, Civil and Environmental Engineering 108, 199, Computer Science M152A, M152B, 199, Electrical and Computer Engineering 100, 101A, 102, 110L, M116L, 133A, 199, Materials Science and Engineering 110, 120, 121, 131L, 132, 150, 160, 161L, 199, Mechanical and Aerospace Engineering 102, 103, 105A, 105D, 199.

Semiconductor Manufacturing Specialization

Students are required to complete 10 courses (44 units) with a minimum 3.0 grade-point average overall and in the graduate courses. A minimum of five 200-series courses (20 units) are required, including Chemical Engineering 270 and 270R. Students also are required to take courses 104C, 104CL, Electrical and Computer Engineering 123A, and Materials Science and Engineering 121. In addition, two departmental elective courses and two electrical and computer engineering or materials science and engineering electives must be selected, with a minimum of two at the 200 level. Approved elective courses include Chemical Engineering CM214, C218, C219, 223, C240, Electrical and Computer Engineering 221A, 221B, 223, 224, Materials Science and Engineering 210, 223.

Students in the specialization who have been undergraduates at or graduates of UCLA and who have already taken some of the required courses may substitute electives for those courses. However, courses taken by students not enrolled in the specialization may not be applied toward the 10-course requirement for the degree. A program of study that encompasses the course requirements must be submitted to the research adviser for approval before the end of the second term in residence. Field Experience. Students are required to take Chemical Engineering 270R (directed research course) in the field, working at an industrial semiconductor fabrication facility. The proposed research must be approved by the graduate adviser for semiconductor manufacturing and the industrial sponsor of the research.

Comprehensive Examination Plan

The comprehensive examination plan is only for students in the semiconductor manufacturing specialization.

Students take Chemical Engineering 597A to prepare for the comprehensive examination, which tests for knowledge of the engineering principles of semiconductor manufacturing. In case of failure, the examination may be repeated once within one term with the consent of the graduate adviser. A second failure leads to a recommendation to the Division of Graduate Education for termination of graduate study.

Thesis Plan

The thesis plan is for all MS degree students who are not in the semiconductor manufacturing specialization. Students must complete a thesis and should consult the research adviser for details. Students nominate a three-member thesis committee that must meet University requirements and be approved by the Division of Graduate Education.

Chemical Engineering PhD

Major Fields or Subdisciplines

Consult the department.

Course Requirements

All PhD students are required to take six letter graded, 200-level courses (24 units). They can select three chemical engineering core courses from 200, 210, 220, CM245, and a graduate engineering mathematics course. Two additional courses must be taken from those offered by the department. The final course can be selected from offerings in life sciences, physical sciences, mathematics, or engineering. Students are encouraged to take more courses in their field of specialization. The minor field courses should be selected in consultation with the research adviser. A minimum 3.33 grade-point average in graduate courses is required. A program of study to fulfill the course requirements must be submitted for approval to the departmental Student Affairs Office no later than one term after successful completion of the preliminary oral examination.

All PhD students are required to enroll in Chemical Engineering 299 during each term in residence.

Written and Oral Qualifying Examinations

Academic Senate regulations require all doctoral students to complete and pass University written and oral qualifying examinations prior to doctoral advancement to candidacy. Under Senate regulations the University Oral Qualifying Examination is open only to students and appointed members of their doctoral committees.

In addition to University requirements, some graduate programs have other pre-candidacy examination requirements. What follows are the requirements for this doctoral program.

All PhD students are required to pass the preliminary written examination (PWE) to
demonstrate proficiency in at least three of the five core areas as follows.

Students must select the transport phenomena core area and either the thermodynamics core area or reaction engineering core area or both. If they select only one of thermodynamics or reaction engineering, they must also select either the biomolecular engineering or engineering mathematics core area. The PWE is offered at the end of winter quarter of each academic year and is graded by a faculty committee. Students must take the PWE in their first year. If they fail the PWE on the first attempt, they can retake it for a second time the following spring quarter. Students who fail both attempts are not allowed to continue in the PhD program.

After completion of the required courses for the degree and passing of the PWE, students must pass the written and oral qualifying examinations. These examinations focus on the dissertation research and are conducted by a doctoral committee consisting of at least four faculty members nominated by the department in accordance with University regulations. Three members, including the chair, are inside members and must hold faculty appointments in the department. The outside member must be a UCLA faculty member in another department. Students are required to have a minimum 3.33 grade-point average in graduate coursework to be eligible to take these examinations.

The written qualifying examination consists of a dissertation research proposal that provides a clear description of the problem(s) considered, a literature review of the current state of the art, and a detailed explanation of the research plan that is to be followed to solve the problem(s). Students normally submit their dissertation research proposals to their doctoral committees before the end of winter quarter of the second year in academic residence.

The University Oral Qualifying Examination consists of an oral defense of the dissertation research proposal and is administered by the doctoral committee. The written research proposal must be submitted to the committee at least two weeks prior to the oral examination to allow the members sufficient time to evaluate the work.

Facilities

Biomolecular Engineering Laboratories

The facilities include four advanced rapid thermal processing facilities: the Electronic Materials Processing Laboratory, the Electronic Materials Processing Laboratory for GMR and MEMS applications, the Electronic Materials Processing Laboratory for electronic and electrochemical processes and biomedical systems, and the Electronic Materials Processing Laboratory for GMR and MEMS applications. These facilities are used to study metal, alloy, and semiconductor corrosion processes, electro-deposition and electroless deposition of metals, alloys, and semiconductors for GMR and MEMS applications, electrochemical energy conversion (fuel cells) and storage (batteries), and bioelectrochemical processes and biomedical systems.

The laboratory also presents a strong expertise in computational catalysis and surface chemistry. It is equipped with state-of-the-art atomic-scale modeling software used to understand the properties of solids and the catalytic reactivity of surfaces, nanoparticles, and clusters. Codes include VASP, CP2K, and SIESTA. Applications domains are linked with chemistry and energy challenges and range from heterogeneous catalysis to photocatalysis, electrocatalysis, depollution, and electricity storage. Original simulation methods, developed by the researchers, are available for the modeling of electrocatalysis. A high-performance cluster is available for research and teaching. Campuswide computers are also available to laboratory researchers.

Electrochemical Engineering and Catalysis Laboratories

With instrumentation such as rotating ring-disk electrodes, electrochemical packed-bed flow reactors, gas chromatographs, potentiostats, and function generators, the laboratories are used to study metal, alloy, and semiconductor corrosion processes, electro-deposition and electroless deposition of metals, alloys, and semiconductors for GMR and MEMS applications, electrochemical energy conversion (fuel cells) and storage (batteries), and bioelectrochemical processes and biomedical systems.

The laboratory focuses on the synthesis of drug delivery and materials synthesis. The laboratory is equipped with a state-of-the-art advanced rapid thermal processing facility. The laboratory also presents a strong expertise in computational catalysis and surface chemistry. It is equipped with state-of-the-art atomic-scale modeling software used to understand the properties of solids and the catalytic reactivity of surfaces, nanoparticles, and clusters. Codes include VASP, CP2K, and SIESTA. Applications domains are linked with chemistry and energy challenges and range from heterogeneous catalysis to photocatalysis, electrocatalysis, depollution, and electricity storage. Original simulation methods, developed by the researchers, are available for the modeling of electrocatalysis. A high-performance cluster is available for research and teaching. Campuswide computers are also available to laboratory researchers.

Electronic Materials Processing Laboratory

The laboratory focuses on the synthesis and patterning of multifunctional complex oxide films and nanostructures with tailored electronic, chemical, thermal, mechanical, and biological properties. Experimental and theoretical studies are combined to understand the process chemistry and surface kinetics in atomic layer deposition, plasma etching and deposition processes, gas-phase surface functionalization, and solution phase synthesis. Novel devices including advanced microelectronics, optoelectronics, chemical sensors, and energy storage devices are realized at nano-dimensions as the technologies become more enabling based on these fundamental studies.

The laboratory is equipped with a state-of-the-art advanced rapid thermal processing
Nanoparticle Technology and Air Quality Engineering Laboratory

Modern particle technology focuses on particles in the nanometer (nm) size range with applications to air pollution control and commercial production of fine particles. Particles with diameters between 1 and 100 nm are of interest both as individual particles and in the form of aggregate structures. The laboratory is equipped with instrumentation for online measurement of aerosols, including optical particle counters, electrical aerosol analyzers, and condensation particle counters. A novel low-pressure impactor designed in the laboratory is used to fractionate particles for morphological analysis in size ranges down to 50 nm (0.05 micron). Also available is a high-volumetric flow rate impactor suitable for collecting particulate matter for chemical analysis. Several types of specially designed aerosol generators are also available, including a laser ablation chamber, tube furnaces, and a specially designed aerosol microreactor.

Concern with nanoscale phenomena requires the use of advanced systems for particle observation and manipulation. Students have direct access to modern facilities for transmission and scanning electron microscopy. Located near the laboratory, the Electron Microscopy facilities staff provide instruction and assistance in the use of these instruments. Advanced electron microscopy has recently been used in the laboratory to make the first systematic studies of atmospheric nanoparticle chain aggregates. Such aggregate structures have been linked to public health effects and to the absorption of solar radiation. A novel nanostructure manipulation device, designed and built in the laboratory, makes it possible to probe the behavior of nanoparticle chain aggregates of a type produced commercially for use in nanocomposite materials; these aggregates are also released by sources of pollution such as diesel engines and incinerators.

Polymer and Separations Research Laboratory

The laboratory is equipped for research on membranes, water desalination, adsorption, chemical sensors, polymerization kinetics, surface engineering with polymers and the behavior of polymeric fluids in confined geometries. Instrumentation includes a high resolution multiprobe atomic force microscope (AFM) and a quartz crystal microbalance system for membrane and sensor development work. An atmospheric plasma surface structuring system is available for nano-structuring ceramic and polymeric surfaces for a variety of applications that include membrane performance enhancement and chemical sensor arrays. Analytical equipment for polymer characterization includes several high-pressure liquid chromatographs for size exclusion chromatography equipped with different detectors, including refractive index, UV photodiode array, conductivity, and a photodiode array laser light scattering detector. The laboratory has a research-grade FTIR with a TGA interface, a thermogravimetric analysis system, and a dual column gas chromatograph. Equipment for viscometric analysis includes high- and low-pressure capillary viscometer, narrow gap cylindrical couette viscometer, cone-and-plate viscometer, intrinsic viscosity viscometer system and associated equipment. Flow equipment is also available for studying fluid flow through channels of different geometries (e.g., capillary, slit, porous media). The evaluation of polymeric and novel ceramic-polymer membranes, developed in the laboratory, is made possible with reverse osmosis, pervaporation, and cross-flow ultrafiltration systems equipped with online detectors. Studies of high recovery membrane desalination are carried out in a membrane concentrator/crystallizer system. Resin sorption and regeneration studies can be carried out with a fully automated system.

Process Systems Engineering Laboratory

The laboratory is equipped with state-of-the-art computer hardware and software used for the simulation, design, optimization, control, and integration of chemical processes. Several personal computers and workstations, as well as an 8-node dual-processor cluster, are available for teaching and research. SEASnet and campuswide computational facilities are also available to laboratory members. Software for simulation and optimization of general systems includes MINOS, GAMS, MATLAB, CPLEX, and LINDO. Software for simulation of chemical engineering systems includes HYSYS for process simulation and CACHE-FUJITSU for molecular calculations. UCLA-developed software for heat/power integration and reactor network attainable region construction is also available.
Chemical and Biomolecular Engineering Department

Faculty Areas of Thesis Guidance

Professors
- Jane P. Chang, PhD (MIT, 1998)
 - Materials processing, gas-phase and surface reaction, plasma enhanced chemistry, atomic layer deposition, chemical microelectromechanical systems, and computational surface chemistry
- Panagiotis D. Christofides, PhD (U. Minnesota, 1996)
 - Process modeling, dynamics and control, computational and applied mathematics
- James F. Davis, PhD (Northwestern U., 1981)
 - Intermolecular interactions in process, control operations and design, decision support, management of abnormal situations, data interpretation, knowledge databases, pattern recognition
- Vasilios I. Manousiouthakis, PhD (Rensselaer, 1986)
 - Process systems engineering: modeling, simulation, design, optimization, and control
- Harold G. Monbouquette, PhD (North Carolina State, 1967)
 - Biochemical engineering, biosensors, nanotechnology
- Stanley J. Osher, PhD (New York U., 1966)
 - Computational science, image processing, information science
- Philippe Sautet, PhD (U. Paris XI Orsay, France, 1989)
 - First principles atomic scale simulations; quantum chemistry; applications to heterogeneous catalysis: active sites and reaction mechanisms, nanomaterials for depollution and energy transformation, molecules at surfaces
- Yi Tang, PhD (Caltech, 2002)
 - Biosynthesis of proteins/polypeptides with unnatural amino acids, synthesis of novel anti-biotics/antitumor products

Professors Emeriti
- Yoram Cohen, PhD (U. Delaware, 1981)
 - Water treatment and desalination, separation processes, membrane science and technology, surface nanstructuring, pollutant transport, nanomaterials and exposure assessment
- Vijay K. Dhir, PhD (U. Kentucky, 1972)
 - Two-phase heat transfer, boiling and condensation, thermal hydrails of nuclear reactors, microgravity heat transfer, soil remediation, high-power density electronic cooling
- Robert F. Hicks, PhD (UC Berkeley, 1984)
 - Chemical vapor deposition and atmospheric plasma processing
 - Metabolic engineering, synthetic biology, bioenergy
- Yunfeng Lu, PhD (U. New Mexico, 1998)
 - Semiconductor manufacturing and nanotechnology
- Selim M. Senkan, PhD (MIT, 1977)
 - Reaction engineering, combinatorial catalysis, combustion, laser photoionization, real-time detection, quantum chemistry
- A.R. Frank Wazzan, PhD (UC Berkeley, 1963)
 - Fast reactors: nuclear fuel element modeling, stability and transition of boundary layers, heat transfer

Associate Professors
- Irene A. Chen, MD, PhD (Harvard, 2007)
 - Synthetic living systems, in vitro evolution, molecular biophysics, phage nanotechnology, microbiome
- Yvonne Y. Chen, PhD (Caltech, 2011)
 - Synthetic biology, gene-circuit engineering, cell-based therapy, T-cell engineering
- Dante A. Simonetti, PhD (U. Wisconsin-Madison, 2008)
 - Heterogeneous catalysis and adsorption, catalytic recycling, kinetic and reaction mechanisms, design of reactive materials, materials characterization

Assistant Professors
- Nasim Annabi, PhD (U. Sydney, Australia, 2010)
 - Biomaterials, tissue engineering, 3D bioprinting, microfabrication, nanocomposite hydrogels for drug/gene delivery, surgical sealants/ adhesives/glues, conductive hydrogels for heart tissue regeneration
- Carissa N. Eisler, PhD (Caltech, 2016)
 - Light and energy transport in nanomaterials, nanophotonics, renewable energy
- Yuzhang Li, PhD (Stanford, 2018)
 - Electrochemical energy storage, electrocatalysis, nanomaterials synthesis and characterization, in situ transmission electron microscopy, cryogenic electron microscopy, carbon capture
- Carlos G. Morales-Guió, PhD (École Polytechnique Fédérale de Lausanne [EPFL], Switzerland, 2016)
 - Electrochemistry, renewable energy storage, nanotechnology, advanced energy materials catalysis, CO2 utilization, process design, mass transport coupled to chemical transformations
- Junyoung O. Park, PhD (Princeton, 2016)
 - Cancer metabolism, metabolic engineering, bioenergy, systems biology, metabolomics
- Joseph D. Peterson, PhD (UC Santa Barbara, 2018)
 - Complex fluids: polymers, emulsions, and dense suspensions; microstructure formation and relaxation in systems far from equilibrium; population balance equations and their integration into rheological models; sustainability applications; polymer recycling, plant-based meat analogs, etc.; continuum models, controlled approximations, and efficient numerical methods
- Samanvay Srivastava, PhD (Cornell, 2014)
 - Soft materials, self-assembly, polymer chemistry and polymer physics, scattering rheology
- Thaishea A. Wright, PhD (Miami U. Ohio, 2020)
 - Biomaterials, protein engineering, polymer chemistry

Chemical Engineering Courses

Lower-Division Courses

2. Technology and Environment. (4)

101A. Transport Phenomena I. (4)

101B. Transport Phenomena II. (4)
 - Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: course 101A. Introduction to analysis of heat transfer in chemical, biological, material, and molecular processes. Fundamentals of thermal energy transport, molecular-level heat transfer in gases, liquids, and solids, forced and free convection, radiation, and engineering analysis of heat transfer in process systems. Letter grading.

101C. Mass Transfer. (4)
 - Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: course 101B. Introduction to analysis of mass transfer in systems of interest to chemical engineering practice. Fundamentals of mass species transport, Fick law of diffusion, diffusion in chemically reacting flows, interphase mass transfer, multicomponent systems. Letter grading.

102A. Thermodynamics I. (4)
 - Lecture, four hours; discussion, one hour; outside study, seven hours. Introduction to thermodynamics of chemical and biological processes. Work, energy, heat, and first law of thermodynamics. Second law, extremum principles, entropy, and free energy. Ideal and real gases, property evaluation. Thermodynamics of flow systems. Applications of first and second laws in biological processes and living organisms. Letter grading.

102B. Thermodynamics II. (4)
 - Lecture, four hours; discussion, one hour; outside study, seven hours. Introduction to thermodynamics of chemical and biological processes. Work, energy, heat, and first law of thermodynamics. Second law, extremum principles, entropy, and free energy. Ideal and real gases, property evaluation. Thermodynamics of flow systems. Applications of first and second laws in biological processes and living organisms. Letter grading.

Upper-Division Courses

100. Fundamentals of Chemical and Biomolecular Engineering. (4)
 - Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: Chemistry 20B, 20L (not enforced), Math 32B (may be taken concurrently). Introduction to analysis and design of industrial chemical processes. Thermodynamics of flow systems. Letter grading.

101A. Transport Phenomena I. (4)

101B. Transport Phenomena II. (4)
 - Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: course 101A. Introduction to analysis of heat transfer in chemical, biological, material, and molecular processes. Fundamentals of thermal energy transport, molecular-level heat transfer in gases, liquids, and solids, forced and free convection, radiation, and engineering analysis of heat transfer in process systems. Letter grading.

101C. Mass Transfer. (4)
 - Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: course 101B. Introduction to analysis of mass transfer in systems of interest to chemical engineering practice. Fundamentals of mass species transport, Fick law of diffusion, diffusion in chemically reacting flows, interphase mass transfer, multicomponent systems. Letter grading.

102A. Thermodynamics I. (4)
 - Lecture, four hours; discussion, one hour; outside study, seven hours. Introduction to thermodynamics of chemical and biological processes. Work, energy, heat, and first law of thermodynamics. Second law, extremum principles, entropy, and free energy. Ideal and real gases, property evaluation. Thermodynamics of flow systems. Applications of first and second laws in biological processes and living organisms. Letter grading.

102B. Thermodynamics II. (4)
 - Lecture, four hours; discussion, one hour; outside study, seven hours. Introduction to thermodynamics of chemical and biological processes. Work, energy, heat, and first law of thermodynamics. Second law, extremum principles, entropy, and free energy. Ideal and real gases, property evaluation. Thermodynamics of flow systems. Applications of first and second laws in biological processes and living organisms. Letter grading.

Ms. Shen, Mr. Park (WSp)

106. Chemical Reaction Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: courses 100, 101C, 102B. Fundamentals of chemical kinetics and catalysis. Introduction to analysis and design of homogeneous and heterogeneous chemical reactions. Letter grading.

Mr. Guo, Mr. Lu (F)

Mr. Li, Mr. Morales Guio (W)

108A. Process Economics and Analysis. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: courses 103 (or C125), 106, 105A. Understanding of chemical and engineering fundamentals as transport phenomena, thermodynamics, separation operations, and reaction engineering and simple economic principles for purpose of designing chemical processes and evaluating alternatives. Letter grading.

Mr. Li, Mr. Morales Guio (W)

109. Numerical and Mathematical Methods in Chemical and Biological Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: Civil and Environmental Engineering M20 (or Mechanical and Aerospace Engineering M20). Introduction to application of some mathematical and computing methods to chemical engineering design problems; use of simulation programs as automated method of performing steady state material and energy balance calculations. Letter grading.

Mr. Christofides (F)

110. Intermediate Engineering Thermodynamics. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 102B. Principles and engineering applications of statistical and phenomenological thermodynamics. Determination of partition function in terms of simple molecular models and spectroscopic data; nonideal gases; phase transitions and adsorption; nonequilibrium thermodynamics and coupled transport processes. Letter grading.

Mr. Christofides (F)

111. Air Pollution Engineering. (4) Lecture, four hours; preparation, two hours; outside study, six hours. Enforced requisite: courses 101C, 102B. In integrated approach to air pollution, including concentrations of atmospheric pollutants, air pollution standards, air pollution sources and control technology, and relationship of air quality to emission sources. Links air pollution to multimedia environmental assessment. Letter grading. (Not offered 2023-24)

CM114. Electrochemical Processes. (4) Same as Materials Science CM163. Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 101C. Use of previously learned concepts of biophysical chemistry, thermodynamics, and reaction kinetics to develop tools needed for technical design and economic analysis of chemical reactions. May be concurrently scheduled with course CM214. Letter grading.

Mr. Cohen (Sp)

Mr. Chen, Mr. Simonetti (Sp)

C119. Pollution Prevention for Chemical Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 101C. Use of previously learned concepts of biophysical chemistry, thermodynamics, and reaction kinetics to develop tools needed for technical design and economic analysis of chemical reactions. May be concurrently scheduled with course CM218. Letter grading.

Mr. Cohen (Sp)

C121. Polymer Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: course 101A, Chemistry 30A. Formation of polymers, criteria for selecting reaction scheme, polymerization techniques, polymer characterization. Mechanical properties. Rheology of macromolecules, polymer process engineering. Diffusion in polymeric systems. Polymers in bioreactor operations and in microelectronics. Concurrently scheduled with course C212. Letter grading.

Mr. Cohen (W)

Ms. Chen, Mr. Park (WSp)

C123. Numerical and Mathematical Methods in Chemical and Biological Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: Civil and Environmental Engineering M20 (or Mechanical and Aerospace Engineering M20). Introduction to application of some mathematical and computing methods to chemical engineering design problems; use of simulation programs as automated method of performing steady state material and energy balance calculations. Letter grading.

Mr. Christofides (F)

Mr. Mockaitis (Sp)

C127. Biomolecular Engineering Laboratory I. (4) Lecture, two hours; laboratory, six hours; outside study, four hours. Enforced requisite: course 100. Enforced corequisite: course 101B. Recommended: course 102B. Investigation of basic transport phenomena in 10 predetermined experiments, collection of data for statistical analysis and individually written technical reports and group presentations. Importance of one experimental study involving transport, separation, or another aspect of chemical and biomolecular engineering. Basic statistics: mean, standard deviation, confidence limits, comparison of two means and of multiple means, single and multiple variable linear regression, and brief introduction to factorial design of experiments. Oral and poster presentations. Technical writing of scientific reports and their contents; writing clearly, concisely, and consistently; importance of word choices and punctuation in multi-cultural engineering environment and of following required formatting. Letter grading.

Mr. Mezey, Mr. Simonetti (WSp)

104C. Semiconductor Processing. (3) Lecture, four hours; outside study, five hours. Enforced requisite: course 101C. Enforced corequisite: course 104CL. Basic elements of semiconductor operations, including fabrication and characterization of semiconductor devices. Investigation of processing steps used to make CMOS devices, including wafer cleaning, oxidation, diffusion, lithography, chemical vapor deposition, plasma etching, metallization, and statistical design of experiments and error analysis. Presentation of student results in both written and oral form. Letter grading.

Ms. Chang (Sp)

104CL. Semiconductor Processing Laboratory. (3) Laboratory, four hours; outside study, five hours. Enforced requisite: course 101C. Enforced corequisite: course 104CL. Series of experiments that emphasize basic elements of semiconductor unit operations, including fabrication and characterization of semiconductor devices. Investigation of processing steps used to make CMOS devices, including wafer cleaning, oxidation, diffusion, lithography, chemical vapor deposition, plasma etching, and metallization. Hands-on device testing includes transistors, diodes, and capacitors. Letter grading.

Ms. Chang (Sp)

104D. Molecular Biotechnology Laboratory: From Gene to Product. (4) Lecture, two hours; laboratory, eight hours; outside study, eight hours. Enforced requisites: courses 101C, C125. Integration of molecular and engineering techniques in modern biotechnology. Cloning of protein-coding gene into plasmid, transformation of construct into E. coli, production of gene product in bioreactor, downstream processing of bioreactor broth to purified recombinant protein, and characterization of purified reaction systems. Letter grading.

Mr. Mockaitis (Sp)

C128. Molecular Biotechnology: From Gene to Product. (4) Lecture, four hours; discussion, one hour; outside study, six hours. Enforced requisite: course 101A. Use of previously learned concepts of biophysical chemistry, thermodynamics, and reaction kinetics to develop tools needed for technical design and economic analysis of chemical reactions. May be concurrently scheduled with course CM214. Letter grading.

Mr. Cohen (Sp)
Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: courses 101A, 101C, 103. Fundamentals of membrane science and technology, with emphasis on separations at micro-, nano-, and molecular/angstrom scales and membrane properties. Relationship between structure/morphology of dense and porous membranes and their separation characteristics. Use of nanotechnology for designing new materials and membrane processes. Non-aqueous batteries, solid-state electrochemistry. Specific topics in electrochemical processes. Specific topics in electrochemical processes. May be concurrently scheduled with course CM114. Letter grading. Mr. Simonetti (W)

C211. Cryogenics and Low-Temperature Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Fundamentals of cryogenics and cryogenics engineering, and applications to refrigeration and industrial processes. Basics approaches to analysis of cryofluids and envelopes needed for operation of cryogenic systems; low-temperature behavior of matter, optimization of cryosystems and other special conditions. Concurrently scheduled with course C111. Letter grading. Mr. Simonetti (W)

CM214. Electrochemical Processes. (4) Same as Materials Science CM263. Lecture, four hours; discussion, one hour; outside study, seven hours. Required: course 202B, Chemical and Aerospace Engineering 105A (or Materials Science 130). Fundamentals of electrochemistry and engineering applications to industrial electrochemical processes. Primary emphasis on fundamental approach to analyze electrochemical processes. Specific topics include electrochemical reactions on metal and semiconductor surfaces, electrodeposition, electrolysis, fuel cells, and non-aqueous batteries, solid-state electrochemistry. May be concurrently scheduled with course CM114. Letter grading.

C212. Polymer Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Required: course 101C, 102B, Mechanical and Aerospace Engineering 101C. Principles of chemical reactor analysis and design. Characteristic emphasis on simultaneous effects of chemical reaction and mass transport on noncatalytic and catalytic reactions in fixed and fluidized beds. Letter grading.

199. Directed Research in Chemical Engineering. (2 to 8) Title, to be arranged on petition of seniors/te- nors. Supervised individual research or investigation of selected topic under guidance of faculty mentor. Culminating paper or project required. May be repeated for credit; Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading. (FW,Sp)

Graduate Courses

200. Advanced Engineering Thermodynamics. (4) Lecture, four hours; outside study, eight hours. Re- quire: course 102B. Phenomenological and statistical thermodynamics of chemical and physical systems with engineering applications. Presentation of role of atomic and molecular spectra and intermolecular forces in interpretation of thermodynamic properties of gases, liquids, solids, and plasmas. Letter grading. Mr. Vauter (F)

201. Methods of Molecular Simulation. (4) Lec- ture, four hours; outside study, eight hours. Require: course 200 or Chemistry C223A or Physics 215A. Modern simulation techniques for classical molecular systems. Monte Carlo and molecular dynamics in various ensembles. Applications to liquids, solids, and polymers. Letter grading. (Not offered 2023-24)

Mr. Simonetti (W)

CM127. Synthetic Biology for Biofuels. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course CM145. Introduction of vi- ruses and their varied roles in biotechnology, from utilization of viral enzymes to biotechnologies used to combat viral infectious diseases. Basic concepts of virology. Focus on use of viruses, including bacteri- ophages, and viral proteins as tools in biotechnology. Examples include bacteriophage display, virus-based nanomaterials, and viral vectors for gene delivery, and vaccines. Covers case studies of viral diseases and biotechnological strategies for diagnosis, pre- vention, and treatment. Examples include human immunodeficiency virus and coronavirus. Students conduct literature searches and write paper on rele- vant topic of their choice. Concurrently scheduled with course CM222. Letter grading.

CM127. Synthetic Biology for Biofuels. (4) Same as Chemistry CM127.) Lecture, four hours; discus- sion, one hour; outside study, seven hours. Requisite: Chemistry 153A. Engineering microorganisms for complex phenotype is common goal of metabolic en- gineering and synthetic biology. Production of advanced biofuels involves designing and constructing novel metabolic networks in cells. Such efforts re- quire profound understanding of biochemistry, pro- tein structure, and biological therapeutics and are aided by tools in bioinformatics, systems biology, and molecular biology. Fundamentals of metabolic bio- chemistry, protein structure and function, and bioin- formatics for designing metabolic networks. Introduction to networks to design microorganisms for energy appli- cations. Concurrently scheduled with course CM227. Letter grading.

CM128. Bioenergy. (4) Lecture, four hours; discus- sion, one hour; outside study, seven hours. Enforced requisite: Chemistry 20A. Electronic, physical, and chemical properties of hydrogen. Various methods of production, including production through steam reforming, electrolysis, and thermochemical cycles. Description in depth of several uses of hy- drogen, including hydrogen combustion and hy- drogen fuel cells. Concurrently scheduled with course CM228. Letter grading. Mr. Manousiouthakis (Sp)

C135. Advanced Process Control. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 107. Introduction to advanced process control. Topics include (1) Lyapunov stability for autonomous nonlinear systems in- cluding interconnected systems, and small gain theorems, (3) design of nonlinear and robust controllers for various classes of nonlinear systems, (4) model predictive control, and (5) advanced methods for tuning of classical controllers, and (6) in- troduction to control of distributed parameter sys- tems. Concurrently scheduled with course C235. Letter grading.

CM145. Molecular Biotechnology for Engineers. (4) Same as Bioengineering CM145.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 45 or Life Sciences 7C. Selection of topics that form the foun- dation of biotechnology and biomedical industry today. Topics include recombinant DNA technology, molec- ular research tools, manipulation of gene expression, directed mutagenesis and protein engineering, DNA- based diagnostics and DNA microarrays, antibody and protein-based diagnostics, genomics and bioin- formatics, isolation of human genes, gene therapy, and tissue engineering. Concurrently scheduled with course CM245. Letter grading. Ms. Chen (F)

M153. Introduction to Microscale and Nanoscale Manufacturing. (4) Same as Bioengineering M153, Electrical and Computer Engineering M153, and Me- chanical and Aerospace Engineering M153B.) Lec- ture, three hours; discussion, one hour; outside study, five hours. Enforced requisites: Chemistry 20A, Physics 1A, 1B, 1C, 4AL. Introduction to general manufacturing methods, mechanisms, constraints, and microfabrication and nanofabrication. Focus on concepts, physics, and instruments of various micro- fabrication and nanofabrication techniques that have been broadly applied in industry and academia, in- cluding various photolithography technologies, phys- ical and chemical deposition methods, and physical and chemical etching methods. Hands-on experi- ence for fabricating microstructures and nanostruc- tures in modern clean-room environment. Letter grading (F)

188. Special Courses in Chemical Engineering. (4) Seminar, four hours; outside study, eight hours. Special topics in chemical engineering for undergraduate students taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated once for credit with topic or instructor change. Letter grading.

194. Research Group Seminars: Chemical Engi- neering (4) Discussion, four hours; outside study, eight hours. Designed for undergraduate students who are part of research group. Discussion of research methods and current literature in the field. May be repeated for credit. Letter grading.

C175. Chemical Process Design. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. En- forced requisite: course CM145. Focus on previously learned concepts of biophysical chemistry, thermo- dynamics, transport phenomena, and reaction ki- netics to develop tools needed for technical design and economic analysis of biological reactors. May be concurrently scheduled with course C111. Letter grading.

Mr. Annabi (F)
C216. Surface and Interface Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Introduction to surfaces and interfaces of engineering materials, particularly catalytic surfaces and thin films for solid-state electronic devices. Topics include classification of crystalline solids and interfaces, analysis of structure and composition of crystals and their surfaces and interfaces. Examination of engineering applications, including catalytic surfaces, interfaces in electronics, and solid-liquid interfaces. May be concurrently scheduled with course C116. Letter grading.

Mr. Lu (Sp)

217. Electrochemical Engineering. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course C114. Transportation phenomena in electrochemical systems; relationships between molecular transport, convection, and electrode kinetics, along with applications to industrial electrochemistry, fuel cell design, and modern battery technology. Letter grading.

C218. Multimedia Environmental Assessment. (4) Lecture, four hours; discussion, one hour; preparation, two hours; outside study, five hours. Recommended requisites: courses 101C, 102B. Pollutant sources, environmental modeling of chemical partitioning in environment, transport and fate of chemical pollutants in environment, two hours; outside study, five hours. Requirement: course 125. Letter grading.

Ms. Annabi (Sp)

Mr. Manousiouthakis

220. Advanced Mass Transfer. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course 101C. Advanced treatment of mass transfer, with applications to industrial separation processes, gas cleaning, pulmonary bioengineering, controlled release systems, and reactor design; molecular and constitutive theories of diffusion, interfacial transport, membrane transport, convective mass transfer, concentration boundary layers, turbulent transport. Letter grading.

Mr. Srivastava (W)

C221. Membrane Science and Technology. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: courses 101A, 101C, 103. Fundamentals of membrane science and technology, with emphasis on separations at micro, nano, and angstrom scale with membranes. Relationship between structure/morphology of dense and porous membranes and their separation characteristics. Use of nanotechnology for design of selective membranes and models of membrane transport (flux and selectivity). Examples provided from various fields/applications, including bioengineering, microelectronics, chemical processes, sensors, and nanobiotechnology. Concurrently scheduled with course C121. Letter grading.

Mr. Manousiouthakis

222A. Stochastic Modeling and Simulation of Chemical Processes. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course 121. Introduction to basic stochastic processes, random variables, and stochastic differential equations. Markov chains and processes, Itô integrals, stochastic difference and differential equations. S/U or letter grading.

Mr. Manousiouthakis

222B. Stochastic Optimization and Control. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course 222A. Introduction to linear and non-linear systems theory and estimation theory. Prediction, Kalman filter, smoothing of discrete and continuous systems. Stochastic control, systems with multiplicative noise. Applications to control of chemical processes, such as chemical reactors, energy systems, and chemical dispersion. Linear and dynamic programming. S/U or letter grading.

Mr. Manousiouthakis

223. Design for Environment. (4) Lecture, four hours; outside study, eight hours. Limited to graduate chemistry and chemical engineering students or students of chemical engineering, design of component reactive mixtures, rate laws. Applications: absorption and dispersion measurements, unimolecular reactions, photochemical reactions, hydrocarbon pyrolysis and oxidation, explosions, polymerization.

Mr. Manousiouthakis

231. Molecular Dynamics. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course 106 or 110. Analysis and design of molecular-beam systems. Molecular-beam sampling of reactive mixtures and combinatorial beam studies of gas-surface interactions, including energy accommodations and heterogeneous reactions. Applications to air pollution control and to catalysis.

Letter grading.

232. Combustion Processes. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course 106, 200, or Mechanical and Aerospace Engineering C132A. Fundamentals: change equations for multi-components and reactive mixtures. Chemical kinetics: reaction networks, including converse theorems, input to state stability, interconnected systems, and small gain theorems, design of nonlinear and robust controllers for various classes of nonlinear systems. Predictive control of linear and nonlinear systems, advanced methods for tuning of classical controllers, and introduction to control of distributed parameter systems. Concurrently scheduled with course C135. Letter grading.

Ms. Chang

C235. Advanced Process Control. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: course 107. Introduction to advanced process control. Topics include: (1) Lyapunov stability for autonomous linear systems including converse theorems, (2) input to state stability, interconnected systems, and small gain theorems, (3) design of nonlinear and robust controllers for various classes of nonlinear systems. Predictive control of linear and nonlinear systems, advanced methods for tuning of classical controllers, and introduction to control of distributed parameter systems. Concurrently scheduled with course C135. Letter grading.

(Not offered 2023-24)

236. Chemical Vapor Deposition. (4) Lecture, four hours; outside study, eight hours. Prerequisites: courses 210, C216. Chemical vapor deposition is widely used to deposit thin film materials on substrates. Topics include reactor design, transport phenomena, gas and surface chemical kinetics, structure and composition of deposited films, and relationships between process conditions and film properties. Letter grading.

C240. Fundamentals of Aerosol Technology. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course 101C. Technology of particle/atom formation using high-temperature techniques, commercial production of fine particles, and catalyst. Particle transport and deposition, optical properties, experimental techniques, dynamics and control of particle formation processes. Concurrently scheduled with course C140. Letter grading.

CM245. Molecular Biotechnology for Engineers. (4) (Same as Bioengineering CM245.) Lecture, four hours; discussion, one hour; outside study, seven hours. Selected topics in molecular biology that form the basis of biotechnology. Letter grading.

Letter grading.
foundation of biotechnology and biomedical engineering today. Topics include recombinant DNA technology, molecular research tools, manipulation of gene expression, directed mutagenesis and protein engineering, DNA-based diagnostics and DNA microarrays, microarray-based diagnostics, genomics and bioinformatics, isolation of human genes, gene therapy, and tissue engineering. Concurrently scheduled with course CM145. Letter grading.

Ms. Chen (F)

250. Computer-Aided Chemical Process Design. (4) Lecture, four hours; outside study, eight hours. Requisite: course 108B. Application of optimization methods in chemical process design; computer aids in process engineering; process modeling; systematic flowsheet invention; process synthesis; optimal design and operation of large-scale chemical processing systems. Letter grading.

Mr. Manousiouthakis (F)

Mr. Manousiouthakis (F)

Mr. Cohen

270R. Advanced Research in Semiconductor Manufacturing. (6) Laboratory, nine hours; outside study, nine hours. Limited to graduate chemical engineering students in MS semiconductor manufacturing option. Supervised research in processing semiconductor materials and devices. Letter grading.

M280A. Linear Dynamic Systems. (4) Same as Electrical and Computer Engineering M240A and Mechanical and Aerospace Engineering M270A.) Lecture, four hours; outside study, eight hours. Requisite: Electrical and Computer Engineering 141 or Mechanical and Aerospace Engineering 171A. State-space description of linear time-invariant (LTI) and time-varying (TV) continuous-time and discrete-time linear systems. Linear algebra concepts such as eigenvalues and eigenvectors, singular values, Cayley-Hamilton theorem, Jordan form; solution of state equations; stability, controllability, observability, realizability, and minimality. Stabilization design via state feedback and observer; separation principle; Connections with transfer function techniques. Letter grading.

M280C. Optimal Control. (4) Same as Electrical and Computer Engineering M240C and Mechanical and Aerospace Engineering M270C.) Lecture, four hours; outside study, eight hours. Requisite: Electrical and Computer Engineering 240B or Mechanical and Aerospace Engineering 270B. Applications of variational methods, Pontryagin maximum principle, Hamilton-Jacobi-Bellman equation (dynamic programming) to optimal control of dynamic systems modeled by nonlinear ordinary differential equations. Letter grading.

283C. Analysis and Control of Infinite Dimensional Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course M280A or Electrical and Computer Engineering M272A or Mechanical and Aerospace Engineering M270A. Nonlinear ordinary differential equations in Banach spaces, semigroup theory, wellposedness, fixed point theorems, existence and uniqueness results for evolution equations. Applications to transport-reaction processes. Letter grading.

Mr. Gray

Mr. Gray

290. Special Topics. (2 to 4) Seminar, four hours. Requisite: permission obtained from department in advance by department. Advanced and current study of one or more aspects of chemical engineering, such as chemical process dynamics and control, fuel cells and batteries, membrane transport, advanced chemical engineering analysis, polymers, optimization in chemical process design. May be repeated for credit with topic change. Letter grading.

M297. Seminar: Systems, Dynamics, and Control Topics. (2) (Same as Electrical and Computer Engineering M248S and Mechanical and Aerospace Engineering M299A.) Seminar, two hours; outside study, six hours. Limited to graduate engineering students. Presentations of research topics by leading academics, researchers from fields of systems, dynamics, and control. Students who work in these fields present their papers and results. S/U grading.

298A-298Z. Research Seminars. (2 to 12) Seminar, to be arranged. Preparation: graduate chemical engineering students. Presentations of research topics by leading academic and industrial chemists, engineers on development or application of recent technological advances in discipline. May be repeated for credit. S/U grading. (F,W,Sp)

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: apprentice personnel employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for course instruction at UCLA. May be repeated for credit. S/U grading. (F,Sp)

495A. Teaching Assistant Training Seminar. (2) Seminar, two hours; outside study, four hours; one-day intensive training at beginning of Fall Quarter. Limited to graduate chemical engineering students. Required of all new teaching assistants. Special seminar on communicating chemical engineering principles, concepts, and methods; teaching assistant preparation, organization, and presentation of material, including use of grading, advising, and rapport with students. S/U grading. Ms. Eisler (F)

495B. Teaching with Technology for Teaching Assistants. (2) Seminar, two hours; outside study, four hours. Limited to graduate chemical engineering students. Designed for teaching assistants interested in learning more about effective use of technology and ways to incorporate that technology into their classroom for benefit of student learning. S/U grading.

596. Directed Individual or Tutorial Studies. (2 to 8) Tutorial, to be arranged. Limited to graduate chemical engineering students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies. Supervised instruction in advanced technical problems. S/U grading.

597A. Preparation for MS Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate chemical engineering students in MS seminars. Required of all graduate chemical engineering students. Preparation for MS comprehensive examination. S/U grading.

597B. Preparation for PhD Preliminary Examination. (2 to 16) Seminar, to be arranged. Limited to graduate chemical engineering students. Supervised independent research for MS candidates, including thesis prospectus. S/U grading.

597C. Preparation for PhD Oral Qualifying Examination. (2 to 16) Tutorial, to be arranged. Limited to graduate chemical engineering students. Preparation for oral qualifying examination, including preliminary research on dissertation. S/U grading.

598. Research for and Preparation of MS Thesis. (2 to 12) Tutorial, to be arranged. Limited to graduate chemical engineering students. Supervised independent research for MS candidates, including thesis prospectus. S/U grading.

599. Research for and Preparation of PhD Dissertation. (2 to 16) Tutorial, to be arranged. Limited to graduate chemical engineering students. Usually taken after students have been advanced to candidacy. S/U grading.
Civil and Environmental Engineering

5731 Boelter Hall
Box 951593
Los Angeles, CA 90095-1593
310-825-2471
Department e-mail
Department website

Ertugrul Taciroglu, PhD, Chair
Jennifer A. Jay, PhD, Vice Chair
Jian Zhang, PhD, Vice Chair

Faculty Roster

Professors
Yousef Bozorgnia, PhD, PE
Scott J. Brandenberg, PhD, PE
Mekonnen Gebremichael, PhD
Eric M.V. Hoek, PhD
David Jassby, PhD
Jennifer A. Jay, PhD
Jiann-Wen Woody Ju, PhD, PE
Dennis P. Lettenmaier, PhD, NAE
Enrique A. López-Drogueut, PhD
Shailly Mahendra, PhD
Steven A. Margulis, PhD
Ali Mosleh, PhD, NAE (Evalyn Knight Professor of Engineering)
Sriram Narasimhan, PhD
Gaurav N. Sant, PhD (Pritzker Professor of Sustainability)
Michael K. Stenstrom, PhD, PE
Jonathan P. Stewart, PhD, PE
Ertugrul Taciroglu, PhD
John W. Wallace, PhD
Jian Zhang, PhD

Professors Emeriti
Stanley B. Dong, PhD, PE
Lewis P. Felton, PhD
Michael E. Fourney, PhD, PE
Moshe R. Rubinstein, PhD
Keith D. Stolzenbach, PhD, PE
Mdlen Vucetic, PhD
William W-G. Yeh, PhD, NAE (Richard G. Newman AECOM Endowed Professor Emeritus of Civil Engineering)

Associate Professors
Mathieu Bauchy, PhD
Henry V. Burton, PhD, SE (Presidential Endowed Professor of Structural Engineering)
Timm W. Gallien, PhD
Jiaqi Ma, PhD
Sanjay K. Mohanty, PhD

Assistant Professors
Idil D. Akin, PhD
Isabella B. Arzeno-Soltero, PhD
Tierra S. Bills, PhD
Alvar Escriva-Bou, PhD
Regan F. Patterson, PhD
Fabian Rosner, PhD

Undergraduate Study

Civil Engineering BS
The civil engineering program is accredited by the Engineering Accreditation Commission of ABET.

Capstone Major
The Civil Engineering major is a designated capstone major. In each of the major field design courses, students work individually and in groups to complete design projects. To do so, they draw on their prior coursework, research the needed materials and possible approaches to creating their device or system, and come up with creative solutions. This process enables them to integrate many of the principles they have learned previously and apply them to real systems. In completing their projects, students are also expected to demonstrate effective oral and written communication skills, as well as their ability to work productively with others as part of a team.

Educational Objectives
The objectives of the civil engineering curriculum at UCLA are to (1) provide graduates with a solid foundation in basic mathematics, science, and humanities, as well as fundamental knowledge of relevant engineering principles; (2) provide students with the capability for critical thinking, engineering reasoning, problem solving, experimentation, and teamwork; (3) prepare graduates for advanced study and/or professional employment within a wide array of industries or governmental agencies; (4) produce graduates who understand ethical issues associated with their profession, and who are able to apply their acquired knowledge and skills to the betterment of society; and (5) foster in students a respect for the educational process that is manifest by a lifelong pursuit of learning.

Learning Outcomes
The Civil Engineering major has the following learning outcomes:

- Understanding of, and ability to apply, basic mathematical and scientific concepts that underlie the field
- Ability to contribute meaningfully to design projects
- Critical thinking skills, problem-solving abilities, and familiarity with computational procedures essential to the field
- Ability to work productively as a member of a team
- Effective oral and written communication skills
Preparation for the Major

Required: Chemistry and Biochemistry 20A, 20B, 20L; Civil and Environmental Engineering 1, M20 (or Computer Science 31); Mathematics 31A, 31B, 32A, 32B, 33A, 33B (or Mechanical and Aerospace Engineering 82); Physics 1A, 1B, 1C, 4AL; one natural science course selected from Civil and Environmental Engineering 58XP, Earth, Planetary, and Space Sciences 3, 15, 16, 17, 20, Environment 12, Life Sciences 7A, Microbiology, Immunology, and Molecular Genetics 5, 6, or Neuroscience 10.

The Major

Required: Chemical Engineering 102A or Mechanical and Aerospace Engineering 105A, Civil and Environmental Engineering 91 (or Mechanical and Aerospace Engineering 101), 102, 103, C104 (or Materials Science and Engineering 104), 108, 110 (or C111), 120, 135A, 150, 153, 190, Mechanical and Aerospace Engineering 103; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and at least eight major field elective courses (32 units) from the lists below with the minimum grade of C (2.0) in each and an overall grade-point average of 2.0 or better in the major field elective requirement.

UCI Samueli Office of Academic and Student Affairs.

For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 22 or the GE Requirement web page.

Environmental Engineering Minor

The Environmental Engineering minor is designed for students who wish to augment their major program of study with an exposure to engineering methods applied to key environmental problems facing modern society in developed and developing countries. The minor also offers students a brief experience and understanding of the roles that environmental engineering methods play in solving environmental problems.

Admission

To enter the minor, students must be in good academic standing (2.0 grade-point average or better) and file a petition in the Office of Academic and Student Affairs, 6426 Boelter Hall.

The Minor

Required Lower-Division Course (4 units): Mathematics 3C or 32A.

Policies

Credit for Chemical Engineering 102A and Mechanical and Aerospace Engineering 105A is not allowed.

A minimum of 20 upper-division units applied toward the minor requirements must be in addition to units applied toward major requirements or another minor, and at least 16 units applied toward the minor must be taken in residence at UCLA. Transfer credit for any of the above is subject to departmental approval; consult with the undergraduate counselors before enrolling in any courses for the minor.

Each minor course must be taken for a letter grade, and students must have a minimum grade of C (2.0) in each and an overall grade-point average of 2.0 or better in the minor. Successful completion of the minor is indicated on the transcript and diploma.

Graduate Study

For admission information, see Graduate Programs Admission on page 27.

The following introductory information is based on 2023-24 program requirements for UCLA graduate degrees. Complete program requirements are available at Program Requirements for UCLA Graduate Degrees. Students are subject to the detailed degree requirements as published in program requirements for the year in which they enter the program.

The Department of Civil and Environmental Engineering offers Master of Science (MS)
and Doctor of Philosophy (PhD) degrees in Civil Engineering.

Civil Engineering MS

Course Requirements

There are two plans of study that lead to the MS degree: the thesis plan and the capstone plan (comprehensive examination). For both plans, at least nine courses (36 units) are required, a majority of which must be in the Civil and Environmental Engineering Department. At least five of the courses must be upper-division (100-series) or graduate-level (200-series) courses. The remaining two may be 598 courses involving work on the thesis. In the capstone plan (comprehensive examination), 500-series courses may not be applied toward the nine-course requirement. Courses completed outside of the department must be equal in rigor and related to the Civil and Environmental Engineering program of study and recommended to be quantitative in nature. In addition, MS students must enroll in a Civil and Environmental Engineering 200 seminar each quarter. A minimum 3.0 grade point average is required in all coursework and in all 200-level coursework applied toward the degree. All courses counting toward the nine-course requirement, except for 598, must be taken for a letter grade.

Each major field has a set of required preparatory courses which are normally completed during undergraduate studies. Equivalent courses taken at other institutions can satisfy the preparatory course requirements. The preparatory courses cannot be used to satisfy course requirements for the MS degree; courses must be selected in accordance with the list of required graduate and elective courses for each major field. Courses not listed below may be completed toward the course requirement if pre-approved by the faculty adviser and student affairs officer.

Undergraduate Courses. No lower-division courses (1-99) may be applied toward graduate degrees.

The MS degree offers eight fields of specialization that have specific course requirements.

Civil Engineering Materials

Required Preparatory Courses. General chemistry and physics, both with laboratory exercises; multivariate calculus; linear algebra and differential equations; and introductory thermodynamics. Other upper-division preparation could include Civil and Environmental Engineering C104, C120, 121, 135A, 140L, 142, and Materials Science and Engineering 104.

Required Graduate Courses. Two courses must be selected from Civil and Environmental Engineering C204, C205, 226, 253, 258A, 261B, M262A, 263A, 266, 267.

Environmental Engineering

Required Preparatory Courses. Chemistry and Biochemistry 20A, 20B, 20L; Civil and Environmental Engineering 151 or 153; Mathematics 32A, 32B, 33B (or Mechanical and Aerospace Engineering 82); Mechanical and Aerospace Engineering 103; Physics 1A/4AL.

Required Graduate Courses. Civil and Environmental Engineering 254A, 255A, 255B, 266; one course from 250A through 250D. Select the remaining courses (nine total for the capstone [comprehensive examination] option and seven total for the thesis option) from the approved elective list or obtain approval for other electives.

Approved Elective Courses. Civil and Environmental Engineering 110, 151, 152, 154, 155, 157A, 157B, 157C, 157L, M165, 226, 250A, 250B, 250C, 250D, 251A, 251B, 252, 253, 254A, 255A, 255B, 255C, 258A, 258B, 258C, 258D, 261A, 261B, M262A, 263A, 263B, 266, or other elective courses approved by the academic adviser and graduate adviser. Electives in the fields of biostatistics/statistics, chemical engineering, chemistry and biochemistry, computer science, Earth and space sciences, electrical and computer engineering, and environmental health sciences are commonly approved to satisfy course requirements. No more than two courses may be applied outside of civil and environmental engineering unless pre-approved for exceptional circumstances. No more than two undergraduate courses may be applied toward the nine-course requirement unless pre-approved for exceptional circumstances.

Structural/Earthquake Engineering

Required Preparatory Courses. Civil and Environmental Engineering 135A, 135B, and 141 (or 142).

Required Graduate Courses. Civil and Environmental Engineering 25A, 246, and at least three courses from Civil and Environmental Engineering 233B, 241, 243A, 244, 245.

Elective Courses. Undergraduate—no more than two courses from Civil and Environmental Engineering 133C, 143, and either 141 or 142 (whichever was not used as a requisite for graduate courses); geotechnical

Hydrology and Water Resources Engineering

Required Preparatory Courses. Chemistry and Biochemistry 20A, 20B, 20L; Mathematics 32A, 32B, 33B (or Mechanical and Aerospace Engineering 82); Mechanical and Aerospace Engineering 103; Physics 1A/4AL.

Required Graduate Courses. Civil and Environmental Engineering 250A, 250B, 250C, 250D; one course from Civil and Environmental Engineering 254A, 255A, 255B, 266. Select the remaining courses (nine total for the capstone [comprehensive examination] option and seven total for the thesis option) from the approved elective list or obtain approval for other electives.

Approved Elective Courses. Civil and Environmental Engineering 110, 151, 152, 154, 155, 157A, 157B, 157C, 157L, M165, 226, 250A, 250B, 250C, 250D, 251A, 251B, 252, 253, 254A, 255A, 255B, 255C, 258A, 258B, 258C, 258D, 261A, 261B, M262A, 263A, 263B, 266, or other elective courses approved by the academic adviser and graduate adviser. Electives in the fields of biostatistics/statistics, chemical engineering, chemistry and biochemistry, computer science, Earth and space sciences, electrical and computer engineering, and environmental health sciences are commonly approved to satisfy course requirements. No more than two courses may be applied outside of civil and environmental engineering unless pre-approved for exceptional circumstances. No more than two undergraduate courses may be applied toward the nine-course requirement unless pre-approved for exceptional circumstances.

Civil and Environmental Engineering 125 may not be applied toward elective courses.

Structural Mechanics

Required Preparatory Courses. Civil and Environmental Engineering 130, 135A, 135B.

Required Graduate Courses. Civil and Environmental Engineering 232, 235A, 235B, M237A, 244.

Elective Courses. Undergraduate—maximum of two courses from Civil and Environmental Engineering M135C; graduate—Civil and Environmental Engineering M230A, M230B, M230C, 233, 235C, C239, 246, 247, Mechanical and Aerospace Engineering 269B.

Civil and Environmental Engineering 125 may not be applied toward elective courses.

Structures and Civil Engineering Materials

Required Preparatory Courses. General chemistry and physics with laboratory exercises, multivariate calculus, linear algebra, and differential equations, introductory thermodynamics, structural analysis (Civil and Environmental Engineering 135A, 135B), steel or concrete design (course 141 or 142). Other undergraduate preparation could include Civil and Environmental Engineering C104, 120, 121, 140L, and Materials Science and Engineering 104.

Required Graduate Courses. Civil and Environmental Engineering C204, M230A (or 243A), 235A, C282.

Elective Courses. At least one course from civil engineering materials (Civil and Environmental Engineering 226, 253, 258A, 261B, M262A, 266, or 267) and if M230A is selected, one course from structural mechanics (M230B, M230C, 232, 236, or M237A) or if 243A is selected, one course from structural/earthquake engineering (241, 243B, 244, 245, 246, or 247).

Transportation Engineering

Required Preparatory Courses. Knowledge of calculus, linear algebra, and differential equations; Civil and Environmental Engineering 180, or equivalent course or professional experience; Geography 7, Urban Planning 221, or equivalent professional experience. These preparatory courses may be taken while enrolled in the MS program, but may not count toward the required nine degree program courses.

Required Graduate Courses. Civil and Environmental Engineering C281, C286; Civil and Environmental Engineering C285 or Urban Planning M253; one course from Civil and Environmental Engineering C211, 298, or similar course as approved by the adviser; and one course from Urban Planning C251, M253, 254, M255, M256, or M258, or similar course as approved by the adviser.

Elective Courses. Any four courses not counted as a required course selected from Civil and Environmental Engineering C211, C285, 298, Urban Planning C251, M253, 254, M256, M258.

Other Elective Courses. Other elective courses may be taken with prior approval from the faculty adviser.

Comprehensive Examination Capstone Plan

In addition to the course requirements, a comprehensive examination (capstone) is administered that covers the subject matter contained in the program of study. The examination may be offered in one of the following formats: (1) a portion of the doctoral written preliminary examination, (2) examination questions offered separately on final examinations of common department courses to be selected by the comprehensive examination committee, or (3) a written and/or oral examination administered by the committee. Committees for the capstone plan consist of at least three faculty members. In case of failure, the examination may be repeated once with the consent of the graduate adviser.

Thesis Plan

Every master’s degree thesis plan requires the completion of an approved thesis that demonstrates the student’s ability to perform original, independent research. In addition to the course requirements, under this plan students are required to write a thesis on a research topic in civil and environmental engineering supervised by the thesis adviser. An MS thesis committee reviews and approves the thesis. No oral examination is required.

Time-to-Degree

The normative duration for full-time students in the MS program on the comprehensive examination track is four quarters and on the thesis track is six quarters. The maximum time allowed for completing the MS degree is three years from the time of admission to the MS program in the school. Each quarter, students must make satisfactory progress toward their degree. Quarters taken on an approved leave of absence do not count toward the three year time limit.

Civil Engineering PhD

Major Fields or Subdisciplines

Civil engineering materials, environmental engineering, geotechnical engineering, hydrology and water resources engineering, structural/earthquake engineering, structural mechanics, and transportation engineering.

Course Requirements

PhD students are required to take five courses that serve as the basis for the written portion of the preliminary examination. If comparable courses have been completed elsewhere, the students may satisfy this requirement with approval of the adviser. Students take a minimum of four additional courses, as defined in their PhD program of study, which must be approved by the student’s adviser. A minimum 3.25 grade-point average is required in all coursework. In addition, PhD students must enroll in a Civil and Environmental Engineering 200 seminar each quarter until they advance to candidacy. At least 50 percent of coursework applied toward the PhD program must be completed at UCLA, unless a petition has been approved by the department.

Written and Oral Qualifying Examinations

After mastering the body of knowledge defined in the major field, students take a written preliminary examination that should be completed within the first two
years of full-time enrollment in the PhD program. Students may not take the examination more than twice.

After completing the written preliminary examination and/or starting the second year of the PhD program, all PhD students are required to make a public presentation once per year (summer through spring) each year of the program. The presentation may be delivered to various audiences (research group, Civil and Environmental Engineering Department, conference) and must be approved by the Civil and Environmental Engineering Department in advance of the presentation date. Students will provide documentation of presentations annually to the Student Affairs Office. The qualifying oral examination (prospectus), final oral examination (defense), and poster presentations are eligible to fulfill the annual presentation requirement.

After passing the written preliminary examination and substantially completing all minor field coursework, students take the University Oral Qualifying Examination. The nature and content of the examination are at the discretion of the doctoral committee, but ordinarily include a broad inquiry into the student’s preparation for research. The doctoral committee also reviews the prospectus of the dissertation at the oral qualifying examination. The student must confirm with the committee the expectations of deliverables for the prospectus including, but not limited to, written documents and an oral presentation.

Students nominate a doctoral committee prior to taking the University Oral Qualifying Examination. Students are required to meet with committee members once per year (summer through spring) after advancement to candidacy until graduation. Meetings may be one on one or as a group and members may participate remotely. Students will provide documentation of meetings annually to the Office of Academic and Student Affairs.

Note: Doctoral Committees. A doctoral committee consists of a minimum of four members. Two members, including the chair, must hold full-time faculty appointments in the department. For a full list of doctoral committee regulations, see the Division of Graduate Education Standards and Procedures for Graduate Study at UCLA.

Advancement to Candidacy

Students are advanced to candidacy upon successful completion of the written preliminary and oral qualifying examinations.

Doctoral Dissertation

Every doctoral degree program requires the completion of an approved dissertation that demonstrates the student’s ability to perform original, independent research and constitutes a distinct contribution to knowledge in the principal field of study.

Final Oral Examination

A final oral examination, or defense of dissertation, is required for all students in the program.

Time-to-Degree

The normative duration for full-time students in the PhD program, after completing an MS degree, is 12 quarters. The maximum time allowed for completing the PhD degree, after completing the MS degree, is 24 quarters. Each quarter, students must maintain satisfactory academic progress toward their degree. Quarters taken on an approved leave of absence do not count toward the time limit.

Fields of Study

Civil Engineering Materials

Ongoing research is focused on inorganic, random porous materials and incorporates expertise at the interface of chemistry and materials science to develop the next generation of sustainable construction materials. The work incorporates aspects of first principles and continuum scale simulations and integrated experiments, ranging from nano-to-macro scales. Special efforts are devoted toward developing low-clinker factor cements and concretes, reducing the carbon footprint of construction materials, and increasing the service life of civil engineering infrastructure.

Environmental Engineering

Research in environmental engineering focuses on the understanding and management of physical, chemical, and biological processes in the environment and in engineering systems. Areas of research include process development for water and wastewater treatment systems and the investigation of the fate and transport as well as treatment technologies of contaminants in the environment.

Geotechnical Engineering

Research in geotechnical engineering focuses on understanding and advancing the state of knowledge on the effects that soils and soil deposits have on the performance, stability, and safety of civil engineering structures. Areas of research include laboratory investigations of soil behavior under static and dynamic loads, constitutive modeling of soil behavior, behavior of structural foundations under static and dynamic loads, soil improvement techniques, response of soil deposits and earth structures to earthquake loads, and the investigation of geotechnical aspects of environmental engineering.

Hydrology and Water Resources Engineering

Ongoing research in hydrology and water resources deals with surface and groundwater processes, hydrometeorology and hydroclimatology, watershed response to disturbance, remote sensing, data assimilation, hydrologic modeling and parameter estimation, multiobjective resources planning and management, numerical modeling of solute transport in groundwater, and optimization of conjunctive use of surface water and groundwater.

Structures (Structural Mechanics and Earthquake Engineering)

Research in structural mechanics is directed toward improving the ability of engineers to understand and interpret structural behavior through experiments and computer analyses. Areas of special interest include computer analysis using finite-element techniques, computational mechanics, structural dynamics, nonlinear behavior, plasticity, micromechanics of composites, damage and fracture mechanics, structural optimization, probabilistic static and dynamic analysis of structures, and experimental stress analysis.

Designing structural systems capable of surviving major earthquakes is the goal of experimental studies on the strength of full-scale reinforced concrete structures, computer analysis of soils/structural systems, design of earthquake resistant masonry, and design of seismic-resistant buildings and bridges.

Teaching and research areas in structural/earthquake engineering involve assessing the performance of new and existing structures subjected to earthquake ground motions. Specific interests include assessing the behavior of reinforced concrete buildings and bridges, as well as structural steel, masonry, and timber structures. Integration of analytical studies with laboratory and field experiments is emphasized to assist in the development of robust analysis and design tools, as well as design recommendations. Reliability-based design and performance assessment methodologies are also an important field of study.

Transportation Engineering

Research in transportation engineering covers various topics including traffic system operations and control, intelligent transportation systems, transportation planning, transportation network system analysis, travel behavior and demand modeling, resilient infrastructure systems and health monitoring, and highway safety. Specifically, the program focuses on new
mobility technologies and systems and considers the intersection of travel behav-
ior, economics, engineering, regulation, and infrastructure as technology and busi-
ness forces lead to new mobility options such as automated and connected vehi-
cles, electric vehicles, vehicle/ride sharing, and micromobility.

Facilities
The Civil and Environmental Engineering Department has a number of laboratories to
support its teaching and research.

Instructional Laboratories

Engineering Geomatics Laboratory
This field laboratory teaches basic and advanced geomatics techniques including
light detection and range (LIDAR) imaging, georeferencing using total station and dif-
ferential global positioning system (GPS) equipment, and integration of measure-
ments with LIDAR mapping software and Google Earth. Experiments are conducted
on campus.

Environmental Engineering Laboratories
The laboratories are used for the study of basic laboratory techniques for character-
izing water and wastewaters. Selected experi-
ments include measurement of bio-
chemical oxygen demand, suspended
solids, dissolved oxygen hardness, and
other parameters used in water quality
control.

Experimental Fracture Mechanics Laboratory
The laboratory is used for preparing and
testing specimens using modern dynamic
testing machines to develop an under-
standing of fracture mechanics and to be-
come familiar with experimental techniques
available to study crack tip stress fields,
strain energy release rate, surface flaws, and
crack growth in laboratory samples.

Hydrology Laboratory
The laboratory is used for studying basic
surface water processes and characterizing
a range of geochemical parameters. Basic
experiments include measurements of sus-
pended solids, turbidity, dissolved oxygen,
sediment distributions, and other basic wa-
ter quality constituents. The laboratory also
includes an extensive suite of equipment
for measuring surface water processes in
situ, including precipitation, stage height,
discharge, channel geomorphology, and
other physical parameters.

Mechanical Vibrations Laboratory
The laboratory is used for conducting free
and forced vibration and earthquake re-
sponse experiments on small model struc-
tures such as a three-story building, a por-
tal frame, and a water intake/outlet tower
for a reservoir. Two electromagnetic excit-
ers, each with a 30-pound dynamic force
rating, are available for generating steady
state forced vibrations. A number of accel-
erometers, LVDTs (displacement transduc-
ers), and potentiometers are available for
measuring the motions of the structure. A
laboratory view-based computer-con-
trolled dynamic data acquisition system, an
oscilloscope, and a spectrum analyzer are
used to visualize and record the motion of
the model structures.

Two small electromagnetic and servo-
hydraulic shaking tables (1.5 ft. x 1.5 ft. and 2 ft.
x 4 ft.) are available to simulate the dynamic
response of structures to base excitation
such as earthquake ground motions.

Reinforced Concrete Laboratory
The laboratory is available for students to
conduct monotonic and cyclic loading to
verify analysis and design methods for
moderate-scale reinforced concrete slabs,
beams, columns, and joints, which are
tested to failure.

Soil Mechanics Laboratory
The laboratory is used for performing experi-
ments to establish data required for
soil classification, soil compaction, shear
strength of soils, soil settlement, and con-
solidation characteristics of soils. Students
enrolled in the Advanced Soil Mechanics Laboratory course see demonstrations of
cyclic soil testing techniques including tri-
axial and direct simple shear, and advanced
data acquisition and processing.

Structural Design and Testing Laboratory
The laboratory is used for the design/opti-
mization, construction, instrumentation,
and testing of small-scale structural models
to compare theoretical and observed be-
havior. Projects provide integrated design/
laboratory experience involving synthesis
of structural systems and procedures for
measuring and analyzing response under
load.

Research Laboratories

Building Earthquake Instrumentation Network
The network consists of more than 100
earthquake strong motion instruments in
two campus buildings to measure the re-
ponse of actual buildings during earth-
quakes. When combined with over 50 in-
struments placed in Century City high-rises
and other nearby buildings, this network,
which is maintained by the U.S. Geological
Survey (USGS) and the California Geologi-
cal Survey’s Strong Instrumentation Mo-
tion Program, represents one of the most
detailed building instrumentation net-
works in the world. The goal of the re-
search conducted using the response of
these buildings is to improve computer modeling methods and the ability of struc-
tural engineers to predict the performance of buildings during earthquakes.

Environmental Engineering Laboratories
The laboratories are used for conducting water and waste-water analysis, including
instrumental techniques such as micros-
copy, PCR, qPCR, GC, GC/MS, HPLC, TOC,
IC, and particle counting instruments. A
wide range of wet chemical analysis can be
made in this facility with 6,000 square feet of labora-
tory space and an accompanying
4,000-square-foot rooftop facility where
large pilot scale experiments can be con-
ducted. Additionally, electron microscopy
is available in another laboratory.

Recently studies have been conducted on oxygen transfer; storm water toxicity;
transport and remediation of pollutants in
soil; membrane fouling; toxicity assess-
ment and removal of contaminants from
drinking, ground, storm, and waste water;
and computer simulation of a variety of
environmental processes.

Experimental Mechanics Laboratory
The laboratory supports two major labora-
tories: the Optical Metrology Laboratory
and the Experimental Fracture Mechanics Laboratory.

In the Optical Metrology Laboratory, tools
of modern optics are applied to engineer-
ing problems. Such techniques as holo-
graphy, speckle-interferometry, Moiré anal-
ysis, and fluorescence-photo mechanics are
used for obtaining displacement, stress,
strain, or velocity fields in either solids or
liquids. Recently, real-time video digital
processors have been combined with these
modern optical technical techniques, al-
lowing direct interfacing with computer-
based systems such as computer-aided
testing or robotic manufacturing.

The Experimental Fracture Mechanics Lab-
oratory is currently involved in computer-
aided testing (CAT) of the fatigue fracture
mechanics of ductile material. An online
dedicated computer controls the experi-
ment as well as records and manipulates
data.
Laboratory for the Chemistry of Construction Materials (LC2)
Gaurav N. Sant and Mathieu Bauchy, Directors

The laboratory for the Chemistry of Construction Materials (LC2) research efforts are directed toward development and design of sustainable, low-carbon-dioxide-footprint materials for infrastructure construction applications. To this end, its research group develops fundamental constituent chemistry-microstructure-performance descriptors of cementitious materials to correlate and unify the fundamental variables that describe the overall response of the material. These efforts are directed toward addressing the practical needs of the wider construction community, and developing so-called new concretes for the next generation of infrastructure construction applications. The overall research theme aims to rationalize the use of natural resources in construction, promote environmental protection, and advance the cause of ecological responsibility in the concrete construction industry.

Laboratory for the Physics of Amorphous and Inorganic Soils (PARISlab)
Gaurav N. Sant and Mathieu Bauchy, Directors

PARISlab research focuses on improving materials of engineering and industrial relevance. Its goal is to understand composition-nano- and microstructure-property relationships in materials at a fundamental level. To this end, it uses a computational physical/material science approach supported by experiments. In strong collaboration with the Laboratory for the Chemistry of Construction Materials (LC2), PARISlab works to establish a new paradigm in civil engineering by tackling the practical needs of the wider construction community by tackling the sustainability of infrastructure materials at different scales, from atoms to structures.

Large-Scale Structure Test Facility
The facility allows investigations of the behavior of large-scale structural components and systems subjected to gravity and earthquake loadings. The facility consists of a high-bay area with a 20 ft. x 50 ft. strong floor with anchor points at 3 ft. on center. Actuators with servohydraulic controllers are used to apply monotonic or cyclic loads. The area is serviced by two cranes. The facilities are capable of testing large-scale structural components under a variety of axial and lateral loadings.

Associated with the laboratory is an electrohydraulic universal testing machine with force capacity of 100 tons. The machine is used mainly to apply tensile and compressive loads to specimens so that the properties of the materials from which the specimens are made can be determined. It can also be used in fatigue testing of small components.

Mobility Laboratory
Jiaqi Ma, Director

The Mobility Laboratory is dedicated to harnessing system theories and tools—such as artificial intelligence, control theory, robotics, machine learning, and optimization—to innovate and develop advanced mobility technologies and solutions for smart cities, particularly intelligent vehicular and transportation systems. It conducts extensive research, with support from government agencies (such as federal and state transportation departments, and the National Science Foundation) and private sectors into improving transportation system sustainability with advanced technologies and management solutions. The lab also leverages the university environment, and works with external partners, to perform research and development; to prepare a future workforce for competitive advantage in advanced vehicular technologies, vehicle automation, and electrification; urban analytics for future mobility and smart cities; and resilient, secure, and smart transportation and logistics infrastructure.

Soil Mechanics Laboratory
The laboratory is used for standard experiments and advanced research in geotechnical engineering, with equipment for static and dynamic triaxial and simple shear testing. Modern computer-controlled servohydraulic closed-loop system supports triaxial and simple shear devices. The system is connected to state-of-the-art data acquisition equipment. The laboratory also includes simple shear apparatuses for small-strain static and cyclic testing and for one-dimensional or two-dimensional cyclic loading across a wide range of frequencies. A humidity room is available for storing soil samples.

Faculty Areas of Thesis Guidance
Professors
Yousif Bozorgnia, PhD, PE (UC Berkeley, 1981)
Structural engineering, earthquake engineering, engineering seismology
Scott J. Brandenberg, PhD, PE (UC Davis, 2005)
Geotechnical earthquake engineering, soil-structure interaction, liquefaction, data acquisition and processing, numerical analysis
Mekonnen Gebremichael, PhD (U. Iowa, 2004)
Remote sensing of hydrology, watershed hydrologic modeling, hydrometeorology, stochastic processes and scaling
Eric M.V. Hesk, PhD (Yale, 2001)
Physical and chemical environmental processes, colloidal and interfacial phenomena, environmental membrane separations, bioadhesion and biofouling
David Jassby, PhD (Duke, 2011)
Water treatment and desalination, membrane separation processes, membrane material fabrication, electrochemistry, environmental applications of nanotechnology
Jennifer A. Jay, PhD (MIT, 1999)
Aquatic chemistry, environmental microbiology
Jiann-Wen Woody Ju, PhD, PE (UC Berkeley, 1986)
Damage mechanics, mechanics of composite materials, computational plasticity, micromechanics, concrete modeling and durability, computational mechanics
Dennis P. Lettenmaier, PhD, NAE (U. Washington, 1975)
Hydrologic modeling and prediction, hydrologic-climate interactions, hydrologic change
Enrique A. Lopez-Drogueut (U. Maryland, 1999)
Quantum computing, artificial-intelligence-supported digital twins, and prognostics and health management based on physics-informed deep learning for reliability, risk, and safety assessment of structural and mechanical systems
Shalay Mahendra, PhD (UC Berkeley, 2007)
Environmental microbiology, biodegradation of groundwater contaminants, microbial-nanomaterial interactions, nanotoxicology, applications of molecular biological and isotopic tools in environmental engineering
Steven A. Margulis, PhD (MIT, 2002)
Surface hydrology, hydrometeorology, remote sensing, data assimilation
Ali Mosleh, PhD, NAE (UCLA, 1981)
Reliability engineering, physics of failure modeling and system life prediction, resilient systems design, prognostics and health monitoring, hybrid systems simulation, theories and techniques for risk and safety analysis
Siriram Narasimhan, PhD (Rice, 2005)
Structural dynamics, structural control, system identification, vibration and acoustic signal processing, robotics, computer vision, data-driven modeling and remaining life prediction
Gaurav N. Sant, PhD (Purdue, 2009)
Cementitious materials and porous media with focus on chemistry-structure-property relationships and interfacial thermodynamics of materials
Michael K. Stenstrom, PhD, PE (Clemson, 1976)
Process development and control for water and wastewater treatment plants
Jonathan P. Stewart, PhD, PE (UC Berkeley, 1996)
Geotechnical engineering, earthquake engineering, engineering seismology
Ertugrul Taciroglu, PhD (U. Illinois Urbana-Champaign, 1998)
Computational structural and solid mechanics, constitutive modeling of materials, structural health monitoring, performance-based earthquake engineering, soil-structure interaction
John W. Wallace, PhD, PE (UC Berkeley, 1988)
Earthquake engineering, design methodologies, seismic evaluation and retrofit, large-scale testing laboratory and field testing
Jian Zhang, PhD (UC Berkeley, 2003)
Earthquake engineering, structural dynamics and mechanics, seismic protective devices and strategies, soil-structure interaction, and bridge engineering
12. Advanced Geotechnical Design. (4) Formerly numbered C123L. Lecture, two hours; discussion, two hours; active learning, two hours; outside study, six hours. Requisite: course M20 or Mechanical and Aerospace Engineering 158A or 158B. Introduction to basic concepts of finite element methods (FEM) and applications to structural and solid mechanics and heat transfer. Direct matrix structural analysis; weighted residual, least squares, Ritz approximation method; eigenvalues; convergence properties; isoparametric formulation of multidimensional heat flow and elasticity; numerical integration. Practical use of FEM software. Geometric and analytical modeling; preprocessing and postprocessing techniques; term projects with computers. Letter grading. Mr. Taciroglu (Sp)

135L. Structural Design and Testing Laboratory. (4) Lecture, two hours; laboratory, five hours; outside study, five hours. Requisite: course M101, 135A. Limited enrollment. Computer-aided optimum design; construction, instrumentation, and test of small-scale model structure. Use of computer-based data acquisition and interpretation systems; comparison of experimental and theoretically predicted behavior. Letter grading. Mr. Burton (FSp)

137L. Elementary Structural Dynamics. (4) Lecture, four hours; discussion, two hours; outside study, four hours. Requisite or corequisite: course 137. Calibration of instrumentation for dynamic measurements. Determination of natural frequencies and damping factors from free vibrations. Determination of natural frequencies, mode shapes, and damping factors from forced vibrations. Dynamic simulation. Letter grading. Mr. Wallace (Not offered 2023-24)

140L. Structural Components and Systems Testing Laboratory. (4) Lecture, two hours; laboratory, six hours; outside study, four hours. Enforced requisites: course 142. Comparison of experimental results with analytical results and code requirements to assess accuracies and limitations of calculation procedures used in structural design. Tests include quasi-static tests of structural elements (beams, columns) and systems (slab-column, beam-column) and dynamic tests of simple building systems. Some tests focus on assessment of element or subsystem stiffness, strength, and deformation capacity, whereas dynamic tests focus on assessment of periods, mode shapes, and damping. Development of communication skills through preparation of laboratory reports and oral presentations. Letter grading. Mr. Wallace (Sp)

141. Steel Structures. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 135A. Introduction to building codes. Fundamentals of load and resistance factor design of steel elements. Design of tension and compression members. Design of beams and columns. Simple connection design. Introduction to computer modeling methods and design process. Letter grading. Mr. Wallace (F)

142. Design of Reinforced Concrete Structures. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 135A. Beams, columns, and slabs in reinforced concrete structures. Properties of reinforced concrete materials. Design of columns for axial force, bending, and shear. Ultimate strength design methods. Letter grading. Mr. Wallace (F)

M135C. Introduction to Finite Element Methods. (4) Departmental Mechanical Engineering. Same as Mechanical and Aerospace Engineering M168.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 130 or Mechanical and Aerospace Engineering 158A or 158B. Introduction to basic concepts of finite element methods (FEM) and applications to structural and solid mechanics and heat transfer. Direct matrix structural analysis; weighted residual, least squares, Ritz approximation method; eigenvalues; convergence properties; isoparametric formulation of multidimensional heat flow and elasticity; numerical integration. Practical use of FEM software. Geometric and analytical modeling; preprocessing and postprocessing techniques; term projects with computers. Letter grading. Mr. Taciroglu (Sp)

121. Design of Foundations and Earth Structures. (4) Lecture, four hours; discussion, two hours; outside study, five hours. Requisite or corequisite: course 120. Design methods for foundations and earth structures. Site investigation, including evaluation of soil properties for design. Design of footings and piles, including static and settlement calculations. Design of slopes and earth retaining structures. Letter grading. Mr. Brandenberg (W)

C128. Geohazards and Infrastructure Resilience. (4) Lecture, four hours; outside study, eight hours. Requisite: course 120. Geologic characterization of soil and rock units. Relationships developed between landforms, active, past, and ancient geologic processes, ground and surface water, and properties of soil and rock. Geohazards associated with climate change, wildfires, landslides, volcanism, and earthquakes. Effects of geologic processes on civil infrastructure and risk assessment procedures to promote resilience. Concurrently scheduled with course C228. Letter grading. Mr. Stewart (F)

120L. Engineering Geomatics. (4) Lecture, two hours; laboratory, four hours; outside study, six hours. Collection, processing, and analysis of geospatial data. Ellipsoid and geod models of shape of Earth: Sea level, height, and geopotential surfaces. Elements and usage of topographic data and maps. Advanced global positioning systems (GPS) for high-precision mapping. Advanced laser-based light detection and ranging (LiDAR) for detailed terrain analysis and change detection. Hydrogeosystems: seafloor mapping. Letter grading. Ms. Gallien (Sp)

130. Elementary Structural Mechanics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 108. Analysis of stress and strain, phenomenological material behavior, tension, bending, and transverse shear stresses in beams with general cross-sections, shear center, deflection of beams, torsion of beams, warping, column instability and failure. Letter grading. Mr. Taciroglu (Sp)

135A. Elementary Structural Analysis. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: courses M20 or Computer Science 31A, 31B. Introduction to structural analysis; classification of structural elements; analysis of statically determinate trusses, beams, and frames; deflections in elementary structures; virtual work; analysis of indeterminate structures using force method; introduction to displacement method and energy concepts. Letter grading. Mr. Ru (J)

135B. Intermediate Structural Analysis. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 135A. Analysis of truss and frame structures using matrix methods; matrix force methods; matrix displacement method; analysis concepts based on theorem of virtual work; moment distribution. Letter grading.

166A. Introduction to basic concepts of finite element methods and applications to structural and solid mechanics and heat transfer. Direct matrix structural analysis; weighted residual, least squares, Ritz approximation method; eigenvalues; convergence properties; isoparametric formulation of multidimensional heat flow and elasticity; numerical integration. Practical use of FEM software. Geometric and analytical modeling; preprocessing and postprocessing techniques; term projects with computers. Letter grading. Mr. Taciroglu (Sp)

108L. Experimental Structural Mechanics. (4) Lecture, two hours; laboratory, six hours; outside study, four hours. Requisite or corequisite: course 108. Laboratory and laboratory experiments in various structural mechanics testing of metals (steel, aluminum, brass), high-strength plastics, and concrete (cylinders, beams). Direct tension, Direct compression. Ultrasonic nondestructive evaluation. Elastic buckling of columns. Fracture mechanics testing and fracture toughness. Splitting tension and flexural tension. Elastic, plastic behavior. ASTM, RILEM. Cyclic loading. Microstructures of concrete. Size effects. Letter grading. Mr. Ju (W)

110. Introduction to Probability and Statistics for Engineers. (4) Lecture, four hours; discussion, one hour (when scheduled); outside study, seven hours. Requisites: Mathematics 32A, 33A. Recommended: course M20. Introduction to fundamental concepts and applications of probability and statistics in civil engineering, with focus on how these concepts are used in experimental design and sampling, data analysis, risk and reliability analysis, and project design under uncertainty. Topics include basic probability concepts, random variables and analytical probability distributions, functions of random variables, estimating parameters from observational data, regression, hypothesis testing, and Bayesian concepts. Letter grading.

C111. Machine Learning and Artificial Intelligence for Civil Engineering. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course M20, Chemistry 20A, 20B, Mathematics 31A, 31B, 113. Machine learning and artificial intelligence concepts and methods used in civil engineering projects. Focus on practice and problem-solving skills. By course end, students expected to be able to independently run simulations at scale and use AI to solve practical problems. Letter grading. Mr. Brandenberg (Sp)
142L. Reinforced Concrete Structural Laboratory. (4) Lecture, two hours; laboratory, six hours; outside study, four hours. Recommended requisites: courses 135B, 142. Limited enrollment. Design considerations used for reinforced concrete beams, columns, slabs, and joints. Emphasis on practical design components, including stress, moment, shear, and flexural analysis and design. Use of engineering economics and preparation of written engineering reports. Letter grading. Ms. Margulis (Sp)

153. Introduction to Environmental Engineering Science. (4) Lecture, four hours; discussion, one hour (when scheduled); outside study, seven hours. Recommended requisite: Mechanical and Aerospace Engineering 103. Water, air, and soil pollution: sources, transformations, effects, and processes for remediation. Equivalents: requires course 151 and wastewater treatment, waste disposal, air pollution, global environmental problems. Field trip. Letter grading. Mr. Mohan (F)

155. Unit Operations and Processes for Water and Wastewater Treatment. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Recommended requisite: course 153. Selected experi- ments in analytical chemistry related to water and wastewater analysis. Letter grading. Mr. Jassby (F)

156A. Environmental Chemistry Laboratory. (4) Lecture, four hours; laboratory, four hours; outside study, four hours. Required courses: 151. Emphasis on practical design components, including stress, moment, shear, and flexural analysis and design. Use of engineering economics and preparation of written reports. Letter grading. Ms. R. Stenstrom (F)

156B. Environmental Engineering Unit Operations and Processes Laboratory. (4) Lecture, two hours; laboratory, six hours; outside study, four hours. Required courses: 151. Emphasis on practical design components, including stress, moment, shear, and flexural analysis and design. Use of engineering economics and preparation of written reports. Letter grading. Ms. R. Stenstrom (F)

157A. Hydrologic Modeling. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Recommended requisite: course 151. Emphasis on practical design components, including stress, moment, shear, and flexural analysis and design. Use of engineering economics and preparation of written reports. Letter grading. Mr. Yeh (Not offered 2023-24)

157B. Design of Water Treatment Plants. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Recommended requisites: courses 155, 190. Water quality standards, legal requirements, overview of water treatment plants, design of unit operations, predesign of water treatment plants, hydraulics of plants, process control, and cost estimation. Letter grading. Mr. Stenstrom (Not offered 2023-24)

157C. Design of Wastewater Treatment Plants. (4) Lecture, four hours; discussion, two hours. Required requisites: courses 155, 190. Process design of wastewater treatment plants, including primary and secondary treatment, detailed design review of existing plants, process control, and economics. Letter grading. Mr. Stenstrom (Sp)

157L. Hydrologic Analysis. (4) Lecture, two hours; laboratory, five hours; outside study, five hours. Recommended requisite: course 150. Collection, compilation, and interpretation of data for quantification of components of hydrologic cycle, including precipitation, evaporation, infiltration, and runoff. Use of hydrologic variables and parameters for development, construction, and application of analytical models for selected problems in hydrology and water resources. Letter grading. Mr. Geakemper (W)

C158. Coastal Engineering. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Required requisites: courses 151 and Mechanical and Aerospace Engineering 103. Covers coastal water levels (tides, climate variability, storms, sea level rise, resonance), surface gravity waves (characteristics, transformation, spectra), coastal erosion, and the socioeconomic, environmental, and regulatory aspects of coastal engineering. Letter grading. Ms. R. Stenstrom (F)

C159. Green Infrastructure. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Required requisites: courses 150, 153. Overview of fundamental science, engineering, and ecological principles to design green infrastructure for stormwater management. Letter grading. Mr. Mohan (Sp)

C164. Sustainable Waste Management. (4) Formerly numbered 164.) Lecture, four hours; discussion, two hours; outside study, six hours. Required requisites: course 153. Emphasis on practical design components, including stress, moment, shear, and flexural analysis and design. Use of engineering economics and preparation of written reports. Letter grading. Ms. Stenstrom (Sp)

M156. Environmental Nanotechnology: Implications and Applications. (4) (Same as Engineering M103.) Lecture, four hours; discussion, two hours; outside study, six hours. Recommended requisite: course 151. Emphasis on practical design components, including stress, moment, shear, and flexural analysis and design. Use of engineering economics and preparation of written reports. Letter grading. Mr. Mohan (W)

M165. Environmental Microbiology. (4) (Same as Environmental Health Sciences M166.) Lecture, four hours; discussion, two hours; outside study, six hours. Recommended requisite: course 153. Microbial cell and its metabolic capabilities, microbial ge-
nerics and its potentials, growth of microbes and kinetics of growth, microbial ecology and diversity, microbiology of wastewater treatment, probing of microbes, public health microbiology, pathogen control, Letter grading. Ms. Mahendra (Not offered 2023-24)

170. Introduction to Construction Management. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Introduction to construction engineering theory, management, and techniques. Implementation of exercises from academic texts and real project case studies. Discussion of building systems, bidding, project development methods, document control, critical path method scheduling, labor management, quality management, estimating, sustainability, and cost controls. Letter grading.

180. Introduction to Transportation Engineering. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Designed for juniors/senior Civil Engineering students and Public Affairs graduate students. General characteristics of transportation systems, including streets and highways, rail, transit, air, and water. Capacity considerations, including planning, design, and operations. Components of roadway design, including horizontal and vertical alignment, cross sections, and pavements. Letter grading. Mr. Ma (Sp)

C181. Traffic Engineering Systems: Operations and Control. (4) (Formerly numbered 181.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 180. Traffic operations including traffic data collection and analysis, safety and crash studies, traffic flow theory, highway capacity analysis, signalized intersection design and analysis, and simulation modeling. Students gain understanding of basic traffic flow theory, learn to conduct traffic data collection and analysis, and to apply capacity analysis and simulation modeling to both highway and signalized intersections. Concurrently scheduled with course C281. Letter grading. Mr. Ma (F)

C182. Rigid and Flexible Pavements: Design, Materials, and Serviceability. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Recommended requisites: courses C104, 108, 120, Materials Science 104. Correlation, analysis, and metricalization of aspects of pavement design, including materials selection and traffic loading and volume. Special attention to aspects of pavement distress/serviceability and factoring of these into metrics of pavement performance. Discussion of potential choices of pavement materials (i.e., asphalt and concrete) and their specific strengths and weaknesses in paving applications. Unification and correlation of different variables in pavement performance and highlight their relevance in pavement design. Concurrently scheduled with course C282. Letter grading. Mr. Sant (Not offered 2023-24)

C185. Transportation Systems Analysis. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 180. Transportation researchers and practitioners are motivated by desire to explain spatial interactions that resulted in movement of people and goods from place to place. Such interactions become more intricate as new technologies emerge. To explore and perceive these intricate interactions, understanding of essential nature of transportation systems to analyze and optimally design such systems is needed more than ever. Introduction to fundamental concepts, methods, and principles underlying transportation systems analysis. Inclusion of topics on one level of system analysis: traveler behavior and network. Concurrently scheduled with course C285. Letter grading. Mr. Ma (W)

C186. Intelligent Transportation Systems. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 180. Introduction to basic elements of intelligent transportation systems (ITS), focusing on technological, systems, and institutional aspects. Topics include systems engineering of ITS processes, advanced travel information systems, transportation network operations, commercial vehicle operations and intermodal freight, public transport applications, ITS regional strategic transportation planning, travel demand management, electronic toll collection, and road-pricing, connected and automated vehicles (CAV), data access and exchange, cybersecurity for ITS, and other smart mobility technologies. Concurrently scheduled with course C286. Letter grading. Ms. Mahendra (W)

188. Special Courses in Civil and Environmental Engineering. (4) Lecture, to be arranged; discussion, to be arranged (when scheduled); outside study, to be arranged. Special topics in civil engineering for undergraduate students taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated for credit with topic or instructor change. Letter grading.

190. Professional Practice. (2) Lecture, two hours; discussion, one hour; outside study, three hours. Requisite: course 121, 141, 142, 151, 155 (may be taken concurrently). Sustainability in design (e.g., LEED certification for building projects), professional licensure (PE, SE, and GE), project management (proposals, scheduling, and budgeting), business, public policy, leadership, ethics, earthquake loads, wind loads, load combinations, and environmental impact reports. Letter grading. Mr. Burton (F)

194. Research Group Seminars: Civil and Environmental Engineering. (2 to 8) Seminar, two to eight hours; outside study, four to 16 hours. Designed for undergraduate students who are part of research group. Discussion of research methods and current literature in field or of research of faculty members or students. May be repeated for credit. Letter grading.

199. Directed Research in Civil and Environmental Engineering. (2 to 8) Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation under guidance of faculty mentor. Culminating in written report. May be repeated for credit with topic or instructor change. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading.

Graduate Courses

200. Civil and Environmental Engineering Graduate Seminar. (2) Seminar, four hours; outside study, two hours. Various topics in civil and environmental engineering that may include earthquake engineering, environmental engineering, geotechnical engineering, hydrology and water resources engineering, materials engineering, structural engineering, and structural mechanics. May be repeated for credit. S/U grading. (F, W, Sp)

204. Structure, Processing, and Properties of Civil Engineering Materials. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Discussion of aspects of cement and concrete materials, including manufacture of cement and production of concrete. Aspects of cement composition and basic chemical reactions, microstructure, properties of plastic, hardened, and recycled concrete and concrete admixtures, and quality control and acceptance testing. Development and testing of fundamentals for complete understanding of overall response of all civil engineering materials. By permission, C105. Laboratory section of fundamental materials science concepts to understand, explain, analyze, and describe engineering performance of civil engineering materials. Concurrently scheduled with course C104. Letter grading. Mr. Sant (W)

222. Introduction to Soil Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 120. Review of engineering problems involving soil dynamics. Fundamentals of theoretical soil dynamics: response of sliding block-on-plane to cyclic earthquake loads, application of theories of single degree-of-freedom (DOF) system, multiple DOF system and one-dimensional wave propagation. Fundamentals of cyclic soil behavior: stress-strain-pore water pressure behavior, shear moduli and damping, cyclic settlement and concept of volume-lateral behavior. Introduction to modeling of cyclic soil behavior. Letter grading. Mr. Vucetic (Not offered 2023-24)

223. Advanced Geotechnical Design. (4) (Formerly numbered 223.) Lecture, four hours; outside study, eight hours. Requisite: course 120. Construction of limit equilibrium analyses, including limit equilibrium procedures, finite element method, seepage analysis, and advanced topics such as rapid draindown, construction of embankments, foundations, and retaining walls. Lateral Earth Retention systems including gravity walls and excavation support systems. Advanced analysis methods and design project involving real landslide problem. Emphasis on preparation. Letter grading. Preparation of professional engineering documents such as proposals, work acknowledgements, figures, plans, and reports. Letter grading. Mr. Brandenberg (W)

225. Geotechnical Earthquake Engineering. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 220, 245 (may be taken concurrently). Analysis of earthquake-induced ground failure, including soil liquefaction, cyclic softening of clays, seismic compression, surface fault rupture, and seismic slope instability. Ground response effects on earthquake ground motions. Soil-structure interaction, including soil and kinematic interaction and foundation deformations under seismic loading. Letter grading. Mr. Stewart (Sp)

226. Geoenvironmental Engineering. (4) Lecture, four hours; outside study, eight hours. Requisite: course 120. Field of geoenvironmental engineering involves application of geotechnical principles to environmental problems. Topics include environmental energy, stored energy; constitutive relations, elasticity, stress-strain-temperature relations. Analysis of prismatic beams by three-dimensional elasticity; Analysis of laminated anisotropic plates and shells based on classical and nonclassical theories; and Elastodynamic behavior of laminated plates and cylinders. Letter grading. Mr. Zhang (F)

231. Mechanics of Composite Material Structures. (4) Lecture, four hours; outside study, eight hours. Requisites. Letter grading. Mr. Ju, Mr. Mal (Not offered 2023-24)

232. Theory of Plates and Shells. (4) Lecture, four hours; outside study, eight hours. Requisite: course 130. Small and large deformation theories of thin plates; energy methods; free vibrations; membrane theory of shells; axiometric deformations of cylindrical and spherical shells, including bending. Letter grading. Ms. Zhang (F)

233. Mechanics of Composite Material Structures. (4) Lecture, four hours; outside study, eight hours. Requisites. Letter grading. Mr. Ju, Mr. Mal (Not offered 2023-24)

243A. Advanced Structural Analysis. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 135A. Recommended: course 135B. Review of matrix force and displacement methods of structural analysis; virtual work theorem, virtual forces, and displacements; theorems on stationary value of total and complementary potential energy, minimum total potential energy, Maxwell/Betti theorems, effects of approximations, introduction to finite element analysis. Letter grading.

243B. Response and Design of Reinforced Concrete Structural Systems. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 243A, 244B. Introduction to computer-aided design of structural systems, identifying relative advantages and disadvantages of various analytical reliability methods, using reliability tools to calibrate simplified building codes, and performing reliability calculations related to performance-based engineering. Letter grading.

245. Earthquake Ground Motion Characterization. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Corequisite: course C137 or 246. Earthquake fundamentals, including plate tectonics, tectonic types, seismic activity scales. Characterization of earthquake source, including magnitude range and rate of future earthquakes. Ground motion prediction equations and site effects. Ground motion selection and modification for response history analysis. Letter grading.

246. Structural Response to Ground Motions. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses C137, 141, 142, 235A. Spectral analysis of ground motions; response, time, and Fourier spectra. Response of structures to ground motions due to earthquakes. Computational methods to evaluate structural response. Response
251A. Surface Water Hydrology. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 150. In-depth study of surface water hydrology, including discussion and interaction of major topics such as rainfall and evaporation, soils and infiltration properties, runoff and snowmelt processes. Introduction to rainfall-runoff modeling, floods, and policy issues involved in water resource engineering and management. Letter grading.

Ms. Zhang (Sp)

250A. Hydroelectric Data Assimilation. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 250A, 250C. Introduction to basic concepts of hydrologic data assimilation. Applications geared toward assimilating disparate observations into dynamic models of hydrologic systems. Letter grading. Mr. Gebremichael (Sp)

252. Engineering Economic Analysis of Water and Environmental Planning. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: Engineering 110, one or more courses from Economics 1, 2, 11, 101. Economic theory and applications in analysis and management of water and environmental problems; application of price theory to water resource management and renewable resources; benefit-cost analysis with applications to water resources and environmental planning. Letter grading. Mr. Yeh (Not offered 2023-24)

254A. Environmental Aquatic Inorganic Chemistry. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: Chemistry 20B, Mathematics 31A, 31B, Physics 1A, 1B. Equilibrium and kinetic descriptions of chemical behavior of metals and inorganic ions in natural fresh/marine surface waters and in water treatment processes. Processes include acid-base chemistry and alkalinity (carbonate system), complexation, precipitation/dissolution, absorption/oxidation/reduction, and photochemistry. Letter grading.

Ms. Jay (F)

255A. Physical and Chemical Processes for Water and Wastewater Treatment. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 155, 254A. Review of momentum, mass, and energy transfer processes, parameter estimation, and conjugate use of surface and groundwater. Emphasis on management of water quantity. Letter grading. Mr. Yeh (Not offered 2023-24)

251B. Remote Sensing with Hydrologic Applications. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 250A, 250C. Introduction to basic principles of remote sensing as they relate to surface and atmospheric hydrologic processes. Applications include radiative transfer modeling and retrieval of hydrologically relevant parameters; remote sensing of vegetation, precipitation, and climate. Letter grading.

Mr. Gebremichael (Sp)

251D. Hydrologic Data Assimilation. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 250A, 250C. Introduction to basic concepts of hydrologic data assimilation. Applications geared toward assimilating disparate observations into dynamic models of hydrologic systems. Letter grading. Mr. Gebremichael (Sp)

255B. Biological Processes for Water and Wastewater Treatment. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 254A, 255A. Introduction to the development of mathematical models for simulating environmental engineering problems. Emphasis on numerical techniques to solve nonlinear partial differential equations and their applications in environmental engineering problems. Letter grading. Mr. Yeh (Not offered 2023-24)

256A. Introduction to Atmospheric Chemistry. (4) (Same as Atmospheric and Oceanic Sciences M203A.) Lecture, three hours. Requisite for undergraduate: Chemistry 20B. Principles of chemical kinetics, thermodynamics, spectroscopy, and physical chemistry; chemical composition and history of Earth's atmosphere; biogeochemical cycles of key atmospheric constituents: greenhouse gases, aerosols, tropospheric and stratospheric, upper atmosphere processes; air pollution; chemistry and climate. S/U or letter grading. (F)

257B. Atmospheric Dispersion and Air Pollution. (4) (Same as Atmospheric and Oceanic Sciences M224B.) Lecture, three hours. Nature and sources of atmospheric pollution; dispersion from point and line sources; pollution dispersion in urban and nonurban areas; industrial and traffic sources; chemical reactions in the atmosphere; potential/ meteorological effects of air pollution. S/U or letter grading. (Not offered 2023-24)

258A. Membrane Separations in Aquatic Systems. (4) Lecture, four hours; outside study, eight hours. Requisites: course 254A. Applications of membrane separations to desalination, water reclamation, bioremediation, and ultrapure water systems. Discussion of reverse osmosis, ultrafiltration, and nanofiltration. Letter grading. Ms. Gallien (Sp)

259A. Green Infrastructure. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 150, 153. Overview of fundamental science, engineering, and ecological principles to designing green infrastructure for stormwater management and recycling. Students design green infrastructure on current practices, perform engineering calculations to calculate its performance, and develop critical thinking skills needed to design innovative or futuristic green infrastructures that would not only mitigate but also mitigate and adapt to adverse impacts of climate change, but also remain resilient under extreme weather conditions expected during climate change. Concurrently scheduled with course C159. Letter grading.}

Mr. Holzty (Sp)

261A. Advanced Water Treatment Processes. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 254A, 255A. In-depth treatment of selected topics related to biological treatment of waters and wastewaters, such as biodegradation of xenobiotics, pharmaceuticals, and emerging pollutants, toxicity, and nutrients. Discussion of theoretical aspects, experimental observations, and recent literature. Application to important and emerging environmental problems. Letter grading. Mr. Hoek (Not offered 2023-24)

261B. Advanced Biological Processes for Water and Wastewater Treatment. (4) Lecture, four hours; outside study, eight hours. Requisite: course 255A. In-depth coverage of advanced water treatment processes, including advanced oxidation processes, photolysis, electrochemical treatment methods, and membrane separations. These advanced processes are increasingly necessary to adequately treat both drinking and wastewater. Study of process fundamentals and cutting-edge technologies in detail for thorough understanding of advantages and challenges associated with application of these processes. Letter grading. Mr. Jassby (Sp)

262A. Advanced Water Treatment Processes. (4) Lecture, four hours; outside study, eight hours. Requisite: course 255A. In-depth coverage of advanced water treatment processes, including advanced oxidation processes, photolysis, electrochemical treatment methods, and membrane separations. These advanced processes are increasingly necessary to adequately treat both drinking and wastewater. Study of process fundamentals and cutting-edge technologies in detail for thorough understanding of advantages and challenges associated with application of these processes. Letter grading. Mr. Jassby (Sp)

262B. Atmospheric Dispersion and Air Pollution. (4) (Same as Atmospheric and Oceanic Sciences M224B.) Lecture, three hours. Nature and sources of atmospheric pollution; dispersion from point and line sources; pollution dispersion in urban and nonurban areas; industrial and traffic sources; chemical reactions in the atmosphere; potential/meteorological effects of air pollution. S/U or letter grading. (Not offered 2023-24)

263A. Physics of Environmental Transport. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Transport processes in surface water, groundwater, and atmosphere. Emphasis on exchanges across phase boundaries: sediment/water interface; air/water gas exchange; particles, droplets, and bubbles; small-scale dispersion
and mixing; effect of reactions on transport; linkages between physical, chemical, and biological processes. Letter grading.

Mr. Stolzenbach (Not offered 2023-24)

263B. Advanced Topics in Transport at Environmental Interfaces. (4) Lecture, four hours; outside study, eight hours. Requisite: course 263A. In-depth treatment of selected topics involving transport phenomena at environmental interfaces between solid, fluid, and gas phases, such as aquatic sediments, porous aggregates, and vegetative canopies. Discussion of theoretical and experimental observations. Application to important environmental engineering problems. Letter grading.

Mr. Stolzenbach (Not offered 2023-24)

C264. Sustainable Waste Management. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Introduction to environmental engineering. Management of solid wastes, some of which are hazardous, is integral part of infrastructure development, and it is required to achieve environmental sustainability. Study of all aspects of hazardous and municipal solid waste management technologies with particular emphasis on reuse of some wastes for alternative applications or energy production. Students are expected to integrate economic, environmental, regulatory, policy, and technical considerations into development of engineering designs of sustainable waste management. Student teams design sustainable remediation or waste management plans. Concurrently scheduled with course C164. Letter grading.

266. Environmental Biotechnology. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 153, 254A. Environmental biotechnology—concept and potential, biotechnology of polutant control, bioremediation, biomass conversion: composting, biogas and bioethanol production. Letter grading. Ms. Mahendra (F)

267. Environmental Applications of Geochemical Modeling. (4) Lecture, four hours; outside study, eight hours. Requisite: course 254A. Geochemical modeling is important tool for predicting environmental impacts of contamination. Hands-on experience in modeling using geochemical software packages commonly found in environmental consulting industry to gain better understanding of governing geochemical principles pertaining to movement and transformation of contaminants. Types of modeling include speciation, mineral solubility, surface complexity, reaction path, inverse mass balance, and reactive transport modeling. Case studies involve acid mine drainage, nuclear waste disposal, bioavailability and risk assessment, mine tailings and mining waste, deep well injection, landfill leachate, and microbial respiration. Research/modeling project required. Letter grading. Ms. Jay (Not offered 2023-24)

C281. Traffic Engineering Systems: Operations and Control. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 180. Traffic operations including traffic data collection and analysis, safety and crash studies, traffic flow theory, highway capacity analysis, signalized intersection design and analysis, and simulation modeling. Students gain understanding of basic traffic flow theory, learn to conduct traffic data collection and analysis, and to apply capacity analysis methods and simulation modeling for both highway and signalized intersections. Concurrently scheduled with course C181. Letter grading. Mr. Ma (F)

C282. Rigid and Flexible Pavements: Design, Materials, and Serviceability. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Correlation analysis and metrication of aspects of pavement design, including materials selection and traffic loading and volume. Special attention to aspects of pavement distress/serviceability and factoring of these into metrics of pavement performance. Discussion of potential choices of pavement materials (i.e., asphalt and concrete) and their specific strengths and weaknesses in paving applications. Unification and correlation of different variables that influence pavement performance and highlight their relevance in pavement design. Concurrently scheduled with course C182. Letter grading.

Mr. Sant (Not offered 2023-24)

C285. Transportation Systems Analysis. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 180. Transportation research scholars and practitioners are motivated by desire to explain spatial interactions that resulted in movement of people or goods from place to place. Such interactions become more intricate as new technologies emerge. To explore and perceive these intricate interactions, understanding of essential nature of transportation systems to analyze and optimally design such systems is needed more than ever. Introduction to fundamental concepts, methods, and principles underlying transportation systems analysis. Includes two modules, each of which focuses on one level of system analysis: traveler behavior and network. Concurrently scheduled with course C185. Letter grading. Mr. Ma (W)

C296. Advanced Topics in Civil Engineering. (2 to 4) Seminar, to be arranged. Discussion of current research and literature in research specialty of faculty member teaching course. S/U grading. (F, W, Sp)

M297. Travel Behavior Analysis. (4) Same as Public Policy M221 and Urban Planning M253.) Lecture, three hours. Requisites: Public Policy 201 or M201A, and 203, or Urban Planning 207 and 220B. Descriptions of travel patterns in metropolitan areas, recent trends and projections into future, overview of travel forecasting methods, trip generation, trip distribution, mode split traffic assignment, critique of traditional travel forecasting methods and new approaches to travel behavior analysis. Letter grading.

296. Advanced Topics in Civil Engineering. (2 to 4) Seminar, to be arranged. Discussion of current research and literature in research specialty of faculty member teaching course. S/U grading. (F, W, Sp)

298. Seminar: Engineering. (2 to 4) Seminar, to be arranged. Limited to graduate civil engineering students. Seminars may be organized in advanced technical fields. If appropriate, field trips may be arranged. May be repeated with topic change. Letter grading. (F, W, Sp)

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: apprentice personnel employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. (F, W, Sp)

495. Teaching Assistant Training Seminar. (2) Seminar, to be arranged. Preparation: appointment as teaching assistant in Civil and Environmental Engineering Department. Seminar on communication of civil engineering principles, concepts, and methods; teaching assistant preparation, organization, and presentation of material, including use of visual aids; grading, advising, and rapport with students. S/U grading. (F)

596. Directed Individual or Tutorial Studies. (2 to 8) Tutorial, to be arranged. Limited to graduate civil engineering students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies. Supervised investigation of advanced technical problems. S/U grading.
Computer Science

277 Engineering VI
Box 951596
Los Angeles, CA 90095-1596
310-825-3886

Department website

Todd D. Millstein, PhD, Chair
Miryung Kim, PhD, Vice Chair, Graduate Studies
Glenn D. Reinman, PhD, Vice Chair, Undergraduate Studies
Amit Sahai, PhD, Vice Chair, Academic Advancement

Faculty Roster

Professors

Lixia Zhang, PhD
Harry G. Xu, PhD
Wei Wang, PhD
George Varghese, PhD
Demetri Terzopoulos, PhD
Mani B. Srivastava, PhD
Majid Sarrafzadeh, PhD
Sriram Sankararaman, PhD
Amit Sahai, PhD
Glenn D. Reinman, PhD
Miodrag Potkonjak, PhD
Jens Palsberg, PhD
Rafail Ostrovsky, PhD
Stanley J. Osher, PhD
Todd D. Millstein, PhD
Jason Ernst, PhD
Eleazar Eskin, PhD
Miryung Kim, PhD
Songwu Lu, PhD
Todd D. Millstein, PhD
Stanley J. Osher, PhD
Rafael Ostrovsky, PhD (Norman E. Friedman Professor of Knowledge Sciences)
Jens Palsberg, PhD
Miodrag Potkonjak, PhD
Glenn D. Reinman, PhD
Amit Sahai, PhD
Sriram Sankararaman, PhD
Majid Sarrafzadeh, PhD (Levi James Knight, Jr. Term Professor of Innovation)

Assistant Professors

Richard R. Munzt, PhD
Judea Pearl, PhD
Carlo A. Zaniolo, PhD (Norman E. Friedman Professor Emeritus of Knowledge Sciences)

Associate Professors

Kai-Wei Chang, PhD
Alyson K. Fletcher, PhD
Quanquan Gu, PhD
Choi-Jui Hsieh, PhD
Raghu Meka, PhD
Anthony J. Nowatzki, PhD
Yizhou Sun, PhD
Yuval Tamir, PhD
Guy Van den Broeck, PhD

Senior Lecturers SOE

Paul R. Eggert, PhD
David A. Smallberg, MS

Adjunct Professors

Omid Abhari, PhD
Aditya Grover, PhD
Achuta Kadambi, PhD
Baharan Mirzakosar, PhD
Violet (Nanyun) Peng, PhD
Blaise-Pascal Tine, PhD
Bolei Zhou, PhD

Adjunct Associate Professors

Carey S. Nachenberg, MS
Alen C. Kay, PhD

Adjunct Assistant Professor

Ravi A. Netravali, PhD

Overview

Computer science is concerned with the design, modeling, analysis, and applications of computer systems. Its study at UCLA provides education at the undergraduate and graduate levels necessary to understand, design, implement, and use the software and hardware of computers and digital systems. The programs offer comprehensive and integrated studies of subjects in computer system architecture, computer networks, distributed computer systems, programming languages and software systems, information and data management, artificial intelligence, computer science theory, computational systems biology and bioinformatics, and computer vision and graphics.

The undergraduate and graduate studies and research projects in the Department of Computer Science are supported by significant computing resources. In addition to the departmental computing facility, there are over a dozen research laboratories specializing in areas such as distributed systems, multimedia computer communications, distributed sensor networks, VLSI systems, VLSI CAD, embedded and reconfigurable systems, computer graphics, bioinformatics, and artificial intelligence. Also, the Cognitive Systems Laboratory is engaged in studying computer systems that emulate or support human reasoning. The Biocybernetics Laboratory is devoted to multidisciplinary research involving the application of engineering and computer science methods to problems in biology and medicine.

The BS degree may be attained through the Computer Science and Engineering major, the Computer Science major, or the Computer Engineering major described below.

In addition, UCLA Samueli offers MS and PhD degrees in Computer Science, as well as minor fields for graduate students seeking engineering degrees. In cooperation with the John E. Anderson Graduate School of Management, the Computer Science Department offers a concurrent degree program that enables students to obtain the MS in Computer Science and the MBA (Master of Business Administration).

Department Mission

The Computer Science Department strives for excellence in creating, applying, and imparting knowledge in computer science and engineering through comprehensive educational programs, research in collaboration with industry and government, dissemination through scholarly publications, and service to professional societies, the community, state, and nation.

Undergraduate Study

Computer Science and Engineering BS

The computer science and engineering curriculum at UCLA provides students with the education and training necessary to design, implement, test, and utilize the hardware and software of digital computers and digital systems. The curriculum has components spanning both the Computer Science and Electrical and Computer Engineering departments. The curriculum covers all aspects of computer systems from electronic design through logic design, MSI, LSI, and VLSI concepts; device utilization, machine language design, implementation and programming, operating system concepts, systems programming, networking fundamentals, and higher-level language skills; and their application. Students are prepared for employment in a wide spectrum of high-technology industries.
The computer science and engineering program is accredited by the Computing Accreditation Commission and the Engineering Accreditation Commission of ABET.

Capstone Major
The Computer Science and Engineering major is a designated capstone major. Computer Science and Engineering students complete a major product design course. Graduates are expected to apply the basic mathematical and scientific concepts that underlie modern computer science and engineering; design a software or digital hardware system, component, or process to meet desired needs within realistic constraints; function productively with others as part of a team; identify, formulate, and solve computer software- and hardware-related engineering problems; and demonstrate effective communication skills.

Educational Objectives
The computer science and engineering undergraduate program educational objectives are that our alumni (1) make valuable technical contributions to design, development, and production in their practice of computer science and computer engineering, in related engineering or application areas, and at the interface of computers and physical systems; (2) demonstrate strong communication skills and the ability to function effectively as part of a team; (3) demonstrate a sense of societal and ethical responsibility in their professional endeavors; and (4) engage in professional development or postgraduate education to pursue flexible career paths amid future technological changes.

Learning Outcomes
The Computer Science and Engineering major has the following learning outcomes:

- Application of basic mathematical and scientific concepts that underlie the modern field
- Design of a software or digital hardware system, component, or process to meet desired needs within realistic constraints
- Function productively with others on a team, including those with different specialties within the field
- Identification, formulation, and solution of computer software- and hardware-related engineering problems
- Effective communication

Preparation for the Major
Required: Computer Science 1, 31, 32, 33, 35L, 55A; Electrical and Computer Engineering 3; Mathematics 31A, 31B, 32A, 32B, 33A, 33B, 61; Physics 1A, 1B, 1C, and 4AL or 4BL.

The Major
Required: Computer Science 111, 118, 131, M151B, M152A, 180, 181, Electrical and Computer Engineering 100, 102, 115C; one course from Civil and Environmental Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, 170E, or Statistics 100A; one capstone design course (Computer Science 152B); a minimum of 4 units and one elective course selected from Electrical and Computer Engineering 101A through M185; a minimum of 12 units and three elective courses selected from Computer Science 111 through CM187, and up to 8 units of Computer Science 188; and 12 units of technical breadth courses selected from an approved list available in the Office of Academic and Student Affairs. Students who want to deepen their knowledge of electrical engineering are encouraged to select that discipline as their technical breadth area.

For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 22 or the GE Requirement web page.

Policies
Credit is not allowed for both Computer Science 170A and Electrical and Computer Engineering 133A unless at least one of them is applied as part of the technical breadth area. Electrical and Computer Engineering 110, 131A, and CM182 may not satisfy elective credit. A petition may be submitted to consider four units of Computer Science 194 or 199 for an elective. Credit is not guaranteed and subject to vice chair review.

A multiple-listed (M) course offered in another department may be used instead of the same computer science course (e.g., Electrical and Computer Engineering M116C may be taken instead of Computer Science M116B). Credit is applied automatically.

Computer Science BS
The computer science curriculum is designed to accommodate students who want professional preparation in computer science but do not necessarily have a strong interest in computer systems hardware. The curriculum consists of components in computer science, a minor or technical support area, and a core of courses from the social sciences, life sciences, and humanities. Within the curriculum, students study subject matter in software engineering, principles of programming languages, data structures, computer architecture, theory of computation and formal languages, operating systems, distributed systems, computer modeling, computer networks, compiler construction, and artificial intelligence. Majors are prepared for employment in a wide range of industrial and business environments.

The computer science program is accredited by the Computing Accreditation Commission of ABET.
Capstone Major
The Computer Science major is a designated capstone major. Students complete either a software engineering or a major product design course. Graduates are expected to apply the basic mathematical and scientific concepts that underlie modern computer science and engineering; design a software or digital hardware system, component, or process to meet desired needs within realistic constraints; function productively with others as part of a team; identify, formulate, and solve computer software- and hardware-related engineering problems; and demonstrate effective communication skills.

Educational Objectives
The computer science undergraduate program educational objectives are that our alumni (1) make valuable technical contributions to design, development, and production in their practice of computer science and related engineering or application areas, particularly in software systems and algorithmic methods, (2) demonstrate strong communication skills and the ability to function effectively as part of a team, (3) demonstrate a sense of societal and ethical responsibility in their professional endeavors, and (4) engage in professional development or postgraduate education to pursue flexible career paths amid future technological changes.

Learning Outcomes
The Computer Science major has the following learning outcomes:
• Application of basic mathematical and scientific concepts that underlie the modern field
• Design of a software or digital hardware system, component, or process to meet desired needs within realistic constraints
• Function productively with others on a team, including those with different specialties within the field
• Identification, formulation, and solution of computer software- and hardware-related engineering problems
• Effective communication

Preparation for the Major
Required: Computer Science 1, 31, 32, 33, 35L, M51A; Mathematics 31A, 31B, 32A, 32B, 33A, 33B, 61; Physics 1A, 1B, 1C, and 4AL or 4BL.

The Major
Required: Computer Science 111, 118, 121, M151B, M152A, 180, 181; one course from Civil and Environmental Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, 170E, or Statistics 100A; one capstone software engineering or design course from Computer Science 130 or 152B; a minimum of 20 units and five elective courses selected from Computer Science 111 through CM187, and up to 8 units of Computer Science 188; a minimum of 12 units and three science and technology courses (not used to satisfy other requirements) that may include 12 units of upper-division computer science courses or 12 units of courses selected from an approved list available in the Office of Academic and Student Affairs; and 12 units of technical breadth courses selected from an approved list available in the Office of Academic and Student Affairs.

Students must take at least one course from Computer Science 130 or 132. Computer Science 130 or 152B may be applied as an elective only if it is not taken as the capstone course.

For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 22 or the GE Requirement web page.

Policies
Credit is not allowed for both Computer Science 170A and Electrical and Computer Engineering 133A unless at least one of them is applied as part of the science and technology requirement or as part of the technical breadth area. A petition may be submitted to consider four units of Computer Science 194 or 199 for an elective.

A multiple-listed (M) course offered in another department may be used instead of the same computer science course (e.g., Electrical and Computer Engineering M116C may be taken instead of Computer Science M151B). Credit is applied automatically.

Computer Engineering BS
The undergraduate curriculum provides all computer engineering students with preparation in the mathematical and scientific disciplines that lead to a set of courses that span the fundamentals of the discipline in the major areas of data science and embedded networked systems. These collectively provide an understanding of many inventions of importance to our society, such as the Internet of Things, human-cyber-physical systems, mobile/wearable/implantable systems, robotic systems, and more generally smart systems at all scales in diverse spheres. The design of hardware, software, and algorithmic elements of such systems represents an already dominant and rapidly growing part of the computer engineering profession. Students are encouraged to make use of their computer science and electrical and computer engineering electives and a two-quarter capstone design course to pursue deeper knowledge within one of these areas according to their interests, whether for graduate study or preparation for employment.

Capstone Major
The Computer Engineering major is a designated capstone major that is jointly administered by the Computer Science, and Electrical and Computer Engineering, departments. Undergraduate students complete a design course in which they integrate their knowledge of the discipline and engage in creative design within realistic and professional constraints. Students apply their knowledge and expertise gained in previous mathematics, science, and engineering coursework. Students identify, formulate, and solve engineering problems and present their projects to the class.

Educational Objectives
The computer engineering undergraduate program educational objectives are that our alumni (1) understand fundamental computing concepts and make valuable contributions to the practice of computer engineering; (2) design, analyze, and implement complex computer systems for a variety of application areas and cyberphysical domains; (3) demonstrate the ability to work effectively in a team and communicate their ideas; (4) continue to learn as part of a graduate program or otherwise in the world of constantly evolving technology.

Learning Outcomes
The Computer Engineering major has the following learning outcomes:
• Application of mathematical, scientific, and engineering knowledge
• Design of a software or hardware system, component, or process to meet desired needs within realistic economic, environmental, social, ethical, health, safety, security, reliability, manufacturability, and sustainability constraints
• Function productively on a team with others
• Identification, formulation, and solution of computer engineering problems
• Effective communication

Preparation for the Major
Required: Computer Science 1 (or Electrical and Computer Engineering 1), 31, 32, 33, 35L, M51A (or Electrical and Computer Engineering M16); Electrical and Computer Engineering 3; Engineering 96L; Mathematics 31A, 31B, 32A, 32B, 33A, 33B, 61; Physics 1A, 1B, 1C, and 4AL or 4BL.
The Major

Required: Computer Science 111, 118 (or Electrical and Computer Engineering 132B), M151B (or Electrical and Computer Engineering M116C), M152A (or Electrical and Computer Engineering M116L), 180; Electrical and Computer Engineering 100, 102, 113, 115C; one course from Civil and Environmental Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, 170E, Statistics 100A; 8 units of computer science and 8 units of electrical and computer engineering upper-division electives; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; 8 units capstone design from either Electrical and Computer Engineering 180DA/180DB or 183DA/183DB.

For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 22 or the GE Requirement web page.

Suggested Tracks

Networked Embedded Systems: This track targets two related trends that have been a significant driver of computing, namely stand-alone embedded devices becoming networked and coupled to physical systems, and the Internet evolving toward a network of things (the IoT). These may broadly be classified as cyber physical systems, and includes a broad category of systems such as smart buildings, autonomous vehicles, and robots, which interact with each other and other systems. This trend in turn is driving innovation both in the network technologies (new low-power wireless networks for connecting things, and new high-speed networks and computing infrastructure to accommodate the transport and processing needs of the deluge of data resulting from continual sensing), and in embedded computing (new hardware and software stack catering to requirements such as ultra-low power operation, and embedded machine learning).

Students pursuing this track are strongly encouraged to take Electrical and Computer Engineering M119 or Computer Science M119 in junior year, and to choose three electives from courses such as Computer Science 117, 130, 131, 132, 133, 136, 181, 188, Electrical and Computer Engineering 2, 115A, 115B, 115C, 132A, 133A, 141, 142, 188.

Students who pursue a technical breadth area in either electrical and computer engineering or computer science can choose an additional three courses from this list.

Data Science: This track targets the trend toward the disruptive impact on computing systems, both at the edge and in the cloud, of massive amounts of sensory data being collected, shared, processed, and used for decision making and control. Application domains such as health, transportation, energy, etc. are being transformed by the abilities of inference-making and decision-making from sensory data that is pervasive, continual, and rich. This track will expose students to the entire data-to-decision pathway spanning the entire stack from hardware and software to algorithms, applications, and user experience.

Students pursing this track are strongly advised to take Computer Science 143 and M146 or Electrical and Computer Engineering M146, and to additionally choose two electives from courses such as Computer Science C212, 136, 144, 145, 161, 188, Electrical and Computer Engineering 114, 133A, 133B, 134, 188.

Students who pursue a technical breadth area in either electrical and computer engineering or computer science can choose an additional three courses from this list.

Students are also free to design ad hoc tracks. The technical breadth area requirement provides an opportunity to combine elective courses in electrical and computer engineering and computer science with those from another UCLA Samueili major to produce a specialization in an interdisciplinary domain. As noted above, students can also select a technical breadth area in either Electrical and Computer Engineering or Computer Science to deepen their knowledge in either discipline.

Bioinformatics Minor

The Bioinformatics minor introduces undergraduate students to the emerging interdisciplinary field of bioinformatics, an active area of research at UCLA combining elements of the computational sciences with the biological sciences. The minor organizes the many course offerings in different UCLA departments into a coherent course plan providing students with significant training in bioinformatics in addition to the training they obtain from their major. Students who complete the minor will be strong candidates for admission to PhD programs in bioinformatics as well as have the relevant training to obtain jobs in the biotechnology industry.

Students complete a core curriculum and an elective course and are strongly encouraged to participate in undergraduate research as early as possible in one of the many groups offering research opportunities in bioinformatics.

Admission

To enter the minor, students must be (1) in good academic standing (2.0 grade-point average or better), (2) have completed at least two of the lower-division requirements with minimum grades of C, and (3) file a petition through Message Center.

Steps to apply are outlined on the Office of Academic and Student Affairs website. Information about the minor and the application are available on the minor website.

The Minor

Required Lower-Division Courses (17 units minimum): Computer Science 32 or Program in Computing 10C, Life Sciences 7A, Mathematics 33A, 61.

Required Upper-Division Courses (18 units minimum): Computer Science 180 (or Mathematics 182), M184, two courses selected from Computer Science C121, C122, and CM124, and one course selected from Chemistry and Biochemistry C100, 153B, Civil and Environmental Engineering 110, Computer Science C121, C122, CM124, 170A, CM186, CM187, Ecology and Evolutionary Biology C135, Electrical and Computer Engineering 102, 131A, 141, Human Genetics C144, Mathematics 170A, 170E, Microbiology, Immunology, and Molecular Genetics 132, Molecular, Cell, and Developmental Biology 144, 187AL, Physiological Science 125, Statistics C100A, 100B.

Students are strongly encouraged to take Computer Science M184 as early as possible to obtain an overview of computational biology.

Policies

Eight units of either Bioinformatics 199 or Computer Science 194 or 199 may be applied as an elective by petition.

If students apply any of Civil and Environmental Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, 170E, or Statistics 100A toward major requirements or another minor, then no other course from that set may be applied toward the minor requirements.

A minimum of 20 units applied toward the minor requirements must be in addition to units applied toward major requirements or another minor.

All minor courses must be taken for a letter grade (unless not offered on that grading basis), and students must have a minimum grade of C– in each and an overall C (2.0) grade-point average in all courses taken for the minor. Successful completion of the minor is indicated on the transcript and diploma.

Data Science Engineering Minor

The minor is intended to expose students to the entire data science life cycle from both foundational and application perspectives. The foundational courses provide the engineering skills to collect, cleanse, and store data; analyze and draw inference from data; and take action and make decisions. A wide-ranging list of in-
Computer Science Department

terdisciplinary courses focuses on various data-science applications using these skills.

Admission
To apply for the minor, students must have an overall grade-point average of 3.0 or better, have completed or be in the process of completing in the present quarter the two lower-division required courses with the grade B- or better, and file a petition through Message Center. Steps to apply are outlined on the Office of Academic and Student Affairs website. Information about the minor and the application are available on the minor website.

The Minor

Required Lower-Division Courses (8 units minimum): Computer Science 32, Mathematics 33A.

Required Upper-Division Courses (12 units minimum): One course from Civil and Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, 170E, or Statistics 100A; Computer Science M148 or Electrical and Computer Engineering M148; Computer Science 145 or M146 or Electrical and Computer Engineering M146.

Elective Upper-Division Courses (8 units minimum): Two courses from Computer Science M119, C121, C122, CM124, 143, 145 or M146 (if not taken as a required course), 161, 180, M182, Electrical and Computer Engineering 102, 113, 114, M119, 133A, M146 (if not taken as a required course), C147, 183DA and 183DB (both must be taken), Mechanical and Aerospace Engineering C137, 185, Statistics 100B, 115, 170, or C180.

Policies
Variable topics courses may be taken as topics apply.
Transfer credit for any of the above is subject to approval; consult with the undergraduate counselors before enrolling in any courses for the minor.
A minimum of 20 units applied toward the minor requirements must be in addition to units applied toward major requirements or another minor.
Each minor course must be taken for a letter grade, and student must have a minimum grade of C in each and an overall grade-point average of 2.0 or better in the minor. Successful completion of the minor is indicated on the transcript and diploma.

Graduate Study
For admission information, see Graduate Programs Admission on page 27.
The following introductory information is based on 2023-24 program requirements for UCLA graduate degrees. Complete program requirements are available at Program Requirements for UCLA Graduate Degrees. Students are subject to the detailed degree requirements as published in program requirements for the year in which they enter the program.
The Department of Computer Science offers Master of Science (MS) and Doctor of Philosophy (PhD) degrees in Computer Science. It also participates in a concurrent degree program (Computer Science MS/Management MBA) with the John E. Anderson Graduate School of Management.

Computer Science MS

Course Requirements
Course Requirement. A total of nine courses is required for the MS degree, including a minimum of five graduate courses. No specific courses are required, but a majority of both the total number of formal courses and the total number of graduate courses must consist of courses offered by the Computer Science Department.
Undergraduate Courses. No lower-division courses may be applied toward graduate degrees. In addition, the following upper-division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199, Civil and Environmental Engineering 108, 199, Computer Science M152A, 152B, 199, Electrical and Computer Engineering 100, 101A, 102, 110L, M166L, 199, Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 141L, 150, 160, 161L, 199, Mechanical and Aerospace Engineering 102, 103, 105A, 105D, 199.
Breadth Requirement. MS degree students must satisfy the computer science breadth requirement by the end of the third term in graduate residence at UCLA. The requirement is satisfied by mastering the contents of five undergraduate courses or equivalent: Computer Science 180, two courses from 111, 118, and M151B, one course from 130, 131, or 132, and one course from 143, 161, or 174A. A UCLA undergraduate course taken by graduate students cannot be used to satisfy graduate degree requirements if students have already received a grade of B– or better for a course taken elsewhere that covers substantially the same material. For the MS degree, students must also complete at least three terms of Computer Science 201 with grades of Satisfactory.
Competence in any or all courses in breadth requirements may be demonstrated in one of three ways:
1. Satisfactory completion of the course at UCLA with a grade of B– or better
2. Satisfactory completion of an equivalent course at another university with a grade of B– or better
3. Satisfactory completion of a final examination in the course at UCLA

Comprehensive Examination Plan

In the comprehensive examination plan, at least five of the nine courses must be 200-series courses. The remaining four courses may be either 200-series or upper-division courses. No units of 500-series courses may be applied toward the comprehensive examination plan requirements.

Thesis Plan

In the thesis plan, seven of the nine courses must be formal courses, including at least four from the 200 series. The remaining two courses may be 598 courses involving work on the thesis.
The thesis is a report on the results of student investigation of a problem in the major field of study under the supervision of the thesis committee, which approves the subject and plan of the thesis and reads and approves the complete manuscript. While the problem may be one of only limited scope, the thesis must exhibit a satisfactory style, organization, and depth of understanding of the subject. Students should normally start to plan the thesis at least one year before the award of the MS degree is expected. There is no examination under the thesis plan.

Computer Science MS/Master of Business Administration

The Department of Computer Science and the John E. Anderson Graduate School of Management offer a concurrent degree program that enables students to complete the requirements for the MS in Computer Science and the MBA (Master of Business Administration) in three academic years. Students should request application materials from both the MBA Admissions Office, John E. Anderson Graduate School of Management, and the Department of Computer Science.

Computer Science PhD

Major Fields or Subdisciplines
Artificial intelligence; computational systems biology; computer networks; computer science theory; computer system architecture; graphics and vision; data science computing; and software systems.

Course Requirements

Normally, students take courses to acquire the knowledge needed to prepare for the written and oral examinations and for conducting PhD research. The basic program
of study for the PhD degree is built around the major field requirement and two minor fields. The major field and at least one minor field must be in computer science.

The fundamental examination is common for all PhD candidates in the department and is also known as the written qualifying examination.

To satisfy the major field requirement, students are expected to attain a body of knowledge contained in five courses, as well as the current literature in the area of specialization. In particular, students are required to take a minimum of three graduate courses in the major field of PhD research, selecting these courses in accordance with guidelines specific to the major field. Guidelines for course selection in each major field are available from the departmental Student Affairs Office. Grades of B– or better, with a grade-point average of at least 3.33 in all courses used to satisfy the major field requirement, are required. Students are required to satisfy the major field requirement within the first nine terms after enrolling in the graduate program.

Each minor field normally embraces a body of knowledge equivalent to two courses, at least one of which is a graduate course. Grades of B– or better, with a grade-point average of at least 3.33 in all courses included in the minor field, are required. By petition and administrative approval, a minor field may be satisfied by examination.

Breadth Requirement. PhD degree students must satisfy the computer science breadth requirement by the end of the third term in graduate residence at UCLA. The requirement is satisfied by mastering the contents of five undergraduate courses or equivalent: Computer Science 180, two courses from 111, 118, and MIS1, one course from 130, 131, or 132, and one course from 143, 161, or 174A. A UCLA undergraduate course taken by graduate students cannot be used to satisfy graduate degree requirements if students have already received a grade of B– or better for a course taken elsewhere that covers substantially the same material.

For the PhD degree, students must also complete at least three terms of Computer Science 201 with grades of Satisfactory (in addition to the three terms of 201 that may have been completed for the MS degree).

Competence in any or all courses may be demonstrated in one of three ways:

1. Satisfactory completion of the course at UCLA with a grade of B– or better
2. Satisfactory completion of an equivalent course at another university with a grade of B– or better
3. Satisfactory completion of a final examination in the course at UCLA

For requirements for the Graduate Certificate of Specialization, see Engineering Schoolwide Programs.

Written and Oral Qualifying Examinations

The written qualifying examination consists of a high-quality paper, solely authored by the student. The paper can be either a research paper containing an original contribution or a focused critical survey paper. The paper should demonstrate that the student understands and can integrate and communicate ideas clearly and concisely. It should be approximately 10 pages single-spaced, and the style should be suitable for submission to a first-rate technical conference or journal. The paper must represent work that the student did as a graduate student at UCLA. Any contributions that are not the student's own, including those of the student's advisor, must be explicitly acknowledged in detail. Prior to submission, the paper must be reviewed by the student's advisor on a cover page with the advisor's signature indicating review. After submission, the paper must be reviewed and approved by at least two other members of the faculty. There are two deadlines each year for submission of papers.

After passing the preliminary examination and coursework for the major and minor fields, the student should form a doctoral committee and prepare to take the University Oral Qualifying Examination. A doctoral committee consists of a minimum of four members. Three members, including the chair, must hold appointments in the department. The remaining member must be a UCLA faculty member in another department. The nature and content of the oral qualifying examination are at the discretion of the doctoral committee but ordinarily include a broad inquiry into the student's preparation for research. The doctoral committee also reviews the prospectus of the dissertation at the oral qualifying examination.

Fields of Study

Artificial Intelligence

Artificial intelligence (AI) is the study of intelligent behavior. While other fields such as philosophy, psychology, neuroscience, and linguistics are also concerned with the study of intelligence, the distinguishing feature of AI is that it deals primarily with information processing models. Thus the central scientific question of artificial intelligence is how intelligent behavior can be reduced to information processing. Since even the simplest computer is a completely general information processing device, the test of whether some behavior can be explained by information processing mechanisms is whether a computer can be programmed to produce the same behavior. Just as human intelligence involves gathering sensory input and producing physical action in the world, in addition to purely mental activity, the computer for AI purposes is extended to include sense organs such as cameras and microphones, and output devices such as wheels, robotic arms, and speakers.

The predominant research paradigm in artificial intelligence is to select some behavior that seems to require intelligence on the part of humans, to theorize about how the behavior might be accounted for, and to implement the theory in a computer program to produce the same behavior. If successful, such an experiment lends support to the claim that the selected behavior is reducible to information processing terms, and may suggest the program's architecture as a candidate explanation of the corresponding human process.

The UCLA Computer Science Department has active research in the following major subfields of artificial intelligence:

- **Computer vision.** Processing of images, as from a TV camera, to infer spatial properties of the objects in the scene (three-dimensional shape), their dynamics (motion), their photometry (material and light), and their identity (recognition)
- **Expert systems.** Study of large amounts of specialized or highly technical knowledge that is often probabilistic in nature. Typical domains include medical diagnosis and engineering design
- **Knowledge representation and qualitative reasoning.** Analysis of tasks such as common-sense reasoning and qualitative physics. Here the deductive chains are short, but the amount of knowledge that potentially may be brought to bear is very large
- **Machine learning.** Study of the means by which a computer can automatically improve its performance on a task by acquiring knowledge about the domain
- **Natural language processing.** Symbolic, statistical, and artificial neural network approaches to text comprehension and generation
- **Parallel architecture.** Design and programming of a machine with thousands or even millions of simple processing elements to produce intelligent behavior; the human brain is an example of such a machine
- **Problem Solving.** Analysis of tasks, such as playing chess or proving theorems, that require reasoning about relatively long sequences of primitive actions, deductions, or inferences
• Robotics. Translation of a high-level command, such as picking up a particular object, into a sequence of low-level control signals that might move the joints of a robotic arm/hand combination to accomplish the task; often this involves using a computer vision system to locate objects and provide feedback.

Computational Systems Biology

The computational systems biology (CSB) field can be selected as a major or minor field for the PhD or as a specialization area for the MS degree in Computer Science. Graduate studies and research in the CSB field are focused on computational modeling and analysis of biological systems and biological data.

Core coursework is concerned with the methods and tools development for computational, algorithmic, and dynamic systems network modeling of biological systems at molecular, cellular, organ, whole organism, or population levels—and leveraging them in bio-system and bioinformatics applications. Methodological studies include bioinformatics and systems biology modeling, with focus on genomics, proteomics, metabolomics, and higher levels of biological/physiological organization, as well as multiscale approaches integrating the parts.

Typical research areas with a systems focus include molecular and cellular systems biology, organ systems physiology, medical, pharmacological, pharmacokinetic (PK), pharmacodynamic (PD), toxicokinetic (TK), physiologically based PBPK-PD, PBTK, and pharmacogenomic system studies; neurosystems, imaging and remote sensing systems, robotics, learning and knowledge-based systems, visualization, and virtual clinical environments. Typical research areas with a bioinformatics focus include development of computational methods for analysis of high-throughput molecular data, including genomic sequences, gene expression data, protein-protein interaction, and genetic variation. These computational methods leverage techniques from both statistics and algorithms.

Computer Networks

The computer networks field involves the study of computer networks of different types, in different media (wired, wireless), and for different applications. Besides the study of network architectures and protocols, this field also emphasizes distributed algorithms, distributed systems, and the ability to evaluate system performance at various levels of granularity (but principally at the systems level). In order to understand and predict systems behavior, mathematical models are pursued that lead to the evaluation of system throughput, response time, utilization of devices, flow of jobs and messages, bottlenecks, speedup, power, etc. In addition, students are taught to design and implement computer networks using formal design methodologies subject to appropriate cost and objective functions. The tools required to carry out this design include probability theory, queuing theory, distributed systems theory, mathematical programming, control theory, operating systems design, simulation methods, measurement tools, and heuristic design procedures. The outcome of these studies provides the following:

• An appropriate model of the computer system under study
• An adequate (exact or approximate) analysis of the behavior of the model
• The validation of the model as compared to simulation and/or measurement of the system
• Interpretation of the analytical results in order to obtain behavioral patterns and key parameters of the system
• Design methodology

Resource Allocation

A central problem in the design and evaluation of computer networks deals with the allocation of resources among competing demands (e.g., wireless channel bandwidth allocation to backlogged stations). In fact, resource allocation is a significant element in most of the technical (and non-technical) problems we face today.

Most of our resource allocation problems arise from the unpredictability of the demand for the use of these resources, as well as from the fact that the resources are geographically distributed (as in computer networks). The computer networks field encounters such resource allocation problems in many forms and in many different computer system configurations. Our goal is to find allocation schemes that permit suitable concurrency in the use of devices (resources) so as to achieve efficiency and equitable allocation. A very popular approach in distributed systems is allocation on demand, as opposed to pre-scheduled allocation. On-demand allocation is found to be effective, since it takes advantage of statistical averaging effects. It comes in many forms in computer networks and is known by names such as asynchronous time division multiplexing, packet switching, frame relay, random access, and so forth.

Computer Science Theory

Computer science is in large measure concerned with information processing systems, their applications, and the corresponding problems of representation, transformation, and communication. The computer science fields are concerned with different aspects of such systems, and each has its own theoretical component with appropriate models for description and analysis, algorithms for solving the related problems, and mathematical tools. Thus in a certain sense computer science theory involves all of computer science and participates in all disciplines.

The term theoretical computer science has come to be applied nationally and intentionally to a certain body of knowledge emphasizing the interweaving themes of computability and algorithms, interpreted in the broadest sense. Under computability, one includes questions concerning which tasks can and cannot be performed by information systems of different types restricted in various ways, as well as the mathematical analysis of such systems, their computations, and the languages for communication with them. Under algorithms, one includes questions concerning (1) how a task can be performed efficiently under reasonable assumptions on available resources (e.g., time, storage, type of processor); (2) how efficiently a proposed system performs a task in terms of resources used; and (3) the limits on how efficiently a task can be performed. These questions are often addressed by first developing models of the relevant parts of an information processing system (e.g., the processors, their interconnections, their rules of operation, the means by which instructions are conveyed to the system, or the way the data is handled) or of the input/output behavior of the system as a whole. The properties of such models are studied both for their own interest and as tools for understanding the system and improving its performance or applications.

Emphasis of Computer Science Theory

Computer science theory emphasizes

• Design and analysis of algorithms
• Distributed and parallel algorithms
• Models for parallel and concurrent computation
• Online and randomized algorithms
• Computational complexity
• Automata and formal languages
• Cryptography and interactive proofs

Computer System Architecture

Computer system architecture deals with the design, implementation, and evaluation of computer systems and their building blocks. It deals with general-purpose systems as well as embedded special-purpose systems. The field also encompasses the development of tools to enable system designers to describe, model, fabricate,
and test highly complex computer systems from single-chip to computing clouds.

Computer systems are implemented as a combination of hardware and software. Hence, research in the field of computer architecture often involves both hardware and software issues. The requirements of application software and operating systems, together with the capabilities of compilers, play a critical role in determining the features implemented in hardware. At the same time, the computer architect must also take into account the capabilities and limitations of the underlying implementation technology as well as of the design tools.

The goal of research in computer architecture is to develop building blocks, system organizations, design techniques, and design tools that lead to improved performance and reliability as well as reduced power consumption and cost.

Corresponding to the richness and diversity of computer systems architecture research at UCLA, a comprehensive set of courses is offered in the areas of advanced processor architecture, arithmetic processor systems, parallel and distributed architectures, fault-tolerant systems, reconfigurable systems, embedded systems, and computer-aided design of VLSI circuits and systems.

- **Novel architectures** encompass the study of computations that are performed in ways that are quite different than those used by conventional machines. Examples include various domain-specific architectures characterized by high computational rates, low power, and reconfigurable hardware used in a wide range of computing devices from smart phones to data centers.

- The study of **high-performance processing algorithms** deals with algorithms for very high-performance numerical processing. Techniques such as redundant-digit representations of number systems, fast arithmetic, and the use of highly parallel arrays of processing elements are studied with the goal of providing the extremely high processing speeds required in a number of upcoming computer applications.

- The study of **computational algorithms and structures** deals with the relationship between computational algorithms and the physical structures that can be employed to carry them out. It includes the study of interconnection networks, and the way that algorithms can be formulated for efficient implementation where regularity of structure and simplicity of interconnections are required.

- **Computer-aided design of VLSI circuits and systems** is an active research area that develops techniques for the automated synthesis and analysis of large-scale systems. Topics include high-level and logic-level synthesis, technology mapping, physical design, interconnect modeling, and optimization of various VLSI technologies such as full-custom designs, standard cells, programmable logic devices (PLDs), multichip modules (MCMs), system-on-a-chip (SoC) devices that are used in a wide range of applications from IoTs to data centers.

- **VLSI architectures and implementation** is an area of current interest and collaboration between the Electrical and Computer Engineering and Computer Science departments that addresses the impact of large-scale integration on the issues of computer architecture. Application of these systems in medicine and health care, multimedia, and finance is being studied in collaboration with other schools on campus.

Data Science Computing

The data science computing field focuses on basic problems of modeling and managing data and knowledge, and their relation with other fundamental areas of computer science, such as operating systems and networking, programming languages, and human-computer interface design.

A data management system embodies a collection of data, devices in which the data are stored, and logic or programs used to manipulate that data. Information management is a generalization of data management in which the data being stored are permitted to be arbitrarily complex data structures, such as rules and trees. In addition, information management goes beyond simple data manipulation and query and includes inference mechanisms, explanation facilities, and support for distributed and web-based access.

The need for rapid, accurate information is pervasive in all aspects of modern life. Modern systems are based on the coordination and integration of multiple levels of data representation, from characteristics of storage devices to conceptual and abstract levels. As human enterprises have become more complex, involving more complicated decisions and trade-offs among decisions, the need for sophisticated information and data management has become essential.

Graphics and Vision

The graphics and vision field focuses on the synthesis and analysis of image and video data by computer. Graphics includes the topics of rendering, modeling, animation, visualization, and interactive techniques, among others, and it is broadly applicable in the entertainment industry (motion pictures and games) and elsewhere. Vision includes image/video representation and registration, feature extraction, three-dimensional reconstruction, object recognition, and image-based modeling, among others, with application to real-time vision/control for robots and autonomous vehicles, medical imaging, visual sensor networks, and surveillance, and more. Several of the projects undertaken by our researchers in this field unify graphics and vision through mathematical modeling, wherein graphics is considered a models-to-images synthesis problem and vision the converse images-to-models analysis problem.

Software Systems

The software systems field is concerned with the study of theory and practice in the development of software systems. Well-engineered systems require appreciation of both principles and architectural trade-offs. Principles provide abstractions and rigor that lead to clean designs, while systems-level understanding is essential for effective design.

Principles here encompass the use of programming systems to achieve specified goals, the identification of useful programming abstractions or paradigms, the development of comprehensive models of software systems, and so forth. The thrust is to identify and clarify concepts that apply in many programming contexts.

Development of software systems requires an understanding of many methodological and architectural issues. The complex systems developed today rely on concepts and lessons that have been extracted from years of research on programming languages, operating systems, database systems, knowledge-based systems, real-time systems, and distributed and parallel systems.

Facilities

Departmental laboratories and centers for instruction and research are at work in the fields of artificial intelligence, computational systems biology, computer systems architecture, graphics and vision, information and data management, network systems, software systems, and computer science.
Artificial Intelligence Laboratories

Automated Reasoning Group
Adnan Y. Darwiche, Director
The Automated Reasoning Group focuses on research in automated reasoning (logical and probabilistic) and machine learning, including their application to problems in science and engineering. On the theoretical side, the group focuses on tractable circuit representations and models that combine logic and probability, in addition to new models for machine learning that can integrate background knowledge. On the practical side, the group builds scalable reasoning and learning systems that can scale to real-world problems.

Cognitive Systems Laboratory
Judea Pearl, Director
The Cognitive Systems Laboratory targets research areas concerned with evidential reasoning, the distributed interpretation of multisource data in networks of partial beliefs; learning, the structuring and parameterizing of links in belief networks to form a representation consistent with a stream of observations; constraint processing, including intelligent backtracking, learning while searching, temporal reasoning, etc.; graphoids, the characterization of informational dependencies, and their graph representations; and default reasoning, use of qualitative probabilistic reasoning to draw plausible and defeasible conclusions from incomplete information.

Computational Machine Learning Laboratory
Cho-Jui Hsieh, Director
The Computational Machine Learning Laboratory conducts research on making machine learning algorithms more efficient, scalable, robust, and interpretable. The current focuses include large-scale training algorithms, robustness evaluation and defense, AutoML, machine learning model verification, and reinforcement learning.

Large-Scale Machine Learning (BigML) Group
Baharan Mirzasoleiman, Director
The Large-Scale Machine Learning Group conducts research in machine learning focused on designing new methods that enable efficient learning from massive datasets. More specifically, the group designs techniques that can gain insights from the underlying data structure by utilizing complex and higher-order interactions between data points. The extracted information can be used to efficiently explore and robustly learn from datasets that are too large to be dealt with by traditional approaches. The developed methods have immediate application to high-impact problems where massive data volumes prohibit efficient learning and inference, such as huge image collections, recommender systems, Web and social services, video, and other large data streams.

Machine Intelligence (MINT) Group
Aditya Grover, Director
The MINT group conducts research along two main thrusts: foundational research in machine learning, including topics in probabilistic reasoning, statistical inference, graphs and network science, reinforcement learning, and deep learning; and applications of artificial intelligence for accelerating scientific discovery, with a focus on sustainable development and climate change.

Natural Language Processing Group
Kai-Wei Chang, Director
The Natural Language Processing Group focuses on developing reliable machine learning solutions for processing natural languages. Specifically, it targets design of models, algorithms, and learning mechanisms to improve the generalization ability of natural-language processing models such that they can generalize across unseen tasks, unseen inputs, and low-resource languages.

Peng’s Language Understanding and Synthesis (PLUS) Laboratory
Violet (Nanyun) Peng, Director
The PLUS Laboratory is a collection of researchers working on natural language processing. The laboratory’s mission is to push the frontier of natural language generation towards coherent, controllable, and creative narrative generation through natural language understanding and common-sense reasoning. Along these lines, the laboratory develops novel machine learning models, specifically deep structured models and graph neural networks to cope with challenging natural language-related problems.

Statistical and Relational Artificial Intelligence (StarAI) Laboratory
Guy Van den Broeck, Director
The StarAI Laboratory performs research on machine learning (statistical relational learning, tractable learning), knowledge representation and reasoning (graphical models, lifted probabilistic inference, knowledge compilation), applications of probabilistic reasoning and learning (probabilistic programming, probabilistic databases), and artificial intelligence in general.

Statistical Machine Learning Laboratory
Quanquan Gu, Director
The Statistical Machine Learning Laboratory conducts research on machine learning, optimization, and high-dimensional statistical inference. Its focus is on development and analysis of nonconvex optimization algorithms for machine learning to understand large-scale, dynamic, complex, and heterogeneous data; and on building the theoretical foundations of deep learning and deep reinforcement learning.

Computational Systems Biology Laboratories

AI in Imaging and Neuroscience Research Laboratory
Fabien Scalzo, Director
The AI in Imaging and Neuroscience Research Laboratory aims to develop machine learning algorithms for medical images, with a special focus on vascular diseases and cancer. An important component of its research is development of computational and predictive models for neurovascular diseases based on multimodal medical imaging, including magnetic resonance imaging (MRI), computed tomography (CT), digital subtraction angiography (DSA), and transcranial Doppler ultrasound (TCD). By building models that can identify predictive factors of the patient outcome, they can help tailor treatment and improve the odds of a better recovery.

Big Data and Genomics Laboratory
Eran Halperin, Director
The Big Data and Genomics Laboratory aims to improve understanding and treatment of human disease by analysis of big data collected in relation to diseases. The main focus of the laboratory has been development of methods for analysis of genomic data—including genetics, epigenetics, RNA, and microbiome data; as well as medical records, images, and waveforms of UCLA Health medical center patients. The methods developed are typically standalone tools, often used by other researchers for analysis of specific diseases. The methodology involves a combination of machine learning, optimization algorithms, combinatorial optimization, and classical and Bayesian statistics.
Biocybernetics Laboratory
Joseph J. DiStefano III, Director
The interdisciplinary research of the Biocybernetics Laboratory typically involves integration of theory with real laboratory data, using biomodeling, computational, and biosystems approaches. Problem domains are physiological systems, disease processes, pharmacology, and some post-genomic bioinformatics. Laboratory pedagogy involves development and exploitation of the synergistic and methodologic interface between structural and computational biomodeling with laboratory data, or computational systems biology, with a focus on integrated approaches for solving complex biosystem problems from sparse biodata (e.g., in physiology, medicine, and pharmacology), as well as voluminous biodata (e.g., from genomic libraries and DNA array data).

Computational Genetics Laboratory
Eleazar Eskin, Director
The Computational Genetics Laboratory is comprised of a computational genetics group affiliated with both the Computer Science and Human Genetics departments. Research interests are in computational genetics, bioinformatics, computer science, and statistics. The laboratory focuses on developing techniques for solving the challenging computational problems that arise in attempting to understand the genetic basis of human disease.

Machine Learning and Genomics Laboratory
Sriram Sankararaman, Director
The interdisciplinary Machine Learning and Genomics Laboratory research group is affiliated with UCLA departments of Computer Science, Human Genetics, and Computational Medicine. It is broadly interested in questions at the intersection of computer science, statistics, and biomedicine. It develops statistical and computational methods to make sense of complex, high-dimensional datasets generated in the fields of genomics and medicine, to answer questions ranging from how humans have evolved, to what the biological underpinnings of diseases are, to how we can improve the diagnosis and treatment of disease. A major focus of this research is understanding and interpreting human genomes. The biological questions of interest center around understanding how evolution shapes human genes, and how they modulate complex traits that include common diseases. The laboratory develops and extends tools from a diverse set of disciplines including machine learning, algorithms, optimization, high-dimensional statistics, and information theory. It also applies these tools to high-dimensional genomic and medical datasets that are publicly available or being generated by laboratory collaborators.

Computer Systems Architecture Laboratories

Architecture Specialization (PolyArch) Laboratory
Anthony J. Nowatzki, Director
The Architecture Specialization Laboratory studies how to redesign computer architectures and accelerators to continue improving performance and energy efficiency, even while technology scaling reaches its physical limits. Broadly, its approach is to consider how to reform traditional hardware/software abstractions to convey rich information that can make building efficient microarchitectures possible. These changes necessitate codesign of ISAs, architecture, execution models, and compilers.

Concurrent Systems Laboratory
Yuval Tamir, Director
The Concurrent Systems Laboratory conducts research on the design, implementation, and evaluation of computer systems that use state-of-the-art technology to achieve high performance and high reliability. Projects involve software, hardware, and networking. The focus is typically on parallel and distributed systems, and often involves fault tolerance.

Digital Arithmetic and Reconfigurable Architecture Laboratory
Milos D. Ercegovac, Director
The Digital Arithmetic and Reconfigurable Architecture Laboratory is used for fast digital arithmetic (theory, algorithms, and design) and numerically intensive computing on reconfigurable hardware. Research includes floating-point arithmetic, online arithmetic, application-specific architectures, and design tools.

eHealth Research Laboratory (ER Lab)
Majid Sarrafzadeh, Director
The ER Lab goal is to use technology in health care to reduce the cost of providing high-quality care to the chronically ill, estimated (by Milken Institute Center for Health Care Economics) to be over $1 trillion per year. The laboratory strives to improve global and local public health surveillance, with a resultant reduction in epidemics, increased control over infectious disease, and improved drug safety. Other goals are diminished rate of medical errors; ongoing preventive health, with attendant reductions in morbidity, mortality, and cost of care; and consumer engagement in health and self-management.

VLSI Architecture, Synthesis, and Technology (VAST) Laboratory
Jason (Jingsheng) Cong, Director
The VAST Laboratory investigates cutting-edge research topics at the intersection of VLSI technologies, design automation, architecture, and compiler optimization at multiple scales, from micro-architecture building blocks to heterogeneous compute nodes and scalable data centers. Currently, the laboratory is focused on architecture and design automation for emerging technologies such as neuromorphic computing and quantum computing; and customizable domain-specific computing with applications to multiple domains such as machine learning, big data analytics, and bioinformatics.

Graphics and Vision Laboratories

Computer Graphics and Vision Laboratory (GraViLab)
Demetri Terzopoulos, Director
The Computer Graphics and Vision Laboratory engages in a broad spectrum of visual computing research unifying computer graphics (image synthesis), computer vision (image analysis), and related fields; with emphasis on geometric, physics-based, learning-driven, and artificial intelligence/life modeling and simulation. Major research interests include biomimetic simulation of humans and other animals, from biomechanics to sensorimotor control to intelligence; and image/video analysis combining (deep) learning and modeling paradigms, especially for application to medicine and health care.

UCLA Collective on Vision and Image Sciences
The Collective on Vision and Image Sciences brings together researchers from multiple departments at UCLA, including Brain Mapping, Computational and Systems Biology, Computer Science, Image

UCLA Vision Laboratory
Stefano Soatto, Director
Researchers at the Vision Laboratory investigate how images—i.e., measurements of light—can be used to infer properties of the physical world such as shape, motion, location, and material properties of objects. This is key to developing engineering systems that can “see” and interact intelligently with the world around them. For example, images captured by a car-mounted video camera can be processed by computers to infer a model of the car’s surroundings, e.g., other vehicles, pedestrians, etc. This technology can also be used to analyze images captured in the environment, to help understand the effects of climate change by monitoring the behavior of animals and plants. Analysis of images of the human body can be used both for diagnostic purposes and for planning interventions.

Information and Data Management Laboratories

Information and Data Management Group (Multiple Faculty)
The Information and Data Management Group is a collaboration of all UCLA faculty from this field. It is interested in multiple research areas including big data, archival information systems, knowledge discovery and data mining, Earth Science Partners’ private network, genomics graph database development, multimedia information stream system technology, Smart Space middleware architecture, and technologically based assessment of language and literacy, to name just a few.

Web Information Systems Laboratory
Carlo A. Zaniolo, Director
The Web Information Systems Laboratory research group investigates Web-based information systems and seeks to develop enabling technology for such systems by integrating the Web with database systems. Current research efforts include the DeAL system, a next-generation database system; SemScape, an NLP-based framework for mining unstructured or free text; EARL (Early Accurate Result Library) for Hadoop; Panta Rei, a study of support for schema evolution in the context of snapshot databases and transaction-time databases; Stream Mill, a complete data stream management system; and ArchiS, a powerful archival information system.

Network Systems Laboratories

Intelligent Sensing and Connectivity Laboratory (ICON Lab)
Omid Abari, Director
The group conducts research in the area of networked systems, with applications to the Internet of Things (IoT). It develops software-hardware systems that deliver ubiquitous sensing, efficient computing; and wireless communication at scale. Its research borrows techniques from diverse areas including computer networks, machine learning, signal processing, hardware design, and HCI to develop new algorithms and technologies that enable smart environments.

Internet Research Laboratory (IRL)
Lixia Zhang, Principal Investigator
The Internet Research Laboratory mission is to help the Internet grow. Its research efforts focus on design and development of network architecture and protocols, and the challenges in building secure networks and systems. Its past work has turned into Internet standards and successful startups. Since 2010, the laboratory has been working on design and development of named data networking (NDN), a new Internet architecture.

Network Design Automation Laboratory
George Varghese, Director
The Network Design Automation Laboratory focuses on research in this field, an effort to build a comprehensive set of design tools for networks inspired by electronic design automation for chips. A major focus is analysis and synthesis of router configuration files to avoid major outages that frequently cripple major service providers. This work involves development of new tools inspired by other fields such as programming languages, hardware design, and data mining; but targeted to incorporate the special structure and challenges of networks. It involves collaboration with multiple disciplines such as programming languages, systems, and network debugging; and includes other UCLA faculty.

Networked and Application Systems (NAS) Group
Ravi A. Netravali, Director
The group is focused on building practical systems to improve the performance and ease of debugging large-scale distributed applications. Such applications include web pages, mobile apps, video streaming and analytics systems, data analytics platforms, and more. The group uses a cross-layer methodology that aims to understand the impact of decisions at different layers in the end-to-end system; and designs solutions that incorporate fundamental principles at the network, operating system, and application vantage points.

UCLA Connection Laboratory
Leonard Kleinrock, Director
The Connection Laboratory offers an environment to support advanced research in technologies at the forefront of all things regarding networking and connectivity, and will deliver the benefits of that research to society globally. The laboratory’s broad-based agenda enables faculty, students, and visitors to pursue research challenges of their own choosing, without externally imposed constraints on scope or risk. It draws inspiration from the foundational role of UCLA as the birthplace of the Internet. With its open inclusive structure, the laboratory will help to realize the vision of creating high-leverage technologies, as was accomplished years ago with the Internet.

Wireless Networking Group (WiNG)
Songwu Lu, Director
The Wireless Networking Group’s research areas include wireless networking, mobile systems, and cloud computing. Its focus is on design, implementation, and experimentation of protocols, algorithms, and systems for wireless data networks. The goal is to build high-performance and dependable networking solutions for the wireless Internet.

Software Systems Laboratories

Compilers Laboratory
Harry G. Xu, Director
The Compilers Laboratory is used for research into compilers, embedded systems, and programming languages.

Large-Scale Systems Group
Harry G. Xu, Director
The Large-Scale Systems Group builds systems to improve the efficiency, scalability, reliability, and security of modern applications and workloads. These include graph analytics, video analytics, machine learning, smart contracts, etc. The group’s solutions cross multiple layers of the compute stack, spanning the areas of programming languages, compilers, operating systems,
Software Engineering and Analysis Laboratory (SEAL)

Miryung Kim, Director

The **Software Engineering and Analysis Laboratory** conducts research in software engineering, in particular debugging and testing for big data systems and automated tools for data science and ML-based systems. Its overall goal is to improve software engineering productivity and correctness. To achieve it, the laboratory designs scalable software systems, software analysis algorithms, and automated development tools. It also conducts user studies with software engineers and carries out statistical analysis of open-source project data to allow data-driven decisions for designing novel software engineering tools. With expertise in software evolution, the laboratory is known for its research on code clones—code duplication detection, management, and removal solutions. The laboratory is a leader in creation and definition of the emerging area where software engineering and data science intersect. It has conducted the most comprehensive study of industry data scientists, and developed automated debugging and testing technologies for widely-used big data systems such as Apache Spark. Through tech-transfer, several companies have used SEAL research on interactive code clone search and big data analytics debugging technologies.

Software Systems Group

(Multiple Faculty)

The Software Systems Group is a collaboration of faculty from the software systems and network systems fields. It conducts research on the design, implementation, and evaluation of operating systems, networked systems, programming languages, and software engineering tools.

Computer Science Centers

Center for Autonomous Intelligent Networked Systems (CAINS)

The **Center for Autonomous Intelligent Networked Systems** was established in 2001 with researchers from several laboratories in the Computer Science, and Electrical and Computer Engineering, departments. It serves as a forum for intelligent-agent researchers and visionaries from academia, industry, and government, with an interdisciplinary focus on fields such as engineering, medicine, biology, and social sciences. Information and technology are exchanged through symposia, seminars, short courses, and collaboration in joint research projects sponsored by government and industry.

Research projects include use of unmanned autonomous vehicles, coordination of vehicles into computing clouds, and integration of body sensors and smart phones into m-health systems. Ongoing research encompasses personal and body networks, cognitive radios, ad hoc multihop networking, vehicular networks, dynamic unmanned backbone, underwater unmanned vehicles, mobile sensor platforms, and network coding.

Center for Domain-Specific Computing (CDSC)

Jason (Jingsheng) Cong, Director

The **Center for Domain-Specific Computing** looks beyond parallelization and focuses on domain-specific customization as a disruptive technology to bring orders-of-magnitude power-performance efficiency improvement. CDSC develops a general methodology for creating novel, customizable computing platforms, and associated compilation tools and runtime management environment to support domain-specific computing. Its recent focus is on design and implementation of accelerator-rich architectures, from single chips to data centers; and actively exploring the use of emerging computing technologies, such as neuromorphic and quantum computing. It also develops highly automated compilation tools and runtime management software for customizable heterogeneous platforms, including multicore CPUs, many-core GPUs, FPGAs, and quantum computers. By combining these capabilities, CDSC researchers are able to deliver a supercomputer-in-a-box or -in-a-cluster. This approach has been successfully applied to multiple application domains such as machine learning, big data analytics, medical imaging, and bioinformatics.

Center for Encrypted Functionalities

Amit Sahai, Director

The **Center for Encrypted Functionalities** was established in 2014 through an NSF Secure and Trustworthy Cyberspace (SaTC) Frontier Award. The center tackles the deep and far-reaching problem of general-purpose software obfuscation. The goal of obfuscation is to enable software that can keep secrets: software that makes use of secrets, but such that they remain hidden even if an adversary can examine the software code in its entirety and analyze its behavior as it runs. The center is headquartered at UCLA with partners at Columbia, Johns Hopkins, and Stanford universities, and University of Texas at Austin.

Center for Information and Computation Security (CICS)

Rafail Ostrovsky, Director

The **Center for Information and Computation Security** was established in 2003 to promote all aspects of research and education in cryptography and computer security. It explores novel techniques for securing national and private-sector information infrastructures across various network-based and wireless platforms as well as wide-area networks. The inherent challenge is to provide guarantees of privacy and survivability under malicious and coordinated attacks.

The center has raised federal, state, and private-sector funding, including collaboration with Israel through multiple U.S.-Israel Binational Science Foundation grants. It has also attracted multiple international visiting scholars. CICS explores and develops state-of-the-art cryptographic algorithms, definitions, and proofs of security; novel cryptographic applications such as new electronic voting protocols and identification, data-rights management schemes, and privacy-preserving data mining; security mechanisms underlying a clean-slate design for a next-generation secure Internet; biometric-based models and tools, such as encryption and identification schemes based on fingerprint scans; and the interplay of cryptography and security with other fields such as bioinformatics, machine learning, complexity theory, etc.

Scalable Analytics Institute (ScAI)

Wei Wang, Director

The **Scalable Analytics Institute** was established in 2013 with a focus on the continuing growth of data and demand for smart analytics to mine that data. Such analytics are creating major transformative opportunities in science and industry. To fully capitalize on these opportunities, computing technology must solve the three-pronged challenge created by the exploding size of big data, the growing complexity of big data, and the increased sophistication of analytics that can be used to extract patterns and trends from the data.

Computing Resources

In summarizing the resources now available to conduct experimentally based research in the UCLA Computer Science Department, it is useful to identify the major components of the research environment: the departmental computing facility, other hardware and software systems, administrative structure, and technical support staff.
Hardware

Computing facilities range from large campus-operated supercomputers to a major local network of servers and workstations that are administered by the department computing facilities (DCF) or school network (SEASnet).

The departmental research network includes Oracle servers and shared workstations, on the school Ethernet TCP/IP local network. A wide variety of peripheral equipment is also part of the facility, and many more research-group workstations share the network; the total number of machines exceeds 1000, the majority running the Linux operating system. The network consists of switched gigabit Ethernet to the desktop with a gigabit backbone connection. The department LAN is connected to the campus gigabit backbone. An 802.11ac wireless network is also available to faculty, staff, and graduate students.

Administrative Structure

The central facilities and wide-area networking are operated by the campuswide Information Technology Services. Access to departmental and SEASnet machines is controlled so as to maximize the usefulness of these computers for education and research, but no direct charges are involved.

Technical Support Staff

The support staff consists of hardware and software specialists. The hardware laboratory supports network connections, configures routers, switches, and network monitoring tools. The software group administers the department UNIX servers, providing storage space and backup for department users.

Faculty Areas of Thesis Guidance

Professors

Junghoo (John) Cho, PhD (Stanford, 2002) Databases, web technologies, information discovery and integration

Jason (Jingaheng) Cong, PhD (U. Illinois, 1990) Electronic design automation, energy-efficient computing, customized computing for big-data applications, highly scalable algorithms, quantum computing

Adnan Y. Darwiche, PhD (Stanford, 1993) Knowledge representation and automated reasoning (symbolic and probabilistic), applications to diagnosis, prediction, planning, and verification

Joseph J. DiStefano III, PhD (UCLA, 1966) Dynamic biosystems modeling methodology, simulation, clinical therapy and experiment design optimization; pharmacokinetics (PK), pharmacodynamics (PD), physiologically based PK (PKPD), epidemiological modeling

Jason Ernst, PhD (UCLA, 2008) Computational biology, bioinformatics, machine learning

Eleazar Eskin, PhD (Columbia, 2002) Bioinformatics, genetics, genomics, machine learning

Miryung Kim, PhD (U. Washington, 2008) Software engineering specifically on software evolution

Songwu Lu, PhD (U. Illinois, 1999) Integrated-service support over heterogeneous networks, e.g., mobile computing environments, Internet and ActiveNet: networking and computing, wireless communications and networks, computer communication networks, dynamic game theory, dynamic systems, neural networks, and information economics

Todd D. Millstein, PhD (U. Washington, 2003) Programming language design, static type systems, formal methods, software model checking, compilers

dated, parallel programming, performance evaluation of computer and communication systems

Alfonso F. Cardenas, PhD (UCLA, 1969) Database management, distributed heterogeneous and multimedia (text, image/picture, video, voice) systems, information systems planning and development methodologies, software engineering, medical informatics, legal and intellectual property issues

Jack W. Carlyle, PhD (UC Berkeley, 1961) Communication, computation theory and practice, algorithms and complexity, discrete system theory, developmental and probabilistic systems

Wesley W. Chu, PhD (Stanford, 1966) Distributed computing, distributed database, memory management, computer communications, performance measurement and evaluation for distributed systems and multaccess packet-switched systems

Michael G. Dyer, PhD (Yale, 1982) Artificial intelligence, natural language processing, connectionist, cognitive, and animat-based modeling

Milos D. Ercegovac, PhD (U. Illinois, 1975) Application-specific architectures, digital computer arithmetic, digital design, low-power systems, reconfigurable systems

Elizer M. Gafni, PhD (MIT, 1982) Computer communication, networks, mathematical programming algorithms

Sheila A. Greibach, PhD (Harvard, 1963) Theoretical computer science, computational complexity, program schemes and semantics, formal languages, automata, computability

Leonard Kleinrock, PhD (MIT, 1963) Computer networks, computer-communication systems, resource sharing and allocation, computer systems modeling analysis and design, queuing systems theory and applications, performance evaluation of congestion-prone systems, performance evaluation and design of distributed multi-access packet-switching systems, wireless networks, mobile computing, nomadic computing, and distributed and parallel processing systems

Allen C. Kleiner, PhD (U. Texas, 1987) Pattern recognition, picture processing, biomedical applications, mathematical modeling

Judea Pearl, PhD (Polytechnic Institute of Brooklyn, 1965)
Artificial intelligence, philosophy of science, reasoning under uncertainty, causal inference, causal and counterfactual analysis

Carlo A. Zaniolo, PhD (UCLA, 1976)
Knowledge bases and deductive databases, parallel execution of PROLOG programs, formal software specifications, distributed systems, big data, artificial intelligence, and computational biology

Associate Professors
Kai-Wei Chang, PhD (U. Illinois Urbana-Champaign, 2015)
Tractable machine learning methods for complex and big data, statistical approaches to natural language processing

Alyson K. Fletcher, PhD (UC Berkeley, 2006)
Applied mathematics including inverse problems, statistical physics, dynamical systems, machine learning, information theory

Quanquan Gu, PhD (U. Illinois Urbana-Champaign, 2014)
Machine learning, high-dimensional statistical inference, data mining

Cho-Jui Hsieh, PhD (U. Texas Austin, 2015)
Fast and scalable algorithms for large-scale machine learning (deep learning), fast prediction and model compression for big ML models, low-rank models for recommender systems, theoretical analysis of optimization algorithms, security for machine learning

Raghu Meka, PhD (U. Texas Austin, 2011)
Complexity theory, pseudorandomness, algorithms, learning probability and data mining

Anthony J. Nowatzki, PhD (U. Wisconsin Madison, 2016)
Hardware/software codesign, modeling, and optimization

Yizhou Sun, PhD (U. Illinois Urbana-Champaign, 2012)
Information and social network analysis, data mining, database systems, statistics, information retrieval, machine learning and network science

Yuval Tamir, PhD (UC Berkeley, 1985)
Computer systems, software systems, computer architecture, parallel and distributed systems, dependable systems, network design, automation, cloud computing, operating systems, system-level virtualization, interconnection networks and switches, multicores architectures

Guy Van den Broeck, PhD (Katholieke U. Leuven, Belgium, 2013)
Machine learning (statistical relational learning), knowledge representation and reasoning (graphical models, lifted probabilistic inference), applications of probabilistic reasoning and learning (probabilistic programming, probabilistic databases), artificial intelligence

Assistant Professors
Omid Abari, PhD (MIT, 2018)
Internet of Things (IoT), wireless networking, mobile systems, software/hardware systems, human-computer interaction (HCI)

Aditya Grover, PhD (Stanford, 2020)
Statistical machine learning, reinforcement learning, deep learning, probabilistic graphical models, graph and network science, artificial intelligence for scientific discovery, sustainability and climate change

Achuta Kadambi, PhD (MIT, 2018)
Computational imaging, computer vision, robotics, medical devices

Baharan Mirzakolemaine, PhD (ETH Zürich, Switzerland, 2017)
Large-scale machine learning, data/model compression, optimization, approximation algorithms

Violet (Nanyun) Peng, PhD (Johns Hopkins, 2017)
Natural language processing, artificial intelligence, information extraction, multilingual natural language understanding, narrative understanding and generation, figurative language generation

Blaise-Pascal Tine, PhD (Georgia Tech, 2023)
Hardware accelerators, compiler support for parallel architectures, hardware description languages, compilation, processing near memory, graphics acceleration

Bolei Zhu, PhD (MIT, 2018)
Computer vision, machine learning, artificial intelligence

Senior Lecturers SOE
Paul R. Eggett, PhD (UCLA, 1980)
Programming languages, operating systems principles, compilers, Internet

David A. Smallberg, MS (UCLA, 1978)
Programming languages, software development

Adjunct Professors
Eran Halperin, PhD (Tel Aviv U., Israel, 2000)
Computational biology, population genetics, statistical genetics and epigenetics, machine learning, algorithms

Van Jacobson, MS (U. Arizona, 1972)
Named data network (NDN), content-centric networking

Alan C. Kay, PhD (U. Utah, 1969)
Object-oriented programming, personal computing, graphical user interfaces

Adjunct Associate Professors
Carey S. Nachenberg, MS (UCLA, 1995)
Antivirus and intrusion detection technology

Giovanni Pau, PhD (U. Bologna, Italy, 1998)
Protocol design implementation and evaluation for QOS support in wired/wireless networks and vertical handover protocols and architectures

Ramin Ramezani, PhD (Imperial College, London, England, 2014)
Logic and AI, inductive logic programming, constraint solving, machine learning, combined reasoning, signal processing

Fabien Scalzo, PhD (U. Liège, Belgium, 2008)
Stroke and traumatic brain injuries (TBI) using brain mapping of imaging and biosignals (MR, CT, X-ray angiography, TCD, and ICP); development of machine learning and computer vision algorithms to improve neurological care and bring understanding of neurological disorders

Adjunct Assistant Professor
Ravi Netravali, PhD (MIT, 2018)
Computer systems, computer networks, distributed systems, cloud computing

Bioinformatics Courses

Lower-Division Courses

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower-division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.

Upper-Division Course

199. Directed Research in Bioinformatics. (2 to 4) Tutorial, six to 12 hours. Limited to juniors/seniors. Supervised individual research under guidance of faculty mentor. Culminating paper required. May be repeated for credit. Individual contract required. Letter grading.

Computer Science Courses

Lower-Division Courses

1. Freshman Computer Science Seminar. (1) Seminar, one hour. Introduction to department resources and principal topics and key ideas in computer science and computer engineering. Students create critical summaries of seminar talks. P/NP grading.

Mr. Millstein (F)

19. Flat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading. (F)

30. Principles and Practices of Computing. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Designed for students in computer science and related majors who do not have prior programming experience. Precursor course to introductory computer science sequence (courses 31, 32, 33). Teaches students how to use computers as a tool for problem solving, creativity, and exploration through design and implementation of computer programs. Key topics are data types including integers, strings, and lists; control structures, including conditionals and loops; and functional decomposition. Letter grading.

Mr. Millstein (F)

Mr. Huang, Mr. Smallberg (FW,Sp)

Mr. Nachenberg, Mr. Smallberg, Mr. Stahl (F,W,Sp)

33. Introduction to Computer Organization. (5) Lecture, four hours; discussion, two hours; outside study, nine hours. Enforced requisite: course 32. Introductory course on computer architecture, assembly language, and operating systems fundamentals. Number systems, machine language, and assembly language. Procedure calls, stacks, interrupts,
ad hoc wireless and personal area networks (e.g., 802.15.4). Exercises are based on mobile radio-equipped devices (smart phones, tablets, etc.) as sensor platforms for personal applications such as wireless health, positioning, and environmental monitoring. Experimental laboratory sessions included. Letter grading.

118. Computer Network Fundamentals. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course 111. Designed for junior/senior. Introduction to design and performance evaluation of computer networks, including such topics as what protocols are, layered network architecture, internet protocol architecture, network applications, transport protocols, routing algorithms and protocols, internetworking, congestion control, and link layer protocols including Ethernet and wireless channels. Letter grading.

119. Fundamentals of Embedded Networked Systems. (4) Same as Electrical and Computer Engineering M119.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 33, 118 or Electrical and Computer Engineering 135B; or course 130, Electrical and Computer Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, 170E; Statistics 100A. Design trade-offs and principles of operation of cyber physical systems and systems of systems that constitute Internet of Things. Topics include signal propagation and modeling, sensing, node architecture and operation, and applications. Letter grading.

C121. Probabilistic Models in Computational Genomics. (4) (Formerly numbered CM121.) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course 32 or Program in Computing 10C with grade of C- or better, and one course from Civil and Environmental Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, Mathematics 170E, or Statistics 100A. Prior knowledge of biology is not required. Designed for engineering students as well as students from biological sciences and medical school. Introduction to probabilistic models in the context of genomics, with emphasis on concepts and inventions of new computer technologies to analyze genomic data. Concurrently scheduled with course C221. Letter grading.

C122. Algorithms in Computational Genomics. (4) (Formerly numbered CM222.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 32 or Program in Computing 10C with grade of C- or better, and one course from Civil Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, Mathematics 170E, or Statistics 100A. Course C121 is not requisite to C122. Prior knowledge of biology not required. Designed for engineering students as well as students from biological sciences and medical school. Databases of genomic sequence data are among the largest datasets in all of science. Assembling, indexing, and querying such tremendous datasets is computationally challenging yet critical for many areas of biomedical research. Focus on development of scalable algorithms for analysis of genomic sequence data, with additional focus on formal relevant problems as computational problems and then solving these problems by developing new algorithms. Concurrently scheduled with course C222. Letter grading.

CM124. Machine Learning Applications in Genetics. (4) (Same as Human Genetics CM124.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 32 or Program in Computing 10C with grade of C- or better, Mathematics 33A, and one course from Civil Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, Mathematics 170E, or Statistics 100A. Designed for junior/senior. Introduction as well as students from biological sciences and medical school. Introduction to computational analysis of genetic variation and computational interdisciplinary research in genetics. Topics include introduction to genetics, identification of genes involved in disease, inferring human population history, technologies for obtaining genetic information, and genetic sequencing. Focus on modeling and solving computational problems and then solving those problems using computational techniques from statistics and computer science. Concurrently scheduled with course CM224. Letter grading.

130. Software Engineering. (4) Lecture, four hours; laboratory; two hours; outside study, six hours. Requisites: courses 111, 131, 133 recommended requisite: Engineering 183EW or 185EW. Structured programming and program specifications; modularity, abstract data types, constructive design, software tools, software control systems, program testing, team programming. Letter grading.

131. Programming Languages. (4) Lecture, four hours; laboratory; two hours; outside study, six hours. Enforced requisites: courses 33, 35L. Basic concepts in design and use of programming languages, including abstraction, modularity, control mechanisms, types, declarations, syntax, and semantics. Study of several different language paradigms, including functional, object-oriented, and logic programming. Letter grading.

132. Compiler Construction. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 131. Compiler structure; lexical and syntactic analysis; semantic analysis and code generation; theory of parsing. Letter grading.

133. Parallel and Distributed Computing. (4) Lecture, four hours; discussion; two hours; outside study, six hours. Enforced requisite: course 131, M151B. Distributed memory and shared memory parallel architectures; Asynchronous RNC; MPI, Mpi. Primitives for parallel computation; specification of parallelism, interprocess communication and synchronization; design of parallel programs for scientific computation and distributed systems. Letter grading.

134. Distributed Systems. (4) Lecture, four hours; discussion; two hours; outside study, six hours. Enforced requisite: course 118. Covers fundamental concepts and design of distributed systems. Topics include synchronization (e.g., clock synchronization, logical clocks, vector clocks), failure recovery (e.g., snapshotting, primary back-up); mutual exclusion, consensus (e.g., Paxos, Raft), distributed transactions, and lock. Students gain hands-on practical experience through multiple programming assignments that work through steps of creating fault-tolerant, shared key/value store. Exploration of how these concepts have manifested in several recent, large-scale distributed systems used by Internet companies like Google, Facebook, and Amazon. Letter grading.

136. Introduction to Computer Security. (4) Lecture, four hours; discussion; two hours; outside study, six hours. Enforced requisite: course 118. Introduces to basic concepts of cyber security and the necessity for students to understand risks and mitigations associated with protection of systems and data. Topics include security models and architectures, security threats and risk analysis, access control and authentication/authorization, cryptography, network security, secure application design, and ethics and law. Letter grading.

C137A. Prototyping Programming Languages. (4) Lecture, four hours; discussion; two hours; outside study, six hours. Enforced requisite: course 131. How different programming language paradigms provide dramatically different ways of thinking about computation and offer trade-offs on many dimensions, such as modularity, extensibility, expressiveness, and safety. Concrete exploration of three major programming paradigms—functional, object-oriented, and
logic programming—by prototyping implementations of language features in an interactive environment. Light on design and structural properties of each language and paradigm and to allow easy comparison against one another. Hands-on experience implementing new abstractions, both as standalone
Mr. MirzaBILEKIAN, Ms. Sun (F, W)
M151B. Computer Systems Architecture. (4) (Same as Electrical and Computer Engineering M116C.) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: courses 32, and M51A or Electrical and Computer Engineering M16. Recommended: courses 111, and M152A or Electrical and Computer Engineering M116L. Computer system organization and design, implementation of CPU data path, instruction set design, memory hierarchy (caches, main memory, virtual memory) organization and manage-
Mr. Tamir, Mr. Tine (W, S, P)
M152A. Introductory Digital Design Laboratory. (2) (Same as Electrical and Computer Engineering M116L.) Laboratory, four hours; outside study, two hours; lecture, four hours. Course 151B or Electrical and Computer Engineering M16. Hands-on design, implementation, and debugging of digital logic circuits, use of computer-aided design tools for schematic capture, analog circuit design and simulation, and complex circuits using programmed array logic, design projects. Letter grading. Mr. Sarrafzadeh (F, S, W)
M252B. Digital Design Project Laboratory. (4) Laboratory, four hours; discussion, two hours; outside study, six hours. Enforced requisites: course M151B or Electrical Engineering M116C. Recommended: Engineering 133E or 138E. Limited to seniors. Design and implementation of complex digital systems using field-programmable gate arrays (e.g., processors, special-purpose processors, device controllers, and input/output interfaces). Students work in teams to develop and implement designs and to document and give oral presentations of their work. Letter grading. Mr. Sarrafzadeh (F, S, W)
161. Fundamentals of Artificial Intelligence. (4) Lecture, four hours; laboratory, two hours; outside study, six hours. Enforced requisites: course 180. Introduction to fundamental problem solving and knowledge representation paradigms of artificial in-
Mr. Daniche, Mr. Van den Broeck (W, S, P)
162. Natural Language Processing. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: course 145 or M146. Recommended requisites: course 35L. Introduction to wide range of natural language processing, tasks, algo-
rithms for effectively solving these problems, and methods of evaluating their performance. Focus on statistical and neural-network learning algorithms that train on text corpora to automatically acquire knowledge needed to perform task. Discussion of general issues and present abstract algorithms. Alignments on theoretical foundations of linguistic phenomena and implementation of algorithms. Im-
pplemented versions of some of algorithms are pro-
vided in order to give feel for how discussed systems handle the real-world applications. Benton of im-
plementation as part of course projects. Letter grading. Ms. Peng (W)
168. Computational Methods for Medical Imaging. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: course 32 or Program in Computing 10C with grade of C- or better, Mathematics 33A, one course from Civil and Environmental Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, 170E, or Statistics 100A. How to analyze data arising in real world so as to understand corre-
sponding phenomenon. Covers topics in machine learning, data analytics, and statistical modeling clas-
ically employed for prediction. Comprehensive, hands-on experience implementing new algorithms by blending theoretical and practical instruction. Data science lifecycle: data selection and cleaning, feature engineering, model selection, and prediction meth-
ology. Letter grade. Mr. MirzaBILEKIAN (F, W)
143. Introduction to Data Mining. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: course 32 or Program in Computing 10C. Introduction to data mining (process of automatic discovery of patterns, changes, associations, and anomalies in massive databases), knowledge engi-
nering, and applications of data mining in business and science. Focus on data preparation, data man-
gement, and special topics included in data mining. Topics include basic Web architecture and protocol, storage structures. Relational model and relational data management. Query languages. Database design prin-
ciples. Transactions, concurrency, and recovery. Integrity and authorization. Letter grading. Mr. Rosario (W)
144. Web Applications. (4) Lecture, four hours; dis-
cussion, two hours; outside study, six hours. Enforced requisites: course 143. Important concepts and theory for building effective and safe Web applica-
tions and first-hand experience with basic tools. Topics include basic Web architecture and protocol, XML and XML query language, mapping between XML and relational models, information retrieval model and theory, security and user model, Web ser-
dvices and distributed transactions. Letter grading. Mr. Rosario (Sp)
145. Introduction to Digital Photography. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Focus on digital photography, from history and technology to specific image processing, network monitoring, and social service applications. Letter grading. Ms. Wang (Sp)
M141C. Special Topics in Computer Graphics. (4) (Same as Electrical and Computer Engineering M141.) Lecture, four hours; discussion, two hours; outside study, six hours. Principles of Computer Science Department / 79 processing, network monitoring, and social service applications. Letter grading. Ms. Wang (Sp)
M146. Introduction to Machine Learning. (4) (Same as Electrical and Computer Engineering M146.) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: course 32 or Program in Computing 10C; Civil and Environmental Engineering 110 or Electrical and Computer Engineering 131A or Mathematics 170A or 170E or Statistics 100A; Mathematics 33A. Introduction to breadth first-hand experience with basic tools. Topics include basic Web architecture and protocol, XML and XML query language, mapping between XML and relational models, information retrieval model and theory, security and user model, Web ser-
dvices and distributed transactions. Letter grading. Mr. Rosario (Sp)
M148. Introduction to Data Science. (4) (Same as Electrical and Computer Engineering M148.) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: course 31 or Program in Computing 10A, and 10B, and one course from Civil and Environmental Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, Mathematics 170E, or Statistics 100A. How to analyze data arising in real world so as to understand corre-
sponding phenomenon. Covers topics in machine learning, data analytics, and statistical modeling clas-
ically employed for prediction. Comprehensive, hands-on experience implementing new algorithms by blending theoretical and practical instruction. Data science lifecycle: data selection and cleaning, feature engineering, model selection, and prediction meth-
ology. Letter grade. Mr. MirzaBILEKIAN (F, W)
170A. Mathematical Modeling and Methods for Computer Science. (4) Lecture, four hours; labora-
tories, two hours; outside study, six hours. Enforced requisites: course 180, Mathematics 33B. Introduc-
tion to methods for modeling and simulation using in-
teractive computing environments. Extensive cov-
evation in MATLAB for solving problems of numerical analysis, optimization, and spectral analysis. Emphasis on applications in simulation of physical systems. Letter grading. (Not offered 2023-24)
M171L. Data Communication Systems Laboratory, (2 to 4) (Same as Electrical and Computer Engineering M171L.) Laboratory, four to eight hours; outside study, two to four hours. Recommended prepa-
ratory courses: course 170 or Program in Computing 10C. Not open to students with credit for course M117. Interpretation of analog-signalizing aspects of digital systems and data communications through experience in using computer and current tools to generate and com-
pile signals in relevant laboratory setups. Use of oscilloscopes, pulse and function generators, base-
band spectrum analyzers, desktop computers, termi-
nals, modems, PC's, and word processor. Experiments on pulse transmission impairments, waveforms and their spectra, modem and terminal characteristics, and interfaces. Letter grading. (Not offered 2023-24)
172. Real-Time Three-Dimensional Animation. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course 32. Intro-
duction to handling of geometry, appearance, and motion specifically for real-time virtual environments, both on theoretical and practical levels. Completion of one quality real-time three-dimensional animation by following through from preproduction to postpro-
duction. End products expected to be game demonstra-
tions, storytelling games, or machinima (use of real-time graphics engines to create cinematic pro-
ductions). Focus on achieving highest quality pro-
ductions to qualify and submit products to Student Animation Awards quarterly. Game Engine to make technical decisions to adapt stories to games. Introduction to interaction concepts, en-
abling students to create low-fidelity real-time three-
dimensional animation and to concepts in artificial in-
telligence, enabling the students to create high-fidelity real-time three-dimensional animation. Letter grading. (Not offered 2023-24)
174A. Introduction to Computer Graphics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: course 32. Basic prin-
ciples behind modern two- and three-dimensional computer graphics systems, including complete set of steps that modern graphics pipelines use to create realistic images in real time. How to position and ma-
ipulate objects in scene using geometric and camera transformations. How to create final image using perspective and orthographic transformations. Basics of modeling primitives such as polygonal models and implicit and parametric surfaces. Basic ideas behind color spaces, illumination models, shading, and texture mapping. Letter grading. Mr. Law (F, W, S, P)
174B. Introduction to Computer Graphics: Three-
dimensional Photography and Rendering. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: course 174A. State of art in three-dimensional computer graphics and image-
reconstruction based rendering. How to position and light to capture shape and appearance of real objects and scenes. Process provides simple way to acquire three-dimensional models of unparalleled detail and realism. Applications of techniques from entertain-
ment
M184. Introduction to Computational and System Biology. (W) (Same as Bioengineering CM186.) Lecture, four hours; outside study, six hours. Enforced requisite: course 174A. Designed for juniors/seniors. Introduction to computer animation, including basic principles of character modeling, forward and inverse kinematics, forward and inverse dynamics, motion capture animation techniques, physics-based animation of characters, particles, and systems, and motor control. Concurrently scheduled with course C274C. Letter grading. Mr. Terzopoulos (W).

180. Introduction to Algorithms and Complexity. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course 32, Mathematics 41T. Designed for junior/senior Computer Science majors. Introduction to design and analysis of algorithms. Design techniques: divide-and-conquer, greedy method, dynamic programming; selecting appropriate algorithmic choices of data structures and representations; complexity measures: time, space, upper, lower bounds, asymptotic complexity; NP-completeness. Letter grading.

Mr. Ostrovsky, Mr. Sarrafzadeh (F,WSp)

Mr. Meka, Mr. Sahai, Mr. Sherstov (F,WSp)

M182. Dynamic Biosystem Modeling and Simulation Methodology. (Same as Bioengineering CM186.) Lecture, four hours; discussion, one hour; laboratory, two hours; outside study, six hours. Enforced requisite: course 180. Designed for junior/senior Computer Science majors. Finite state machines, context-free languages, and pushdown automata. Closure properties and pumping lemmas. Turing machines, undecidability. Introduction to computability. Letter grading.

Mr. Meka, Mr. Sahai, Mr. Sherstov (F,WSp)

Graduate Courses

201. Computer Science Seminar. (2) Seminar, four hours; outside study, two hours. Designed for graduate computer science students. Seminars on current research topics in computer science. May be repeated for credit. Letter grading.

Mr. DiStefano (F,WSp)

205. Health Analytics. (4) Lecture, four hours; discussion, two hours; outside study, eight hours. Preparation: completion of major field examination in computer science. Current computer science research on health data collection, processing, and analysis; how to properly generate healthcare applications. How to properly generate numerical methods, knowledge in programming languages. Applied data analytics course, with focus on healthcare applications. How to properly generate and analyze data. May be repeated for credit. Letter grading.

(Not offered 2023-24)
211. Network Protocol and Systems Software Design for Wireless and Mobile Internet. (4) Lecture, four hours; outside study, eight hours. Required: courses 112, 118. Designed for graduate students. Study of network protocol and systems software design in wireless and mobile internet. Topics include (1) networking fundamentals: design philosophy, packet switching, and OSI model; (2) internet protocol design principles, (2) networking protocols: 802.11 MAC standard, packet scheduling, mobile IP, ad hoc routing, and wireless TCP; (3) mobile computing systems software: middleware, file services, and applications; and (4) topical studies: energy-efficient design, security, location management, and quality of service. Letter grading. Mr. Lu (W)

212A. Queueing Systems Theory. (4) Lecture, four hours; outside study, six hours. Recommended preparation: course 211. Introduction to algorithms for routers and servers. Models of network devices and hardware design. Principles for efficient implementation. Lookup algorithms (exact match, prefix lookups, advanced car- diaic life support), fair queuing implementations, crossbar and scalable switches, with examples from well-known networking devices. Advanced topics include traffic measurement and network security. Letter grading. (Not offered 2023-24)

217A. Internet Architecture and Protocols. (4) Lecture, four hours; outside study, eight hours. Enforced requisite: course 211. Focus on mastering existing core set of Internet protocols, including IP, core transport protocols, routing protocols, DNS, NTP, and security protocols such as DNSSEC, to understand principles behind design of these protocols, appreciate their design tradeoffs, and learn lessons from their operations. Lecture. Ms. Zhang (W)

217B. Advanced Topics in Internet Research. (4) Lecture, four hours; outside study, eight hours. Enforced requisite: course 217A. Designed for graduate students. Overview of Internet development history and fundamental principles underlying TCP/IP protocol design. Emphasis on Internet research topics, including latest research results in routing protocols, transport protocols, network measurements, network security protocols, and clean-slate approach to network architecture design. Fundamental issues in network protocol design and implementations. Letter grading. (Not offered 2023-24)

219. Current Topics in Computer System Modeling. (4) Lecture, four hours; outside study, eight hours. Review of current literature in area of computer system modeling analysis in which instructor has developed special proficiency as conse- quence of research interests. Students report on se- lected topics. May be repeated for credit with con- sent of instructor. Letter grading.

Mr. Abari, Mr. Lu (Sp)

221. Probabilistic Models in Computational Genomics. (4) Formerly numbered CM221.) Lecture, four hours; discussion, two hours; outside study, six hours. Required: course 32 or Program in Computing 10C with grade of C- or better, and one course from: Bio- statistics 100A, 100A, Civil Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, Mathematics 170E, or Statistics 100A. Course C221 is not requisite to C222. Prior knowledge of biology not required. Designed for engineering students as well as students from biological sciences and medical school. Introduction to computational and statistical techniques to analyze genomic data. Letter grading. Mr. Pimentel (Sp)

222. Algorithms in Computational Genomics. (4) Formerly numbered CM222.) Lecture, four hours; discussion, two hours; outside study, six hours. Required: course 32 or Program in Computing 10C with grade of C- or better, and one course from: Civil Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, Mathematics 170E, or Statistics 100A. Course C221 is not requisite to C222. Prior knowledge of biology not required. Designed for engineering students as well as students from biological sciences and medical school. Introduction to computational and statistical techniques to analyze genomic data. Letter grading. Mr. Eskin (W)

223. Machine Learning Applications in Genet- ics. (4) (Same as Bioinformatics M224 and Human Genetics CM224.) Lecture, four hours; discussion, two hours; outside study, six hours. Required: courses 32 or Program in Computing 10C with grade of C- or better, Mathematics 33A, and one course from Civil Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, Mathematics 170E, or Statistics 100A. Designed for engineering students as well as students from biological sciences and medical school. Introduction to computational analysis of genetic variation and computational inter- disciplinary research in genetics. Topics include intro- duction to genetics, genetic algorithms involved in disease, inferring human population history, tech- nologies for obtaining genetic information, and ge- netic sequencing. Focus on formulating interdisci- plinary problems as computational problems and then solving those problems using computational techniques from statistics and computer science. Concurrently scheduled with course CM124. Letter grading.

Computer Science Department / 81
234. Computer-Aided Verification. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course 181. Introduction to theory and practice of formal methods for design and analysis of concurrent and embedded systems, with focus on algorithmic techniques for checking logical properties of hardware and software systems. Topics include semantics of reactive systems, invariant verification, temporal logic model checking, theory of omega automata, state-space reduction techniques, compositional and hierarchical reasoning. Letter grading. (Not offered 2023-24)

235. Advanced Operating Systems. (4) Lecture, four hours. Preparation: C or C++ programming experience. Prerequisite: course 111. In-depth investigation of modern and automated construction of research operating system for PC machines and consideration of recent literature. Memory management and protection, interrupts and traps, processes, interprocess communication, preemptive multitasking, file systems. Virtualization, networking, profiling, research operating systems. Series of laboratory projects, including extra challenge work. Letter grading. (Not offered 2023-24)

236. Computer Security. (4) Lecture, four hours; outside study, eight hours. Prerequisites: courses 111, 118. Basic and research material on computer security. Topics include basic principles and goals of computer security; cryptography; use of cryptographic protocols for security; security tools (firewalls, virtual private networks, honeypots); virus and worm protection, security assurance and testing, design of secure programs, privacy, applying security principles to realistic problems, and new and emerging threats and security tools. Letter grading. (Not offered 2023-24)

237A. Prototyping Programming Languages. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Prerequisite: course 131. Introduction to static type systems and their usage in programming language design and software reliability. Operational semantics, simply-typed lambda calculus, type soundness proofs, types for mutable references, types for exceptions. Parametric polymorphism, let-binding polymorphism, polymorphic type inference. Types for objects, subtyping, combining parametric polymorphism and subtyping. Types for modules, parameterized modules. Formal specification of programming languages, transition of various systems, as well as readings from recent research literature on modern applications of type systems. Letter grading. (Not offered 2023-24)

232. Static Program Analysis. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course 132. Introduction to static analysis of object-oriented programs and its usage for optimization and bug finding. Class hierarchy analysis, rapid type analysis, equality-based analysis, subset-based analysis, insensitive and sensitive context analysis, pointer analysis. Sensitivity contexts and context-sensitive analysis. Soundness proofs for static analyses. Efficient data structures for static analysis. Common sense sources, such as dynamic flow and binary decision diagrams. Flow-directed method inlining, type-safe method inlining, synchronization optimization, deadlock detection, security vulnerability detection. Formal specification and implementation of a variety of static analyses, as well as readings from recent research literature on modern applications of static analysis. Letter grading. (Not offered 2023-24)

233A. Parallel Programming. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course 131. Mutual exclusion and resource allocation in distributed systems; primitives for parallel computation: specification of parallelism, interprocess communication and synchronization, atomic actions, binary and multway rendezvous; synchronous and asynchronous languages: CSP, Ada, Linda, Maisie, UC, and others; introduction to parallel program verification. Letter grading. (Not offered 2023-24)

233B. Verification of Concurrent Programs. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course 233A. Formal techniques for verification of concurrent programs. Topics include safety, liveness, assertion-based verification, linear and non-linear temporal logics, weakest precondition semantics, Hoare logic, temporal logic, UNITY, and axiomatic semantics for selected parallel languages. Letter grading. (Not offered 2023-24)

234. Computer-Aided Verification. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course 181. Introduction to theory and practice of formal methods for design and analysis of concurrent and embedded systems, with focus on algorithmic techniques for checking logical properties of hardware and software systems. Topics include semantics of reactive systems, invariant verification, temporal logic model checking, theory of omega automata, state-space reduction techniques, compositional and hierarchical reasoning. Letter grading. (Not offered 2023-24)

235. Advanced Operating Systems. (4) Lecture, four hours. Preparation: C or C++ programming experience. Prerequisite: course 111. In-depth investigation of research operating system for PC machines and consideration of recent literature. Memory management and protection, interrupts and traps, processes, interprocess communication, preemptive multitasking, file systems. Virtualization, networking, profiling, research operating systems. Series of laboratory projects, including extra challenge work. Letter grading. (Not offered 2023-24)

236. Computer Security. (4) Lecture, four hours; outside study, eight hours. Prerequisites: courses 111, 118. Basic and research material on computer security. Topics include basic principles and goals of computer security; cryptography; use of cryptographic protocols for security; security tools (firewalls, virtual private networks, honeypots); virus and worm protection, security assurance and testing, design of secure programs, privacy, applying security principles to realistic problems, and new and emerging threats and security tools. Letter grading. (Not offered 2023-24)

237A. Prototyping Programming Languages. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Prerequisite: course 131. How different programming language paradigms provide dramatically different ways of thinking about computation and offer trade-offs on many dimensions, such as modularity, extensibility, expressiveness, and safety. Concrete exploration of three major programming paradigms—functional, object-oriented, and logic programming—by prototyping implementation of languages in each. After a look at how to shed light on design and structural properties of each language and paradigm and to allow easy comparison against one another. Hands-on experience implementing new abstract and low-level languages and as libraries in existing languages. Currently scheduled with course C137A. Letter grading. (Not offered 2023-24)

237B. Programming Language Design. (4) Seminar; four hours; outside study, six hours. Enforced prerequisite: course C237A. Study of various programming language designs, from computing history and research literature, that attempt to address problems of software systems that are bloated, buggy, and difficult to maintain and extend despite trend in computing toward ever higher levels of abstraction for programming. Hands-on experience designing, prototyping, and evaluating new language constructs and binary and logical decision diagrams. Flow-directed method inlining, type-safe method inlining, synchronization optimization, deadlock detection, security vulnerability detection. Formal specification and implementation of a variety of static analyses, as well as readings from recent research literature on modern applications of static analysis. Letter grading. (Not offered 2023-24)

238. Software Engineering. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Prerequisite: course 132. Review of current research topics in automated software engineering analysis tool and assessment of how tool construction, evolution, and testing and debugging of software systems. Introduction to foundations, techniques, tools, and applications of automated software engineering techniques, such as design, construction, evolution, and testing and debugging of software systems. Letter grading. (Not offered 2023-24)
scale data mining algorithms, efficient page refresh techniques, Web-search ranking algorithms, data indexing techniques, and query processing techniques on independent data sources. Letter grading. (Not offered 2023-24)

247. Advanced Data Mining. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisi-
tes: course M258A or Electrical Engineering M216C. Lecture, four hours; laboratory, four hours; outside study, four hours. Requisite: course M258A. Principles of data mining and implementation of modern machine learning models, including but not limited to deep learning, reinforcement learning, and other advanced topics. By permission of instructor. Letter grading. (Not offered 2023-24)

259. Current Topics in Computer Science: System Design/Architecture. (4) Lecture, four hours; outside study, four hours. Letter grading. (Not offered 2023-24)

M258C. LSIs in Computer System Design. (4) (Same as Electrical and Computer Engineering M216A.) Lecture, four hours; discussion, two hours; laboratory, four hours; outside study, two hours. Requisi-
tes: course M51A or Electrical and Computer Engineering M16, and Electrical and Computer Engineering 115C. LSIs/VLSI design and implementation in computer systems. In-depth study of implemented LSIs/VLSI design tools. Letter grading. (Not offered 2023-24)

258F. Physical Design Automation of VLSI Systems. (4) (Same as Electrical and Computer Engineering M216C.) Lecture, four hours; laboratory, four hours; outside study, four hours. Requisite: course M258A. LSIs/VLSI design and application in computer systems. This course is an introduction to VLSI systems, and graph/network mining. Team-based project involving hands-on prac-
tice of mining useful knowledge from large data sets is required. Letter grading. Ms. Sun (W)

249. Current Topics in Data Structures. (4) Lec-
ture, four hours; outside study, eight hours. Review of current literature in area of data structures in which instructor has developed special proficiency as consequence of research interests. Students report on selected topics. May be repeated for credit with con-
tent of instructor. Letter grading.

Ms. Sun, Ms. Wang (F,W,Sp)

251A. Advanced Computer Architecture. (4) Lecture, four hours; outside study, eight hours. Requisi-
tes: course M151B. Recommended: course 111. Design and implementation of high-performance system architectures. Advanced memory hierarchy techniques, static and dynamic pipelining, superscalar and VLI proces-
sors, branch prediction, speculative execution, soft-
ware support for instruction-level parallelism, simulta-
nation-based performance analysis and evaluation, state-of-art design examples, introduction to parallel architectures. Letter grading. Mr. Tamir (F)

251B. Parallel Computer Architectures. (4) Lec-
ture, four hours; outside study, eight hours. Requisi-
tes: course M151B. Recommended: course 251A, SIMD and MIMD systems, symmetric multiprocessors, dis-
tributed-shared-memory systems, messages-passing systems, shared-memory multiprocessors, clusters, intercon-
neciton networks, host-network interfaces, switching element design, communication primitives, cache co-
herency, memory consistency models, synchronization primitives, state-of-art design examples. Letter grading. Mr. Tamir (W)

252A. Arithmetic Algorithms and Processors. (4) Lecture, four hours; outside study, eight hours. Requi-
sites: course 251A. Number systems: conventional, redundant, signed-digit, and residue. Types of algo-
rithms and implementations. Complexity measures. Fast algorithms and implementations for two-op-
erand addition, multiplexer addition, multiplication, division, and square root. Signal processing. Online arithmetic. Ev-
terconnects. (4)

252Z. Current Topics in Cognitive Systems. (4) Lecture, four hours; outside study, six hours. Requ-
sites: courses M51A, 180. Detailed study of various problems in logic-level synthesis of VLSI digital sys-
tems, including two-level Boolean network optimiza-
tion; multi-level Boolean network optimization; tech-
nology mapping for standard cell designs and field-
programmable gate-array (FPGA) designs; retiming for sequential circuits; and applications of binary de-
cision diagrams (BDDs). Letter grading. (Not offered 2023-24)

258H. Analysis and Design of High-Speed VLSI Inter-
connects. (4) Lecture, four hours; outside study, eight hours. Requisites: courses M258A, 258F. De-
tailed study of various problems in analysis and design of high-speed interconnects at both inte-
grated circuit (IC) and packaging levels, including inter-
connect capacitance and resistance, lossy and lossless transmission lines, cross-talk and power distri-
bution noise, delay models and power dissipation.

259. Current Topics in Computer Science: System Design/Architecture. (4) Lecture, four hours; out-
side study, eight hours. Review of current literature in area of computer science system design in which in-
structor has developed special proficiency as conse-
quence of research interests. Students report on se-
lected topics. May be repeated for credit with topic change. Letter grading. Letter grading.

Mr. Cong, Mr. Potkonjak (W,Sp)

260. Machine Learning Algorithms. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Pre-requisite: course 111. Course 180. Prob-
lems of identifying patterns in data. Machine learning allows computers to learn potentially complex pat-
terns from data and to make decisions based on these patterns. Introduction to fundamentals of this discipline to provide both conceptual grounding and practical experience with several learning algorithms. Techniques and examples used in areas such as heuristics, artificial intelligence, and networking. Letter grading. (Not offered 2023-24)

260B. Algorithmic Machine Learning. (4) Lecture, four hours; outside study, eight hours. In-depth ex-
amination of a handful of ubiquitous algorithms in ma-
chine learning. Covers several fundamental aspects of ma-
cine learning but more emphasis on recent ad-
vances and developing efficient and provable algorithms for learning tasks. Topics include low-rank approximations, online learning, multiplicative weights framework, mathematical optimization, out-
lier-robust algorithms, streaming algorithms. SU or letter grading.

Mr. Meka (Sp)

260C. Deep Learning. (4) Lecture, four hours; dis-
cussion, two hours; outside study, six hours. Requi-
sites: courses 180, 260. Not open to students with credit for Electrical and Computer Engineering C147 or C247. Study of basics of deep neural networks and their applications, but limited to computer vision, natural language processing, and graph mining. Covers topics including foundation of deep learning, how to train neural network (optimiza-
tion), architecture designs for various tasks, and

other advanced topics. By permission of instructor. Letter grading. (Not offered 2023-24)

260D. Large-Scale Machine Learning. (4) Lecture, four hours; discussion, two hours; outside study six hours. Requisites: course M258A. To allow students to specialize in and pursue learning and be able to apply deep learning algorithms to variety of tasks. Letter grading. (Not offered 2023-24)

260R. Reinforcement Learning. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Fundamentals and advanced topics of rein-
forcement learning (RL), computational learning app-
proach where agent tries to maximize total amount of reward it receives while interacting with complex and uncertain environments. Includes introduction of Markov decision processes, model-free RL and model-based RL methods, reinforcement, RL and distributed system design, as well as case studies of RL in game playing such as AlphaGo, traffic simu-
lation, autonomous driving, and other machine au-
tomation applications. Advanced topics of RL such as model-free RL, human-robot model, imitation learning. Letter grading. Mr. Zhou (F)

261. Deep Generative Models. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course M148. Fundamentals of variational autoencoders, generative adversarial net-
works, autoregressive models, normalizing flow models, energy-based models, diffusion models. Ap-
plications of generative models in reinforcement learning, scientific discovery, and societal challenges in high-stakes deployments. SU or letter grading.

Mr. Grover (W)

261A. Problem Solving and Search. (4) Lecture, four hours; outside study, eight hours. Requisites: course 180. In-depth study of systematic problem-solving search algorithms in artificial intelli-
gence, including problem spaces, brute-force search, heuristic search, linear-space algorithms, real-time search, heuristic evaluation functions, two-player games, and constraint-satisfaction problems. Letter grading. (Not offered 2023-24)

262. Learning and Reasoning with Bayesian Net-
works. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Letter grading. (Not offered 2023-24)

261. Artificial Life for Computer Graphics and Vision. (4) Lecture, four hours; outside study, eight hours. Course 217 contributes to current sections: Principles of Design and Advanced Computer Science. Selections from design, analysis, optimization, and computational biology. Topics include Bayesian decision theory, parametric and nonparametric learning, clustering, complexity (V-Dimensionality), learning algorithms that are used in computer vision, image processing, speech recognition, data mining, statistics, and computational biology. Topics include Bayesian decision theory, parametric and nonparametric learning, clustering, complexity (V-Dimensionality), learning algorithms that are used in computer vision, image processing, speech recognition, data mining, statistics, and computational biology. Topics include Bayesian decision theory, parametric and nonparametric learning, clustering, complexity (V-Dimensionality), learning algorithms; algorithms for particular application areas. Subtopics of some current sections: Principles of Design and Analysis (280A); Distributed Algorithms (280D); Graphs and Networks (280G); may be offered for credit with consent of instructor and topic change. Letter grading.

(Not offered 2023-24)

280AP. Approximation Algorithms. (4) Lecture, four hours; outside study, eight hours. Course 217 contributes to current sections: Principles of Design and Advanced Computer Science. Selections from design, analysis, optimization, and computational biology. Topics include Bayesian decision theory, parametric and nonparametric learning, clustering, complexity (V-Dimensionality), learning algorithms; algorithms for particular application areas. Subtopics of some current sections: Principles of Design and Analysis (280A); Distributed Algorithms (280D); Graphs and Networks (280G); may be offered for credit with consent of instructor and topic change. Letter grading.

(Not offered 2023-24)

281A. Computability and Complexity. (4) Lecture, four hours; outside study, eight hours. Course 217 contributes to current sections: Principles of Design and Advanced Computer Science. Selections from design, analysis, optimization, and computational biology. Topics include Bayesian decision theory, parametric and nonparametric learning, clustering, complexity (V-Dimensionality), learning algorithms; algorithms for particular application areas. Subtopics of some current sections: Principles of Design and Analysis (280A); Distributed Algorithms (280D); Graphs and Networks (280G); may be offered for credit with consent of instructor and topic change. Letter grading.

(Not offered 2023-24)

M276A. Pattern Recognition and Machine Learning. (4) Lecture, four hours; discussion, one hour. Course 217 contributes to current sections: Principles of Design and Advanced Computer Science. Selections from design, analysis, optimization, and computational biology. Topics include Bayesian decision theory, parametric and nonparametric learning, clustering, complexity (V-Dimensionality), learning algorithms; algorithms for particular application areas. Subtopics of some current sections: Principles of Design and Analysis (280A); Distributed Algorithms (280D); Graphs and Networks (280G); may be offered for credit with consent of instructor and topic change. Letter grading.

(Not offered 2023-24)
Turing award winner Andrew Yao, communication in computer science, and model discrimination can be used to aid instruction in and out of classroom. S/U grading. (Not offered 2023-24)

CM326. Computational Systems Biology: Modeling and Simulation of Biological Systems. (Same as Bioengineering CM286.) Lecture, four hours; laboratory, two hours; discussion, one hour. Requisites: Life Sciences 30A, 30B, Mathematics 32A or 32T, 33A, and 33B. Dynamic bio-system modeling and computer simulation methods for studying biological/biomedical processes and systems at multiple levels of organization. Intermediate and nonlinear control systems, multicompartimental, epidemiological, pharmacokinetic, and other biomodeling methods applied to life sciences problems. Semester-long projects. Letter grading. (Not offered 2023-24)

CM287. Research Communication in Computational and Systems Biology. (Same as Bioengineering CM286.) Lecture, four hours; laboratory, two hours; discussion, one hour. Requisites: course M182 or CM286 or Computational Biology M150; and research experience (course 199, Bioengineering 199, Computational and Systems Biology 199, or equivalent). Close interaction, and research experience in active quantitative systems biology research laboratory. Direction on how to focus on topics of current interest in scientific community, appropriate to student interests and capabilities. Critical analysis of oral and written scientific reports and their consequences. Letter grading. (Not offered 2023-24)

CM289A. Current Topics in Computer Theory: Complexity Theory. (4) Lecture, four hours; outside study, eight hours. Review of current literature in area of computer theory in which instructor has developed special proficiency as consequence of research interests. Students report on selected topics. Letter grading. (Not offered 2023-24)

CM290C. Current Topics in Computer Theory: Complexity Theory. (4) Lecture, four hours; outside study, eight hours. Review of current literature in area of computer theory in which instructor has developed special proficiency as consequence of research interests. Students report on selected topics. Letter grading. (Not offered 2023-24)

CM289A. Current Topics in Computer Theory: Online Algorithms. (4) Lecture, four hours; outside study, eight hours. Requisite: course 180. Introduction to decision making under uncertainty and competitive analysis. Review of current research in online algorithms for problems arising in many areas, such as data and memory management, searching and navigating in unknown terrains, and server systems. Letter grading. (Not offered 2023-24)

CM290P. Current Topics in Computer Theory. (4) Lecture, four hours; outside study, eight hours. Review of current literature in area of computer theory in which instructor has developed special proficiency as consequence of research interests. Students report on selected topics. Letter grading. (Not offered 2023-24)

CM290R. Current Topics in Computer Theory: Randomized Algorithms. (4) Lecture, four hours; outside study, eight hours. Basic concepts and design techniques for randomized algorithms, such as probabilistic theory, Markov chains, random walks, and probabilistic methods. Application of randomized algorithms to problems in data structures, graph theory, computational geometry, number theory, and parallel and distributed systems. Letter grading. (Not offered 2023-24)

CM290S. Seminar: Theoretical Computer Science. (2) Seminar, two hours; outside study, eight hours. Requisite: courses 280A, 281A. Intended for students undertaking thesis research. Discussion of advanced topics and research in such areas as algorithms, data structures, parallel and concurrent computation, and formal language and automata theory. May be repeated for credit. S/U grading. (Not offered 2023-24)

CM289A. Current Topics in Computer Theory: Complexity Theory. (4) Lecture, four hours; outside study, eight hours. Review of current literature in area of computer theory in which instructor has developed special proficiency as consequence of research interests. Students report on selected topics. Letter grading. (Not offered 2023-24)

CM288A. Seminar: Theoretical Computer Science. (2) Seminar, two hours; outside study, eight hours. Requisite: courses M286 or Bioinformatics 223. Theory and model parameter estimation algorithms for fitting dynamic system models to biomedical data. Model discrimination methods. Theory and algorithms for designing optimization experiments for developing and quantifying models, with special focus on optimal sampling schedule design for kinetic models. Exploration of PC software for model building and optimal experiment design via applications in physiology and pharmacology. Letter grading. (Not offered 2023-24)

CM290A. Current Topics in Computer Theory: Online Algorithms. (4) Lecture, four hours; outside study, eight hours. Review of current literature in area of computer theory in which instructor has developed special proficiency as consequence of research interests. Students report on selected topics. Letter grading. (Not offered 2023-24)

CM290B. Teaching with Technology. (2) Seminar, two hours; outside study, two hours. Requisite: course CM186. Introduction to mathematical modeling and computer simulation of cardiac electrophysiological process. Ionic models of action potential (AP). Theory of AP propagation in one-dimensional and two-dimensional cardiac tissue. Simulation of sequence and parallel computers, choice of numerical algorithms, to optimize accuracy and to provide computational stability. Letter grading. (Not offered 2023-24)

CM290D. Introduction to Computational Cardiology. (4) (Same as Bioengineering M296D.) Lecture, four hours; outside study, eight hours. Requisite: course CM186. Introduction to mathematical modeling and computer simulation of cardiac electrophysiological process. Ionic models of action potential (AP). Theory of AP propagation in one-dimensional and two-dimensional cardiac tissue. Simulation of sequence and parallel computers, choice of numerical algorithms, to optimize accuracy and to provide computational stability. Letter grading. (Not offered 2023-24)

CM290E. Advanced Topics and Research in Biomedical Systems Modeling and Computing. (4) (Same as Bioengineering M296E and Medicine M270E.) Lecture, four hours; outside study, eight hours. Requisite: course M296B. Research techniques and experience on special topics involving models, modeling methods, and model computing in biomedical and medical sciences. Review and critique of literature. Research problem solving and formulation. Approaches to solutions. Individual MS- and PhD-level project training. Letter grading. (Not offered 2023-24)

CM290F. Seminar: Theoretical Computer Science. (2) Seminar, two hours; outside study, four hours. Requisite: course CM286 or Bioinformatics 223. Theory and model parameter estimation algorithms for fitting dynamic system models to biomedical data. Model discrimination methods. Theory and algorithms for designing optimization experiments for developing and quantifying models, with special focus on optimal sampling schedule design for kinetic models. Exploration of PC software for model building and optimal experiment design via applications in physiology and pharmacology. Letter grading. (Not offered 2023-24)

CM290G. Seminar: Theoretical Computer Science. (2) Seminar, two hours; outside study, four hours. Requisite: course CM286 or Bioinformatics 223. Theory and model parameter estimation algorithms for fitting dynamic system models to biomedical data. Model discrimination methods. Theory and algorithms for designing optimization experiments for developing and quantifying models, with special focus on optimal sampling schedule design for kinetic models. Exploration of PC software for model building and optimal experiment design via applications in physiology and pharmacology. Letter grading. (Not offered 2023-24)

CM290H. Seminar: Theoretical Computer Science. (2) Seminar, two hours; outside study, four hours. Requisite: course CM286 or Bioinformatics 223. Theory and model parameter estimation algorithms for fitting dynamic system models to biomedical data. Model discrimination methods. Theory and algorithms for designing optimization experiments for developing and quantifying models, with special focus on optimal sampling schedule design for kinetic models. Exploration of PC software for model building and optimal experiment design via applications in physiology and pharmacology. Letter grading. (Not offered 2023-24)

CM290I. Seminar: Theoretical Computer Science. (2) Seminar, two hours; outside study, four hours. Requisite: course CM286 or Bioinformatics 223. Theory and model parameter estimation algorithms for fitting dynamic system models to biomedical data. Model discrimination methods. Theory and algorithms for designing optimization experiments for developing and quantifying models, with special focus on optimal sampling schedule design for kinetic models. Exploration of PC software for model building and optimal experiment design via applications in physiology and pharmacology. Letter grading. (Not offered 2023-24)

CM290J. Seminar: Theoretical Computer Science. (2) Seminar, two hours; outside study, four hours. Requisite: course CM286 or Bioinformatics 223. Theory and model parameter estimation algorithms for fitting dynamic system models to biomedical data. Model discrimination methods. Theory and algorithms for designing optimization experiments for developing and quantifying models, with special focus on optimal sampling schedule design for kinetic models. Exploration of PC software for model building and optimal experiment design via applications in physiology and pharmacology. Letter grading. (Not offered 2023-24)
596. Directed Individual or Tutorial Studies. (1 to 8) Tutorial, to be arranged. Limited to graduate computer science students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies. Supervised investigation of advanced technical problems. S/U grading. (F,W,Sp)

597A. Preparation for MS Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate computer science students. Reading and preparation for MS comprehensive examination, S/U grading. (F,W,Sp)

597B. Preparation for PhD Preliminary Examinations. (2 to 16) Tutorial, to be arranged. Limited to graduate computer science students. Preparation for PhD preliminary examinations. S/U grading. (F,W,Sp)

597C. Preparation for PhD Oral Qualifying Examination. (2 to 16) Tutorial, to be arranged. Limited to graduate computer science students. Preparation for oral qualifying examination, including preliminary research on dissertation. S/U grading. (F,W,Sp)

599. Research for and Preparation of PhD Dissertation. (2 to 16) Tutorial, to be arranged. Limited to graduate computer science students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies. Supervised independent research for MS candidates, including thesis prospectus. S/U grading. (F,W,Sp)

Faculty Roster

Professors
Asad A. Abidi, PhD
Abeer A.H. Aliwan, PhD
Danijela Cabric, PhD
Robert N. Candler, PhD
M.C. Frank Chang, PhD (Wintek Endowed Professor of Electrical Engineering)
Panagiotis D. Christofides, PhD (William D. Van Vorst Professor of Chemical Engineering Education)
Jason (Jingsheng) Cong, PhD (Volgenau Professor of Engineering Excellence)
Suhas N. Diggavi, PhD
Lara Dolecek, PhD
Christina P. Fragouli, PhD
Bahman Gharesifard, PhD
Puneet Gupta, PhD
Lei He, PhD
Subramanian S. Iyer, PhD (Charles P. Reame Endowed Professor of Electrical Engineering)
Mona Jarrahi, PhD (Northrop Grumman Professor of Electrical Engineering)
Chandrashhekhar J. Joshi, PhD
Douglas G. Lichtman, JD
Jia-Ming Liu, PhD (Northrop Grumman Opto-Electronic Professor of Electrical Engineering)
Wentai Liu, PhD
Dejan Markovic, PhD
Warren B. Mori, PhD
Ali Mosleh, PhD (Evelyn Knight Professor of Engineering)
Stanley J. Osher, PhD
Aydogan Ozcan, PhD (Volgenau Professor of Engineering Innovation)
Sudhakar Pamarti, PhD
Gregory J. Pottie, PhD
Yahey Rahmat-Samii, PhD (Northrop Grumman Professor of Electrical Engineering/Electromagnetics)
Behzad Razavi, PhD
Vwani P. Roychowdhury, PhD

Associate Professors
Omid Abari, PhD
Sergio Carbajo, PhD
Xiang Anthony Chen, PhD
Xiaofan Cui, PhD
Achuta Kadambi, PhD
Ankur M. Mehta, PhD
Ian P. Roberts, PhD
Nader Sehatbakhsh, PhD
Yuan Tian, PhD
Lin F. Yang, PhD
Yang Zhang, PhD

Assistant Professors
Omid Abari, PhD
Sergio Carbajo, PhD
Xiang Anthony Chen, PhD
Xiaofan Cui, PhD
Achuta Kadambi, PhD
Ankur M. Mehta, PhD
Ian P. Roberts, PhD
Nader Sehatbakhsh, PhD
Yuan Tian, PhD
Lin F. Yang, PhD
Yang Zhang, PhD

Adjunct Professors
Dariusz Divsalar, PhD
Dan M. Goebel, PhD
Mark Gyure, PhD
Asad M. Madni, PhD

Henry Samuei, PhD
Majid Sarrafzadeh, PhD
Stefano Soatto, PhD
Jason L. Speyer, PhD
Mani B. Srivastava, PhD
Paulo Tabuada, PhD (Vijay K. Dhir Professor of Engineering)
Leven Vandenbergh, PhD
John D. Villasenor, PhD
Kang L. Wang, PhD (Raytheon Company Professor of Electrical Engineering)
Yuanxun Ethan Wang, PhD
Richard D. Wesel, PhD
Benjamin S. Williams, PhD
Chae Wei Wong, PhD (Carol and Lawrence E. Tannas, Jr. Endowed Term Professor of Engineering)
Jason C.S. Woo, PhD
C.K. Ken Yang, PhD
Lixia Zhang, PhD (Jonathan B. Postel Professor of Computer Systems)

Graduate Affairs

Electrical and Computer Engineering

56-1258 Engineering IV
Box 951594
Los Angeles, CA 90095-1594
310-825-2647

Department e-mail

Department website

C.K. Ken Yang, PhD
Stanley J. Osher, PhD
Jia-Ming Liu, PhD
Douglas G. Lichtman, JD
Chandrashekhar J. Joshi, PhD
Mona Jarrahi, PhD
Subramanian S. Iyer, PhD
Lei He, PhD
Puneet Gupta, PhD
Bahman Gharesifard, PhD
Christina P. Fragouli, PhD
Lara Dolecek, PhD
Suhas N. Diggavi, PhD
Jia-Ming Liu, PhD
Wentai Liu, PhD
Dejan Markovic, PhD
Warren B. Mori, PhD
Ali Mosleh, PhD
Stanley J. Osher, PhD
Aydogan Ozcan, PhD
Sudhakar Pamarti, PhD
Gregory J. Pottie, PhD
Yahey Rahmat-Samii, PhD
Behzad Razavi, PhD
Vwani P. Roychowdhury, PhD

Henry Samuei, PhD
Majid Sarrafzadeh, PhD
Stefano Soatto, PhD
Jason L. Speyer, PhD
Mani B. Srivastava, PhD
Paulo Tabuada, PhD (Vijay K. Dhir Professor of Engineering)
Leven Vandenbergh, PhD
John D. Villasenor, PhD
Kang L. Wang, PhD (Raytheon Company Professor of Electrical Engineering)
Yuanxun Ethan Wang, PhD
Richard D. Wesel, PhD
Benjamin S. Williams, PhD
Chae Wei Wong, PhD (Carol and Lawrence E. Tannas, Jr. Endowed Term Professor of Engineering)
Jason C.S. Woo, PhD
C.K. Ken Yang, PhD
Lixia Zhang, PhD (Jonathan B. Postel Professor of Computer Systems)

Professors Emeriti
Frederick G. Allen, PhD
Francis F. Chen, PhD
Babak Daneshrad, PhD
Harold R. Fettermann, PhD
Stephen E. Jacobsen, PhD
Rajeev Jain, PhD
Bahram Jalali, PhD (Fang Lu Endowed Professor Emeritus of Engineering)
William J. Kaiser, PhD
Alan J. Laub, PhD
Dee-Son Pan, PhD
Izhak Rubin, PhD
Ali H. Sayed, PhD
Frederick W. Schott, PhD
Gabor C. Temes, PhD
Mihaela van der Schaar, PhD
Alan N. Willson, Jr., PhD (Charles P. Reame Endowed Professor Emeritus of Electrical Engineering)
Kung Yao, PhD

Associate Professors
Elahieh Ahmadi, PhD
Aydin Babakhani, PhD
Sam Emaminejad, PhD
Alyson K. Fletcher, PhD
Jonathan C. Kao, PhD

Assistant Professors
Omid Abari, PhD
Sergio Carbajo, PhD
Xiang Anthony Chen, PhD
Xiaofan Cui, PhD
Achuta Kadambi, PhD
Ankur M. Mehta, PhD
Ian P. Roberts, PhD
Nader Sehatbakhsh, PhD
Yuan Tian, PhD
Lin F. Yang, PhD
Yang Zhang, PhD

Adjunct Professors
Dariusz Divsalar, PhD
Dan M. Goebel, PhD
Mark Gyure, PhD
Asad M. Madni, PhD

Henry Samuei, PhD
Majid Sarrafzadeh, PhD
Stefano Soatto, PhD
Jason L. Speyer, PhD
Mani B. Srivastava, PhD
Paulo Tabuada, PhD (Vijay K. Dhir Professor of Engineering)
Leven Vandenbergh, PhD
John D. Villasenor, PhD
Kang L. Wang, PhD (Raytheon Company Professor of Electrical Engineering)
Yuanxun Ethan Wang, PhD
Richard D. Wesel, PhD
Benjamin S. Williams, PhD
Chae Wei Wong, PhD (Carol and Lawrence E. Tannas, Jr. Endowed Term Professor of Engineering)
Jason C.S. Woo, PhD
C.K. Ken Yang, PhD
Lixia Zhang, PhD (Jonathan B. Postel Professor of Computer Systems)

Professors Emeriti
Frederick G. Allen, PhD
Francis F. Chen, PhD
Babak Daneshrad, PhD
Harold R. Fettermann, PhD
Stephen E. Jacobsen, PhD
Rajeev Jain, PhD
Bahram Jalali, PhD (Fang Lu Endowed Professor Emeritus of Engineering)
William J. Kaiser, PhD
Alan J. Laub, PhD
Dee-Son Pan, PhD
Izhak Rubin, PhD
Ali H. Sayed, PhD
Frederick W. Schott, PhD
Gabor C. Temes, PhD
Mihaela van der Schaar, PhD
Alan N. Willson, Jr., PhD (Charles P. Reame Endowed Professor Emeritus of Electrical Engineering)
Kung Yao, PhD

Associate Professors
Elahieh Ahmadi, PhD
Aydin Babakhani, PhD
Sam Emaminejad, PhD
Alyson K. Fletcher, PhD
Jonathan C. Kao, PhD

Assistant Professors
Omid Abari, PhD
Sergio Carbajo, PhD
Xiang Anthony Chen, PhD
Xiaofan Cui, PhD
Achuta Kadambi, PhD
Ankur M. Mehta, PhD
Ian P. Roberts, PhD
Nader Sehatbakhsh, PhD
Yuan Tian, PhD
Lin F. Yang, PhD
Yang Zhang, PhD

Adjunct Professors
Dariusz Divsalar, PhD
Dan M. Goebel, PhD
Mark Gyure, PhD
Asad M. Madni, PhD
Electrical and Computer Engineering Department / 87

Adjunct Associate Professor
Chi On Chui, PhD

Adjunct Assistant Professors
Shervin Moloudi, PhD
Yair Rivenson, PhD

Overview
Electrical and computer engineers are responsible for inventions that have revolutionized our society, such as the electrical grid, telecommunications, and automated computing and control. The profession continues to make vital contributions in many domains, such as the infusion of information technology into all aspects of daily life. To further these ends, the Department of Electrical and Computer Engineering fosters a dynamic academic environment that is committed to a tradition of excellence in teaching, research, and service. It has state-of-the-art research programs and facilities in a variety of fields. Departmental faculty members are engaged in research efforts across several disciplines in order to serve the needs of industry, government, society, and the scientific community. Interactions with other disciplines are strong. Faculty members regularly conduct collaborative research projects with colleagues in the Geffen School of Medicine; School of Education and Information Studies; School of Theater, Film, and Television; and College of Letters and Science.

The program grants two undergraduate degrees (Bachelor of Science in Electrical Engineering and Bachelor of Science in Computer Engineering) and two graduate degrees (Master of Science and Doctor of Philosophy in Electrical and Computer Engineering). The graduate program provides students with an opportunity to pursue advanced coursework, in-depth training, and research investigations in several fields.

Research
The primary areas in the department are circuits and embedded systems, computer engineering, physical and wave electronics, and signals and systems. These areas cover a broad spectrum of specializations in, for example, communications and telecommunications, computer vision, control systems, cybersecurity, electromagnetics, embedded computer networking, embedded computing systems, engineering optimization, integrated circuits and systems, machine learning, micromechanical systems (MEMS), nanotechnology, photonics and optoelectronics, plasma electronics, signal processing, and solid-state electronics.

Department Mission
The education and research activities in the Electrical and Computer Engineering Department are aligned with its mission statement. In partnership with its constituents, consisting of students, alumni, industry, and faculty members, the mission of the department is to (1) produce highly qualified, well-rounded, and motivated students with fundamental knowledge of electrical engineering who can provide leadership and service to California, the nation, and the world; (2) pursue creative research and new technologies in electrical engineering and across disciplines in order to serve the needs of industry, government, society, and the scientific community; (3) develop partnerships with industrial and government agencies; (4) achieve visibility by active participation in conferences and technical and community activities; and (5) publish enduring scientific articles and books.

Undergraduate Study

Computer Engineering BS
The undergraduate curriculum provides all computer engineering students with preparation in the mathematical and scientific disciplines that lead to a set of courses that span the fundamentals of the discipline in the major areas of data science and embedded networked systems. These collectively provide an understanding of many inventions of importance to our society, such as the Internet of Things, human-cyber-physical systems, mobile/wearable/implantable systems, robotic systems, and more generally smart systems at all scales in diverse spheres. The design of hardware, software, and algorithmic elements of such systems represents an already dominant and rapidly growing part of the computer engineering profession. Students are encouraged to make use of their computer science and electrical and computer engineering electives and a two-quarter capstone design course to pursue deeper knowledge within one of these areas according to their interests, whether for graduate study or preparation for employment.

Capstone Major
The Computer Engineering major is a designated capstone major that is jointly administered by the Computer Science, and Electrical and Computer Engineering, departments. Undergraduate students complete a design course in which they integrate their knowledge of the discipline and engage in creative design within realistic and professional constraints. Students apply their knowledge and expertise gained in previous mathematics, science, and engineering coursework. Students identify, formulate, and solve engineering problems and present their projects to the class.

Educational Objectives
The computer engineering undergraduate program educational objectives are that our alumni (1) understand fundamental computing concepts and make valuable contributions to the practice of computer engineering; (2) design, analyze, and implement complex computer systems for a variety of application areas and cyberphysical domains; (3) demonstrate the ability to work effectively in a team and communicate their ideas; (4) continue to learn as part of a graduate program or otherwise in the world of constantly evolving technology.

Learning Outcomes
The Computer Engineering major has the following learning outcomes:

- Application of mathematical, scientific, and engineering knowledge
- Design of a software or hardware system, component, or process to meet desired needs within realistic economic, environmental, social, ethical, health, safety, security, reliability, manufacturability, and sustainability constraints
- Function productively on a team with others
- Identification, formulation, and solution of computer engineering problems
- Effective communication

Preparation for the Major
Required: Computer Science 1 (or Electrical and Computer Engineering 1), 31, 32, 33, 35L, MS1A (or Electrical and Computer Engineering M16); Electrical and Computer Engineering 3; Engineering 96i; Mathematics 31A, 31B, 32A, 32B, 33A, 33B, 61; Physics 1A, 1B, 1C, and 4AL or 4BL.

The Major
Required: Computer Science 111, 11B (or Electrical and Computer Engineering 132B), M151B (or Electrical and Computer Engineering M116C), M152A (or Electrical and Computer Engineering M116L), 180; Electrical and Computer Engineering 100, 102, 113, 115C; one course from Civil and Environmental Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, 170E, Statistics 100A; 8 units of computer science and 8 units of electrical and computer engineering upper-division electives; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; 8 units capstone design from either Electrical and Computer Engineering 180DA/180DB or 183DA/183DB.

For information on UC, school, and general education requirements, see Requirements
Students who pursue a technical breadth area in either electrical and computer engineering or computer science can choose an additional three courses from this list.

Students are also free to design ad hoc tracks. The technical breadth area requirement provides an opportunity to combine elective courses in electrical and computer engineering and computer science with those from another UCLA Samueli major to produce a specialization in an interdisciplinary domain. As noted above, students can also select a technical breadth area in either Electrical and Computer Engineering or Computer Science to deepen their knowledge in either discipline.

Electrical Engineering BS

The undergraduate curriculum provides all Electrical Engineering majors with preparation in the mathematical and scientific disciplines that lead to a set of courses that span the fundamentals of the three major departmental areas of signals and systems, circuits and embedded systems, and physical wave electronics. These collectively provide an understanding of inventions of importance to society, such as integrated circuits, embedded systems, photonic devices, automatic computation and control, and telecommunication devices and systems.

Students are encouraged to make use of their electrical and computer engineering electives and a two-term capstone design course to pursue deeper knowledge within one of these areas according to their interests, whether for graduate study or preparation for employment. See the elective examples and suggested tracks below.

The electrical engineering program is accredited by the Engineering Accreditation Commission of ABET.

Capstone Major

The Electrical Engineering major is a designated capstone major. Undergraduate students complete a design course in which they integrate their knowledge of the discipline and engage in creative design within realistic and professional constraints. Students apply their knowledge and expertise gained in previous mathematics, science, and engineering coursework. Within a multidisciplinary team structure, students identify, formulate, and solve engineering problems and present their projects to the class.

Educational Objectives

The electrical engineering curriculum provides an excellent background for either graduate study or employment. Undergraduate education in the department provides students with (1) fundamental kno-
edge in mathematics, physical sciences, and electrical engineering; (2) the opportunity to specialize in specific areas of interest or career aspiration; (3) intensive training in problem solving, laboratory skills, and design skills; and (4) a well-rounded education that includes communication skills, the ability to function well on a team, an appreciation for ethical behavior, and the ability to engage in lifelong learning. This education is meant to prepare students to thrive and to lead. It also prepares them to achieve the following two program educational objectives: (1) that graduates of the program have successful technical or professional careers, and (2) that graduates of the program continue to learn and to adapt in a world of constantly evolving technology.

Learning Outcomes

The Electrical Engineering major has the following learning outcomes:

- Application of knowledge of mathematics, science, and engineering
- Design of a system, component, or process to meet desired needs within realistic constraints
- Function as a productive member of a multidisciplinary team
- Effective communication
- Identification, formulation, and solution of electrical engineering problems

Preparation for the Major

Required: Chemistry and Biochemistry 20A; Computer Science 31, 32; Electrical and Computer Engineering 2, 3, 10, 11L, M16 (or Computer Science M51A); Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL, 4BL.

The Major

Required: Electrical and Computer Engineering 101A, 102, 110, 111L, 113, 131A; six core courses selected from Computer Science 33, Electrical and Computer Engineering 101B, 115A, 121B, 132A, 133A, 141, 170A; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; 12 units of major field elective courses, at least 8 of which must be upper-division electrical and computer engineering courses; the remaining 4 units may be from upper-division electrical and computer engineering courses or from another UCLA Samueli department; and one two-term electrical and computer engineering capstone design course (8 units).

Electrical and Computer Engineering 100 and CM182 may not satisfy elective credit. For information on UC, school, and general education requirements, see [Requirements](#) for BS Degrees on page 22 or the [GE Requirement](#) web page.

Elective Examples

Communications Systems: Studies range from basic wave propagation to point-to-point links up to large-scale networks for both wired and wireless applications. Students might take 12 units selected from Electrical and Computer Engineering 132A, 132B, 133A, 134, and M171L and 8 capstone design units from 113DA/113DB or 180DA/180DW.

Control Systems and Optimization: The study of how to control a variety of systems ranging from a single physical system to continental networks, such as the electrical grid. Students might take 12 units selected from Electrical and Computer Engineering 112, 133A, 133B, 141, and 142 and 8 capstone design units from 113DA/113DB or 184DA/184DB.

Electromagnetic Systems: Topics include the fundamentals of electromagnetic wave propagation in guided systems and free space, antennas, and radio systems. Students might take 12 units selected from Electrical and Computer Engineering 101B, 162A, 163A, and 163C and 8 capstone design units from 163DA/163DB or 164DA/164DB.

Embedded Computing: The study of compact systems that include collections of integrated circuits that interact with the physical world for purposes such as sensing and control in applications as diverse as appliances, automobiles, and medicine. Students might take 12 units selected from Electrical and Computer Engineering 115A, 115C, M116C, M116L, M119, and 142 and 8 capstone design units from 180DA/180DW or 183DA/183DB.

Integrated Circuits: The study of how to achieve large-scale integration of thousands to billions of computational, memory, and sensing elements in single or multichip modules. Students might take 12 units selected from Electrical and Computer Engineering 115A, 115AL, 115B, 115C, and 115E and 8 capstone design units from 164DA/164DB or 183DA/183DB.

Photonics and Plasma Electronics: The study of how to manipulate light and plasmas to create devices such as those that enable high-speed optical communication systems. Students might take 12 units selected from Electrical and Computer Engineering 170A, 170B, 170C, and M185 and 8 capstone design units from 173DA/173DB.

Signal Processing: The study of how to derive meaningful inferences from measured data, such as speech, images, or other data, after conversion from analog to digital form. Students might take 12 units selected from Electrical and Computer Engineering 114, 133A, 133B, 134, and M146 and 8 capstone design units from 113DA/113DB.

Simulation and Data Analysis: Studies focus on applications related to the processing of big data for both analog/multimedia and digital sources. Students might take 12 units selected from Electrical and Computer Engineering 114, 132A, 133A, 133B, 134, and M146 and 8 capstone design units from 113DA/113DB or 180DA/180DW.

Solid-State and Microelectromechanical Systems (MEMS) Devices: The study of the nanoscale and microscale devices that are the base of modern computation and sensing systems. Students might take 12 units selected from Electrical and Computer Engineering 121B, 123A, 123B, 128, and M153 and 8 capstone design units from 121DA/121DB.

Suggested Tracks

The technical breadth area requirement provides an opportunity to combine elective courses in the Electrical Engineering major with those from another UCLA Samueli major to produce a specialization in an interdisciplinary domain. Students are free to design a specialization in consultation with a faculty adviser.

Bioengineering and Informatics (BI) refers to the design of biomedical devices and the analysis of data derived from such devices and instruments. Students might take Chemistry and Biochemistry 20B and two courses from Bioengineering 100, C101, C102, and 110 and/or 12 units from Computer Science C121, Electrical and Computer Engineering 114, 133B, 176 and 8 capstone design units from 180DA/180DW.

Computer Engineering (CE) concentrates on the part of the hardware/software stack related to the design of new processors and the operation of embedded systems. Students might take a 12-unit technical breadth area in computer science such as Computer Science 111, 117, 130, and 180 and/or 12 units of electives from Electrical and Computer Engineering 115C, M116C, M116L, M119, 132B, and M146 and 8 capstone design units from 113DA/113DB or 180DA/180DW or 183DA/183DB.

Cyber Physical Systems (CPS) refer to networked systems that include sensors and actuators that interact with the physical world. They blend embedded systems with networking and control and include, for example, robotic systems and the Internet of things (IoT). Students might take a 12-unit technical breadth area in computer science such as Computer Science 111, 117, and 180 and/or 12 units of electives from Electrical and Computer Engineering M116C, 132B, and 142 and 8 capstone design units from 183DA/183DB.
Data Science Engineering Minor

The minor is intended to expose students to the entire data science life cycle from both foundational and application perspectives. The foundational courses provide the engineering skills to collect, cleanse, and store data; analyze and draw inferences from data; and take action and make decisions. A wide-ranging list of interdisciplinary courses focuses on various data-science applications using these skills.

Admission

To apply for the minor, students must have an overall grade-point average of 3.0 or better, have completed or be in the process of completing in the present quarter the two lower-division required courses with the grade B- or better, and file a petition through Message Center. Steps to apply are outlined on the Office of Academic and Student Affairs website. Information about the minor and the application are available on the minor website.

The Minor

Required Lower-Division Courses (8 units minimum): Computer Science 32, Mathematics 33A.

Required Upper-Division Courses (12 units minimum): One course from Civil and Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, 170E, or Statistics 100A; Computer Science M148 or Electrical and Computer Engineering M148; Computer Science 145 or M146 or Electrical and Computer Engineering M146.

Elective Upper-Division Courses (8 units minimum): Two courses from Computer Science M119, C121, C122, CM124, 143, 145 or M146 (if not taken as a required course), 161, 180, M182, Electrical and Computer Engineering 102, 113, 114, M119, 133A, M146 (if not taken as a required course), C147, 183DA and 183DB (both must be taken), Mechanical and Aerospace Engineering C137, 185, Statistics 100B, 115, 170, or C180.

Policies

Variable topics courses may be taken as topics apply. Transfer credit for any of the above is subject to approval; consult with the undergraduate counselors before enrolling in any courses for the minor.

A minimum of 20 units applied toward the minor requirements must be in addition to units applied toward major requirements or another minor.

Each minor course must be taken for a letter grade, and student must have a minimum grade of C in each and an overall grade-point average of 2.0 or better in the minor. Successful completion of the minor is indicated on the transcript and diploma.

Graduate Study

For admission information, see Graduate Programs: Admission on page 27.

The following introductory information is based on 2023-24 program requirements for UCLA graduate degrees. Complete program requirements are available at Program Requirements for UCLA Graduate Degrees. Students are subject to the detailed degree requirements as published in program requirements for the year in which they enter the program.

The Department of Electrical and Computer Engineering offers Master of Science (MS) and Doctor of Philosophy (PhD) degrees in Electrical and Computer Engineering.

Electrical and Computer Engineering MS

Areas of Study

Students may pursue specialization across three major areas of study: (1) circuits and embedded systems, (2) physical and wave electronics, and (3) signals and systems. These areas cover a broad spectrum of specializations in, for example, communications and telecommunications, control systems, electromagnetics, embedded computing systems, engineering optimization, integrated circuits and systems, microelectromechanical systems (MEMS), nanotechnology, photonics and optoelectronics, plasma electronics, signal processing, and solid-state electronics. Students must select a number of formal graduate courses to serve as their major and minor fields of study according to the requirements listed below for the thesis (seven courses) and non-thesis (eight courses) options. The selected courses must be approved by the faculty adviser.

Course Requirements

Students may select either the thesis plan or the non-thesis (comprehensive examination) plan. The selection of courses is tailored to the professional objectives of the students and must meet the requirements stated below. The courses should be selected and approved in consultation with the faculty adviser. Departures from the stated requirements are considered only in exceptional cases and must be approved by the departmental graduate adviser.

The minimum requirements for the MS degree are as follows:

1. Requisite. BS degree in Electrical Engineering or a related field

2. All MS program requirements should be completed within two academic years from admission into the MS graduate program in the Henry Samueli School of Engineering and Applied Science

3. Students must maintain a minimum cumulative grade-point average of 3.0 every term and 3.0 in all graduate courses

4. Thesis Option. Students selecting the thesis option must complete at least the following requirements: (a) five formal graduate courses to serve as the major field of study, (b) two formal graduate courses to serve as the minor field of study, (c) Electrical and Computer Engineering 297, (d) two Electrical and Computer Engineering 598 courses involving work on the MS thesis, (e) no other 500-level courses, other seminar courses, nor Electrical and Computer Engineering 296 or 375 may be applied toward the course requirements, and (f) an MS thesis completed under the direction of the faculty adviser to a standard that is approved by a committee comprised of three faculty members. The thesis research must be conducted concurrently with the coursework.

5. Non-Thesis Option. Students selecting the non-thesis option must complete at least the following requirements: (a) six formal graduate courses to serve as the major field of study, (b) two formal graduate courses to serve as the minor field of study, (c) Electrical and Computer Engineering 297, (d) Electrical and Computer Engineering 299 to serve as the MS comprehensive examination, which is evaluated by a committee of three faculty members appointed by the department. In case of failure, students may be re-examined only once with consent of the departmental graduate adviser, and (e) no 500-level courses, other seminar courses, nor Electrical and Computer Engineering 296 or 375 may be applied toward the course requirements.

6. Students must select a number of formal graduate courses to serve as their major and minor fields of study according to the requirements listed above for the thesis (seven courses) and non-thesis (eight courses) options. The selection of the major and minor sequences of courses must be from different established tracks, or approved ad hoc tracks, or combinations thereof. The selected courses must be approved by the faculty adviser.

7. For the thesis option at least four, and for the non-thesis option five, of the formal graduate courses used to satisfy the MS program requirements listed above must be in the Electrical and Computer Engineering Department.

8. A formal graduate course is defined as any 200-level course, excluding seminar
or tutorial courses.

9. At most one upper-division undergraduate course is allowed to replace one of the formal graduate courses covering the major and minor fields of study provided that (a) the undergraduate course is not required of undergraduate students in the Electrical and Computer Engineering Department and (b) the undergraduate course is approved by the faculty adviser.

10. A track is a coherent set of courses in some general field of study. The department suggests lists of established tracks as a means to assist students in selecting their courses. Students are not required to adhere to the suggested courses in any specific track.

Circuits and Embedded Systems Area Tracks

1. **Embedded Computing Track.** Courses deal with the engineering of computer systems as may be applied to embedded devices used for communications, multimedia, or other such restricted purposes. Courses include Computer Science 251A, Electrical and Computer Engineering 201A, 201C, M202A, M202B, M216A.

2. **Integrated Circuits Track.** Courses deal with the analysis and design of analog and digital integrated circuits; architecture and integrated circuit implementations of large-scale digital processors for communications and signal processing; hardware-software co-design; and computer-aided design methodologies. Courses include Computer Science 251A, 252A, Electrical and Computer Engineering 215A through 215E, M216A, 221A, 221B.

Physical and Wave Electronics Area Tracks

1. **Electromagnetics Track.** Courses deal with electromagnetic theory; propagation and scattering; antenna theory and design; microwave and millimeter wave circuits; printed circuit antennas; integrated and fiber optics; microwave-optical interaction; antenna measurement, and diagnostics; numerical and asymptotic techniques; satellite and personal communication antennas; periodic structures; genetic algorithms; and optimization techniques. Courses include Electrical and Computer Engineering 221C, 260A, 260B, 261, 262, 263, 266, 270.

2. **Photonics and Plasma Electronics Track.** Courses deal with laser physics, optical amplification, electro-optics, acoustooptics, magneto-optics, nonlinear optics, photonic switching and modulation, ultrafast phenomena, optical fibers, integrated waveguides, photodetection, optoelectronic integrated circuits, optical microelectromechanical systems (MEMS), analog and digital signal transmission, photonics sensors, lasers in biomedicine, fundamental plasma waves and instability; interaction of microwaves and laser radiation with plasmas; plasma diagnostics; and controlled nuclear fusion. Courses include Electrical and Computer Engineering 270, 271, 272, 273, 274, 285A, 285B, M287.

3. **Solid-State and Microelectromechanical Systems (MEMS) Devices Track.** Courses deal with solid-state physical electronic, semiconductor device physics and design, and microelectromechanical systems (MEMS) design and fabrication. Courses include Electrical and Computer Engineering 221A, 221B, 221C, 222, 225, M250B, Mechanical and Aerospace Engineering 281, 284, C287L.

Signals and Systems Area Tracks

1. **Communications Systems Track.** Courses deal with communication and telecommunication principles and engineering applications; channel and source coding; spread spectrum communication; cryptography; estimation and detection; algorithms and processing in communication and radar; satellite communication systems; stochastic modeling in telecommunication engineering; mobile radio engineering; and telecommunication switching, queuing system, communication networks, local-area, metropolitan-area, and wide-area computer communication networks. Courses include Electrical and Computer Engineering 205A, 210A, 230A through 230D, 231A, 231E, 232A through 232E, 238, 241A.

2. **Control Systems and Optimization Track.** Courses deal with state-space theory of linear systems; optimal control of deterministic linear and nonlinear systems; stochastic control; Kalman filtering; stability theory of linear and nonlinear feedback control systems; computer-aided design of control systems; optimization theory, including linear and nonlinear programming; convex optimization and engineering applications; numerical methods; nonconvex programming; associated network flow and graph problems; renewal theory; Markov chains; stochastic dynamic programming; and queuing theory. Courses include Electrical and Computer Engineering 205A, M208B, M208C, 210B, 236A, 236B, 236C, M237, M240A, M240C, 241A, M242A.

Ad Hoc Tracks

In consultation with their faculty advisers, students may petition for an ad hoc track tailored to their professional objectives. This may comprise graduate courses from established tracks, from across areas, and even from outside electrical and computer engineering. The petition must justify how the selection of courses in the ad hoc track forms a coherent set of courses, and how the proposed ad hoc track serves the professional objectives. The petition must be approved by the faculty adviser and the departmental graduate adviser.

Comprehensive Examination Plan

The MS comprehensive examination requirement is satisfied either (1) by solving a comprehensive examination problem in the final project, or equivalent, of every formal graduate electrical and computer engineering course taken. A grade-point average of at least 3.0 in the comprehensive examination problems is required for graduation. The MS individual study program is administered by the academic adviser, the director of the area to which the students belong, and the vice chair of Graduate Affairs or (2) through completion of an individual study course (Electrical and Computer Engineering 299) under the direction of a faculty member. Students are assigned a topic of individual study by the faculty member. The study culminates with a written report and an oral presentation. The MS individual study program is administered by the faculty member directing the course, the director of the area to which the students belong, and the vice chair of Graduate Affairs. Students who fail the examination may be reexamined once with the consent of the vice chair of Graduate Affairs.

Electrical and Computer Engineering PhD

Areas of Study

Students may pursue specialization across three major areas of study: (1) circuits and embedded systems, (2) physical and wave electronics, and (3) signals and systems. These areas cover a broad spectrum of specializations in, for example, communications and telecommunications, control systems, electromagnetics, embedded computing systems, engineering optimization, integrated circuits and systems, microelectromechanical systems (MEMS), nanotechnology, photonics and optoelectronics, plasma electronics, signal processing, and solid-state electronics.
Course Requirements

The selection of courses for the PhD program is tailored to the professional objectives of the students and must meet the requirements stated below. The courses should be selected and approved in consultation with the faculty adviser. Departures from the stated requirements are considered only in exceptional cases and must be approved by the departmental graduate adviser. Normally, students take additional courses to acquire deeper and broader knowledge in preparation for the dissertation research.

The minimum requirements for the PhD degree are as follows:

1. **Requisite.** MS degree in Electrical Engineering or a related field granted by UCLA or by an institution recognized by the UCLA Division of Graduate Education
2. All PhD program requirements should be completed within five academic years from admission into the PhD graduate program in the Henry Samueli School of Engineering and Applied Science
3. Students must maintain a minimum cumulative grade-point average of 3.5 in the PhD program
4. Students must complete at least the following requirements: (a) four formal graduate courses selected in consultation with the faculty adviser; (b) Electrical and Computer Engineering 297; (c) one technical communications course such as Electrical and Computer Engineering 295; (d) no 500-level courses, other seminar courses, nor Electrical and Computer Engineering 296 or 375 may be applied toward the course requirements; (e) pass the PhD preliminary examination which is administered by the department and takes place once every year. In case of failure, students may be reexamined only once with consent of the departmental graduate adviser; (f) pass the University Oral Qualifying Examination which is administered by the doctoral committee; (g) complete a PhD dissertation under the direction of the faculty adviser; and (h) defend the PhD dissertation in a public seminar with the doctoral committee
5. A formal graduate course is defined as any 200-level course, excluding seminar or tutorial courses. Formal graduate courses taken to meet the MS degree requirements may not be applied toward the PhD course requirements
6. At least two of the formal graduate courses must be in electrical and computer engineering
7. Within two academic years from admission into the PhD program, all courses should be completed and the PhD preliminary examination should be passed. It is strongly recommended that students take the PhD preliminary examination during their first academic year in the program
8. The University Oral Qualifying Examination must be taken when all required courses are complete, and within one year after passing the PhD preliminary examination
9. Students admitted originally to the MS program in the Electrical and Computer Engineering Department must complete all MS program requirements with a grade-point average of at least 3.5 to be considered for admission into the PhD program. Only after admission into the program can students take the PhD preliminary examination
10. Students must nominate a doctoral committee prior to taking the University Oral Qualifying Examination. A doctoral committee consists of a minimum of four members. By petition, one of the four members may be a faculty member from another UC campus

Written and Oral Qualifying Examinations

The written qualifying examination is known as the PhD preliminary examination in the department. The purpose of the examination is to assess student competency in the discipline, knowledge of the fundamentals, and potential for independent research. Students admitted originally to the MS program in the Electrical and Computer Engineering Department must complete all MS program requirements with a grade-point average of at least 3.5 to be considered for admission into the PhD program. Only after admission into the program can students take the PhD preliminary examination, which is held three times every year. Students are examined by a group of faculty members in their general area of study. Students who fail the examination may repeat it once only with consent of the departmental graduate adviser. The preliminary examination, together with the course requirements for the PhD program, should be completed within two years from admission into the program.

After passing the written qualifying examination described above, students are ready to take the University Oral Qualifying Examination. The nature and content of the examination are at the discretion of the doctoral committee, but ordinarily include a broad inquiry into the preparation for research. The doctoral committee also reviews the prospectus of the dissertation at the oral qualifying examination.

Students must nominate a doctoral committee prior to taking the University Oral Qualifying Examination. A doctoral committee consists of a minimum of four members. By petition, one of the four members may be a faculty member from another UC campus.

Facilities and Programs

Computing Resources

The department maintains a server room with several racks of computer and storage servers in addition to computing resources within individual faculty labs. The network infrastructure supports a variety of Windows, UNIX, and Linux servers, workstations, and laptops. The school also offers access to a computing cluster primarily used for undergraduate and graduate teaching purposes. The campus supplies free access to a large-scale computing cluster (Hoffman2) with over 13,000 computing cores on over 1200 server nodes. Archival-class backup storage is also available through the campus.

Research Centers and Laboratories

Center for Engineering Economics, Learning, and Networks (CEELN)

Mihaela van der Schaar, Director

The Center for Engineering Economics, Learning, and Networks (CEELN) will develop a new wave of ideas, technologies, networks, and systems that change the ways in which people (and devices) interact, communicate, collaborate, learn, teach, and discover. The center brings together an interdisciplinary group of researchers from diverse disciplines—including computer science, electrical engineering, economics, and mathematics—with diverse interests spanning microeconomics, machine learning, multiagent systems, artificial intelligence, optimization, and physical and social networks, all sharing a common passion: developing rigorous theoretical foundations to shape the design of future generations of networks and systems for interaction.

Center for Heterogeneous Integration and Performance Scaling (CHIPS)

Subramanian S. Iyer, Founding Director

The Center for Heterogeneous Integration and Performance Scaling (CHIPS) addresses emerging technologies, design, Communication standards, power delivery, and architectures to achieve a more holistic Moore’s Law for the overall system. It has pioneered the chiplet/dielet approach to heterogeneous integration on both rigid and flexible platforms including the ecosystem, ad-
CHIPS is unabashedly hardware and interdisciplinary, involving faculty, students from diverse areas such as electrical and computer engineering, computer science and engineering, mechanical engineering, biosciences, and medicine; and is grounded by strong industry participation. CHIPS is unashamedly hardware and industry focused. It develops students who want to build and test what they design, much of it in-house, and apply it to the real world.

Center for High-Frequency Electronics (CHFE)
The Center for High-Frequency Electronics was established with support from several government agencies and contributions from local industries, beginning with a $10 million grant from Hewlett-Packard.

The first major goal of the center is to combine, in a synergistic manner, five areas of research. These include solid-state millimeter wave devices, millimeter systems for imaging and communications, millimeter wave high-power sources (gyrotrons), GaAs gigabit logic systems, and VLSI and LSI based on new materials and structures. The center supports work in these areas by supplying the necessary advanced equipment and facilities and allows the University to play a major role in initiating and generating investigations into new electronic devices. Students, both graduate and undergraduate, receive training and instruction in a unique facility.

The second major goal of the center is to bring together the manpower and skills necessary to synthesize new areas of activity by stimulating interactions between different independent fields. The Electrical and Computer Engineering Department, other departments within UCLA, and local universities (such as Caltech and USC) have begun to combine and correlate certain research programs as a result of the formation of the center.

Clean Energy Research Center–Los Angeles (CERC–LA)
Lei He, Director

CERC–LA was created by UCLA to tackle many of the grand challenges related to generation, transmission, storage, and management of energy. As many energy challenges are global in nature, this center engages the participation of a multidisciplinary group of researchers from many nations. CERC–LA leads a U.S.–China clean-energy and climate change research consortium. CERC–LA, together with the China National Center for Climate Change Strategy and International Cooperation (NCSC), Peking University (PKU), and Fudan University, was selected by the U.S. Department of State and the China National Development and Reform Commission as a U.S.–China EcoPartner. CERC–LA plans to have satellite offices in other cities including Shanghai and Beijing.

Circuits Laboratories
The laboratories are equipped for measurements on high-speed analog and digital circuits and are used for the experimental study of communication, signal processing, and instrumentation systems. A hybrid integrated circuit facility is available for rapid mounting, testing, and revision of miniature circuits. These include both discrete components and integrated circuit chips. The laboratory is available to advanced undergraduate and graduate students through faculty sponsorship on thesis topics, research grants, or special studies.

Electromagnetics Laboratories
The laboratories involve the disciplines of microwaves, millimeter waves, wireless electronics, and electromechanics. Students enrolled in microwave laboratory courses, such as Electrical and Computer Engineering 163DA and 164DB, special projects classes such as Electrical and Computer Engineering 199, and/or research projects, have the opportunity to obtain experimental and design experience in the following technology areas: integrated microwave circuits and antennas, integrated millimeter wave circuits and antennas, numerical visualization of electromagnetic waves, electromagnetic scattering and radar cross-section measurements, and antenna near field and diagnostics measurements.

Koç UCLA Translational Research Center
Aydogan Ozcan, Director
The center is a world-leading research nexus for new imaging, sensing, and diagnostics technologies to use in creating a massively scalable suite of ubiquitous computational laboratories, which will significantly improve the tool set for probing microscopic and nanoscale objects and processes.

Its focus on simplified and cost-effective designs for these analysis tools ensures they are especially suitable for point-of-care and home use, and for professional needs in resource-constrained settings. Through these next-generation technologies, the laboratory will create integrated self-learning systems and networks, specifically for sensing and diagnosis, that aim to impact measurement challenges in application focus areas—such as point-of-care medicine, mobile health, telemedicine, and environmental monitoring—with highly sensitive, specific, and yet remarkably cost-effective and massively scalable technological solutions.

Nanoelectronics Research Facility (Nanolab)
Nanolab is a state-of-the-art, 20,000-square-foot, class 10/100/1000 clean-room facility that supports graduate research and teaching. The space includes the Microlab, an undergraduate teaching laboratory for device fabrication (CMOS, MEMS, and optoelectronics). With a full complement of utilities (high-purity deionized water, high-purity nitrogen, exhaust scrubbers) and the latest technologies in vibration isolation and electromagnetic shielding, Nanolab offers advanced processing equipment for fabrication and analysis. In BSL2-capable biosuites, researchers can leverage standard semiconductor process techniques with evolving biomedical, nanometer-scale fabrication to study fundamental quantum size effects; and explore novel nanometer-scale device concepts. Nanolab staff has deep knowledge of fabrication techniques and process development to support both academic and commercial research and development projects.

Photonics and Optoelectronics Laboratories
Students in the Laser Laboratory investigate the properties of lasers; and gain an understanding of the application of this modern technology to optics, communication, and holography.

The photonics and optoelectronics laboratories include facilities for research in all of the basic areas of quantum electronics. Specific areas of experimental investigation include high-powered lasers, nonlinear optical processes, ultrafast lasers, parametric frequency conversion, electro-optics, infrared detection, and semiconductor lasers and detectors. Operating lasers include mode-locked and Q-switched Nd:YAG and Nd:YLF lasers, Ti:Al2O3 lasers, ultraviolet and visible wavelength argon lasers, wavelength-tunable dye lasers, as well as gallium arsenide, helium-neon, excimer, and high-powered continuous and pulsed carbon
Also available are equipment and facilities for research on semiconductor lasers, fiber optics, nonlinear optics, and ultrashort laser pulses. These laboratories are open to undergraduate and graduate students who have faculty sponsorship for their thesis projects or special studies.

Plasma Electronics Facilities

Two laboratories are dedicated to the study of the effects of intense laser radiation on matter in the plasma state. One houses a state-of-the-art, tabletop terawatt (T3) 400fs laser system that can be operated in either a single or dual frequency mode for laser-plasma interaction studies. Diagnostic equipment includes a ruby laser scattering system, a streak camera, and optical spectrograph and multichannel analyzer. Parametric instabilities such as stimulated Raman scattering have been studied, as well as the resonant excitation of plasma waves by optical mixing. The second laboratory, located in Boelter Hall, houses the MARS laser, currently the largest on-campus university CO2 laser in the U.S. It can produce 200J, 170ps pulses of CO2 radiation, focusable to 1016 W/cm2. The laser is used for testing new ideas for laser-driven particle accelerators and free-electron lasers. Several high-pressure, short-pulse drivers can be used on the MARS. Other equipment includes a theta-pinch plasma generator, an electron linac injector, and electron detectors and analyzers.

A second group of laboratories is dedicated to basic research in plasma sources for basic experiments, plasma processing, and plasma heating.

There is also a large computing cluster called DAWSON 2 that is dedicated to the study of plasma-based acceleration, inertial fusion energy, and high-energy-density plasma science. DAWSON 2 consists of 96 HP L390 nodes, each with 12 Intel X5650 CPUs and 48 GB of RAM; and three Nvidia M2070s GPUs and 18 GB of global memory (for a total of 1152 CPUs and 288 GPUs) connected by a nonblocking QDR Infiniband network with 160TB of parallel storage from Panasas. Peak system performance is approximately 300TF/150TF (single/double precision) with a measured linpack performance of 68TF (double precision). DAWSON 2 is housed in the UCLA Institute for Digital Research Engineering data center.

Solid-State Electronics Facilities

Solid-state electronics equipment and facilities include a modern integrated semiconductor device processing laboratory; complete new Si and III-V compound molecular beam epitaxy systems; CAD and mask-making facilities; lasers for beam crystallization study; thin film and characterization equipment; deep-level transient spectroscopy instruments; computerized capacitance-voltage and other characterization equipment, including doping density profiling systems; low-temperature facilities for material and device physics studies in cryogenic temperatures; optical equipment, including many different types of lasers for optical characterization of superlattice and quantum well devices; and characterization equipment for high-speed devices, including high magnetic field facilities for magnetotransport measurement of heterostructures. The laboratory facilities are available to faculty, staff, and graduate students for their research.

Multidisciplinary Research Facilities

The department is also associated with several multidisciplinary research centers including:

- California NanoSystems Institute (CNSI)
- Center for Nanoscience Innovation for Defense (CNID)
- Center of Excellence in Green Nanotechnology (CEGN)
- Functional Engineered Nano Architectons Focus Center (FENA)
- Plasma Science and Technology Institute (PSTI)
- Translational Applications of Nanoscale Multiferroic Systems (TANMS)
- WIN Institute of Neurotronics (WINs)

Faculty Groups and Laboratories

Department faculty members also lead a broad range of research groups and laboratories that cover a wide spectrum of specialties, including:

- Algorithmic Research in Network Information Laboratory (Fragouli)
- Antenna Research, Analysis, and Measurement Laboratory (Rahmat-Samii)
- BioPhotonics Laboratory (Ozcan)
- CMOS Research Laboratory (Woo)
- Communication Circuits Laboratory (Razavi)
- Complex Networks Group (Roychowdhury)
- Cyber-Physical Systems Laboratory (Tabuada)
- Device Research Laboratory (K. Wang)
- Digital Microwave Laboratory (E. Wang)
- Energy and Electronic Design Automation Laboratory (He)
- High-Performance Mixed Mode Circuit Design Group (Yang)
- High-Speed Electronics Laboratory (Chang)
- Information Theory and Systems Laboratory (LICOS) (Diggavi)
- Integrated Circuits and Systems Laboratory (Abidi)
- Integrated Sensors Laboratory (ISL) (Babakhan)
- Interconnected and Integrated Bioelectronics Laboratory (I2BL) (Emaminejad)
- Laboratory for Embedded Machines and Ubiquitous Robotics (Mehta)
- Laser-Plasma Group (Joshi)
- Mesoscopic Optics and Quantum Electronics Laboratory (Wong)
- Nanoelectronics Research Center (Candler)
- NanoSystems CAD Laboratory (Gupta)
- Networked and Embedded Systems Laboratory (Srivastava)
- Neural Computation and Engineering Laboratory (Kao)
- Neuroengineering Group (Markovic)
- Open Processor Laboratory (He)
- Optoelectronics Circuits and Systems Laboratory (Jalali)
- Quantum Light-Matter Cooperative (Q-LMC) (Carbajal)
- Robust Information Systems Laboratory (Dolecek)
- Secure Systems and Architectures (SSysArch) (Sehtabakhsh)
- Security and Privacy Laboratory (Tian)
- Sensors and Technology Laboratory (Candler)
- Signal Processing and Circuit Electronics Group (Pamarti)
- Speech Processing and Auditory Perception Laboratory (Alwan)
- Terahertz and Infrared Photonics Group (Williams)
- Terahertz Electronics Laboratory (Jarrahi)
- Visual Machines Group (Kadambi)
- Wireless Laboratory (Roberts)

Faculty Areas of Thesis Guidance

Professors

Asad A. Abidi, PhD (UC Berkeley, 1981)
- High-performance analog electronics, device modeling

Abeer A.H. Alwan, PhD (MIT, 1992)
- Speech processing, acoustic properties of speech sounds with applications to speech synthesis, recognition by machine and coding, hearing-aid design, and digital signal processing

Danijela Cabric, PhD (UC Berkeley, 2007)
- Wireless communications system design, cognitive radio networks, VLSI architectures
of signal processing and digital communication algorithms, performance analysis and experiments on embedded system platforms

Robert N. Candler, PhD (Stanford, 2006)
MEMS/NEMS for compact free-electron lasers, miniature medical devices, nanoscale magnetic sensors, and devices, additive manufacturing, fundamental limits of micro- and nano-scale devices

M.C. Frank Chang, PhD (National Chiao-Tung U., Taiwan, 1979)
High-speed, high-power, and high-speed circuits (GaAs, InP, and Si) devices and integrated circuits for digital, analog, microwave, and optoelectronic integrated circuit applications

Panagiotis D. Christofides, PhD (U. Minnesota, 1986)
Process modeling, dynamics and control, computational and applied mathematics

Jason (Jingsheng) Cong, PhD (U. Illinois, 1990)
Novel architectures and compilation for customizable computing, design automation for VLSI systems and other emerging technologies such as quantum computing and highly scalable algorithms

Suhas Diggavi, PhD (Stanford, 1999)
Information theory and its applications to learning, security and privacy, cyber-physical systems, wireless networks, bioinformatics, and neuroscience

Lara Dolecek, PhD (UC Berkeley, 2007)
Information and coding theory, graphical models, statistical algorithms and computational methods with applications to large-scale and complex systems for data processing, communication and storage

Christina Fragouli, PhD (UCLA, 2000)
Coding theory and algorithms with applications including network security and privacy, learning over networks, network coding, wireless networks, and bioinformatics

Bahman Gharesifard, PhD (Queen’s U., Canada, 2009)
Systems and controls, network optimization, distributed decision making, data-driven control, decentralization in machine learning, online optimization, social and economic networks, game theory, optimal transport theory, geometric control and mechanics

Puneet Gupta, PhD (UC San Diego, 2007)
CAD for VLSI design and manufacturing, physical design, machine learning systems in emerging technologies

Lei He, PhD (UCLA, 1999)
Artificial intelligence (AI) and Internet of Things (IoT) for health, transportation, and power and water sustainability; programmable logic (FPGA), reconfigurable computing, AI-on-a-chip, neuromorphic computing, and quantum computing; modeling, simulation, and computer-aided design of VLSI circuits and IoT systems

Subramanian S. Iyer, PhD (UCLA, 1981)
Heterogeneous system integration and scaling, advanced packaging and 3D integration, technologies and techniques for memory sub-system integration, medical electronics and neuromorphic computing

Mona Jarrahi, PhD (Stanford, 2007)
Radio frequency (RF), microwave, millimeter-wave, and terahertz circuits, high-frequency devices and circuits, integrated photonics and optoelectronic computing

Chandrashekhar J. Joshi, PhD (U. Hull, England, 1978)
Laser fusion, laser acceleration of particles, nonlinear optics, high-power lasers, plasma physics

Jia-Ming Liu, PhD (Harvard, 1982)
Nonlinear optics, ultrafast optics, laser chaos, semiconductor lasers, optoelectronics, photonics, nonlinear and ultrafast processes

Wentai Liu, PhD (U. Michigan, 1983)
Neural engineering

Dejan Markovic, PhD (UC Berkeley, 2006)
Implantable neuromodulation devices, domain-specific hardware accelerators, embedded systems, design methodologies

Warren B. Mori, PhD (UCLA, 1987)
Laser and charged particle beam-plasma interactions, advanced accelerator concepts, advanced light sources, laser fusion, high-energy density science, high-performance computing, plasma physics

Ali Mostofi, PhD, NAE (UCLA, 1981)
Reliability engineering, physics of failure modeling and system life prediction, resilient systems design, prognostics and health monitoring, hybrid systems simulation, theories and techniques for risk and safety analysis

Stanley J. Osher, PhD (New York U., 1966)
Scientific computing, applied mathematics

Aydogan Ozcan, PhD (Stanford, 2005)
Computational imaging, deep learning optics, diffractive metamaterials, optical computing microscopy, holography, sensing and diagnostics, biophotonics, mobile health, telemedicine, global health

Sudhakar Pamarti, PhD (UC San Diego, 2003)
Analogue, mixed-signal, and RF-integrated circuit design; signal processing techniques to improve circuit design

Gregory J. Pottie, PhD (McMaster U., Canada, 1988)
Causal modeling and machine learning for dynamical and interactive systems such as education and Internet of Things

Yahya Rahmat-Samii, PhD (U. Illinois, 1975)
Satellite and ground communications antennas including human interactions, antennas for medical applications, bezel and smallest antennas, antennas for remote sensing and radio astronomy applications, advanced numerical and global optimization techniques in electromagnetics, frequency selective surfaces and electromagnetic band gap structures, novel integrated circuits and fractal antennas, 3-D printed antennas, near-field antenna measurements and diagnostic techniques, electromagnetic theory

Behzad Razavi, PhD (Stanford, 1992)
Analog, RF and integrated circuit design, dual-standard RF transceivers, phase-locked systems and frequency synthesizers, A/D and D/A converters, high-speed data communication circuits

Wvani P. Roychowdhury, PhD (Stanford, 1989)
Models of computation including parallel and distributed processing systems, quantum computation and information processing, circuits and computing paradigms for nanoelectronics and molecular electronics, adaptive and learning algorithms, nonparametric methods and algorithms for large-scale information processing, combinatorics and complexity, and information theory

Henry Samueli, PhD (UCLA, 1980)
VLSI implementation of signal processing and digital communication systems, high-speed digital integrated filter design

Majid Sarrafzadeh, PhD (U. Illinois, 1987)
Computer engineering, embedded systems, VLSI CAD, algorithms

Stefano Soatto, PhD (Caltech, 1996)
Computer vision, machine learning, artificial intelligence, robotics, autonomy, augmented reality, and medical data analysis

Jason L. Speyer, PhD (Harvard, 1968)
Stochastic and deterministic optimal control and estimation with application to aerospace systems; guidance, flight control, and flight mechanics

Mani B. Srivastava, PhD (UC Berkeley, 1992)
Wireless networking, embedded computing, networked embedded systems, sensor networks, mobile and ubiquitous computing, low-power and power-aware systems

Paulo Tabuada, PhD (Technical U. Lisbon, Portugal, 2002)
Real-time, networked, embedded control systems; mathematical systems theory including discrete-event, timed, and hybrid systems; geometric nonlinear control, algebraic/categorical methods

Lieve Van den Bergh, PhD (Katholieke U. Leuven, Belgium, 1992)
Optimization in engineering and applications in systems and control, circuit design, and signal processing

John D. Villasenor, PhD (Stanford, 1989)
Communications, signal processing, networking, computing, and cybersecurity

Kang L. Wang, PhD (MIT, 1970)
Nanoelectronics and optoelectronics, nano and molecular devices, MBE and superlattices, microwave and millimeter electronics, quantum information

Yuancan Ethan Wang, PhD (U. Texas Austin, 1999)
Smart antennas, RF and microwave power amplifiers, numerical techniques, DSP techniques for microwave systems, phased arrays, wireless and radar systems, microwave integrated circuits

Richard D. Wesel, PhD (Stanford, 1996)
Communication theory and signal processing with particular interests in channel coding, including turbo codes and trellis codes, joint algorithms for distributed communication and detection

Benjamin S. Williams, PhD (MIT, 2003)
Terahertz and mid-infrared photonics, plasmonics, and metamaterials; quantum-cascade lasers; intersubband devices; transport and optoelectronics in low-dimensional semiconductor and other quantum materials; terahertz spectroscopy and imaging

Chee Wei Wong, ScD (MIT, 2003)
Ultrafast and nonlinear optics, quantum communications and computing, chip-scale optoelectronics, precision measurements and sensing

Jason C.S. Woo, PhD (Stanford, 1987)
Solid-state technology, CMOS and bipolar device/circuit optimization, novel device design, modeling of integrated circuits, VLSI fabrication

C.K. Ken Yang, PhD (Stanford, 1998)
High-performance VLSI design, digital and mixed-signal circuit design

Lixia Zhang, PhD (MIT, 1989)
Computer networking, Internet architecture, protocol designs, security and resiliency of large-scale systems

Professors Emeriti

Frederick G. Allen, PhD (Harvard, 1956)
Semiconductor physics, solid-state devices, surface physics

Francis F. Chen, PhD (Harvard, 1954)
Radio frequency plasma sources and diagnostics for semiconductor processing

Babak Daneshrad, PhD (UCLA, 1993)
Digital VLSI circuits: wireless communication systems, high-performance communications integrated circuits for wireless applications
Harold R. Fetteman, PhD (Cornell, 1968)
Optical millimeter wave interactions, high-frequency optical polymer modulators and applications, solid-state millimeter wave structures and systems, biomedical applications of lasers

Stephen E. Jacobsen, PhD (UC Berkeley, 1968)
Operations research, mathematical programming, nonconvex programming, applications of mathematical programming to engineering and engineering/economic systems

Rajeev Jain, PhD (Katholieke U. Leuven, Belgium, 1985)
Design of digital communications and digital signal processing circuits and systems

Bahram Jalali, PhD (Columbia, 1989)
RF photonics, integrated optics, fiber optic integrated circuits

William J. Kaiser, PhD (Wayne State, 1983)
Research and development of new microsensor and microinstrument technology for industry, science, and biomedical applications; development and applications of new atomic-resolution scanning probe microscopy methods for microelectronic device research

Alan J. Laub, PhD (U, Minnesota, 1974)
Numerical linear algebra, numerical analysis, condition estimation, computer-aided control system design, high-performance computing

Dee-Son Pan, PhD (Caltech, 1977)
New semiconductor devices for millimeter and RF power amplification and amplification, transport in small geometry semiconductor devices, generic device modeling

Izhak Rubin, PhD (Princeton, 1970)
Telecommunications and computer communications systems and networks, mobile wireless networks, multimedia IP networks, UAV/UAV-aided networks, integrated system and network management, C4ISR systems and networks, optical networks, network simulations and analysis, traffic modeling and engineering

Ali H. Sayed, PhD (Stanford, 1992)
Adaptive systems, statistical and digital signal processing, estimation theory, signal processing for communications, linear system theory, interference between signal processing and control methodologies, fast algorithms for large-scale problems

Frederick W. Schott, PhD (Stanford, 1949)
Electromagnetics, applied electromagnetics

Gabor C. Temes, PhD (U. Ottawa, Canada, 1961)
Analog MOS integrated circuits, signal processing, analog and digital filters

Harold R. Fetteman, PhD (Cornell, 1968)
Optical millimeter wave interactions, high-frequency optical polymer modulators and applications, solid-state millimeter wave structures and systems, biomedical applications of lasers

Jonathan C. Kao, PhD (Stanford, 2016)
Computational neuroscience, neural engineering, machine learning

Assistant Professors

Omid Abari, PhD (MIT, 2018)
Internet of Things (IoT), wireless networking, mobile systems, software/hardware systems, human-computer interaction (HCI)

Sergio Carbajo, PhD (U. Hamburg, Germany, 2015)
Ultrafast and nonlinear optics, quantum optics, accelerators and X-ray free electron lasers, quantum electrodynamics, physical chemistry and sciences

Xiang Anthony Chen, PhD (Carnegie Mellon, 2017)
Human-computer interaction, sensing and interaction techniques, intelligent interactive systems, computational design and fabrication

Xiaofan Cui, PhD (U. Michigan Ann Arbor, 2022)
Computational imaging, computer vision, robotics, medical devices

Ankur M. Mehta, PhD (UC Berkeley, 2012)
Robotics and autonomous systems design, fabrication, and control; wireless sensor networks hardware and applications; systems integration

Ian P. Roberts, PhD (U. Texas Austin, 2023)
Wireless communication systems; antenna array signal processing and beamforming; propagation channel measurements and modeling; real-world experimentation and proofs-of-concept

Nader Sehatbakhsh, PhD (Georgia Tech, 2020)
Security and privacy, computer architecture, embedded and IoT systems, hardware security, trustworthy AI/ML

Yuan Tian, PhD (Carnegie Mellon, 2017)
Security and privacy, cyber-physical systems, machine learning security and privacy, human-centered security and privacy

Lin F. Yang, PhD (Johns Hopkins, 2017)
Foundations for AI, machine learning theories and applications, reinforcement learning, statistical learning, big data algorithms, optimization control

Yang Zhang (Carnegie Mellon, 2020)
Human-computer interaction, sensing and interaction techniques, Internet of Things (IoT), digital health, accessibility

Adjunct Professors

Danish Divsalar, PhD (UCLA, 1978)
Information theory, communication theory, bandwidth-efficient combined coding modulation theories, spread spectrum systems and mutual user interference cancellation for CDMA, turbo codes, binary and nonbinary LDPC codes, iterative decoding

Dan M.戈bel, PhD (UCLA, 1981)
Electric propulsion, high-efficiency ion and Hall thrusters, cathodes, high-voltage engineering, micropropulsion and microwave communications, pulsed power

Asad M. Madni, PhD (California Coast, 1987)
Development and commercialization of intelligent sensors and systems, RF and microwave instrumentation, signal processing

Adjunct Associate Professor

Chi On Chui, PhD (Stanford, 2004)
Nanoelectronics and optoelectronic devices and technology, heterostructure semiconductor devices, monolithic integration of heterostructure technology, exploratory nanotechnology

Adjunct Assistant Professor

Shervin Moloudi, PhD (UCLA, 2008)
Telecommunication analog and high-frequency circuit design

Electrical and Computer Engineering Courses

Lower-Division Courses

1. Undergraduate Seminar. (1) Seminar, one hour; outside study, two hours. Introduction by faculty members and industry lecturers to electrical engineering disciplines through current and emerging applications of autonomous systems and vehicles, biomedical devices, aerospace electronic systems, consumer products, data science, and entertainment products (amusement rides, etc.), as well as energy generation, storage, and transmission. P/NP grading.

2. Physics for Electrical Engineers. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: Physics 1C. Introduction to concepts of modern physics necessary to understand solid-state devices, including elementary quantum theory, Fermi energies, and concepts of electrons in solids. Discussion of electrical properties of semiconductors leading to operation of junction devices. Letter grading.

3. Introduction to Electrical Engineering. (4) Lecture, two hours; laboratory, two hours; outside study, eight hours. Introduction to field of electrical engineering. Basic circuits techniques with application to explanation of electrical engineering inventions such as telecommunications, electrical grid, automatic computing and control, and enabling device technology. Research frontiers of electrical engineering. Introduction to measurement and design of electrical circuits. Letter grading.

Electrical and Computer Engineering

10. Circuit Theory I (Honors). (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 3 or (Computer Science 1 or Materials Science 10), Mathematics 33A, Physics 1B. Corequisites: course 11L (enforced only for Computer Science and Engineering and Electrical Engineering majors), Mathematics 33B. Introduction to linear circuit analysis. Resistive circuits, capacitors, inductors and ideal transformers, Kirchhoff laws, node and loop analysis, first-order circuits, second-order circuits, Thevenin and Norton theorems, sinusoidal steady state. Letter grading.

10H. Circuit Theory I (Honors). (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 3 (or Computer Science 1 or Materials Science 10), Mathematics 33A, Physics 1B. Corequisites: course 11L (enforced only for Computer Science and Engineering and Electrical Engineering majors), Mathematics 33B. Honors course parallel to course 10. Letter grading.

11L. Circuits Laboratory I. (1) Lecture, one hour; laboratory, one hour; outside study, one hour. Enforced corequisite: course 10. Experiments with basic circuits containing resistors, capacitors, inductors, and transformers. Ohm's law voltage and current division, Thevenin and Norton equivalent circuits, superposition, transient and steady state analysis. Letter grading.

Mr. Pamarti (FW)

Mr. Williams (W)
Upper-Division Courses

100. Electrical and Electronic Circuits. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: Mathematics 33A, 33B or Mechanical and Aerospace Engineering 82, Physics 1C, or 33A and 33B. Physics 1C: Electromagnetic field concepts, waves and phasors, transmission lines and Smith chart, transient responses, vector analysis, introduction to Maxwell equations, static and quasi-static electric and magnetic fields. Letter grading. Mr. Yoshi, Mr. Williams (FW)

101B. Electromagnetic Waves. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 101A. Time-varying fields and Maxwell equations, plane wave propagation and interaction with media, energy flow and Poynting vector, guided waves in waveguides, phase and group velocity, radiation and antennas. Letter grading. Mr. Y.E. Wang (WSp)

110. Circuit Theory II. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Enforced requisites: courses 10, 10B (or Computer Science M15E). Pre-requisite: course 111L (enforced only for Computer Science and Electrical Engineering majors). Sinusoidal excitation and phasors, AC steady state analysis, AC steady state network analysis, frequency response, mutual inducance, ideal transformer, application of Laplace transforms to circuit analysis. Letter grading. Mr. Abidi (Sp)

110H. Circuit Theory II (Honors). (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 10, 10B (or Computer Science M15A, 102). Corequisite: course 111L. Sinusoidal excitation and phasors, AC steady state analysis. AC steady state function, poles and zeros, frequency response, mutual inducance, ideal transformer, application of Laplace transforms to circuit analysis. Letter grading. Mr. Abidi, Mr. Pamarti (W)

110L. Circuit Measurements Laboratory. (2) Laboratory, four hours; outside study, two hours. Requisite: course 100 or 110. Experiments with basic circuits containing resistors, capacitors, inductors, and op-amps. Ohm’s law voltage and current division, Thevenin and Norton equivalent circuits, signal propagation, transient and steady state analysis, and frequency response principles. Letter grading. Mr. Razavi (FW,Sp)

111L. Circuits Laboratory I. (1) Lecture, one hour; laboratory, one hour; outside study, one hour. Enforced requisite: course 110. Corequisite: course 110. Experiments with electrical circuits containing resistors, capacitors, inductors, transformers, and op-amps. Steady state power analysis, frequency response of an op-amp-based circuit. Introduction to power system transient dynamics. Letter grading. Mr. Pamarti (WSp)

112. Introduction to Power Systems. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 110. Complete overview of organization and operation of interconnected power systems. Development of appropriate models for interconnected power systems and learning to perform power flow, economic dispatch, and short circuit analysis. Introduction to power system transient dynamics. Letter grading. Mr. Tabuada (F)

113DA. Digital Signal Processing Design. (4) Lecture, two hours; laboratory, four hours; outside study, six hours. Enforced requisite: course 113. Real-time implementation of digital signal processing algorithms on digital processor chips. Experiments involving A/D and D/A conversion, aliasing, digital filtering, and finite wordlength effects. Course project involving original design and implementation of machine learning and signal processing systems for communications, radar, medical and other imaging, speech, music, or video using DSP hardware. In progress grading (credit to be given only on completion of course 113DB). Mr. Daneshfar (F)

113DB. Digital Signal Processing Design. (4) Laboratory, four hours; outside study, eight hours. Enforced requisites: courses 113, 113DA. Real-time implementation of digital signal processing algorithms on digital processor chips. Experiments involving A/D and D/A conversion, aliasing, digital filtering, sinusoidal oscillators, Fourier transforms, one- and two-dimensional Fourier transforms, and finite word-length effects. Course project involving original design and implementation of signal processing systems for communications, imaging, speech, music, or video using DSP chip. Completion of projects begun in course 113DA. Letter grading. Mr. Daneshfar (W)

114. Speech and Image Processing Systems Design. (4) Lecture, three hours; discussion, one hour; laboratory, two hours; outside study, six hours. Enforced requisite: course 113. Design principles of speech and image processing systems. Speech production, analysis, and modeling in first half of course; design techniques for image and video filtering, coding, and transformation in second half. Lectures supplemented by laboratory implementation of speech and image processing tasks. Letter grading. Ms. Alwan (F)

115A. Analog Electronic Circuits. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 110. Review of physics and operation of diodes and bipolar and MOS transistors. Equivalent circuits and models of semiconductor devices. Analysis and design of single-stage amplifiers, DC biasing circuits. Small-signal analysis. Operational amplifier systems. Letter grading. Mr. Abidi (FSp)

115AL. Analog Electronics Laboratory I. (2) Laboratory, four hours; outside study, two hours. Enforced requisites: courses 110L or 111L, 115A. Experimental determination of device characteristics, resistive diode circuits, single-stage amplifiers, compensated transistors, effect of feedback on single-stage amplifiers, operational amplifiers, and operational amplifier circuits. Introduction to hands-on design experience based on individual student hardware design and implementation platforms. Letter grading. Mr. Abidi (Not offered 2023-24)

115B. Analog Electronic Circuits II. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Enforced requisite: course 115A. Analysis and design of differential amplifiers and bipolar and MOSFET technologies. Current mirrors and active loads. Frequency response of amplifiers. Feedback and its properties. Stability issues and frequency compensation. Letter grading. Mr. Abidi (W)

115C. Digital Electronic Circuits. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: course 100 or 115A, and Computer Science M51A. Transistor-level circuit analysis and design. Modern logic families (static CMOS, pass-transistor, dynamic logic). Integrated circuit (IC) layout, digital circuits (logic gates, flipflops/latches, counters, etc.), computer-aided simulation of digital circuits. Letter grading. Mr. Markovikj, Mr. Yang (WSp)

115E. Design Studies in Electronic Circuits. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 115B. Description of process of circuit design through lectures to laboratory and practical design courses. Topics vary by instructor and include communication circuits, power electronics, and instrumentation and measurement and may entail simultaneous design projects and in-depth exploration of design-oriented analysis and rigorous approach to practical circuit design. Letter grading. Mr. Abidi (Not offered 2023-24)

M116C. Computer Systems Architecture. (4) (Same as Computer Science M151B.) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: course M16 or Computer Science M51A. Computer Science 33. Recommended: course M116L or Computer Science M152A, Computer Science 111. Computer system organization and design, implementation of CPU datapath and control, instruction set design, memory hierarchy (caches, main memory, virtual memory) organization and management, input/output subsystems (bus structures, interrupts, DMA), performance evaluation, pipelined processors, pipelining. Letter grading. Mr. Gupta (F)

M116L. Introductory Digital Design Laboratory. (2) (Same as Computer Science M152A.) Laboratory, four hours; outside study, two hours. Enforced requisite: course M16 or Computer Science M51A. Hands-on design, implementation, and debugging of digital logic circuits, use of computer-aided design tools for schematic capture and simulation, implementation of complex circuits using programmable array logic, design projects. Letter grading. Mr. He (Not offered 2023-24)
M119. Fundamentals of Embedded Networked Systems. (Same as Computer Science 119.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 132B or Computer Science 118; one course from course 131A, Civil and Environmental Engineering 117, Mathematics 170A, 170E, Statistics 100A; Computer Science 33. Design trade-offs and principles of operation of cyber physical systems such as devices and systems constituting Internet of Things. Topics include signal propagation and modeling, sensing, node architecture and operation, and applications. Letter grading. Mr. Srivastava (F)

121B. Principles of Semiconductor Device Design. (4) Lecture; discussion, one hour; outside study, eight hours. Enforced requisite: course 2. Introduction to principles of operation of bipolar and MOS transistors, equivalent circuits, high-frequency behavior, voltage limitations. Letter grading. Mr. Woo (FW)

121DA-121DB. Semiconductor Processing and Device Design. (4-4) Design fabrication and characterization of p-n junction and transistors. Students perform various processing tasks such as water preparation, oxidation, diffusion, etching, and photolithography. Introduction to CAD tools used in integrated circuit process and design device. De-vice structure optimization tool based on MEDIC; process simulation data base SUPREM. Course familiarizes students with those tools. Using CAD tools, CMOS process integration to be designed. 121DA. Lecture, four hours; laboratory, four hours; outside study, six hours. Enforced requisite or co-requisite: course 121B. In progress grading (credit to be given only on completion of course 121DB). 121DB. Lecture, two hours; laboratory, four hours; outside study, six hours. Enforced requisite: course 121B, 121DA. Letter grading. Mr. Woo (Sp/W)

123A. Fundamentals of Solid-State I. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 2 or Physics 1C. Limited to justifying majors. Fundamentals of solid-state, introduction to quantum mechanics and quantum statistics applied to solid-state. Crystal structure, energy levels in solids, and band theory and semiconductor properties. Letter grading. Mr. K.L. Wang (Not offered 2023-24)

123B. Fundamentals of Solid-State II. (4) Lecture, four hours; outside study, eight hours. Enforced requisite: course 123A. Discussion of solid-state properties, lattice vibrations, thermodynamics, piezoelectric, magnetic, and superconducting properties. Letter grading. Mr. K.L. Wang (Not offered 2022-23)

128. Principles of Nanoelectronics. (4) Lecture; four hours; discussion, four hours; outside study, four hours. Introduction to the fundamentals of nanoelectronics. Principles of fundamental quantities: electron charge, effective mass, Bohr magneton, and spin, as well as theoretical approaches. From these nanoscale concepts, discussion of basic behaviors of nanosystems such as analysis of dynamics, variability, and noise, contrasted with those of scaled CMOS. Incorporation of design project in which students are challenged to design electronic nanosystems. Letter grading. Mr. K.L. Wang (Sp)

131A. Probability and Statistics. (4) Lecture, four hours; discussion, one hour; outside study, 10 hours. Requisites: course 102 (enforced), Mathematics 32B, 33B. Introduction to basic concepts of probability, including random variables and vectors, distributions and densities, moments, characteristic functions, and limit theorems. Applications to computer simulation, control, and signal processing. Introduction to computer simulation and generation of random events. Letter grading. Mr. Roychowdhury (FW)

132A. Introduction to Communication Systems. (4) Lecture; discussion, one hour; outside study, seven hours. Enforced requisite: courses 102, 113, 131A. Review of basic probability, basics of hypothesis testing, sufficient statistics and waveform communication, signal-design tradeoffs for digital communications, basics of error control coding, intersymbol interference and orthogonal frequency-division multiplexing (OFDM), basics of wireless communications. Letter grading. Mr. Digvavi (W/Sp)

132B. Data Communications and Telecommunication Networks. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 131A. Layered communications architectures. Queuing system modeling and analysis. Error control, flow and congestion control. Packet switching, circuit switching, and routing. Network performance analysis and design. Multiple-access communications: TDMA, FDMA, polling, random access. Local, metropolitan, wide area, integrated services networks. Letter grading. Mr. Rubin (F)

133A. Applied Numerical Computing. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 131A, and Civil Engineering M20 or Computer Science 31 or Mechanical and Aerospace Engineering M30. Introduction to numerical computing/analysis; analytic formulations versus numerical solutions; floating-point representations and rounding errors. Review of MATLAB; numerical errors; linear equations; LU factorization; bounds on error; iterative methods for solving linear equations; conditioning and stability, complexity, interpolation and approximation, splines, zeros and roots of nonlinear equations. Linear least squares and orthogonal QR factorization; statistical interpretation. Numerical optimization; Newton method; nonlinear least squares. Numerical quadrature; ordinary differential equations; Eigenvalues and singular values; QR algorithm; statistical applications. Letter grading. Mr. Vandenbergh (FW)

134. Graph Theory in Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 132B. Mathe-atical modeling of physical control systems in form of differential equations and transfer functions. De- sign problems, system performance indices of feed-back control systems via classical techniques, root-locus and frequency-domain methods. Computer-aided generation of mathematical models of real world. Letter grading. Mr. Tabuada (W/Sp)

142. Linear Systems: State-Space Approach. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 102. State-space methods, analysis and synthesis, with application to problems in networks, control, and system modeling. Letter grading. Mr. Tabuada (Not offered 2023-24)

C143A. Neural Signal Processing. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 131A. Mathematics 33A. Topics include fundamental properties of electrical activity in neurons; technology for measuring neural activity; spiking statistics and Poisson processes; generative models and classification; regression and Kalman filtering; principal components analysis, factor analysis, and expectation maximization. Concurrently scheduled with course C243A. Letter grading. Mr. Kao (Sp)

M146. Introduction to Machine Learning. (4) (Same as Computer Science M146.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 131A or Civil and Environmental Engineering 110 or Mathematics 170A or 170E or Statistics 100A, Computer Science 32 or Program in Computing 10C; Mathematics 33A. Intro-duction to breadth of data science. Foundation for modeling data sources, principles of operation of common tools for data analysis, and application of models and data analysis. Topics include statistical foundations, regression, classification, kernel methods, clustering, expecta-tion maximization, principal component analysis, decision theory, reinforcement learning, and deep learning. Letter grading. Mr. Digvavi (Sp)

C147. Neural Networks and Deep Learning. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 131A, 133A or 145A, and M146, or equivalent. Review of machine learning concepts; maximum likelihood; supervised classification; neural network architectures; back- propagation; regularization for training neural net-works; optimization for training neural networks; con-volutional neural networks; practical CNN architectures; deep learning libraries in Python; recurrent neural networks, backpropagation through time, long short-term memory and gated recurrent units; varia-tions of backpropagation; generative networks; adversarial examples and training. Concurrently scheduled with course C247. Letter grading. Mr. Kao (W)

M148. Introduction to Data Science. (4) (Same as Computer Science M148.) Lecture, four hours; dis-cussion, two hours; outside study, six hours. Requi-sites: one course from 131A, Civil and Environmental Engineering 110, Mathematics 170A, Mathematics 170E, or Statistics 100A, and Computer Science 31 or Program in Computing 10A, and 10B. How to ana-lyze data arising in real world so as to understand corresponding phenomenon. Covers topics in ma-chine learning, data analytics, and statistical mod-eling classically employed for prediction. Compre-hensive, hands-on overview of data science domain by blending theoretical and practical instruction. Data science lifecycle: data selection and cleaning, feature engineering, model selection, and prediction meth-odologies. Letter grading. Ms. Dolecek (Sp)

149. Foundations of Computer Vision. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Recommended courses: course 131A, Mathematics 33A. Covers foundations of computer vision from both theoretical and practical perspec-tive. Particular emphasis on classical computer vi-sion, which should be seen as complementary to deep learning. Study is relevant for various majors in the sciences specializing in artificial intelligence, cy-berphysical systems and information engineering, robotics, machine learning, perception, and others looking for applications. Letter grading. Mr. Kadambi (W)

M153. Introduction to Microscale and Nanoscale Manufacturing. (4) Same as Bioengineering M153, Chemical Engineering M153, and Mechanical and Aerospace Engineering M183B.) Lecture, three hours; laboratory, four hours; outside study, five hours. Enforced requisite: Chemistry 20A, Physics 1A, 1B, 1C, 4AL. Introduction to general manufac-turing processes, micro- and nanofabrication techniques that have been broadly applied in industry and academia, including various photolithography technologies, physical and chemical deposition methods, and physical and chemical etching methods. Hands-on experience for fabricating microstructures and nanostructures in modern clean-room environment. Letter grading.
interference, multipath fading, ray bending, and other mobile antennas, cell coverage for signal and traffic, and other propagation phenomena. Letter grading.

Mr. Rahmat-Samii (F)

163A. Introductory Microwave Circuits. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 101B. Basic properties of transmitting and receiving antennas and antenna arrays. Array synthesis, adaptive arrays, Fris transmission formula, radar equation. Cell-site and mobile antennas, bandwidth budget. Noise in communication systems (transmission lines, antennas, atmospheric, etc.). Cell-site and mobile channel for signal and interference, multipath fading, ray bending, and other propagation phenomena. Letter grading.

Mr. Babakhani (P)

163C. Fundamental Principles of Radiofrequency and Microwave Systems. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 101B. Theory and design of modern radiofrequency (RF) and microwaves such as cellular communications, satellite systems, radar systems, wireless sensors, and biological applications of microwaves such as magnetic resonance imaging (MRI). Letter grading.

Mr. Y.E. Wang (W)

163DA. Microwave and Wireless Design I. (4) Lecture, one hour; laboratory, three hours; outside study, eight hours. Enforced requisites: courses 101A, 101B. Course 163DA is enforced requisite to 163DB. Limited to senior Electrical Engineering majors. Capstone design course, with emphasis on transmission line-based circuits and components to address need in industry and research community for students with microwave and wireless circuit design experiences. Standard design procedure for waveguide and transmission line-based microwave circuits and systems to gain experience in using Microwave CAD software such as Agilent ADS or HFSS. How to fabricate and test these designs, in Progress grading (credit to be given only on completion of course 163DB).

Mr. Y.E. Wang (W)

163DB. Microwave and Wireless Design II. (4) Lecture, one hour; laboratory, three hours; outside study, eight hours. Enforced requisites: courses 101A, 101B, 163DA. Limited to senior Electrical Engineering majors. Design of radio frequency circuits and systems, with emphasis on both theoretical foundations and hands-on experience. Design of radio frequency transceivers and their building blocks according to given specifications or in form of open-ended problems. Introduction to advanced topics related to projects through laboratories. Creation by students of end-to-end systems in application context, managing trade-offs across subsystems while meeting constraints and optimizing metrics related to cost, performance, ease of use, manufacturability, testing, and other real-world issues. Oral and written presentation of project results. Letter grading.

Mr. Y.E. Wang (Sp)

164A-164DB. Electronic Circuits and Systems Design I-IV. (4) Lecture, four hours; discussion, one hour; outside study, six hours. Enforced requisite: course 101A. Design of analog circuits and components, and systems, emphasizing theoretical foundations and hands-on experience. Design of key analog and digital building blocks according to given specifications or in form of open-ended problems. Introduction to advanced topics related to projects through lectures and laboratories. Creation by students of end-to-end systems in application context, managing trade-offs across subsystems while meeting constraints and optimizing metrics related to cost, performance, ease of use, manufacturability, testing, and other real-world issues. Oral and written presentation of project results required. Letter grading.

Mr. Chang, Mr. Razavi (W,Sp)

170A. Principles of Photonics. (4) Lecture, four hours; recitation, one hour; outside study, seven hours. Enforced requisites: courses 2, 101A. Development of solid foundations of photonics from ground up with minimum prior knowledge on this subject. Topics include optical properties of materials, optical wave propagation and modes, optical interference phenomena, fiber optics, light coupling and modulation, optical absorption and emission, prismatic lenses of laser and light-emitting diodes, and optical detection. Letter grading.

Mr. Liu (FW)

170B. Lasers and Photonic Devices. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 170A. Coverage of laser physics, related photonic devices, and applications of lasers. Topics include resonators, thermal radiation, Einstein coefficients, optical amplification, semiconductor lasers, optical modulation and detection. Letter grading.

Mr. Carabajo (Sp)

170C. Photonic Sensors and Solar Cells. (4) Lecture, four hours; recitation, one hour; outside study, seven hours. Enforced requisite: course 170A. Fundamentals of detection of light for communication and sensing, as well as conversion of light to electrical energy in solar cells. Introduction to photodetectors, photomultipliers for photodetectors, noise processes and figures of merit, thermal detectors, and photovoltaic solar cells of various types and materials. Letter grading.

Mr. Williams (Sp)

M171L. Data Communication Systems Laboratory. (2 to 4) (Same as Computer Science M171L) Laboratory, four to eight hours; outside study, two to four hours. Recommended preparation: course M116L. Limited to seniors. Not open to students with credit in courses 101A, 101B, 163DA, 163DB. Enforced requisite: course 163DA. Iterations of design. Use of oscilloscopes, pulse and function generators, baseband spectrum analyzers, desktop computers, terminals, modems, PCs, and workstations in experiments on pulse transmission systems, waveforms and their spectra, modem and terminal characteristics, and interfaces. Letter grading.

Mr. Jalali (Not offered 2023-24)

173DA-173DB. Photonics and Communication Design. (4-4) Lecture, one hour; laboratory, three hours; discussion, two hours. Enforced requisites: courses 101A, 170A. Study of measurement of basic photonic devices, including LEDs, lasers, detectors, and amplifiers; fiber-optic fundamentals and measurement of fiber systems. Modulation techniques, in particular QAM, OFDM, phase and suppressed carrier methods. Possible projects include lasers, optical communication, and biomedical imaging and sensing. 173DA. Recommended: course 170A. Recommended: course 170A or Biomedical Engineering C170. Choice of project preliminary design, in Progress grading (credit to be given only on completion of course 173DB). 173DB. Enforced requisite: courses 170A, 173DA. Optimization of design and testing of projects begun in course 173DA. Letter grading. (Not offered 2023-24)

175. Photonics in Biomedical Applications. (4) Lecture, three hours; discussion, one hour; outside study, four hours. Enforced requisite: course 101A. Study of different types of optical systems and their physics background. Examination of their roles in current and projected biomedical applications. Specific topics of photonics to be announced for each example. Letter grading.

Mr. Ozcan (Sp)

180DA-180DW. Systems Design: Advanced Designs (Design, 180DA-180DW). Design, four hours; discussion, one hour; outside study, two hours. Enforced requisite: course 164A. Design, four hours; discussion, one hour; outside study, two hours. Enforced requisite: course 164A. Lecture, two hours; laboratory, two hours; outside study, eight hours. Enforced requisite: course 115B (may be taken concurrently), or instructor consent. Course 164A is enforced requisite of 164B. In Progress (164DA) and letter (164DB) grading. 164DB. Lecture, one hour; laboratory, three hours; discussion, one hour. Enforced requisite: course 164DA. Letter grading.

Mr. Chang, Mr. Razavi (W,Sp)

181DA. Honors Thesis. (4–4) Lecture, four hours; discussion, one hour; outside study, six hours. Enforced requisite: course 164DA. Letter grading. (Not offered 2023-24)

Mr. Potte (180DA in FW; 180DW in W, Sp

181DA-181DB. Honors Thesis. (4–4) Tutorial, one hour; outside study, seven hours. Enforced requisite: course 164DA. Open-ended projects, carried out under faculty mentor, leading to composition and presentation of honors thesis. Study of fundamentals of modern research and development: project conception, planning, development and testing: design iteration cycle; research and data documentation standards; how to read technical literature. Planning, execution, and dissemination of original open-ended research/project development. 181DA. Study of research fundamentals, conception of project plan, and first iteration of design such as experiment, simulation, algorithm, or circuit, with testing and validation plan. Written documentation of design with oral presentation. In Progress grading (credit to be given only on completion of course 181DB). 181DB. Enforced requisite: course 181DA. Iterations of design. Written documentation in form of thesis documenting results in their societal and technical contexts, and oral presentation/demonstration of final results. Letter grading. (FW,Sp) CM182. Science, Technology and Public Policy. (4) (Same as Public Affairs M161 and Public Policy CM182) Lecture, three hours. Recent and continuing advances in science and technology that are raising profoundly important public policy issues. Consideration of selection of critical policy issues, each of which has substantial ethical, social, economic, political, scientific, and technological aspects. Concurrently scheduled with course CM282. Letter grading.

Mr. Villasenor (Not offered 2023-24)

183DA-183DB. Design of Robotic Systems I-II. (4) Lecture, four hours; laboratory, two hours; outside study, six hours. Enforced requisite: course 1142. Recommended: courses 141, 142. Course 183DA is requisite to 183DB. Limited to senior Electrical Engineering majors. Topics in robotic design include integrated electromechanical design, design for manufacturing (DFM), design software, and design automation. Topics in robotic manufacturing include materials, sensors and actuators, programming, and rapid prototyping. Topics in control include manipulation, motion and path planning, learning and adaptation, and human-robot interaction. Additional topics may include distributed and multi-robot systems, bio-inspired robotics, project management, and societal implications. Open-ended projects vary annually. Student teams create and analyze robotic systems for various applications, and oral and written presentation of project results. In Progress grading (credit to be given only on completion of course 183BD).

Mr. Mehta (W)

183DB. Design of Robotic Systems II. (4) Laboratory, four hours; outside study, six hours. Enforced requisite: course 183DA. Recommended: courses 141, 142. Limited to senior Electrical Engineering majors. Topics in robotic design include integrated electromechanical design, design for manufacturing (DFM), design software, and design automation. Topics in robotic manufacturing include materials, sensors and actuators, programming, and rapid prototyping. Topics in control include manipulation, motion and path planning, learning and adaptation, and human-robot interaction. Additional topics may include distributed and multi-robot systems, bio-inspired robotics, project management, and societal implications. Open-ended projects vary annually. Student
teams create and analyze robotic systems for various applications. Oral and written presentation of project results. Letter grading.

Mr. Mehta (Sp)

184DA-184DB. Independent Group Project Design. (2-2) Laboratory; five hours; discussion, one hour. Required prerequisite: 184DA. Courses centered on group project that runs year long to give students intensive experience on hardware design, microcontroller programming, and project-centered learning. Topics include autonomous robots that traverse small mazes and courses offered yearly and target regional competitions. Students may submit proposals that are evaluated and approved by faculty members. Topics include sensing circuits and amplifier-based design, microcontroller programming, feedback control, actuation, and motor control. In Progress (184DA) and letter (184DB) grading.

Mr. Briggs (Not offered 2023-24)

M185. Introduction to Plasma Science and Engineering. (4) (Same as Earth, Planetary, and Space Sciences M156 and Physics M122.) Lecture, three hours; discussion, one hour; outside study, eight hours. Recommended for students in Physics 110B. Senior-level introductory course on electron dynamics of charged particles and their collective behavior in plasmas in laboratory, near-Earth space and astrophysical settings. Topics include applications to fusion energy, space weather, materials processing, generation of coherent radiation and particle accelerators. Letter grading.

Mr. Mori (Not offered 2023-24)

188. Special Courses in Electrical Engineering. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Topics in special areas in electrical engineering for undergraduate students taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated for credit with topic or instructor change. Letter grading. (W,Sp)

189. Advanced Honors Seminars. (1) Seminar, three hours. Limited to 20 students. Designed as adjunct to undergraduate lecture course. Exploration of topics in greater depth through supplemental readings, papers, or other activities and led by lecturing course instructor. May be applied toward honors credit for eligible students. Honors consent required. May be repeated for credit with topic or instructor change. Letter grading. (W,Sp)

194. Research Group Seminars: Electrical Engineering. (2 to 4) Seminar, four hours; outside study, eight hours. Designed for undergraduate students who are in a research group. Discussion of research methods and current literature in the field. May be repeated for credit. Letter grading. (W,Sp)

199. Directed Research in Electrical Engineering. (2 to 8) Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation under guidance of faculty mentor. Culminating paper or project required. May be repeated for credit with school approval. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading. (W,Sp)

Graduate Courses

201A. VLSI Design Automation. (4) Lecture, four hours; discussion, outside study, seven hours. Required: course 115C. Fundamentals of design automation of VLSI circuits and systems, including introduction to circuit and system platforms such as VCDL and related design flows, introduction to matrix theory and linear algebra, language in which virtually all of modern science and engineering is conducted. Review of matrices taught in undergraduate courses and introduction to graduate-level topics. Letter grading.

Mr. Gupta (Not offered 2023-24)

201C. Modeling of VLSI Circuits and Systems. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Required: course 115C. Detailed study of VLSI circuit and system models considering performance, signal integrity, power and thermal effects, reliability, and manufacturability. Discussion of principles and applications of circuit and system models. Letter grading.

Mr. He (Not offered 2023-24)

201D. Design in Nanoscale Technologies. (4) Lecture, four hours; outside study, eight hours. Required prerequisite: course 115C. Challenges of digital circuit design—analysis, verification, yield and variational modeling; circuit reliability and aging issues; design rules and their origins; layout design for manufacturability; test structures and process control; circuit and system level modeling, and Monte-Carlo simulation. Letter grading.

Mr. Gupta (Not offered 2023-24)

M202A. Embedded Systems. (4) (Same as Computer Science M213A.) Lecture, four hours; discussion, one hour; outside study, seven hours. Designed for graduate computer science and electrical engineering students. Methodologies and technologies for design of embedded systems. Topics include hardware and software platforms for embedded systems, techniques for modeling and simulation of system behavior, software organization, real-time operating system scheduling, real-time communication and packet scheduling, low-power battery and energy-aware system design: resource optimization, parameterization, fault tolerance and debugging, and techniques for hardware and software architecture optimization. Theoretical foundations as well as practical design methods. Letter grading.

Mr. Srivastava (F)

M202B. Energy-Aware Computing and Cyber-Physical Systems. (4) (Same as Computer Science M213B.) Lecture, four hours; outside study, eight hours. Required: course M16 or Computer Science M51A. Recommended: course M116C or Computer Science M115B, and Computer Science 111. System-level management and cross-layer methods for power and energy consumption in computing and communication areas. Topics include energy efficiency in embedded, mobile, personal, enterprise, and data center scale. Computing, networking, sensing, and control technologies and algorithms for improving energy-consumption and cyber-physical systems. Topics include modeling of energy consumption, energy sources, and energy storage; dynamic power management; power-performance scaling and energy proportionality; duty-cycling; power-aware scheduling; software-aware power management and management; thermal management; sensing of power consumption. Letter grading.

Mr. Srivastava (Not offered 2023-24)

202C. Networked Embedded Systems Design. (4) Lecture, four hours; outside study, four hours. Designed for graduate computer science and electrical engineering students. Training in combination of networked embedded systems design combining embedded hardware platform, embedded operating system, and hardware/software interface. Essential graduate student background for research and industry career paths in wireless devices for applications ranging from conventional wireless mobile devices to new area of wireless health, laboratory design modules and course projects based on state-of-art embedded hardware platform. Letter grading.

Mr. Kaiser (Not offered 2023-24)

205A. Matrix Analysis for Scientists and Engineers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Preparation: one undergraduate linear algebra course. Designed for first-year graduate students in all branches of engineering and related disciplines. Introduction to matrix theory and linear algebra, language in which virtually all of modern science and engineering is conducted. Review of matrices taught in undergraduate courses and introduction to graduate-level topics. Letter grading.

Mr. Vandenberhe (F)

209AS. Special Topics in Circuits and Embedded Systems. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Special topics in one or more aspects of circuits and embedded systems, such as digital, analog, mixed-signal, and radio frequency integrated circuits (RF ICs); electronic design automation; wireless communication circuits and systems; embedded processor architectures; embedded software development; sensor networks; robotics; and embedded security. May be repeated for credit with topic change. S/U or letter grading.

Mr. Pamarti (W,Sp)

209BS. Seminar: Circuits and Embedded Systems. (2 to 4) Seminar, two to four hours; outside study, four hours. Seminars and discussions on current and advanced topics in one or more aspects of circuits and embedded systems, such as digital, analog, mixed-signal, and radio frequency integrated circuits (RF ICs); electronic design automation; wireless communication circuits and systems; embedded processor architectures; embedded software development; sensor networks; robotics; and embedded security. May be repeated for credit with topic change. S/U or letter grading.

Mr. Razavi (W)

(Not offered 2023-24)

(Not offered 2023-24)
211A. Digital Image Processing I. (4) Lecture, three hours; discussion, one hour; outside study, four hours. Preparation: computer programming experience. Requisite: course 113. Fundamentals of digital image processing theory and techniques. Computation and visualization of 1D and 2D signals; computer vision and computer graphics. Letter grading. Mr. Kadaromi, Mr. Villasenor (Not offered 2023-24)

M214A. Digital Speech Processing. (4) (Same as Bioengineering M214A.) Lecture, three hours; laboratory, two hours; outside study, seven hours. Requisite: course 214A. Advanced techniques used in various speech-processing applications, with focus on speech recognition by humans and machines. Physiological and psychoacoustics of human perception. Hidden Markov Models (HMM) for automatic speech recognition systems, pattern classification, and search algorithms. Aids for hearing impaired. Letter grading. Ms. Alwan (Sp)

214B. Advanced Topics in Speech Processing. (4) Lecture, three hours; discussion, one hour; computer assignments, two hours; outside study, six hours. Requisite: course M214A. Advanced techniques used in various speech-processing applications, with focus on speech recognition by humans and machines. Physiological and psychoacoustics of human perception. Hidden Markov Models (HMM) for automatic speech recognition systems, pattern classification, and search algorithms. Aids for hearing impaired. Letter grading. Ms. Alwan (Sp)

215A. Analog Integrated Circuit Design. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 115B. Analysis and design of analog integrated circuits. MOS and bipolar device structures and models, single-stage and differential amplifiers, noise, feedback, operational amplifiers, offset and distortion, sampling devices and discrete-time circuits, bandgap references. Letter grading. Mr. Abidi, Mr. Razavi (Sp)

215B. Advanced Digital Integrated Circuits. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 115C, M216A. Analysis and comparison of modern logic families, VLSI memory (SRAM, DRAM, ROMs), accuracy of various simulation models and simulation methods for digital circuits. Letter grading. Mr. Yang (Not offered 2023-24)

215C. Analysis and Design of RF Circuits and Systems. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 215A. Principles of RF circuit and system design, with emphasis on monolithic implementation in VLSI technology. Basic concepts, communications background, transistors. Letter grading. Mr. Abidi, Mr. Razavi (Sp)

215D. Analog Microsystem Design. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 215A. Analysis and design of data conversion interfaces and filters. Sampling circuits and architectures, data conversion techniques, A/D converter architectures, building blocks, precision techniques, discrete and continuous-time filters. Letter grading. Mr. Abidi, Mr. Razavi (Sp)

215E. Signaling and Synchronization. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 215A, M216A. Analysis and design of circuits for synchronization and communication for VLSI systems. Use of both digital and analog design techniques to improve data rate of electronics between functional blocks, chips, and systems. Advanced clocking methodologies, phase-locked loop design for clock generation, and high-performance wire-line transmitters, receivers, and timing recovery circuits. Letter grading. Mr. Plett (F)

M216A. Design of VLSI Circuits and Systems. (4) (Same as Computer Science M218A.) Lecture, four hours; discussion, two hours; laboratory, four hours; outside study, two hours. Requisites: courses M16 or Computer Science M131A. Principles and practice of VLSI and circuit design. Implementation of standard cell libraries. Letter grading. Mr. Moran (Sp)

M216B. VLSI Signal Processing. (4) Lecture, four hours; outside study, eight hours. Advanced concepts in VLSI signal processing, with emphasis on architectural design and optimization within block-based description that can be mapped to hardware. Fundamental concepts from digital signal processing (DSP) theory, architecture, and circuit design applied to complex DSP algorithms in emerging applications for personal communications and healthcare. Letter grading. Mr. Markovic (W)

M216C. LSI in Computer System Design. (4) (Same as Computer Science M218C.) Lecture, four hours; laboratory, four hours; outside study, four hours. Requisites: courses M216A, LSI/VLSI design and application in computer systems. In-depth studies of VLSI architectures and VLSI design tools. Letter grading. (Not offered 2023-24)

M217. Biomedical Imaging. (4) (Same as Bioengineering M217.) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 114 or 211A. Optical imaging modalities in biomedicine. Other nonoptical imaging modalities discussed briefly for comparison purposes. Letter grading. Mr. Ozcan (Not offered 2023-24)

218. Network Economics and Game Theory. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Discussion of how different cooperative and noncooperative games among agents can be constructed to model, analyze, optimize, and shape emerging interactions among users in different networks and system settings. How strategic agents can successfully compete with each other for limited and time-varying resources by optimizing their decision process and learning from their past interaction with other agents. To determine their optimal actions in the presence of decentralized environments, agents need to learn and model directly or implicitly other agents' responses to their actions. Discussion of existing multiagent learning techniques and learning theory and adjustment processes for learning equilibrium, fictitious play, regret-learning, and more. Letter grading. (Not offered 2023-24)

219. Large-Scale Data Mining: Models and Algorithms. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Introduction to a variety of scalable data modeling tools, both predictive and causal, from different disciplines. Topics include supervised and unsupervised data modeling tools from machine learning, such as support vector machines, different regression engines, different types of regularization and kernel techniques, deep learning, and Bayesian graphical models. Emphasis on techniques to evaluate relevant results, different parameter settings and their applicability. Includes computer projects that explore entire data analysis and modeling cycle: collecting and cleaning large-scale data, deriving predictive and causal insights, and simulating performance of different models. Letter grading. Mr. Roychowdhury (W)

221A. Physics of Semiconductor Devices I. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Physical principles and design considerations of semiconductor devices. Letter grading. Mr. K.L. Wang, Mr. Woo (Not offered 2023-24)

221B. Physics of Semiconductor Devices II. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Principles and design considerations of field effect devices and charge-coupled devices. Letter grading. Mr. Woo (Not offered 2023-24)

221C. Microwave Semiconductor Devices. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Physical principles and design considerations of microwave solid-state devices: Schottky barrier mixer diodes, IMPATT diodes, compound semiconductor tunnel diodes, microwave transistors. Letter grading. Mr. K.L. Wang, Mr. Woo (W)

222. Integrated Circuits Fabrication Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 2. Principles of integrated circuits fabrication processes. Technological limitations of integrated circuits design. Topics include bulk crystal and epitaxial growth, thermal oxidation, diffusion, ion-implantation, chemical vapor deposition, dry etching, lithography, and metalization. Introduction of advanced process simulation tools. Letter grading. Mr. Woo (Sp)

223. Solid-State Electronics I. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: EECS 113. 4 hours. Energy band theory, electronic band structure of various elementary, compounds, and alloy semiconductors, defects in semiconductors, Recombination mechanisms, transport properties. Letter grading. Mr. Wang (F)

225. Physics of Semiconductor Nanostructures and Devices. (4) Lecture, four hours; outside study, eight hours. Requisite: course 223. Theoretical methods for calculating electronic and optical properties of semiconductor structures. Quantum size effects and low-dimensional systems. Application to semiconductor nanometer scale devices, including negative resistance diodes, transistors, and detectors. Letter grading. Mr. K.L. Wang (Sp, alternate years)

229. Seminar: Advanced Topics in Solid-State Electronics. (4) Seminar, two hours; outside study, six hours. Preparation: successful completion of PhD major field examination. Seminar on current research topics in solid-state and quantum electronics (Section 1) or in electronic circuit theory and applications (Section 2). Students report on tutorial topic and on research topics in their dissertation area. May be repeated for credit. S/U grading. (Not offered 2023-24)

229S. Advanced Electrical Engineering Seminar. (2) Seminar, two hours; outside study, six hours. Preparation: successful completion of PhD major field examination. Seminar on current research topics in solid-state and quantum electronics (Section 1) or in electronic circuit theory and applications (Section 2). Students report on tutorial topic and on research topics in their dissertation area. May be repeated for credit. S/U grading. (Not offered 2023-24)

230A. Detection and Estimation in Communication. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 131A. Applications of estimation and detection concepts in communication and signal processing; random signal and noise characteristics by analysis and simulations; mean square (MS) and maximum likelihood (ML) estimators and algorithms; detection and estimation techniques for channel estimation, Bayes, and Neyman-Pearson (NP) criteria; signal-tonoise ratio (SNR) and error probability evaluations. Introduction to Monte Carlo simulations. Letter grading. Mr. Pezeshki (Not offered 2023-24)

230B. Digital Communication Systems. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 123A, 230A. Principles and practical techniques for communication at physical and multiple access layers. Review of communications over

Mr. Yao (Not offered 2023-24)

Mr. Pottie (Not offered 2023-24)

Mr. Yao (Not offered 2023-24)

Mr. Rubin (Not offered 2023-24)

Mr. Roychowdhury (Sp)

233. Wireless Communications System Design. Modeling, and Implementation. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 113. Covers algorithms, architectures, and implementation for radio transceivers, physical, and network layer functionalities. Topics include wireless channel modeling, single-carrier and multi-carrier systems, multiple antenna systems, wireless communications, and large-scale networks. Letter grading.

Mr. Diggavi (F)

233B. Seminar: Wireless Communication. (2 to 4) Seminar, two to four hours; outside study, two to four hours. Special topics in wireless communications. May be repeated for credit with topic change. S/U grading.

Ms. Dolecek (F,Sp)

233A. Network Coding Theory and Applications. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Algebraic approach and main theorem in network coding, combinatorial approach and alphabet size, linear programming approach and connections to graph theory, network coding algorithms, network coding, network coding for wireless, other applications. Letter grading.

Ms. Cabric (Sp)

234A. Network Coding Theory and Applications. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Algebraic approach and main theorem in network coding, combinatorial approach and alphabet size, linear programming approach and connections to graph theory, network coding algorithms, network coding, network coding for wireless, other applications. Letter grading.

Ms. Fragouli (Not offered 2023-24)

235A. Mathematical Foundations of Data Storage Systems. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 131A or equivalent. Research developments in new mathematical techniques for emerging large-scale, ultra-reliable, fast, and affordable data storage systems. New techniques include joint optimization of data encoding and storage and of data reconstruction algorithms. Letter grading.

Mr. Vandenberghe (Not offered 2023-24)

235B. Seminar: Signals and Systems. (2 to 4) Seminar, two to four hours; outside study, four to eight hours. Seminars and discussions on current and advanced topics in one or more aspects of signals and systems, such as communications, control, image processing, information theory, multimedia, computer networking, optimization, speech processing, telecommunications, and VLSI signal processing. May be repeated for credit with topic change. S/U or letter grading.

Ms. Dolecek (F,Sp)

Mr. Vandenberghe (W)

Mr. Vandenberghe (Not offered 2023-24)

237. Dynamic Programming. (4) (Same as Mechanical and Aerospace Engineering M276.) Lecture, four hours; outside study, eight hours. Recommended requisite: course 239A or 239A or 239B. Introduction to mathematical and operational research techniques for sequential decision processes. Finite horizon model in both deterministic and stochastic cases. Finite-state infinite horizon model. Methods of solution. Examples from inventory theory, finance, optimal control and estimation, Markov decision processes, combinatorial optimization, communications, Letter grading.

Mr. Vandenberghe (Not offered 2023-24)

238. Multimedia Communications and Processing. (4) Lecture, four hours; outside study, seven hours. Requisite: course 131A. Conceptual principles, and algorithms of online learning and learning how to make decisions under uncertainty in broad context, including Markov decision processes, optimal strategies for reinforcement learning, structural results for online learning, multiarmed bandits learning, multitagent learning, multiagent deep learning. Letter grading.

Mr. Vandenberghe (Not offered 2023-24)

238A. Special Topics in Signals and Systems. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Special topics in one or more aspects of signals and systems, such as communications, control, image processing, information theory, multimedia, computer networking, optimization, speech processing, telecommunications, and VLSI signal processing. May be repeated for credit with topic change. S/U or letter grading.

Ms. Dolecek (F,Sp)

239B. Seminar: Signals and Systems. (2 to 4) Seminar, two to four hours; outside study, four to eight hours. Seminars and discussions on current and advanced topics in one or more aspects of signals and systems, such as communication, control, image processing, information theory, multimedia, computer networking, optimization, speech processing, telecommunications, and VLSI signal processing. May be repeated for credit with topic change. S/U grading.

Ms. Dolecek (Not offered 2023-24)
M240A. Linear Dynamic Systems. (4) (Same as Chemical Engineering M282A and Mechanical and Aerospace Engineering M270A). Lecture, four hours; outside study, eight hours. Requisites: course 131A or Mechanical and Aerospace Engineering 171A. State-space description of linear time-invariant (LTI) and time-varying (LTV) systems in continuous and discrete time. Linear algebra concepts such as eigenvalues and eigenvectors, singular values, Cayley/Hamiltonian, and realization of continuous and discrete time random processes: stationarity, power spectral density, response of linear systems to random inputs. Basics of estimation. Random processes. Markov processes, martingales, etc. Letter grading. Mr. Tabuada (Not offered 2023-24)

M240B. Nonlinear Dynamic Systems. (4) (Same as Chemical Engineering M282A and Mechanical and Aerospace Engineering M272A). Lecture, four hours; outside study, eight hours. Requisites: course M240A or Chemical Engineering M280A or Mechanical and Aerospace Engineering M270A. State-space techniques for studying solutions of time-invariant and time-varying nonlinear systems with emphasis on stability, Lyapunov theory (including converse theorems), invariance, center manifold theorem, input-to-state stability and small-gain theorem. Letter grading. Mr. Tabuada (W)

C243A. Neural Signal Processing. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: course 131A, Mathematics 33A. Topics include fundamental properties of electrical activity of neurons for measuring neuronal activity; spiking statistics and Poisson processes; generative models and classification; regression and Kalman filtering; principal components analysis, factor analysis, expectation maximization; unsupervised learning. Computer-based exercises using MATLAB currently scheduled with course C143A. Letter grading. Mr. Kao (Sp)

246. Foundations of Statistical Machine Learning. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: course 131A, Mathematics 33A. Introduction to foundations of statistical machine learning. Overview of several widely used learning algorithms including logistic and linear regression, kernel methods and support vector machine (SVM), ensemble learning methods, decision trees and nearest neighbor classifiers. Connections to information theory through probably approximately correct learning, stability, bias-variance trade-off, structured risk minimization, minimum description length (MDL), and universal learning. Introduction to representation learning with topics including unsupervised learning, clustering, non-linear dimensionality reduction, sketching, parametric distribution estimation including Gaussian mixtures, expectation maximization, non-parametric distribution estimation, and solutions to neural networks focused on distribution sampling (variational autoencoders [VAEs], generative adversarial networks [GANs]). Discussion of reinforcement learning. Letter grading. Mr. Digvai (W)

C247. Neural Networks and Deep Learning. (4) Lecture, four hours; discussion, one hour; outside study, six hours. Requisites: courses 131A, 133A or 205A, and M146, or equivalent. Review of machine learning concepts; maximum likelihood; supervised classification; convolutional neural networks; back-propagation; regularization for training neural networks; optimization for training neural networks; convolutional neural networks; practical CNN architecture; neural networks, backpropagation through time, long-term memory and gated recurrent units; variational autoencoders; generative adversarial networks; adversarial examples and training. Concurrently scheduled with course C147. Letter grading. Mr. Kao (W)

M248S. Seminar: Systems, Dynamics, and Control Topics. (2) (Same as Chemical Engineering M297 and Mechanical and Aerospace Engineering M299A.) Seminar, two hours; outside study, six hours. Limited to work in these fields present their papers and results. S/U grading. Mr. Tabuada (Not offered 2023-24)

M250B. Microelectromechanical Systems (MEMS) Fabrication. (4) (Same as Bioengineering M250B and Mechanical and Aerospace Engineering M280B). Lecture, four hours; discussion, one hour; outside study, eight hours. Enforced requisite: course M153. Advanced discussion of micromachining processes used to construct MEMS. Coverage of many lithographic, deposition, and etching processes, as well as their combination in process integration. Materials issues such as chemical resistance, corrosion, mechanical properties, and residual/intrinsic stress. Letter grading. Mr. Candler (Not offered 2023-24)

M252. Microelectromechanical Systems (MEMS) Device Physics and Design. (4) (Same as Bioengineering M252 and Mechanical and Aerospace Engineering M282B) Lecture, four hours; discussion, one hour; outside study, seven hours. Introduction to MEMS design. Design methods, design rules, sensing and actuation mechanisms, microsensors, and microactuators. Designing MEMS to be produced with both foundry and nonfoundry processes. Computer-aided design for MEMS. Design project required. Letter grading. Mr. Candler (Sp)

M255. Neuroengineering. (4) (Same as Bioengineering M250 and Neuroscience M206) Lecture, four hours; discussion, outside study, five hours. Requisites: Mathematics 32A, Physics 1B or 5C. Introduction to principles and technologies of bioelectricity and neural signal recording, processing, and stimulation. Topics include electrophysiology, electro-physiology (action potentials, local field potentials, EEG, ECOG), intracellular and extracellular recording, microelectrode technology, neural signal processing (neural signal frequency bands, filtering, spike detection, spike sorting, stimulation artifact removal), brain-computer interfaces, deep-brain stimulation, and prosthetics. Letter grading. Mr. Markovic (W)

M256A-M256B-M256C. Evaluation of Research Topics. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 101B, 162A. Advanced treatment of concepts in electromagnetics and their applications to modern engineering problems. Vector calculus in generalized coordinate system. Solutions of wave equation and special functions. Reflection, transmission, and vectorization. Vector potential, duality, reciprocity, and equivalence theorems. Scattering from cylinder, half-plane, wedge, and sphere, including radar cross-section characterization. Green’s functions, dyadic notation, and dyadic calculus. Letter grading. Mr. Rahmat-Samii (F)

M256B. Advanced Engineering Electrodynamics. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 101B, 162A. Advanced treatment of concepts in electromagnetics and their applications to modern engineering problems. Vector calculus in generalized coordinate system. Solutions of wave equation and special functions. Reflection, transmission, and vectorization. Vector potential, duality, reciprocity, and equivalence theorems. Scattering from cylinder, half-plane, wedge, and sphere, including radar cross-section characterization. Green’s functions, dyadic notation, and dyadic calculus. Letter grading. Mr. Rahmat-Samii (F)

M257. Nanoscience and Technology. (4) (Same as Mechanical and Aerospace Engineering M287.) Lecture, four hours; outside study, eight hours. Introduction to fundamentals of nanoscience and technology. Basic physical principles, quantum mechanics, chemical bonding and nanostructures, top-down and bottom-up (self-assembly) nanofabrication, nanochemical characterization, nanomaterials, nanoelectronics, and nanobiotechnology. Introduction to new knowledge and techniques in nano areas to understand scientific principles behind nanotechnology and inspire students with creative ideas in multidisciplinary nano areas. Letter grading. Mr. Chen (Not offered 2023-24)

M260A. Advanced Engineering Electromagnetics. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 101B, 162A. Advanced treatment of concepts in electromagnetics and their applications to modern engineering problems. Vector calculus in generalized coordinate system. Solutions of wave equation and special functions. Reflection, transmission, and vectorization. Vector potential, duality, reciprocity, and equivalence theorems. Scattering from cylinder, half-plane, wedge, and sphere, including radar cross-section characterization. Green’s functions, dyadic notation, and dyadic calculus. Letter grading. Mr. Rahmat-Samii (F)

M260B. Advanced Engineering Electrodynamics. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 101B, 162A. Advanced treatment of concepts in electromagnetics and their applications to modern engineering problems. Vector calculus in generalized coordinate system. Solutions of wave equation and special functions. Reflection, transmission, and vectorization. Vector potential, duality, reciprocity, and equivalence theorems. Scattering from cylinder, half-plane, wedge, and sphere, including radar cross-section characterization. Green’s functions, dyadic notation, and dyadic calculus. Letter grading. Mr. Rahmat-Samii (F)

M261. Microwave and Millimeter Wave Circuits. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 163A. Rectangular and circular waveguides, microstrip, stripline, finline, and dielectric waveguide distributed circuits, with applications in microwave and millimeter wave integrated circuits. Substrate materials, surface wave phenomena. Analytical methods for discontinuity effects. Design of passive microwave and millimeter wave circuits. Letter grading. Mr. Markovic (W)

M263. Reflector Antennas Synthesis, Analysis, and Measurement. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 101B, 162A. Advanced treatment of concepts in electromagnetics and their applications to modern engineering problems. Vector calculus in generalized coordinate system. Solutions of wave equation and special functions. Reflection, transmission, and vectorization. Vector potential, duality, reciprocity, and equivalence theorems. Scattering from cylinder, half-plane, wedge, and sphere, including radar cross-section characterization. Green’s functions, dyadic notation, and dyadic calculus. Letter grading. Mr. Rahmat-Samii (W)

M266. Applied Quantum Mechanics. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Preparation: modern physics (or course 123A), linear algebra, and ordinary differential equations courses. Principles of quantum mechanics for applications in lasers, solid-state physics, and nonlinear optics. Topics include eigenfunction expansions, observables, Schrödinger’s uncertainty principle, central force problems, Hilbert spaces, WKB approximation, matrix mechanics, density matrix formalism, and radiation theory. Letter grading. (F)
271. Classical Laser Theory. (4) Lecture, four hours; outside study, eight hours. Enforced requisites: course 170A. Microscopic and macroscopic laser phenomena and propagation of optical pulses using classical formalism. Letter grading. Mr. Joshi (W)

Mr. Liu (Not offered 2023-24)

Mr. Liu (W)

274. Optical Communication and Sensing Design. (4) Lecture, three hours; outside study, nine hours. Enforced prerequisite: course 170B or equivalent. Top-down introduction to physical layer design in fiber optic communication systems, including Telecom, Datacom, and CATV. Fundamentals of digital and analog optical communication systems, fiber transmission characteristics, and optical modulation techniques, including direct and external modulation and computer-aided design. Architectural-level design of fiber-optic communication circuits, including preamplifier, quantizer, clock and data recovery, laser driver, and predistortion circuits. Letter grading.

Mr. Jalali (Sp)

M275. Micro- and Nanoscale Biosensing for Molecular Diagnostics. (4) (Same as Bioengineering M273.) Lecture, four hours; discussion, one hour; outside study, seven hours. Covers state-of-art and emerging biosensors in context of molecular diagnostics. Students learn relevant biology and biochemistry pertinent to molecular diagnostics. Students gain thorough understanding of interfaces between bioparticles, biofluids, and electronics. Topics include biosensor performance parameters, modes of detection, sample preparation challenges, microfluidics, and emerging wearable biosensing platforms, as well as proteomics, genomics, and DNA sequencing technologies. Letter grading.

Mr. Emaminejad (Sp)

279AS. Special Topics in Physical and Wave Electronics. (4) Lecture, four hours; discussion, on hour; outside study, seven hours. Special topics in one or more aspects of physical and wave electronics, such as electromagnetics, microwave and millimeter wave circuits, photonics and optoelectronics, plasma electronics, microelectromechanical systems, solid state, and nanotechnology. May be repeated for credit with topic change. S/U or letter grading.

Mr. Y. Wang (FSp)

279BS. Seminar: Physical and Wave Electronics. (2 to 4) Seminar, two to four hours; outside study, four to eight hours. Seminars and discussions on current and advanced topics in one or more aspects of physical and wave electronics, such as electromagnetics, microwave circuits, photonics and optoelectronics, plasma electronics, microelectromechanical systems, solid state, and nanotechnology. May be repeated for credit with topic change. S/U grading.

Mr. Y. Wang (Not offered 2023-24)

279CS. Clean Green IGERT Brown-Bag Seminar. (1) Seminar, one hour. Required of students in Clean Energy for Green Industry (IGERT) Research. Literature seminar presented by graduate students and experts from around the world who conduct research in energy research, clean energy, and sustainability. Letter grading. Mr. Y. Wang (Not offered 2023-24)

278A. Plasma Waves and Instabilities. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 101A, and M185 or Physics M122. Wave phenomena in plasmas described by macroscopic fluid equations. Microwave propagation, plasma oscillations, ion acoustic waves, cyclotron waves, hydromagnetic waves, drift waves. Rayleigh/Taylor, Kelvin/Helmholtz, universal, and streaming instabilities. Application to experiments in fully and partially ionized gases. Letter grading.

Mr. Villasenor (Not offered 2023-24)

Mr. Mori (Not offered 2023-24)

285B. Advanced Plasma Waves and Instabilities. (4) Lecture, four hours; outside study, eight hours. Requisites: course 285A or Physics M222A. Advanced topics in electromagnetic waves with plasmas: effects of boundary conditions, nonlinear wave coupling, current-carrying waves, and anomalous resistivity, shock waves, echoes, laser heating. Emphasis on experimental considerations and techniques. Letter grading.

Mr. Mori (Not offered 2023-24)

Mr. Chen, Mr. Joshi (Not offered 2023-24)

M293. Intellectual Property for Technology Entrepreneurs and Managers. (2) (Same as Management M247.) Seminar, two hours; outside study, four hours. Introduction to intellectual property (IP) in context of technology products and markets. Topics include best practices to put in place before product development stage, IP protection challenges, IP portfolio management, patent licensing, offensive and defensive IP litigation, trade secrets, opportunities and pitfalls of open source software, trademarks, managing copyright in increasingly complex content ecosystems, and adopting IP strategies to globalized marketplaces. Includes case studies inspired by complex IP questions facing technology companies today. S/U or letter grading.

Mr. Villasenor (Not offered 2023-24)

296. Seminar: Research Topics in Electrical Engineering. (2) Seminar, two hours; outside study, four hours. Advanced study and analysis of current topics in electrical engineering. Discussion of current research and literature in research specialty of faculty member teaching course. May be repeated for credit. S/U grading.

297. Seminar Series: Electrical Engineering. (1) Seminar, 90 minutes; outside study, 90 minutes. Limited to graduate electrical engineering students. Weekly seminars and discussion by invited speakers on research topics of heightened interest. S/U grading.

(F,W,Sp)

298. Seminar: Engineering. (2 to 4) Seminar, to be arranged. Limited to graduate electrical engineering students. Seminars may be organized in advanced technical fields. If appropriate, field trips may be arranged. May be repeated with topic change. S/U or letter grading. (Not offered 2023-24)

299. MS Project Seminar. (4) Seminar, to be arranged. Required of all MS students not in thesis option. Supervised research in small groups or individually under guidance of faculty mentor. Regular meetings, culminating report, and presentation required. Individual may be obtained from independent petitions available in Office of Graduate Student Affairs. S/U grading.

Mr. Vandenberge (F,W,Sp)

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: apprentice permitted employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. (Not offered 2023-24)

M495. Teaching Preparation Seminar: Teaching and Writing Pedagogies for Electrical Engineers. (2) (Same as English Composition M495K.) Seminar, two hours. Limited to graduate electrical engineering students. Required of all departmental teaching assistants (TAs). May be taken concurrently while holding a TA appointment. Seminar on pedagogy and logistics of being a TA with emphasis on student-centered teaching, clear communication, and multimodal teaching and learning. S/U grading. Ms. Alwan (F)

596. Directed Individual or Tutorial Studies. (2 to 8) Tutorial, to be arranged. Limited to graduate electrical engineering students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies, Supervised investigation of advanced technical problems. S/U grading.

597A. Preparation for MS Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate electrical engineering students. Preparation for oral qualifying examination, including preliminary examination. (2 to 12) Tutorial, to be arranged. Limited to graduate electrical engineering students. Preparation for oral qualifying examination, including preliminary research on dissertation. S/U grading.

597C. Preparation for PhD Oral Qualifying Examination. (2 to 16) Tutorial, to be arranged. Limited to graduate electrical engineering students. Preparation for oral qualifying examination, including preliminary research on dissertation. S/U grading.

599. Research for and Preparation of PhD Dissertation. (2 to 16) Tutorial, to be arranged. Limited to graduate electrical engineering students. Usually only students who have been advanced to candidacy. S/U grading.
Materials Science and Engineering

3111 Engineering V
Box 951595
Los Angeles, CA 90095-1595
310-825-5524

Department website

Yu Huang, PhD, Chair
Alexander A. Balandin, PhD, Vice Chair
Qibing Pei, PhD, Vice Chair

Faculty Roster

Professors
Anastassia N. Alexandrova, PhD
Alexander A. Balandin, PhD
Gregory P. Carman, PhD (Ben Rich–Lockheed Martin Professor of Advanced Aerospace Technologies)
Jane P. Chang, PhD (William Frederick Seyer Professor of Materials Electrochemistry)
Yong Chen, PhD
Bruce S. Dunn, PhD (Nippon Sheet Glass Company Professor of Materials Science)
Mark S. Goorsky, PhD
Vijay Gupta, PhD
Yu Huang, PhD (Traugott and Dorothea Frederking Endowed Professor)
Subramanian S. Iyer, PhD (Charles P. Reames Endowed Professor of Electrical Engineering)
Ioanna Kakoulli, DPhil
Richard B. Kaner, PhD
Xiaochun Li, PhD (Raytheon Company Professor of Mechanical Engineering)
Jaime Marian, PhD
Ali Moslehi, PhD, NAE (Evalyn Knight Professor of Engineering)
Qibing Pei, PhD
Gaurav N. Sant, PhD (Pritzker Professor of Sustainability)
Sarah H. Tolbert, PhD
Kang L. Wang, PhD (Raytheon Company Professor of Electrical Engineering)
Yinmin (Morris) Wang, PhD
Paul S. Weiss, PhD (Presidential Professor of Chemistry)
Ya-Hong Xie, PhD
Jenn-Ming Yang, PhD (Collins Aerospace Term Professor of Excellence)
Yang Yang, PhD (Carol and Lawrence E. Tannas, Jr., Endowed Professor of Engineering)

Professors Emeriti
Alan J. Ardell, PhD
Kanji Ono, PhD
Dwight C. Streit, PhD, NAE
King-Ning Tu, PhD
Benjamin M. Wu, DDS, PhD

Assistant Professors
Amarjyot Singh, PhD
Laura Kim, PhD

Adjunct Professor
Suneel Kodambaka, PhD

Adjunct Associate Professors
Eric P. Bescher, PhD
Sergey Prikhodko, PhD

Adjunct Assistant Professors
Magdalena Balonis, PhD
Marta Pozuelo, PhD

Overview

At the heart of materials science and engineering is the understanding and control of the microstructure of solids. Microstructure is used broadly in reference to electronic and atomic structure of solids—and defects within them—at size scales ranging from atomic bond lengths to airplane wings. The structure of solids over this wide range dictates their structural, electrical, biological, and chemical properties. The phenomenological and mechanistic relationships between microstructure and the macroscopic properties of solids are, in essence, what materials science is all about.

Materials engineering builds on the foundation of materials science and is concerned with the design, fabrication, and optimal selection of engineering materials that must simultaneously fulfill dimensional, property, quality control, and economic requirements.

The undergraduate program in the Department of Materials Science and Engineering leads to the BS degree in Materials Engineering. Students are introduced to the basic principles of metallurgy and ceramic and polymer science as part of the department’s Materials Engineering major. A joint major field, Chemistry/Materials Science, is offered to students enrolled in the Department of Chemistry and Biochemistry (College of Letters and Science).

The department also has a program in electronic materials that provides a broad-based background in materials science, with opportunity to specialize in the study of those materials used for electronic and optoelectronic applications. The program incorporates several courses in electrical and computer engineering in addition to those in the materials science curriculum.

The graduate program allows for specialization in one of the following fields: ceramics and ceramic processing, electronic and optical materials, and structural materials.

Department Mission

The Department of Materials Science and Engineering faculty members, students, and alumni foster a collegial atmosphere to produce (1) highly qualified students through an educational program that cultivates excellence; (2) novel and highly innovative research that advances basic and applied knowledge in materials; and (3) effective interactions with the external community through educational outreach, industrial collaborations, and service activities.

Undergraduate Study

Materials Engineering BS

The materials engineering program is designed for students who wish to pursue a professional career in the materials field and desire a broad understanding of the relationship between microstructure and properties of materials. Metals, ceramics, and polymers, as well as the design, fabrication, and testing of metallic and other materials such as oxides, glasses, and fiber-reinforced composites, are included in the course contents.

The materials engineering program is accredited by the Engineering Accreditation Commission of ABET.

Capstone Major

The Materials Engineering major is a designated capstone major. Students undertake two individual projects involving materials selection, treatment, and serviceability. Successful completion requires working knowledge of physical properties of materials and strategies and methodologies of using materials properties in the materials selection process. Students learn and work independently and practice leadership and teamwork in and across disciplines. They are also expected to communicate effectively in oral, graphic, and written forms.

Educational Objectives

The Materials Engineering major at UCLA prepares undergraduate students for employment and/or advanced studies within industry, the national laboratories, state and federal agencies, and academia. To meet the needs of these constituencies, the objectives of the undergraduate program are to produce graduates who (1) possess a solid foundation in materials science and engineering, with emphasis on the fundamental scientific and engineering principles that govern the microstructure, properties, processing, and performance of all classes of engineering materials; (2) understand materials processes and the application of general natural science and engineering principles to the analysis and design of materials systems of current and/ or future importance to society; (3) have strong skills in independent learning, analysis, and problem solving, with special em-
phasis on design of engineering materials and processes, communication, and an ability to work in teams; and (4) understand and are aware of the broad issues relevant to materials, including professional and ethical responsibilities, impact of materials engineering on society and environment, contemporary issues, and need for lifelong learning.

Learning Outcomes

The Materials Engineering major has the following learning outcomes:

- Application of knowledge of mathematics, natural science, and engineering to analysis of materials and other systems
- Learn and work independently
- Practice leadership and teamwork in and across disciplines
- Design of a system, component, or process to meet desired needs
- Effective oral, graphic, and written communication
- Identification, formulation, and solution of engineering problems

Materials Engineering Option

Preparation for the Major

Required: Chemistry and Biochemistry 20A, 20B, 20L; Civil and Environmental Engineering M20 or Computer Science 31 or Mechanical and Aerospace Engineering M20; Materials Science and Engineering 10, 90L; Mathematics 31A, 31B, 32A, 32B, 33A, 33B (or Mechanical and Aerospace Engineering 82); Physics 1A, 1B, 1C.

The Major

Required: Civil and Environmental Engineering 91 (or Mechanical and Aerospace Engineering 101), 108, Electrical and Computer Engineering 100, Materials Science and Engineering 104, 110, 110L, 120, 130, 131, 131L, 132, 143A, 150, 160; one upper-division mathematics course selected from Civil and Environmental Engineering 103, Electrical and Computer Engineering 102, Mathematics 132, Mechanical and Aerospace Engineering 182B, 182C; two laboratory courses (4 units) from Materials Science and Engineering 121L, 141L, 143L, 161L, or up to 2 units of 199; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; two capstone design courses (Materials Science and Engineering 140A and 140B); and one major field elective course (4 units) from Electrical and Computer Engineering 110, 131A, Materials Science and Engineering 105, 111, 112, 143A, or 162.

For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 22 or the GE Requirement web page.

Electronic Materials Option

Preparation for the Major

Required: Chemistry and Biochemistry 20A, 20B, 20L; Civil and Environmental Engineering M20 or Computer Science 31 or Mechanical and Aerospace Engineering M20; Materials Science and Engineering 10, 90L; Mathematics 31A, 31B, 32A, 32B, 33A, 33B (or Mechanical and Aerospace Engineering 82); Physics 1A, 1B, 1C.

The Major

Required: Electrical and Computer Engineering 100, 101A, 121B, Materials Science and Engineering 104, 110, 110L, 120, 121L, 122, 130, 131, 131L, 132, Mechanical and Aerospace Engineering 101; one upper-division mathematics course selected from Civil and Environmental Engineering 103, Electrical and Computer Engineering 102, Mathematics 132, Mechanical and Aerospace Engineering 182B, 182C; either Materials Science and Engineering 150 or 160 and one course (4 units) from Electrical and Computer Engineering 123A, 123B, Materials Science and Engineering 150, 160; 4 laboratory units from Materials Science and Engineering 141L, 161L, or up to 2 units of 199; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; two capstone design courses (Materials Science and Engineering 140A and 140B); and one major field elective course (4 units) from Electrical and Computer Engineering 110, 131A, Materials Science and Engineering 105, 111, 112, 143A, or 162.

For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 22 or the GE Requirement web page.

Graduate Study

For admission information, see Graduate Programs Admission on page 27.

The following introductory information is based on 2023-24 program requirements for UCLA graduate degrees. Complete program requirements are available at Program Requirements for UCLA Graduate Degrees. Students are subject to the detailed degree requirements as published in program requirements for the year in which they enter the program.

The Department of Materials Science and Engineering offers Master of Science (MS) and Doctor of Philosophy (PhD) degrees in Materials Science and Engineering.
Materials Science and Engineering MS

Areas of Study

There are five main areas in the MS program: ceramics and ceramic processing; computational materials science; electronic and optical materials; soft materials; and structural materials. Students may specialize in any one of the five areas, although most students are more interested in a broader education and select a variety of courses. Basically, students select courses that serve their interests best in regard to thesis research and job prospects.

Course Requirements

Thesis Plan. Nine courses are required, of which six must be graduate courses. The courses are to be selected from the following lists, although suitable substitutions can be made from other engineering disciplines or from chemistry and physics with the approval of the departmental graduate adviser. Two of the six graduate courses may be Materials Science and Engineering 598 (thesis research).

Comprehensive Examination Plan. Nine courses are required, six of which must be graduate courses, selected from the following lists with the same provisions listed under the thesis plan. Three of the nine courses may be upper-division courses.

Ceramics and ceramic processing: Materials Science and Engineering 121, 122, 143A, 151, 161, 162, 200, 201, 210, C211, 246D, 298.

Electronic and optical materials: Materials Science and Engineering 121, 122, 143A, 151, 161, 162, 200, 201, 210, 221, 222, 223, 298.

Soft materials: Materials Science and Engineering 121, 122, 143A, 251, 252, 253, CM280, 298.

As long as a majority of the courses taken are offered by the department, substitutions may be made with the consent of the departmental graduate adviser.

Undergraduate Courses. No lower-division courses may be applied toward graduate degrees. In addition, the following upper-division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199, Civil and Environmental Engineering 108, 199, Computer Science M152A, 152B, M171L, 199, Electrical and Computer Engineering 100, 101A, 102, 110L, M16L, 133A, M171L, 199, Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 140A, 140B, 141L, 150, 160, 161L, 199, Mechanical and Aerospace Engineering 102, 103, 105A, 105D, 199.

Thesis Plan

In addition to the course requirements, under the thesis plan students are required to write a thesis on a research topic in materials science and engineering supervised by the thesis adviser. An MS thesis committee approves the thesis.

Comprehensive Examination Plan

Consult the graduate adviser for details. If the comprehensive examination is failed, students may be reexamined once with the consent of the graduate adviser.

Materials Science and Engineering PhD

Major/Minor Fields or Subdisciplines

Ceramics and ceramic processing; computational materials science; electronic and optical materials; soft materials; structural materials.

Course Requirements

The basic program of study for the PhD degree in Materials Science and Engineering is built around one major field and one minor field. The major field has a scope corresponding to a body of knowledge contained in nine courses, at least six of which are graduate courses, plus the current literature in the area of specialization. The five major fields are each described in a PhD major field syllabus, which can be obtained in the department office. The minor field normally embraces a body of knowledge equivalent to three courses, at least two of which are graduate courses. Grades of B- or better, with a grade-point average of at least 3.33 in all courses included in the minor field, are required. If the student fails to satisfy the minor field requirements through coursework, a minor field examination may be taken (once only). The minor field is chosen to support the major field and is usually a subset of the major field.

There is no formal course requirement for the PhD degree and one may substitute coursework by examinations with the exception of three quarters of Materials Science and Engineering 282 to be taken on S/U basis within the first six quarters of the academic program. For coursework by examinations, the student must contact the instructor to request to take the final exam during the quarter the course is offered. Please note that coursework by examination does not fulfill MS degree course requirements for students transitioning from the PhD to MS program. It is recommended that students take courses to acquire the knowledge needed for the written and oral preliminary examinations.

Written and Oral Qualifying Examinations

During the first year of full-time enrollment in the PhD program, students take the oral preliminary examination that encompasses the body of knowledge in materials science equivalent to that expected of a bachelor’s degree. If students opt not to take courses, a written preliminary examination in the major field is required. Students may not take an examination more than twice.

After passing both preliminary examinations, students take the University Oral Qualifying Examination. The nature and content of the examination are at the discretion of the doctoral committee but ordinarily include a broad inquiry into the student’s preparation for research. The doctoral committee also reviews the prospectus of the dissertation at the oral qualifying examination.

Note: Doctoral Committees. A doctoral committee consists of a minimum of four members. Three members, including the chair, are inside members and must hold appointments in the department. The outside member must be a UCLA faculty member in another department. Faculty members holding joint appointments with the department are considered inside members.

Fields of Study

Ceramics and Ceramic Processing

The ceramics and ceramic processing field is designed for students interested in ceramics and glasses, including electronic materials. As in the case of metallurgy, primary and secondary fabrication processes such as vapor deposition, sintering, melt forming, or extrusion strongly influence the microstructure and properties of ceramic components used in structural, electronic, or biological applications. Formal course and research programs emphasize the coupling of processing treatments, microstructure, and properties.

Computational Materials

The computational materials area is designed for students with interests in the fields of theory, modeling, and simulation of materials behavior using computational methods. This is a cross-cutting area with applications in structural, electronic, optical, and soft materials. Topics under this area include advanced simulation algo-
rithms, machine learning methods, and data-driven approaches—all aimed at obtaining an improved understanding of materials behavior through computer simulation.

Electronic and Optical Materials

The electronic and optical materials field provides an area of study in the science and technology of electronic materials that includes semiconductors, optical ceramics, and thin films (metal, dielectric, and multilayer) for electronic and optoelectronic applications.

Course offerings emphasize fundamental issues such as solid-state electronic and optical phenomena, bulk and interface thermodynamics and kinetics, and applications that include growth, processing, and characterization techniques. Active research programs address the relationship between microstructure and nanostructure and electronic/optical properties in these materials systems.

Soft Materials

The soft materials area offers a field of study focusing on biomaterials, polymer science, and general organic materials. Students interested in this area take courses and carry out research with applications in biological devices, wearable electronics, organic solar cells, and various biomedical research approaches.

Structural Materials

The structural materials field is designed primarily to provide broad understanding of the relationships between processing, microstructure, and performance of various structural materials, including metals, intermetallics, ceramics, and composite materials. Research programs include material synthesis and processing, ion implantation-induced strengthening and toughening, mechanisms and mechanics of fatigue, fracture and creep, structure/property characterization, nondestructive evaluation, high-temperature stability, and aging of materials.

Facilities

Facilities in the Materials Science and Engineering Department include:

- Ceramic Processing Laboratory
- Class and Ceramics Research laboratories
- Mechanical Testing Laboratory
- Metallographic Sample Preparation Laboratory
- Microscopy laboratories with a transmission electron microscope (100 keV); access to several field-emission transmission electron microscopes (80–300 keV); and a scanning electron microscope equipped with a quantitative chemical/compositional analyzer, stereo microscope, microcameras, and metallurgical microscopes
- Nano-Materials Laboratory
- Organic Electronic Materials Processing Laboratory
- Semiconductor and Optical Characterization Laboratory
- Thin Film Deposition Laboratory, including molecular beam epitaxy and wafer bonders
- X-Ray Diffraction Laboratory
- X-Ray Photoelectron Spectroscopy and Atomic Force Microscopy Facility

Faculty Areas of Thesis Guidance

Professors

Anastassia N. Alexandrova, PhD (Utah State, 2005)
- New functional materials (heterogeneous catalysts, artificial metalloenzymes, alloys, quantum materials, qubits); electronic structure; chemical bonding

Alexander A. Balandin, PhD (Notre Dame, 1996)
- Electronic materials and devices; nanofabrication; quantum, topological, and chiral materials; Brillouin-Mandelstam-Raman light scattering spectroscopy; phonon thermal transport and phonon engineering; electronic noise in materials and devices; composites for electromagnetic interference shielding and thermal management; emerging quantum devices and technologies

Gregory P. Carman, PhD (Virginia Tech, 1991)
- Electromagnetoelasticity models and characterization; thin film shape memory, nanoscale multiferroics, magnetoelastics and piezoelectric materials

Jane P. Chang, PhD (MIT, 1998)
- Materials processing, gas-phase and surface reaction, plasma enhanced chemistries, atomic layer deposition, chemical microelectromechanical systems, and computational surface chemistry

Yong Chen, PhD (UC Berkeley, 1996)
- Nanoscale science and engineering, micro- and nano-fabrication, self-assembly phenomena, microscale and nanoscale electronic, mechanical, optical, and sensing devices, circuits and systems

Bruce S. Dunn, PhD (UCLA, 1974)
- Synthesis and characterization of electrochemical materials, energy storage, sol-gel materials and chemistry

Mark S. Goorsky, PhD (MIT, 1989)
- Electronic materials processing, strain relaxation in epitaxial semiconductors and device structures, high-resolution X-ray diffraction of semiconductors, ceramics, and high-strength alloys

Vijay Gupta, PhD (MIT, 1989)
- Experimental mechanics, fracture of engineering solids, mechanics of thin film and interfaces, failure mechanisms and characterization of composite materials, ice mechanics

Yu Huang, PhD (Harvard, 2003)
- Nanomaterial fabrication and development, bio-nano structures

Subramanian S. Iyer, PhD (UCLA, 1981)
- System scaling technology, advanced packaging and 3D integration, technologies and techniques for memory subsystem integration and neuromorphic computing

- Chemical and physical properties of nonmetallic archaeological materials; alteration processes in archaeological vitreous materials and pigments

Richard B. Kaner, PhD (U. Pennsylvania, 1984)
- Synthesis, characterization, and applications of superhard metals, conducting polymers, thermoelectrics and graphene

Xiaochun Li, PhD (Stanford, 2001)
- Sifactoring (science-driven manufacturing), superalloys by nanoparticles self-dispersion, scalable nanomanufacturing, smart manufacturing, additive manufacturing

Jaime Marian, PhD (UC Berkeley, 2002)
- Computational materials modeling and simulation in solid mechanics, irradiation damage, plasticity, phase transformations, thermodynamics and kinetics of alloy systems, algorithm and method development for bridging time and length scales and parallel computing applications

Ali Mosleh, PhD, NAE (UCLA, 1981)
- Reliability engineering, physics of failure modeling and system life prediction, resilient systems design, prognostics and health monitoring, hybrid systems simulation, theories and techniques for risk and safety analysis

Qibing Pei, PhD (Chinese Academy of Sciences, China, 1990)
- Electroactive polymers through molecular design and nanoelectronics for electronic devices and artificial muscles

Gaurav N. Sant, PhD (Purdue, 2003)
- Development and design of sustainable low-CO2 footprint materials for infrastructure construction applications

Sarah H. Tolbert, PhD (UC Berkeley, 1995)
- Self-organized nanostructured materials for energy storage, energy harvesting, nanomagnetics and nanoelectronics

Kang L. Wang, PhD (MIT, 1970)
- Nanoscale physics, materials and devices nanoelectronics, magnets and photonics, nonlinear interactions of correlated devices and nanosystems

Yimin (Morris) Wang, PhD (Johns Hopkins, 2003)
- Mechanical behavior of nanostructured metals and additively manufactured materials, laser-materials interactions, materials under extreme conditions, fusion science and technology, lithium-ion batteries and supercapacitors

Paul S. Weiss, PhD (UC Berkeley, 1986)
- Atomic-scale surface chemistry and physics, molecular devices, nano-lithography, biophysics and neuroscience, nanometer-scale electronics and storage, surface interactions, surface motion, dynamics, and direct manipulation, extending capabilities of scanning tunneling microscope, molecular-scale control and measurement of composition and properties in membranes

Ya-Hong Xie, PhD (UCLA, 1986)
- Physical properties and device application of graphene and other van der Waals materials; semiconductor physics, heterostructures, and devices; epitaxy of semiconductor thin films; nanofabrication

Jenn-Ming Yang, PhD (U. Delaware, 1986)
- Nanomechanical testing, nanostructured materials, ceramic and ceramic matrix composites, hybrid materials and composites, material synthesis and processing
Adjunct Assistant Professors
Magdalena Balonis, PhD (U. Aberdeen, Scotland, 2010)
Development of functional materials for extending the service life of concrete infrastructure, design of new cementation agents with reduced CO2 footprint, conservation and protection of cultural heritage
Marta Pozuelo, PhD (Complutense U. Madrid, Spain, 2004)
In situ nanomechanical characterization of metallic materials

Materials Science and Engineering Courses

Lower-Division Courses
10. Freshman Seminar: New Materials. (1) Seminar, one hour; outside study, two hours. Preparation: high school chemistry and physics. Not open to students with credit for course 104. Introduction to basic concepts of materials science and new materials vital to advanced technology. Letter grading.

110. Introduction to Materials Characterization A (Crystal Structure, Nanostructures, and X-Ray Scattering). (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: Chemistry 20A, 20B, 20L, Physics 1A. Corequisite: Physics 1B. General introduction to underlying science encompassing structure, properties, and fabrication of technologically important nanoscale systems. New phenomena that emerge in very small systems typically with feature sizes below few hundred nanometers explained using basic concepts from physics and chemistry. Letter grading.

Upper-Division Courses

Materials Science and Engineering Department / 109

110L. Introduction to Materials Characterization A Laboratory. (2) Laboratory, four hours; outside study, two hours. Enforced requisites: course 104. Experimental techniques and analysis of materials through X-ray scattering techniques; powder method, crystal structure determination, high-resolution X-ray diffraction methods; X-ray spectroscopy; design of materials characterization procedures. Letter grading.

111L. Introduction to Materials Characterization B Laboratory. (2) Laboratory, four hours; outside study, two hours. Enforced requisites: course 111. Experimental techniques and analysis of materials through electron microscopy. Letter grading.

C111. Introduction to Materials Characterization C (X-Ray Microscopy). (4) Formerly numbered 111.) Lecture, four hours; outside study, eight hours. Characterization of microstructure and microchemistry of materials; transmission electron microscopy; reciprocal lattice, electron diffraction, stereographic projection, direct observation of defects in crystals, replicas; scanning electron microscopy: emissive and reflective modes; chemical analysis; electron optics of both instruments. Concurrently scheduled with course C211. Letter grading.

C111L. Introduction to Materials Characterization B Laboratory. (2) Laboratory, four hours; outside study, two hours. Enforced requisites: course 111. Experimental techniques and analysis of materials through electron microscopy. Letter grading.

in conservation: optical and electron microscopy, X-ray scatter spectroscopy, electron diffraction, in-fra red spectroscopy, reflectance spectroscopy and multi-spectral imaging spectroscopy, chromatography, design of archaeological and ethnographic materials characterization procedures. Concurrently scheduled with course C212. Letter grading.

Ms. Kakouli (Sp)

120. Physics of Materials. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: courses 104, 110 (or Chemistry 113A). Instructional emphasis on physical, electrical, magnetic, and optical properties of solids. Free electron model, introduction to band theory and Schrödinger wave equation. Crystal bonding and lattice vibrations. Mechanisms and characterization of electrical conductivity, optical absorption, magnetic behavior, dielectric properties, and

Y. Yang (W)

121. Materials Science of Semiconductors. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 120. Structure and properties of elemental and compound semiconductors. Electronic and optical properties, defect chemistry, and doping. Electronic materials analysis techniques, including electrical, optical, and ion-beam techniques. Heterostructures, band-gap engineering, development of new materials for optoelectronic applications. Letter grading.

Ms. Huang (Sp)

121L. Materials Science of Semiconductors Laboratory. (2) Lecture, 30 minutes; discussion, 30 minutes; laboratory, two hours; outside study, three hours. Enforced requisite: course 121. Experiments conducted on materials characterization, including measurements of contact resistance, dielectric constant, and thin film biaxial modulus and CTE. Letter grading.

Mr. Goorsky (Sp)

122. Principles of Electronic Materials Processing. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 104. Description of basic semiconductor materials for device processing; preparation and characterization of silicon, III-V compounds, and films. Discussion of principles of CVD, MOCVD, LPE, and MBE; metals and dielectrics. Letter grading. Mr. Goorsky (W)

130. Phase Relations in Solids. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 130 or Chemistry 113A. Diffusion in metals and ionic solids, nucleation and growth theory; precipitation from solid solution, eutectoid decomposition, design of heat treatment processes of alloys, growth of intermediate phases, gas-solid reactions, design of oxidation-resistant alloys, recrystallization, and grain growth. Letter grading.

Mr. Dunn (W)

131L. Diffusion and Diffusion-Controlled Reactions. (Laboratory) Lecture, two hours; discussion, one hour; outside study, four hours. Enforced requisite: course 131. Design of heat-treating cycles and performing experiments to study interdiffusion, growth of intermediate phases, recrystallization, and grain growth in metals. Analysis of data. Comparison of results with theory. Letter grading.

Mr. Dunn (W)

131. Diffusion and Diffusion-Controlled Reactions. Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 130 or Chemistry 113A. Diffusion in metals and ionic solids, nucleation and growth theory; precipitation from solid solution, eutectoid decomposition, design of heat treatment processes of alloys, growth of intermediate phases, gas-solid reactions, design of oxidation-resistant alloys, recrystallization, and grain growth. Letter grading.

Mr. J-M. Yang (Sp)

140A. Materials Selection and Engineering Design. A (Electrical Engineering) (Laboratory) Lecture, two hours; laboratory, two hours; outside study, five hours. Enforced requisite: two courses from 132, 150, 160. Explicit guidance among myriad materials available for design in engineering. Properties and applications of steels, nonferrous alloys, polymeric, ceramic, and composite materials. Coatings. Materials selection, treatment, and serviceability emphasized as part of successful design. Design projects. Letter grading. Mr. J-M. Yang (Sp)

140B. Materials Selection and Engineering Design B. (Laboratory) Lecture, two hours; laboratory, two hours; outside study, five hours. Enforced requisite: course 140A. Explicit guidance among myriad materials available for design in engineering. Properties and applications of steels, nonferrous alloys, polymeric, ceramic, and composite materials. Coatings. Materials selection, treatment, and serviceability emphasized as part of successful design. Design projects. Letter grading. Mr. Dunn (Not offered 2023-24)

141L. Computer Methods and Instrumentation in Materials Science. (2) Laboratory, four hours. Preparation: knowledge of BASIC or C or assembly language. Limited to junior/senior Materials Science and Engineering majors. Interface and control techniques, real-time data acquisition and processing, computer-aided testing. Letter grading.

Mr. Goorsky (W)

143A. Mechanical Behavior of Materials. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 104, Mechanical and Aerospace Engineering 101. Plastic flow of metals under simple and combined loading, strain rate and temperature effects, fracture, microstructural effects, mechanical and thermal treatment of steel for engineering applications. Letter grading.

Mr. Marlan (W)

143L. Mechanical Behavior Laboratory. (2) Laboratory, four hours. Requisites: courses 100L, 110A (may be taken concurrently). Methods of characterizing mechanical behavior of various materials; elastic and plastic deformation, fracture toughness, fatigue, and creep. Letter grading.

Mr. Marlan (Not offered 2023-24)

150. Introduction to Polymers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Polymerization mechanisms, molecular weight and distribution, chemical structure and bonding, structure and properties, and their effects on physical properties. Glassy polymers, springy polymers, elastomers, adhesives. Fiber forming polymers, polymer processing technology, plastication. Letter grading. Mr. Pei (W)

160. Introduction to Ceramics and Glasses. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: courses 104. 130. Introduction to ceramics and glasses being used as engineering materials, processing techniques, and unique properties. Examples of design and control of properties for certain specific applications in engineering. Letter grading. Mr. Dunn (F)

161. Processing of Ceramics and Glasses. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Enforced requisite: course 160. Study of processes used in fabrication of ceramics and glasses for structural applications, optics, and electronics. Processing operations, including modern techniques of powder synthesis, greenware forming, sintering, glass melting. Microstructural properties relations in ceramics. Fracture analysis and design with ceramics. Letter grading.

Mr. Dunn (Not offered 2023-24)

162. Electronic Ceramics. (4) Lecture, four hours; outside study, eight hours. Requisites: course 104, Physics 1C. Utilization of ceramics in microelectronics; thick film and thin film resistors, capacitors, and substrates; optical design and inscription of electronic ceramics and packaging; magnetic ceramics; ferroelectric ceramics and electro-optic devices; optical waveguide applications and designs. Letter grading. Mr. Dunn (Not offered 2023-24)

CM163. Electrochemical Processes. (4) (Same as Chemical Engineering CM114.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 130 (or Mechanical and Aerospace Engineering 105A), Chemical Engineering 102B. Fundamentals of electrochemistry and engineering applications to industrial electrochemical processes. Primary emphasis on fundamental approaches to analyze electrochemical systems. Specific topics include electrochemical reactions on metal and semiconductor surfaces, electrodeposition, electrosless deposition, electrofuents, fuel cells, aqueous and non-aqueous batteries, solid-state electrochemistry. May be concurrently scheduled with course CM263. Letter grading.

170. Engaging Elements of Communication: Oral Communication. (2) Lecture, one hour; discussion, one hour; outside study, four hours. Comprehensive oral presentation and communication skills provided by building on strengths of individual personal styles in creation of positive interpersonal relations. Skill set prepares students for different types of academic and professional presentations for wide range of audiences. Learning environment is highly supportive and interactive as it helps students creatively and develop and greatly expand their effectiveness in their communication and presentation skills. Letter grading.

Mr. Xie (Not offered 2023-24)

171. Engaging Elements of Communication: Writing for Technical Community. (2) Lecture, one hour; discussion, one hour; outside study, four hours. Comprehensive written communication and application techniques specific to field of materials science and engineering. Students write review term paper in selected subject field of materials science and engineering from given set of journal publications of students and analyze through several crucial steps, including brainstorming, choosing title, coming up with outline, concise writing of abstract, conclusion, and final polishing. Other subjects include writing style, word choices, and grammar. Letter grading.

Mr. Xie (Not offered 2023-24)

CM180. Introduction to Biomaterials. (4) (Same as Bioengineering CM178.) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisite: course 104, or Chemistry 20L. Introduction to engineering materials used in medicine and dentistry for repair and/or restoration of damaged natural tissues. Topics include relationships between material properties, suitability to tissue repair, and process control, mechanical properties, cryo-based techniques, and biocompatibility. Concurrently scheduled with course CM280. Letter grading. Mr. Wu (Not offered 2023-24)

188. Special Courses in Materials Science and Engineering. Repeatable once for credit with topic or instructor change. Letter grading.

Mr. Dunn (Not offered 2023-24)
200. Principles of Materials Science I. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 120. Lecture, four hours; recitation, one hour; outside study, eight hours. Preparation: general chemistry, inorganic and organic chemistry, materials science. Principles and methods of characterization of microstructure and microchemistry of materials; transmission electron microscopy; reciprocal lattice, electron diffraction, stereographic projection, direct observation of defects in crystals, replicas; scanning electron microscopy; emissive and reflective modes; chemical analysis; electron optics of both instruments. Concurrently scheduled with course C111. Letter grading. Mr. Y. Yang (F)

201. Principles of Materials Science II. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 131. Lecture, four hours; discussion, one hour; outside study, seven hours. Preparation: general chemistry, inorganic and organic chemistry, materials science. Principles and methods of characterization of microstructure and microchemistry of materials; transmission electron microscopy; reciprocal lattice, electron diffraction, stereographic projection, direct observation of defects in crystals, replicas; scanning electron microscopy; emissive and reflective modes; chemical analysis; electron optics of both instruments. Concurrently scheduled with course C111. Letter grading. Ms. Kakoulli (Sp)

216. Science of Conservation Materials and Methods I. (4) Formerly numbered M214.) Lecture, three hours. Recommended preparation: basic knowledge of general chemistry and materials science. Introduction to materials and techniques of rock art, wall paintings (including painted surfaces on cement and composite decorative architectural surfaces), and mosaics. Archaeological and ethnographic context, techniques, and materials. Pigments, colorants, and binding media. Chemical, optical, and structural properties. Relationship between composition (chemistry), structure (crystals, molecular arrangement, and microstructure), and properties explained using basic concepts from physics and chemistry. Intrinsic attributes and resistance to weathering. Causes, sources, and mechanisms of deterioration (physical, chemical, and biochemical). Letter grading.
Ms. Kakoulli (F)

Ms. Kakoulli (W)

223. Materials Science of Thin Films. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Preparation: courses 120, 131. Fabrication, structure, and property correlations of thin films used in microelectronics for data and information processing. Topics include fundamental aspects of materials, stress and strain, electromigration, phase changes and kinetics, reliability. Letter grading.
Mr. Goorsky

Mr. Goorsky (W)

255. Materials Science of Surfaces. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 120, Chemistry 113A. Letter grading.
Mr. Xie

243A. Fracture of Structural Materials. (4) Lecture, four hours; laboratory, two hours; outside study, four hours. Preparation: course 143A. Engineering and scientific aspects of crack nucleation, slow crack growth, and unstable fracture. Fracture mechanics, dislocation models, fatigue, fracture in reactive environments, alloy development, fracture-safe design. Letter grading.
Mr. J-M. Yang (W, even years)

243C. Dislocations and Strengthening Mechanisms of Ceramics. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Preparation: course 143A. Elastic and plastic behavior of crystals, geometry, mechanics, and interaction of dislocations, mechanisms of yielding, work hardening, and other strengthening. Letter grading.
Mr. Xie (F, odd years)

246A. Mechanical Properties of Nonmetallic Crystalline Solids. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Preparation: course 160. Materials and environmental factors affecting mechanical properties of nonmetallic crystalline solids, including atomic bonding and structure, atomic-scale defects, microstructural features, residual stresses, temperature, stress state, strain rate, size and surface conditions. Letter grading.
Mr. Dunn (W, even years)

246B. Structure and Properties of Glass. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Preparation: course 146. Structure of amorphous solids and glasses. Conditions of glass formation and theories of glass structure. Mechanical, electrical, and optical properties of glass and relationship to structure. Letter grading.
Mr. Dunn (W, even years)

246D. Electronic and Optical Properties of Ceramics. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Preparation: course 160. Principles governing electronic properties of ceramic single crystals and glasses and effects of processing and microstructure on these properties. Electronic
247. Nanoscale Materials: Challenges and Opportunities. (4) Lecture, four hours; discussion, eight hours. Limited to graduate students. Literature surveys of up-to-date subjects in novel materials and their potential applications, including nanoscale materials and biomaterials. Letter grading. Mr. Y. Yang (Sp)

248. Materials and Physics of Solar Cells. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Comprehensive introduction to materials and physics of photovoltaic cell, covering basic physics of semiconductors in photovoltaic devices, physical models of cell operation, characteristics and design of common types of solar cells, and approaches to increasing solar cell efficiency. Recent progress in solar cells, such as organic solar cell, thin-film solar cells, and multiple junction solar cells provided to increase student knowledge. Tour of research laboratory included. Letter grading. Mr. S. Huang (W)

250B. Advanced Composite Materials. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Preparation: course 250A. Introduction to organic and inorganic composites, including polymer, ceramic, and metal composites. Preparation: course 200. Introduction to properties and characterizations, and real-life applications. Letter grading. Mr. Pei (F)

251. Chemistry of Soft Materials. (4) Lecture, four hours. Introduction to organic soft materials, including essential basic organic chemistry and polymer chemistry. Topics include three main categories of soft materials: organic molecules, synthetic polymers, and biomolecules and biomaterials. Extensive description and discussion of structure-property relationship, synthesis, processing, and manufacturing techniques, and preparation methods for various soft materials. Letter grading. Mr. Y. Yang

252. Organic Polymer Electronic Materials. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Preparation: knowledge of introductory organic chemistry and polymer science. Introduction to organic electronic materials with emphasis on materials chemistry and processing. Topics include conjugated polymers; heavily doped, highly conducting polymers; applications as processable metals and in various electrical, optical, and electrochemical devices. Synthesis of semiconductor polymers for organic photovoltaics, solar cells, thin-film transistors. Introduction to emerging field of organic electronics. Letter grading. Mr. Pei (F)

253. Bioinspired Materials. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Broad overview of most recent advances in bioinspired materials and biomaterials, covering natural materials, biomimicry, and bioinspired artificial materials, with emphasis on synthesis, processing, hierarchical design, and assembly from nano- to macro-scale, properties and characterizations, and real-life applications. Letter grading.

261. Risk Analysis for Engineers and Scientists. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Topics include definition and fundamental concepts of risk, sociotechnical context of risk assessment and risk management, perception and reality of risk, risk-informed decision-making, domain of application (safety, health, security, economy, and environment), principal methods of risk assessment, including overview of probability and statistics, how to identify risk scenarios, techniques for risk modeling and sensitivity analysis, examples of risk assessment of engineered systems (e.g., space and aviation, nuclear power, petrochemical plants), other applications (risk of natural disasters, financial risk, natural hazards risk). Letter grading.

CM263. Electrochemical Processes. (4) (Same as Chemical Engineering CM214.) Lecture, four hours; discussion, one hour; outside study, seven hours. Preparation: course 200. Introduction to electrochemical phenomena and applications. Letter grading. Mr. Marian (F)

270. Computer Simulations of Materials. (4) Lecture, four hours; outside study, eight hours. Introduction to modern methods of computational modeling in materials science. Topics include basic statistical mechanics, classical molecular dynamics, and Monte Carlo methods, with emphasis on understanding basic physical ideas and learning to design, run, and analyze computer simulations of materials. Use of examples from current literature to show how these methods can be applied to understanding phenomena in materials science. Hands-on computer experiments. Letter grading. Mr. Marian (F)

271. Electronic Structure of Materials. (4) Lecture, four hours; outside study, eight hours. Preparation: basic knowledge of quantum mechanics. Recommended requisite: course 200. Introduction to modern first-principles electronic structure calculations for various types of modern materials. Properties of electronic and interatomic bonding in molecules, crystals, and liquids, with emphasis on practical methods for solving Schrödinger equation and using it to calculate physical properties such as elastic constants, phonon properties, binding energies, vibrational frequencies, electronic band gaps, and band structures, properties of defects, surfaces, interfaces, and magnetism. Extensive hands-on experience with modern density-functional theory code. Letter grading.

272. Theory of Nanomaterials. (4) Lecture, four hours; outside study, eight hours. Strongly recommended requisite: course 200. Introduction to properties and applications of nanomaterials, with emphasis on understanding of basic principles that distinguish nanostructures (with feature size below 100 nm) from more common microstructured materials. Explanation of new phenomena that emerge only in very small systems, including essential concepts from quantum mechanics and thermodynamics. Topics include structure and electronic properties of quantum dots, wires, nanotubes, and multilayers, self-assembly on surfaces and in liquid solutions, mechanical properties of nanostructured metamaterials, molecular electronics, spin-based electronics, and proposed realizations of quantum computing. Discussion of current and future directions of this rapidly growing field using examples from modern scientific literature. Letter grading. Mr. Marian (W)

CM280. Introduction to Biomaterials. (4) (Same as Bioengineering CM278.) Lecture, three hours; discussion, two hours; outside study, seven hours. Preparation: course 104, or Chemistry 20A, 20B, and 20L. Engineering materials used in medicine and dentistry for repair and/or restoration of damaged natural tissues. Topics include relationships between material properties, suitability to task, surface chemistry, processing and treatment methods, and biocompatibility. Concurrently scheduled with course CM180. Letter grading. Mr. Wu (Not offered 2003-24)

282. Exploration of Advanced Topics in Materials Science and Engineering. (2) Lecture, one hour; discussion, one hour; outside study, four hours. Researchers from leading research institutions around world deliver lectures on advanced research topics in materials science and engineering. Student groups present summary previews of topics prior to lecture. Course discussions follow each presentation. May be repeated for credit. S/U grading. Mr. J-M. Yang

296. Seminar: Advanced Topics in Materials Science and Engineering. (2) Seminar, two hours; outside study, four hours. Advanced study and analysis of topics in materials science and engineering. Discussion of current research and literature in research specialty of faculty members teaching course. May be repeated for credit. S/U grading.

M297B. Material Processing in Manufacturing. (4) (Same as Mechanical and Aerospace Engineering M297B.) Lecture, four hours; outside study, eight hours. Enforced requisite: Mechanical and Aerospace Engineering 183A. Thermodynamics, principles of material processing; phase equilibria and transitions, transport mechanisms of heat and mass, nucleation and growth of microstructure. Applications in casting/solidification, welding, consolidation, chemical vapor deposition, infiltration, composites. Letter grading.

M297C. Composites Manufacturing. (4) (Same as Mechanical and Aerospace Engineering M297C.) Lecture, four hours; outside study, eight hours. Preparation: course 151. Preparation: Mechanical and Aerospace Engineering 183C. Matrix materials, fibers, fiber preforms, elements of processing, autoclave/compression molding, filament winding, pulpusion, resin transfer molding, automation, material removal and assembly, metal and ceramic matrix composites, quality assurance. Letter grading.

298. Seminar: Engineering. (2 to 4) Seminar, to be arranged. Limited to graduate materials science and engineering students. Seminars may be organized on advanced technical fields. If appropriate, field trips may be arranged. May be repeated with topic change. Letter grading.

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: apprentice person employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. (F,W,Sp)

596. Directed Individual or Tutorial Studies. (2 to 8) Tutorial, to be arranged. Limited to graduate materials science and engineering students. Petition for special enrollment may be obtained from Assistant Dean, Graduate Studies. Supervised investigation of advanced technical problems. S/U grading.

597A. Preparation for MS Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate materials science and engineering students. Reading and preparation for MS comprehensive examination. S/U grading.

597B. Preparation for PhD Preliminary Examinations. (2 to 16) Tutorial, to be arranged. Limited to graduate materials science and engineering students. Preparation for oral qualifying examination, including preliminary research on dissertation. S/U grading.

597C. Preparation for PhD Oral Qualifying Examination. (2 to 16) Tutorial, to be arranged. Limited to graduate materials science and engineering students. Preparation for oral qualifying examination, including preliminary research on dissertation. S/U grading.

598. Research for and Preparation of MS Thesis. 3 to 6. Preparation for and to be used in research leading to MS thesis. S/U grading.

599. Research for and Preparation of PhD Dissertation. 3 to 6. Preparation for and to be used in research leading to PhD dissertation. S/U grading.
Mechanical and Aerospace Engineering

48-121 Engineering IV
Box 951597
Los Angeles, CA 90095-1597
310-825-7793

Department e-mail
Department website

Xiaolin Zhong, PhD, Chair
Yongjie Hu, PhD, Vice Chair,
Undergraduate Education
Jonathan B. Hopkins, PhD, Vice Chair,
Graduate Education
Chang-Jin (CJ) Kim, PhD, Vice Chair,
Academic Personnel

Faculty Roster

Professors
Andrea L. Bertozzi, PhD (Betsy Wood Knapp Professor of Innovation and Creativity)
Robert N. Candler, PhD
Gregory P. Carman, PhD (Ben Rich–Lockheed Martin Professor of Advanced Aerospace Technologies)
Yong Chen, PhD
Eric Pei-Yu Chiu, PhD
Jeffrey D. Eldredge, PhD
Timothy S. Fisher, PhD (John P. and Claudia H. Schauerman Endowed Professor of Engineering)
Elisa Franco, PhD
Rajit Gadh, PhD
Vijay Gupta, PhD
Dennis W. Hong, PhD
Jonathan B. Hopkins, PhD
Yongjie Hu, PhD
Tetsuya Iwasaki, PhD
Y. Sungtaek Ju, PhD
Ann R. Karagozian, PhD (Collins Aerospace Term Professor of Innovation)
H. Pirouz Kavehpour, PhD
Chang-Jin (CJ) Kim, PhD (Volgenau Endowed Professor of Engineering)
Adrienne G. Lavine, PhD
Xiaochun Li, PhD (Raytheon Company Professor of Mechanical Engineering)
Jaime Marian, PhD
Robert T. M'Closkey, PhD
Ali Mosleh, PhD, NAЕ (Evalyn Knight Professor of Engineering)
Sriram Narasimhan, PhD
Laurent G. Pilon, PhD
Jacob Rosen, PhD
Veronica J. Santos, PhD
Jason L. Speyer, PhD
Kunihiko (Sam) Taira, PhD
Tsu-Chin Tsao, PhD
Xiaolin Zhong, PhD

Professors Emeriti
Mohamed A. Abdou, PhD

Oddvar O. Bendiksen, PhD
Vijay K. Dhir, PhD
Peretz P. Friedmann, ScD
Naar M. Ghoniem, PhD
James S. Gibson, PhD
H. Thomas Hahn, PhD (Raytheon Company Professor Emeritus of Manufacturing Engineering)
Chih-Ming Ho, PhD (Ben Rich–Lockheed Martin Professor Emeritus of Aeronautics)
J. John Kim, PhD (Rockwell Collins Professor Emeritus of Engineering)
Ajit K. Mal, PhD
Anthony F. Mills, PhD
D. Lewis Mingori, PhD
Peter A. Monkewitz, PhD
Philip F. O’Brien, MS
Owen I. Smith, PhD
Russell A. Westmann, PhD
Daniel C.H. Yang, PhD

Associate Professors
Jean-Pierre Hubschman, MD, in Residence
M. Khalid Jawed, PhD
Lihua Jin, PhD
Raymond M. Spearrin, PhD

Assistant Professors
Tyler R. Citlés, PhD
Artur R. Davoyan, PhD
Neil Y.C. Lin, PhD
Brett T. Lopez, PhD
Ankur M. Mehta, PhD

Lecturers
Ravesh C. Amar, PhD
Amiya K. Chatterjee, PhD
Robert J. Kinsey, PhD
Damian M. Tooley, PhD

Adjunct Professors
Portonoovo S. Ayyaswamy, PhD
S. Amir Faghi, PhD
Dan M. Goebel, PhD
Vinay K. Goyal, PhD
Wilbur J. Marner, PhD
Jayathy Y. Murthy, PhD
Abdon E. Sepulveda, PhD
Richard E. Wirz, PhD

Adjunct Associate Professor
Audrey P. O’Neal, PhD

Overview

The Department of Mechanical and Aerospace Engineering offers curricula in Aerospace Engineering and Mechanical Engineering at both the undergraduate and graduate levels. The scope of the departmental research and teaching program is broad, encompassing design, robotics, and manufacturing; fluid mechanics; micro-nano engineering; structural and solid mechanics; systems control; and thermal science and engineering. The applications of mechanical and aerospace engineering are quite diverse, including aircraft, spacecraft, automobiles, energy and propulsion systems, robotics, machinery, manufacturing and materials processing, microelectronics, biological systems, and more.

At the undergraduate level, the department offers accredited programs leading to BS degrees in Aerospace Engineering and in Mechanical Engineering. At the graduate level, the department offers programs leading to MS and PhD degrees in Mechanical Engineering and in Aerospace Engineering. An MS in Manufacturing Engineering is also offered.

Department Mission

The mission of the Mechanical and Aerospace Engineering Department is to educate the nation’s future leaders in the science and art of mechanical and aerospace engineering. Further, the department seeks to expand the frontiers of engineering science and to encourage technological innovation while fostering academic excellence and scholarly learning in a collegial environment.

Undergraduate Study

Aerospace Engineering BS

The aerospace engineering program is concerned with the design and construction of various types of fixed-wing and rotary-wing (helicopters) aircraft used for air transportation and national defense. It is also concerned with the design and construction of spacecraft, the exploration and utilization of space, and related technological fields.

Aerospace engineering is characterized by a very high level of technology. The aerospace engineer is likely to operate at the forefront of scientific discoveries, often stimulating these discoveries and providing the inspiration for the creation of new scientific concepts. Meeting these demands requires the imaginative use of many disciplines, including fluid mechanics and aerodynamics, structural mechanics, materials and aeroelasticity, dynamics, control and guidance, propulsion, and energy conversion.

The aerospace engineering program is accredited by the Engineering Accreditation Commission of ABET.

Capstone Major

The Aerospace Engineering major is a designated capstone major. Within their capstone courses, Aerospace Engineering students are exposed to the conceptual and design phases for aircraft development and produce a structural design of a component, such as a lightweight aircraft wing. Graduates should be able to apply their knowledge of mathematics, science, and engineering in technical systems; design a
system, component, or process to meet desired needs; function as productive members of a team; identify, formulate, and solve engineering problems; and communicate effectively, both orally and in writing.

Educational Objectives

In consultation with its constituents, the Mechanical and Aerospace Engineering Department has set its educational objectives as follows: within a few years after graduation, the students will be successful in careers in aerospace or mechanical or other engineering fields, and/or in graduate studies in aerospace or mechanical or other engineering fields, and/or in further studies in other fields such as medicine, business, and law.

Learning Outcomes

The Aerospace Engineering major has the following learning outcomes:

- Application of knowledge of mathematics, science, and engineering
- Function as a productive member of a team that considers multiple aspects of an engineering problem
- Design of a system, component, or process to meet desired needs
- Effective oral and written communication
- Identification, formulation, and solution of engineering problems

Preparation for the Major

Required: Chemistry and Biochemistry 20A, 20B, 20L; Mathematics 31A, 31B, 32A, 32B, 33A; Mechanical and Aerospace Engineering M20 (or Computer Science 31), 82; Physics 1A, 1B, 1C, 4AL, 4BL.

The Major

Required: Mechanical and Aerospace Engineering 1, 101, 102, 103, 105A, 105D, 107, 150A, 157, 166A, 171A; two departmental breadth courses (Electrical and Computer Engineering 100 and Materials Science and Engineering 104)—if one or both of these courses are taken as part of the technical breadth requirement, students must select a replacement upper-division course or courses from the department—except for Mechanical and Aerospace Engineering 156A—or, by petition, from outside the department; one of the following two tracks (16 units): aeronautics (150B, C150P, 154A, 154S) or space (C150R, 161A, 161B, 161C); three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; one capstone design course (Mechanical and Aerospace Engineering 157A); one major field elective course (4 units) from the track not chosen (150B or C150R or 161A) and one major field elective course (4 units) from Mechanical and Aerospace Engineering 150B, C150R, 154S, 161A, 161B, 161C (unless taken as a required course), or from 94, 131A, C131G, 133A, 135, C136, C137, C138, CM140, 150C, C150G, 154B, 155, C156B, 162A, 162B, C163A, C163B, C163C, 166C, M168, 169A, 171B, 172, 174, C175A, 181A, 182B, 182C, 183A, M183B, C183C, 185, C186, C187L.

For information on UC, school, and general education requirements, see *Requirements for BS Degrees* on page 22 or the *GE Requirement* web page.

Mechanical Engineering BS

The mechanical engineering program is designed to provide basic knowledge in thermodynamics, fluid mechanics, heat transfer, solid mechanics, mechanical design, dynamics, control, mechanical systems, manufacturing, and materials. The program includes fundamental subjects important to all mechanical engineers.

The mechanical engineering program is accredited by the Engineering Accreditation Commission of ABET.

Capstone Major

The Mechanical Engineering major is a designated capstone major. Within their capstone courses, Mechanical Engineering students work in teams to propose, design, analyze, and build a mechanical or electromechanical device. Graduates should be able to apply their knowledge of mathematics, science, and engineering in technical systems; design a system, component, or process to meet desired needs; function as productive members of a team; identify, formulate, and solve engineering problems; and communicate effectively, both orally and in writing.

Educational Objectives

In consultation with its constituents, the Mechanical and Aerospace Engineering Department has set its educational objectives as follows: within a few years after graduation, the students will be successful in careers in aerospace or mechanical or other engineering fields, and/or in graduate studies in aerospace or mechanical or other engineering fields, and/or in further studies in other fields such as medicine, business, and law.

Learning Outcomes

The Mechanical Engineering major has the following learning outcomes:

- Application of knowledge of mathematics, science, and engineering
• Function as a productive member of a team that considers multiple aspects of an engineering problem
• Design of a system, component, or process to meet desired needs
• Effective oral and written communication
• Identification, formulation, and solution of engineering problems

Preparation for the Major
Required: Chemistry and Biochemistry 20A, 20B, 20L; Mathematics 31A, 31B, 32A, 32B, 33A; Mechanical and Aerospace Engineering M20 (or Computer Science 31), 82, 94; Physics 1A, 1B, 1C, 4AL, 4BL.

The Major
Required: Electrical and Computer Engineering 110L, Mechanical and Aerospace Engineering 101, 102, 103, 105A, 105D, 107, 131A or 133A, 156A, 157, 162A, 171A, 183A (or M183B); two departmental breadth courses (Electrical and Computer Engineering 100 and Materials Science and Engineering 104—if one or both of these courses are taken as part of the technical breadth requirement, students must select a replacement upper-division course or courses from the department—except for Mechanical and Aerospace Engineering 166A—or, by petition, from outside the department); three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; two capstone design courses (Mechanical and Aerospace Engineering 162D, 162E); and two major field elective courses (8 units) from Mechanical and Aerospace Engineering 131A (unless taken as a required course), C131G, 133A (unless taken as a required course), 135, C136, C137, C138, CM140, 150A, 150B, 150C, C150G, C150P, C150R, 154B, 154S, 157A, 161A, 161B, 161C, C162B, C163A, C163B, C163C, 166C, M168, 169A, 171B, 172, 174, C175A, 181A, 182B, 182C, 183A (unless taken as a required course), M183B (unless taken as a required course), C183C, 185, C186, C187L.

For information on UC, school, and general education requirements, see Requirements for BS Degrees on page 22 or the GE Requirement web page.

Graduate Study
For admission information, see Graduate Programs Admission on page 27.

The following introductory information is based on 2023-24 program requirements for UCLA graduate degrees. Complete program requirements are available at Program Requirements for UCLA Graduate Degrees. Students are subject to the detailed degree requirements as published in program requirements for the year in which they enter the program.

The Department of Mechanical and Aerospace Engineering offers the Master of Science (MS) degree in Manufacturing Engineering, Master of Science (MS) and Doctor of Philosophy (PhD) degrees in Aerospace Engineering, and Master of Science (MS) and Doctor of Philosophy (PhD) degrees in Mechanical Engineering.

All new MS and PhD students who are pursuing an MS degree in the Mechanical and Aerospace Engineering Department must meet with their advisers in their first term at UCLA. The goal of the meeting is to discuss the students’ plans for satisfying the MS degree requirements. Students should obtain an MS planning form from the department. Student Affairs Office and return it with their advisers’ signature by the end of the first term.

Aerospace Engineering MS and Mechanical Engineering MS

Course Requirements
Students may select either the thesis plan or comprehensive examination plan. At least nine courses (and 36 units) are required, of which at least five must be graduate courses. In the thesis plan, seven of the nine must be formal courses, including at least four from the 200 series. The remaining two may be 598 courses involving work on the thesis. In the comprehensive examination plan, no units of 500-series courses may be applied toward the minimum course requirement. Courses taken before the award of the bachelor’s degree may not be applied toward a graduate degree at UCLA. The courses should be selected so that the breadth requirements and the requirements at the graduate level are met. The breadth requirements are only applicable to students who do not have a BS degree from an ABET-accredited aerospace or mechanical engineering program.

Undergraduate Courses. No lower-division courses may be applied toward graduate degrees. In addition, the following upper-division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199, Civil and Environmental Engineering 108, 199, Computer Science M152A, 152B, M171L, 199, Electrical and Computer Engineering 100, 101A, 102, 110L, M116L, 133A, M171L, 199, Materials Science and Engineering 110, 120, 130, 131L, 132, 140A, 140B, 141L, 150, 160, 161L, 199, Mechanical and Aerospace Engineering 101, 102, 103, 105A, 105D, 107, 188, 194, 199.

Aerospace Engineering
Breadth Requirements. Students are required to take at least three courses from the following five categories: (1) Mechanical and Aerospace Engineering 154A or 154B or 154S, (2) 150B or C150P, (3) 155 or 166A or 169A, (4) 161A or 171A.

Mechanical Engineering
Breadth Requirements. Students are required to take at least three courses from the following five categories: (1) Mechanical and Aerospace Engineering 162A or 169A or 171A, (2) 150A or 150B, (3) 131A or 133A, (4) 156A, (5) 162D or 183A.

Comprehensive Examination Plan
The comprehensive examination is required in either written or oral form. A committee of at least three faculty members, with at least two members from within the department, and chaired by the academic adviser, is established to administer the examination. Students may, in consultation with their adviser and the MS committee, select one of the following options for the comprehensive examination: (1) take and pass the first part of the PhD written qualifying examination (formerly referred to as the preliminary examination) as the comprehensive examination, (2) conduct a research or design project and submit a final report to the MS committee, or (3) take and pass three comprehensive examination questions offered in association with three mechanical and aerospace engineering graduate courses. Contact the department Student Affairs Office for more information.

Thesis Plan
The thesis must describe some original piece of research that has been done under the supervision of the thesis committee. Students should normally start to plan the thesis at least one year before the award of the MS degree is expected. There is no examination under the thesis plan.

Manufacturing Engineering MS

Areas of Study
Consult the department.

Course Requirements
Students may select either the thesis plan or comprehensive examination plan. At least nine courses (and 36 units) are required, of which at least five must be graduate courses. In the thesis plan, seven of the nine must be formal courses, including at least four from the 200 series. The remaining two may be 598 courses involving work.
on the thesis. In the comprehensive examination plan, no units of 500-series courses may be applied toward the minimum course requirement. Courses taken before the award of the bachelor’s degree may not be applied toward a graduate degree at UCLA. Choices may be made from the following major areas:

Undergraduate Courses. No lower-division courses may be applied toward graduate degrees. In addition, the following upper-division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199, Civil and Environmental Engineering 108, 199, Computer Science M152A, 152B, M171L, 199, Electrical and Computer Engineering 100, 101A, 102, 110L, M116L, 133A, M171L, 199, Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 141L, 150, 160, 161L, 199, Mechanical and Aerospace Engineering 101, 102, 103, 105A, 105D, 107, 188, 194, 199.

Upper-Division Courses. Students are required to take at least three courses from the following: Mechanical and Aerospace Engineering M168, 174, 183A, 185.

Graduate Courses. Students are required to take at least three courses from the following: Mechanical and Aerospace Engineering C263A, C263C, 263D, C296A, M297C.

Additional Courses. The remaining courses may be taken from other major fields of study in the department or from the following: Architecture and Urban Design 227D, Computer Science 241B, Management 241A, Management-PhD 241A, 241B, Mathematics 120A, 120B.

Comprehensive Examination Plan

The comprehensive examination is required in either written or oral form. A committee of at least three faculty members, with at least two members from within the department, and chaired by the academic adviser, is established to administer the examination. Students may, in consultation with their adviser and the MS committee, select one of the following options for the comprehensive examination:

1. take and pass the first part of the PhD written qualifying examination (formerly referred to as the preliminary examination) as the comprehensive examination,
2. conduct a research or design project and submit a final report to the MS committee, or
3. take and pass three comprehensive examination questions offered in association with three graduate courses. Contact the department Student Affairs Office for more information.

Thesis Plan

The thesis must describe some original piece of research that has been done under the supervision of the thesis committee. Students would normally start to plan the thesis at least one year before the award of the MS degree is expected. There is no examination under the thesis plan.

Aerospace Engineering PhD and Mechanical Engineering PhD

Major Fields or Subdisciplines

Design, robotics, and manufacturing (mechanical engineering only); fluid mechanics; micro-nano engineering; structural and solid mechanics; systems and control; thermal science and engineering.

PhD students may propose ad hoc major fields, which must differ substantially from established major fields and satisfy one of the following two conditions: (1) the field is interdisciplinary in nature or (2) the field represents an important research area for which there is no established major field in the department (condition 2 most often applies to recently evolving research areas or to areas for which there are too few faculty members to maintain an established major field).

Students in an ad hoc major field must be sponsored by at least three faculty members, at least two of whom must be from the department.

Course Requirements

The basic program of study for the PhD degree is built around major and minor fields. The established major fields are listed above, and a detailed syllabus describing each PhD major field can be obtained from the Student Affairs Office.

The program of study for the PhD requires students to perform original research leading to a doctoral dissertation and to master a body of knowledge that encompasses material from their major field and breadth material from outside the major field. The body of knowledge should include (1) six major field courses, at least four of which must be graduate courses; (2) one minor field; (3) three additional courses, at least two of which must be graduate courses, that enhance the study of the major or minor field.

The major field syllabus advises students as to which courses contain the required knowledge, and students usually prepare for the written qualifying examination (formerly referred to as the preliminary examination) by taking these courses. However, students can acquire such knowledge by taking similar courses at other universities or even by self-study.

The minor field embraces a body of knowledge equivalent to three courses, at least two of which must be graduate courses. Minor fields are often subsets of major fields, and minor field requirements are then described in the syllabus of the appropriate major field. Established minor fields with no corresponding major field can also be used, such as applied mathematics and applied plasma physics and fusion engineering. Also, an ad hoc field can be used in exceptional circumstances, such as when certain knowledge is desirable for a program of study that is not available in established minor fields.

Grades of B– or better, with a grade-point average of at least 3.33 in all courses included in the minor field, and the three additional courses mentioned above are required. If students fail to satisfy the minor field requirements through coursework, a minor field examination may be taken (once only).

Written and Oral Qualifying Examinations

After mastering the body of knowledge defined in the major field, students take a written qualifying (preliminary) examination covering this knowledge. Students must have been formally admitted to the PhD program or admitted subject to completion of the MS degree by the end of the term following the term in which the examination is given. The examination must be taken within the first two calendar years from the time of admission into the PhD program. Students must be registered during the term in which the examination is given and be in good academic standing (minimum GPA of 3.25). The student’s major field proposal must be completed prior to taking the examination. Students may not take an examination more than twice. Students in an ad hoc major field must pass a written qualifying examination that is approximately equivalent in scope, length, and level to the written qualifying examination for an established major field.

After passing the written qualifying examination, students take the University Oral Qualifying Examination within four calendar years from the time of admission into the PhD program. The nature and content of the examination are at the discretion of the doctoral committee but include a review of the dissertation prospectus and may include a broad inquiry into the student’s preparation for research.

Note: Doctoral Committees. A doctoral committee consists of a minimum of four members. Three members, including the chair, are inside members and must hold appointments in the department. The outside member must be a UCLA faculty member in another department.
Fields of Study

Design, Robotics, and Manufacturing

The program is developed around an integrated approach to design, robotics, and manufacturing. It includes research on manufacturing and design aspects of mechanical systems, material behavior and processing, robotics and manufacturing systems, CAD/CAM theory and applications, computational geometry and geometrical modeling, composite materials and structures, automation and digital control systems, microdevices and nanodevices, radio frequency identification (RFID), and wireless systems.

Fluid Mechanics

The graduate program in fluid mechanics includes experimental, numerical, and theoretical studies related to a range of topics in fluid mechanics, such as turbulent flows, hypersonic flows, microscale and nanoscale flow phenomena, aeroacoustics, bio-fluid mechanics, chemically reactive flows, chemical reaction kinetics, numerical methods for computational fluid dynamics (CFD), and experimental methods. The educational program for graduate students provides a strong foundational background in classical incompressible and compressible flows, while providing elective breadth courses in advanced specialty topics such as computational fluid dynamics, microfluidics, biofluid mechanics, hypersonics, reactive flow, fluid stability, turbulence, and experimental methods.

Micro-Nano Engineering

The micro-nano engineering field focuses on science and engineering issues ranging in size from nanometers to millimeters and includes both experimental and theoretical studies covering fundamentals to applications. The study topics include microscience, top-down and bottom-up nanofabrication, microscale/microfabrication/microfabrication technologies, molecular fluidic phenomena, nanoscale/microscale material processing, biomolecular signatures, heat transfer at the nanoscale, and system integration. The program is highly interdisciplinary in nature.

Structural and Solid Mechanics

The solid mechanics program features theoretical, numerical, and experimental studies, including fracture mechanics and damage tolerance, micromechanics with emphasis on technical applications, wave propagation and nondestructive evaluation, mechanics of composite materials, mechanics of thin films and interfaces, analysis of coupled electro-magneto-thermo-mechanical material systems, and ferroelectric materials. The structural mechanics program includes structural dynamics with applications to aircraft and spacecraft, fixed-wing and rotary-wing aeroelasticity, fluid structure interaction, computational transonic aeroelasticity, biomechanics with applications ranging from whole organs to molecular and cellular structures, structural optimization, finite element methods, and related computational techniques, structural mechanics of composite material components, structural health monitoring, and analysis of adaptive structures.

Systems and Control

The program features systems engineering principles and applied mathematical methods of modeling, analysis, and design of continuous- and discrete-time control systems. Emphasis is on modern applications in engineering, systems concepts, feedback and control principles, stability concepts, applied optimal control, differential games, computational methods, simulation, and computer process control. Systems and control research and education in the department cover a broad spectrum of topics primarily based in aerospace and mechanical engineering applications. However, the Chemical and Biomolecular Engineering and Electrical and Computer Engineering departments also have active programs in control systems, and collaboration across departments among faculty members and students in both teaching and research is common.

Thermal Science and Engineering

The thermal science and engineering field includes studies of convection, radiation, conduction, evaporation, condensation, boiling and two-phase flow, chemically reacting and radiating flow, instability and turbulent flow, reactive flows in porous media, as well as transport phenomena in support of micro-scale and nanoscale thermosciences, energy, bioMEMS/NEMS, and microfabrication/nanofabrication.

Ad Hoc Major Fields

The ad hoc major fields program has sufficient flexibility that students can form academic major fields in their area of interest if the proposals are supported by several faculty members. Previous fields of study included acoustics, system risk and reliability, and engineering thermodynamics. Nuclear science and engineering, a former active major field, is available on an ad hoc basis only.

Centers, Facilities, and Laboratories

The Mechanical and Aerospace Engineering department has a number of experimental centers, facilities, and laboratories at which both fundamental and applied research is being conducted. See the department research laboratories web page for details.

Active Materials Laboratory

Gregory P. Carman, Director

The Active Materials Laboratory contains equipment to evaluate the coupled response of materials such as piezoelectric, magnetostrictive, shape memory alloys, and fiber-optic sensors. The laboratory has manufacturing facilities to fabricate magnetostrictive composites and thin film shape memory alloys. Testing active material systems is performed on one of four servo-hydraulic load frames in the lab. All of the load frames are equipped with thermal chambers, solenoids, and electrical power supplies.

Advanced Space Systems Laboratory

Artur Davoyan, Director

The laboratory is focused on nanoscale materials for space and energy applications. Research topics encompass space exploration, device physics, and sustainability.

Anatomical Engineering Group

Tyler R. Clites, Director

The group researches anatomics, the co-engineering of body and machine in pursuit of synergistic bionic performance. The research combines surgical and mechanical design to codevelop body and machine. The long-term goal of the work is to transform the field of human rehabilitation and augmentation by making anatomics a fundamental tenet of bionic development.

Autonomous Vehicle Systems Instrumentation Laboratory (AVSIL)

Jason L. Speyer, Director

AVSIL is a testbed for design, building, evaluation, and testing of hardware instrumentation and coordination algorithms for multiple vehicle autonomous systems. AVSIL contains a hardware-in-the-loop (HIL) simulator—designed and built at UCLA—that allows for real-time, systems-level tests of two formation control computer systems in a laboratory environment, using the Interstate Electronics Corporation GPS Satellite Constellation Simulator. The UCLA flight control software can be modified to accommodate satellite-system experiments using real-time software, GPS receivers, and intervehicle modem communication.
Boiling Heat Transfer Laboratory
Vijay K. Dhir, Director
The laboratory performs experimental and computational studies of phase-change phenomena. It is equipped with various flow loops, state-of-the-art data acquisition systems, holography, high-speed imaging systems, and a gamma densitometer.

Biomechatronics Laboratory
Veronica J. Santos, Director
The Biomechatronics Laboratory is dedicated to improving quality of life by enhancing the functionality of artificial hands and their control in human-machine systems. The research is advancing the design and control of human-machine systems as well as autonomous robotic systems. Current research projects involve human biomechanics, tactile sensing, control of robotic systems, and machine learning.

Bionics Laboratory
Jacob Rosen, Director
The Bionics Laboratory performs research at the interface between robotics, biological systems, and medicine. Primary research fields are medical robotics and birobotics, including surgical robotics; and wearable robotics as they apply to human motor control, neural control, human- and brain-machine interfaces, motor control (stroke) rehabilitation, brain plasticity, haptics, virtual reality, tele-operation, and biomechanics (full-body kinematics and dynamics, and soft/hard tissues biomechanics).

Center for Translational Applications of Nanoscale Multiferroic Systems (TANMS)
Gregory P. Carman, Director
TANMS is a multi-institutional engineering research center (ERC) focused on research, technology translation, and education associated with magnetism on the small scale. The TANMS vision is to develop a fundamentally new approach that couples electricity to magnetism using engineered nanoscale multiferroic elements, to enable increased energy efficiency, reduced physical size, and increased power output in consumer electronics. This new approach overcomes scaling limitations present Oersted’s magnetism control discovery of 1820. TANMS goal is to translate its research discoveries to industry while seamlessly integrating a cradle-to-career education philosophy involving its students, and future engineers, in unique research and entrepreneurial experiences.

Collaborative Center for Aerospace Sciences (CCAS)
Ann R. Karagozian, Director
CCAS is a multi- and trans-disciplinary research center focused on fundamental and applied basic studies relevant to aerospace systems. Research projects that broadly span the computational and experimental arenas are conducted at UCLA and at the Air Force Research Laboratory (AFRL/RQR) at Edwards Air Force Base, about 90 miles northeast of campus. UCLA faculty, students, and postdoctoral researchers collaborate with AFRL scientists and engineers on high-impact problems to advance U.S. capabilities in aerospace systems.

Complex Fluids and Interfacial Physics Laboratory
H. Pirouz Kavehpour, Director
The Complex Fluids and Interfacial Physics Laboratory is multidisciplinary, with areas of research ranging from rheology of bio-fluids to energy storage. The group is directed towards development of fundamental engineering and scientific knowledge.

Computational Fluid Dynamics Laboratory
Kunihiko (Sam) Taira, Director
The Computational Fluid Dynamics Laboratory studies a variety of fluid mechanics problems with research interests in the areas of computational fluid dynamics, flow control, data science, network theory, and unsteady aerodynamics. The studies leverage numerical simulations performed on high-performance computers.

Cybernetic Control Laboratory (CyCLab)
Tetsuya Iwasaki, Director
CyCLab investigates the neuronal mechanisms for information processing and learning. It also develops fundamental theories for analysis and design of dynamical feedback systems, with applications to bio-inspired robotic vehicles, assistive devices for human movements, and neurorehabilitation after spinal cord injury.

Design and Manufacturing Laboratory
The laboratory offers an environment for synergistic integration of design and manufacturing. Available equipment includes four CNC machines, two rapid-prototyping systems, coordinate measuring, X-ray radiography, robots with vision systems, audiovisual equipment, and a distributed network of more than 30 workstations.

Dynamic Nucleic Acid Systems Laboratory
Elisa Franco, Director
The Dynamic Nucleic Acid Systems Laboratory develops mathematical models and experimental platforms to build adaptive and dynamic biological devices using DNA, RNA, and proteins. The results have applications in materials science, nanotechnology, and synthetic biology.

Energy and Propulsion Research Laboratory
Ann R. Karagozian, Director
The Energy and Propulsion Research Laboratory applies modern diagnostic methods and computational tools to the development of advanced rocket and airbreathing propulsion as well as energy systems. Research involves applications of fundamental fluid mechanics, combustion chemistry, dynamical systems, and optics.

Flexible Research Group
Jonathan B. Hopkins, Director
The Flexible Research Group is dedicated to the design and fabrication of flexible structures, mechanisms, and materials that achieve extraordinary capabilities. The laboratory is equipped with state-of-the-art synthesis tools, optimization software, and a number of commercial and custom-developed additive fabrication technologies for fabricating complex flexible structures at the macro- to nano-scales.

Fusion Science and Technology Center
Mohamed A. Abdou, Director
The Fusion Science and Technology Center includes experimental facilities for conducting research in fusion science and engineering, and multiple scientific disciplines in thermonuclear, thermonematics, heat/mass transfer, and materials interactions. The center includes experimental facilities for liquid metal magnetohydrodynamic fluid flow, thick and thin liquid metal systems exposed to intense particle and heat flux loads, and metallic and ceramic material thermonematics.

Hu Research Laboratory (H-Lab)
Yongjie Hu, Director
H-Lab is focused on understanding and engineering fundamental transport phe-
nominal and new materials for wide applications including energy conversion, storage, aerospace, electronics, thermal management, micro/nano sensors, and biomedical devices. The laboratory uses a variety of experimental and theoretical techniques to investigate nanoscale transport processes and develop device applications, with a particular emphasis on design, chemical synthesis, and manufacturing of advanced materials, ultrafast optical spectroscopy, pulsed electronics, thermal spectral mapping techniques, ab initio calculations, and atomistic modeling.

Hypersonics and Computational Aerodynamics Group
Xiaolin Zhong, Director

The Hypersonics and Computational Aerodynamics Group primarily focuses on fundamental physics-based research of hypersonic flows using advanced numerical tools and application of discovered fundamental knowledge to real-world aerospace systems, such as development of hypersonic planes and space vehicles. Its main research areas are computational fluid dynamics (CFD), hypersonic flows, instability and transition of hypersonic boundary layers, interaction of strong shocks and turbulence, and numerical simulation of wave energy harvesting.

Laser Spectroscopy and Gas Dynamics Laboratory
Raymond M. Spearrin, Director

The Laser Spectroscopy and Gas Dynamics Laboratory conducts research driven by applications in propulsion and energy, with extensions to health and environment. Laboratory activities are united by a core focus in experimental therofluids and applied spectroscopy. Projects commonly span fundamental spectroscopy science to design and deployment of prototype sensors to investigate dynamic flow-fields.

Living Soft Material Engineering Laboratory (Lin Lab)
Neil Y.C. Lin, Director

Lin Lab research looks at developing 3D biological tissues that mimic the geometric structure, mechanical properties, and functionality of human organs. Major research focuses include development of live cell imaging tools, cell mechanics measurements, and tissue manufacturing methods. This research could lead to detailed and complex model tissues for drug screening; and ultimately, artificial organs that could be transplanted into humans.

Mechanics of Soft Materials Laboratory
Lihua Jin, Director

The Mechanics of Soft Materials Laboratory investigates the fundamental physics and mechanics of soft materials, such as their constitutive relation, nonlinear deformation, instability, and fracture. The laboratory also strives to develop new materials, structures, and functions for soft robotics and stretchable electronics.

Mechatronics and Controls Laboratory
Tsu-Chin Tsao, Director

The Mechatronics and Controls Laboratory conducts research in theory and innovation in dynamic systems, controls, mechatronics, and robotics. It creates high-performance systems with novel sensors, actuators, and real-time digital signal processing and embedded control. Applications include precision motion and vibration control, manufacturing equipment and processes, medical devices, and robots.

Micro and Nano Manufacturing Laboratory
Chang-Jin (CJ) Kim, Director

The Micro and Nano Manufacturing Laboratory explores physical phenomena unique in submillimeter scale, and utilizes microelectromechanical systems (MEMS) technologies to advance important knowledge and create useful applications. Surface tension is one such phenomenon, which led to cutting-edge discoveries and revolutionary applications, some commercialized. Research themes include electro-wetting-on-dielectric (EWOD), electro-dewetting, droplets and bubbles, and superhydrophobic surfaces; and applications include droplet (digital) microfluidics, micro fuel cells, and drag reduction of liquid flows. Typical research starts with a novel concept, and completes with application devices of commercial implication. The laboratory has various equipment to complement the Nanolab (e.g., fume hood, modular cleanroom, environment chambers, probe stations, microscopes, diced saw, electroplating setup, and interference lithography); and facilitate drag-reduction research (e.g., water tunnel and molding setup), including a 13-foot motorboat at a local marina.

Modeling of Complex Thermal Systems Laboratory
Adrienne G. Lavine, Director

The Modeling of Complex Thermal Systems Laboratory addresses a variety of systems in which heat transfer plays an important role. Thermal aspects of these systems are coupled with other physical phenomena such as mechanical or electrical behavior. Modeling tools range from analytical to custom computer codes to commercial software.

Morrin-Gier-Martinelli Heat Transfer Memorial Laboratory
Laurent G. Pilone, Director

The heat transfer laboratory is engaged in a broad range of interdisciplinary research projects at the intersection of interfacial and transport phenomena, radiation transfer, material science, and biology for sustainable solar energy conversion; waste heat energy harvesting; electrical energy storage; and energy efficient buildings. The laboratory features state-of-the-art equipment for material synthesis and characterization such as glove boxes and high-temperature furnaces, potentiostats, calorimeters, and thermal conductivity analyzers. It is also equipped with a full set of instruments for optical characterization of solids, liquids, and suspensions from ultraviolet to infrared wavelengths (e.g., spectrometers, lasers, and detection systems). The laboratory also has various instrumented flow loops for rheological and convective heat transfer experiments with complex fluids.

Multidisciplinary University Research Initiative (MURI)
Yong Chen, Director

The Multidisciplinary University Research Initiative (MURI)...(TBD)

Multiscale Thermosciences Laboratory (MTSL)
Y. Sungtaek Ju, Director

MTSL is focused on heat and mass transfer phenomena at the nano- to macro-scales. A wide variety of applications are explored, including novel materials and devices for energy conversion; combined cooling, heating, and power generation; thermal management of electronics and buildings; energy-water nexus; and biomedical MEMS/NEMS devices.
Nano Intelligent Systems Laboratory
Yong Chen, Director
The **Nano Intelligent Systems Laboratory** studies nanofabrication, nanoscale electronic materials and devices, micro-nano electronic/optical/bio/mechanical systems, and ultrasound spatial and temporal characterization.

Nanoscale Transport Research Group (NTRG)
Timothy S. Fisher, Director
The **Nanoscale Transport Research Group** works on a broad range of problems, primarily involving transport processes by electrons, phonons, photons, and fluids. It seeks to solve problems with high importance to applications in energy transport, conversion, and storage, that are relevant to major industrial segments (aerospace, micro/nano electronics, and sensors). The laboratory solves these problems through a holistic, balanced approach that spans nanomaterial synthesis, basic material characterization and modeling, and functional characterization and simulation. The group includes the Center for Integrated Thermal Management of Aerospace Vehicles (CITMAV), which develops new solutions to highly transient transport problems that occur in aerospace applications.

Optofluidsics Systems Laboratory
Eric Pei-Yu Chiou, Director
The **Optofluidsics Systems Laboratory** develops heterogeneously integrated functional devices and systems for biomedical applications. Research areas include integrated photonics and fluids devices; 3D micro- and nano-manufacturing technologies; and flexible mechanical, photonics, and electronics systems.

Pilon Research Group
Laurent G. Pilon, Director
The **Pilon Research Group** researches photobiological fuel production, mesoporous materials, electrochemical capacitors, waste heat energy harvesting, foams/microfoams, biomedical optics, and energy efficiency.

Plasma and Beam Assisted Manufacturing Laboratory
The laboratory is an experimental facility for processing and manufacturing advanced materials by high-energy means (plasma and beam sources). It is equipped with plasma diagnostics, two vortex gas tunnel plasma guns, powder feeder and exhaust systems, vacuum and cooling equipment, high-power DC supplies (400kw), vacuum chambers, and large electromagnets. Current research is focused on ceramic coatings and nano-phase clusters for applications in thermal insulation, wear resistance, and high-temperature oxidation resistance.

Robotics and Mechanisms Laboratory (RoMeLa)
Dennis W. Hong, Director
RoMeLa is a facility for robotics research and education with an emphasis on studying humanoid robots and novel mobile robot locomotion strategies. Research is in the areas of robot locomotion and manipulation, soft actuators, platform design, kinematics and mechanisms, and autonomous systems. RoMeLa is active in research-based international robotics competitions, winning numerous prizes including third place in the DARPA Urban Challenge. The laboratory also took first place in the RoboCup International autonomous robot soccer competition (kid-size and adult-size humanoid divisions), and was world champion five times in a row. It also brought the prestigious Louis Vuitton Cup Best Humanoid award to the U.S. for the first time, and most recently was one of six Track A teams chosen to participate in the DARPA Robotics Challenge disaster response robot competition.

Scifacturing Laboratory
Xiaochun Li, Director
The **Scifacturing Laboratory** furnishes a creative, interdisciplinary platform for science-driven manufacturing (scifacturing) as the next level of manufacturing. It seeks to enable application of physics and chemistry to empower breakthroughs in manufacturing. The laboratory links molecular, nano, and micorscale knowledge to scalable processes/systems in manufacturing and materials processing. Current focus areas include scale-up nanomanufacturing, solidification, nanoprocessing of super-materials with dense nanoparticles, structurally integrated micro- and nano-systems (especially sensors and actuators) for manufacturing, clean energy and biomedical manufacturing, meso/micro 3D printing, and laser materials processing.

Sensors and Instrumentation Laboratory
Robert T. M’Closkey, Director
The **Sensors and Instrumentation Laboratory** focuses on the design, fabrication, modeling, and testing of microscale sensors, notably coriolis vibratory gyroscopes. The laboratory offers the opportunity to conduct leading-edge analytical and experimental research in state-of-the-art facilities.

Simulations of Flow Physics and Acoustics (SOFiA) Laboratory
Jeffrey D. Eldredge, Director
The **SOFiA Laboratory** explores a wide variety of phenomena that occur in fluid flows in nature and technology. It investigates low-order modeling of unsteady aerodynamics of agile, bio-inspired, micro-air vehicles; microparticle manipulation by viscous streaming; the fluid dynamics of biological and biologically-inspired locomotion; interactions of fluid flows with flexible surfaces; transitional and turbulent hypersonic boundary layer flows; vortex estimation techniques for autonomous control of formation flight; and new computational tools for simulation of biomedical flows.

Smart Grid Energy Research Center (SMERC)
Rajit Gadh, Director
SMERC performs research; creates innovations; and demonstrates advanced Internet-of-Things, sense-and-control technologies, and data-enabled machine learning to enable development of the next-generation electric utility grid—the smart grid. SMERC also furnishes thought leadership through its ESmart Consortium between utilities, government, policy makers, technology providers, electric vehicle manufacturers, energy technology companies, Department of Energy research laboratories, and universities, so as to collectively work on envisioning, planning, and executing the smart grid of the future. This grid will enable integration of renewable energy sources. It will also reduce losses; improve efficiencies; increase grid flexibility; allow for integration of electric and autonomous vehicles; reduce power outages; allow for competitive energy pricing; and overall become more responsive to market, consumer, and societal needs. SMERC is currently working on electric vehicle integration (G2V and V2G), automated demand response (ADR), microgrids, distributed energy resources, renewable integration, battery energy storage integration, and autonomous vehicle infrastructure.

Thin Films, Interfaces, Composites, Characterization Laboratory
Vijay Gupta, Director
The **Thin Films, Interfaces, Composites, Characterization Laboratory** includes a...
Nd:YAG laser of 1 Joule capacity with 3 ns pulse widths; a state-of-the-art optical interferometer including an ultra-high-speed digitizer, sputter deposition chamber, 56 Kip-capacity servohydraulic biaxial speed digitizer, sputter deposition chamber, pulse widths; a state-of-the-art optical interferometer.

Faculty Areas of Thesis Guidance

Professors
Robert N. Candler, PhD (Stanford, 2006) MEMS/NEMS for compact free-electron lasers, miniature medical devices, nanoscale magnetic structures and devices, additive manufacturing, fundamental limits of micro- and nano-scale devices
Yong Chen, PhD (UC Berkeley, 1996) Nanoscale science and engineering, micro- and nanofabrication, self-assembly phenomenon, macroscale and nanoscale electronic, mechanical, optical, biological, and sensing devices, circuits and systems
Eric Pei-Yu Chiou, PhD (UC Berkeley, 2005) BioMEMS, biomimetics, electronics, optical manipulation, optoelectronic devices
Jeffrey D. Eldredge, PhD (Caltech, 2002) Numerical simulations of fluid dynamics, bio-inspired locomotion in fluids, transition and turbulence, heat and mass transfer, aerodynamics, aerodynamically generated sound, vorticity-based numerical methods, simulations of biomedical flows
Timothy S. Fisher, PhD (Cornell, 1998) Heat and mass transfer, interfacial transport, nanomaterials, synthesis, nano-/micro-device fabrication, non-equilibrium thermodynamics, subcontinuum modeling and measurements of heat and charge transport, electrochemical and thermal energy storage, mechanics and transport in granular materials and porous media, plasma science and technology, aerospace thermal systems
Elisa Franco, PhD (U. Trieste, Italy, 2007; Caltech, 2011) Convergence of structural biology, dynamics, and controls using specialized biomolecular frameworks
Rajit Gadh, PhD (Carnegie Mellon, 1991) Smart grid, electric vehicle and grid integration, microgrid, distributed energy resource, solar- and renewable-grid integration, microgrid, distributed energy resource, nanoscale science and engineering, micro- and nanofabrication, self-assembly phenomenon, macroscale and nanoscale electronic, mechanical, optical, biological, and sensing devices, circuits and systems
Dennis W. Hong, PhD (Purdue, 2002) Analysis and visualization of contact force solution space for multi-milled mobile robots
Jonathan B. Hopkins, PhD (MIT, 2010) Design and manufacturing of microstructural architectures, flexure systems, and compliant mechanisms; screw theory kinematics; precision machine design; novel micro- and nanofabrication processes.
Yongjie Hu, PhD (Harvard, 2011) Heat transfer and electron transport in nanostructures; interfaces and packaging; thermal, electronic, optoelectronic, and thermoelectric devices and systems; energy conversion, storage, and thermal management; ultrafast optical spectroscopy and high-frequency electronics; nanomaterials design, processing, and manufacturing
Tetsuya Iwasaki, PhD (Purdue, 1993) Dynamical systems, robust and optimal control, nonlinear oscillators, resonance entrainment, modeling and analysis of neuronal control circuits for animal locomotion, central pattern generators, body-fluid interaction during undulatory and oscillatory swimming
Y. Sungtaek Ju, PhD (Stanford, 1999) Heat and mass transfer, energy, energy-water nexus, MEMS, microelectromechanical systems, and fabrication technologies, microfluidics, especially involving surface tension and droplets
Ann R. Karagozian, PhD (Caltech, 1982) Fluid mechanics and combustion with applications to air breathing, rocket propulsion, and energy-generation systems, focusing on control of instability, improved efficiency, and reduced emissions
H. Pirouz Kavehpour, PhD (MIT, 2003) Microscale fluid mechanics, transport phenomena in biological systems, biofluids, coating flows and physics of micro- and nano-fluid interactions; contact line phenomena, complex fluids, non-isothermal flows, energy systems and energy storage
Chang-Jin (CJ) Kim, PhD (UC Berkeley, 1991) Microelectromechanical systems (MEMS), micro/nanodevices and fabrication technologies, microfluidics, especially involving surface tension and droplets
Adrienne Lavine, PhD (UC Berkeley, 1984) Heat transfer: thermomechanical behavior of shape memory alloys, thermal aspects of manufacturing processes, natural and mixed convection
Xiaochun Li, PhD (Stanford, 2007) Embedded MEMS and nanofabrication manufacturing techniques
Jaime Marfan, PhD (UC Berkeley, 2002) Computational materials modeling and simulation in solid mechanics, irradiation damage, plasticity, phase transformations, thermodynamics and kinetics of alloy systems, algorithm and method development for bridging time and length scales and parallel computing applications
Robert T. M'Closkey, PhD (Caltech, 1995) Nonlinear control theory and design with application to mechanical and aerospace systems, real-time implementation
Ali Mosleh, PhD, NAE (UCLA, 1981) Reliability engineering, physics of failure modeling and system life prediction, resilient systems design, prognostics and health monitoring, hybrid systems simulation, theories and techniques for risk and safety analysis
Sriram Narasimhan, PhD (Rice University, 2005) Structural dynamics, structural control, system identification, vibration and acoustic signal processing, robotics, computer vision, data-driven modeling and remaining life prediction
Laurent G. Pilon, PhD (Purdue, 2002) Interfacial and transport phenomena, radiation transfer, materials synthesis, multi-phase flow, heterogeneous media
Jacob Rosen, PhD (Tel Aviv U., Israel, 1997) Natural integration of a human arm/powered exoskeleton system
Jason L. Speyer, PhD (Harvard, 1968) Stochastic and deterministic optimal control and estimation with application to aerospace systems; guidance, flight control, and flight dynamics
Kunihiko (Sam) Taira, PhD (Caltech, 2008) Development of computation fluid dynamics that incorporate unsteady aerodynamics, flow control, and network theory
Tsu-Chin Tsao, PhD (UC Berkeley, 1988) Mechanotronics and control with applications in mechanical systems, manufacturing, vehicles, medical robots, and energy
Xiaolin Zhong, PhD (Stanford, 1991) Computational fluid dynamics, advanced high-order CFD methods, hypersonic flow, numerical simulation of transient hypersonic flow with nonequilibrium real-gas effects, instability and laminar-turbulent transition of hypersonic boundary layers

Professors Emeriti
Mohamed A. Abdou, PhD (U. Wisconsin, 1973) Fusion, nuclear, and mechanical engineering design, testing, and analysis; thermal, fluid, and structural mechanics; thermal hydraulics; fluid dynamics, heat, and mass transfer in the presence of magnetic fields (MHD flows); neutronics; radiation transport and its applications; reactor design; fuel-rod interactions; blankets and high heat flux components; experiments, modeling and analysis
Vijay K. Dhir, PhD (U. Kentucky, 1972) Two-phase heat transfer, boiling and condensation, thermal hydraulics of nuclear reactors, microgravity heat transfer, soil remediation, high-power density electronic cooling
Perezt P. Friedmann, ScD (MIT, 1972) Aeroelasticity of helicopters and fixed-wing aircraft, structural dynamics of rotating systems, rotor dynamics, unsteady aerodynamics, active control of structural dynamics, structural optimization with aerelastic constraints
Nasr M. Ghoniem, PhD (U. Wisconsin, 1977) Mechanics of materials in severe environments (nuclear, aerospace, transportation); radiation interaction with materials (e.g., laser, ion beam, plasma, electron beam); multi-scale modeling; physics and mechanics of material defects; fusion energy; materials for space propulsion systems
James S. Gibson, PhD (U. Texas Austin, 1975) Control and identification of dynamical systems; optimal and adaptive control of distributed systems, including flexible structures and fluid flows; adaptive filtering, identification, and noise cancellation
Chih-Ming Ho, PhD (Johns Hopkins, 1974) Molecular fluidic phenomena, microelectromechanical systems (MEMS), bionano technologies, biomolecular sensor arrays, control of cellular complex systems, rapid search of combinatorial medicine
J. John Kim, PhD (Stanford, 1978) Numerical simulation of turbulent and transitional flows, physics and control of turbulent flows, application of modern control theories to flow control
Ajit K. Mal, PhD (Calcutta U., India, 1964) Mechanics of solids, composite materials, wave propagation, constructive evaluation, structural health monitoring
Anthony F. Mills, PhD (UC Berkeley, 1965) Convective heat and mass transfer, conduction heat transfer, turbulent flows, ablation and transpiration cooling, perforated plate heat exchangers

Internet of Things (IoT) data, radio frequency identification (RFID), solar- and renewable-grid integration, smart grid, electric vehicle and grid integration, structural dynamics of rotating systems, rotor dynamics, unsteady aerodynamics, active control of structural dynamics, structural optimization with aerelastic constraints.
Mechanical and Aerospace Engineering Courses

Lower-Division Courses

1. Undergraduate Seminar. (1) Seminar, one hour; outside study, two hours. Introduction by faculty members and industry lecturers to mechanical and aerospace engineering disciplines through current and emerging applications in aerospace, medical instrumentation, automotive, entertainment, energy, and manufacturing industries. P/NP grading.

 Mr. Elidredge (F)

19. Fiat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their fields of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

M20. Introduction to Computer Programming with MATLAB. (4) (Same as Civil Engineering M20.) Lecture, four hours; discussion, two hours; laboratory, two hours; outside study, six hours. Requisites: Mathematics 33A. Fundamentals of computer programming taught in context of MATLAB computing environment. Basic data types and control structures, input/output. Functions. Data visualization. MATLAB-based data structures. Development of efficient codes. Introduction to object-oriented programming. Examples and exercises from engineering, mathematics, and physical sciences. Letter grading.

 Mr. Jawed (F, W, Sp)

 Mr. Mal (F, W, Sp)

105A. Introduction to Engineering Thermodynamics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 101, Mathematics 33A, Physics 1B. Concepts of Newtonian mechanics. Kinematics and kinetics of particles and rigid bodies in two and three dimensions. Impulse-momentum and work-energy relationships. Applications. Letter grading.

 Mr. Kavehpour (F, W, Sp)

105D. Dynamics of Particles and Rigid Bodies. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 101, Mathematics 33A, Physics 1B. Introductory course dealing with application of principles of mechanics to flow of compressible and incompressible fluids. Letter grading.

 Mr. Mal (F, W, Sp)

 Mr. Santos (F, W, Sp)

107. Introduction to Modeling and Analysis of Dynamic Systems. (4) Lecture, four hours; discussion, one hour; laboratory, two hours; outside study, five hours. Enforced requisites: courses M20 (or Computer Science 31), 82, Electrical Engineering 100. In-
C131G. Microscopic Energy Transport. (4) Ms. Lavine (F) conduction: slabs, cylinders, products. Convection: Steady conduction: two-sided, two-ended, tapered, hours. Enforced requisites: courses M20 (or Civil En...s, temperature, and chemical potential are explained by developing these concepts from ground up using only mechan- cal and statistical mechanics. Equilibrium properties of thermodynamic systems and associated distributions. Provides sound foundation for further studies in transport phenomena, plasma, chemical processes, and microelectronics. Discussion of other related subjects. Concurrently scheduled with course C238. Letter grading. Mr. Ju (F)

150B. Aerodynamics. (4) Lecture: four hours; discussion, two hours; outside study, six hours. Requisites: courses 103, 150A. Chemical thermodynamics of ideal gas mixtures, premixed and diffusion flames, explosions and detonations, combustion chemistry, high-speed flows, chemically reacting flow, impinging jets, rotating bodies, oscillatory motion, normal coordinates, orthogonality relations. Letter grading. Mr. Spearrin (W)

CM150C. Combustion Systems. (4) Lecture, four hours; outside study, eight hours. Enforced requisite: course 103. Chemical thermodynamics of gaseous rocket engine jet cycle analysis and component performance, component matching, advanced aircraft engine topics. Concurrently scheduled with course C250G. Letter grading. Mr. Eldredge (Sp)

C150P. Aircraft Propulsion Systems. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 150A, B. Thermodynamic properties of gases, aircraft jet engine cycle analysis and component performance, component matching, advanced aircraft engine topics. Concurrently scheduled with course C250P. Letter grading. Ms. Karagozian, Mr. Wirz (Sp)

C156B. Mechanical Design for Power Transmission. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: courses 82, 103. Heat and mass exchange and associated analysis. Deflection and stiffness. Fatigue due to static loading. Fatigue failure. Design for safety factors and reliability. Applications of failure prevention in design of power transmission. Design project involving computer-aided design (CAD) and finite element analysis (FEA) modeling. Concurrently scheduled with course C296A. Letter grading. Mr. Mal (F, SwSp)

157. Basic Mechanical and Aerospace Engineering Laboratory. (4) Laboratory; eight hours, outside study, four hours. Requires: courses 101, 102, 103, 105A, 105D, 150A, B, and C150R. Concurrent with course 157, Laboratory, outside study, eight hours, outside study, four hours. Requisites: courses 150A, B, and C150R. Experimental illustration of important physical phenomena in area of fluid mechanics/aerodynamics, as well as hands-on experience with design of experimental programs and use of modern experimental tools and techniques in laboratory. Mr. Spearrin (Sp)

161A. Introduction to Astronautics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course 102. Recommended: course 82. Spaceflight, including two-body and three-body problems, Kepler laws, and Keplerian orbits. Ground track and taxonomy of common-orbit
124 / Mechanical and Aerospace Engineering Department

bits. Orbital and transfer maneuvers, patched conics, perturbation theory, trajectory planning, spacecraft pointing, and spacecraft attitude control. Space mission design, spacecraft environment, rendezvous, entry, and launch. Letter grading. Mr. Wiz (F).

161B. Introduction to Space Technology. (4) Lecture, four hours; discussion, two hours, outside study. Enforced requisites: course 146A or course 161A. Spacecraft systems and dynamics, including spacecraft power, instruments, communications, structures, thermal control, attitude determination, orbit determination and control. Space mission design, launch vehicles/considerations, space propulsion. Letter grading. Mr. Wiz (W).

161C. Spacecraft Design. (4) Lecture, four hours; outside study six hours. Students work in groups of three or four, with each student responsible primarily for one subsystem and for integration with whole. Letter grading. Mr. Wiz (Sp).

162A. Introduction to Mechanisms and Mechanical Systems. (4) Lecture, four hours; discussion, two hours; laboratory, four hours; outside study, six hours. Recommended preparation: courses 101, 161A. Students work in teams to begin their two-term design project. Letter grading. Mr. Hopkins (FSp).

162D. Mechanical Engineering Design I. (4) Lecture, two hours; laboratory, four hours; outside study, six hours. Enforced requisites: courses 94, 156A (or 163A or M163B), 162A (or 171A). Limited to seniors. First of two term courses. Students work in teams to begin their two-term design project. Laboratory modules include CAD design, CAD analysis, mechanisms, and conceptual design for team project. Letter grading. Mr. Tiao (W).

162E. Mechanical Engineering Design II. (4) Lecture, two hours; laboratory, four hours; outside study, six hours. Enforced requisite: course 162D. Limited to seniors. Second of two mechanical engineering capstone design courses. Students continue design projects started in course 162D, making use of CAD design laboratory, CAD analysis laboratory, and mechatronics laboratory. Design theory, design tools, economics, marketing, manufacturability, quality, intellectual property, design for manufacture and assembly, design for safety and reliability, and engineering ethics. Students conduct hands-on design, fabrication, and testing. Culminating project demonstrations and preparation for design project presentations in both oral and written formats. Letter grading. Mr. Tiao (Sp).

C163A. Kinematics of Robotic Systems. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisites: courses 155, 171A. Kinematical models of serial robotic manipulators, including spatial descriptions and transformations (Euler angles, Denavit-Hartenberg/ DH parameters, equivalent angle vector), frame assignment procedure, direct kinematics, inverse kinematics (geometric and algebraic approaches), mechanisms design topics. Concurrently scheduled with course C263A. Letter grading. Mr. Hong (F).

C163B. Dynamics of Robotic Systems. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course 163A. Dynamic models of serial and parallel robotic manipulators, including review of spatial descriptions and transformations along with direct and inverse kinematic models, Lagrangian formulation (velocity and force), force propagation method, explicit formulation of Jacobian matrix, manipulator dynamics (Newtonian Euler formulation), Lagrange formulation). Trajectory generation, introduction to parallel manipulators. Concurrently scheduled with course C263B. Letter grading. Mr. Rosen (W).

C163C. Control of Robotic Systems. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course C163B. Sensors, actuators, and control schemes for robotic systems, including computed torque control, linear feedback control, and advanced control techniques from nonlinear and adaptive control, hybrid control, nonholonomic systems, vision-based control, and perception. Concurrently scheduled with course C263C. Letter grading. Mr. Cui (W).

166A. Analysis of Aerospace Structures. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 82, 101. Not open to students with credit for course 156A. Introduction to two-dimensional elasticity, stress-strain laws, yield and fatigue; bending of beams; torsion of beams; warping; torsion of thin-walled cross sections; shear flow, shear-lag; combined bending torsion of thin-walled, stiffened structures used in aerospace vehicles; elements of plate theory; buckling of columns. Letter grading. Mr. Carman (F).

166C. Design of Composite Structures. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course 156A or 166A. History of composites, stress-strain relations for composite materials, bending and extension of symmetric laminates, failure analysis, design examples and design studies, buckling of composite components, nonsymmetric laminates, micromechanics of composites. Letter grading. Mr. Carman (W).

M168. Introduction to Finite Element Methods. (4) (Same as Civil Engineering M135C) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course 156A or 166A or Civil Engineering 135. Introduction to basic concepts of finite element methods (FEM) and applications to structural and solid mechanics problems. Direct matrix structural analysis; weighted residual, least squares, and Ritz approximation methods; shape functions; convergence properties; isoparametric formulation of multidimensional heat flow and elasticity; numerical integration. Practical use of FEM software; geometric and analytical modeling; preprocessing and postprocessing techniques; real project experiences. Letter grading. Mr. Mal (Sp).

171A. Introduction to Feedback and Control Systems: Dynamic Systems Control I. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course 107. Introduction to feedback and control systems design, and system stability. Modeling of physical systems in engineering and other fields; transform methods; controller design using Nyquist, Bode, and root locus methods; compensation; computer-aided analysis and design. Letter grading. Ms. Franco, Mr. Iwaiski (F,Sp).

172. Control System Design Laboratory. (4) Lecture, four hours; laboratory, two hours; outside study, six hours. Enforced requisite: course 171A. Introduction to loop shaping controller design with application to laboratory electromechanical systems. Power spectrum models of noise and disturbances, and performance trade-offs imposed by conflicting requirements. Constraints on sensitivity and complementary sensitivity function imposed by nonminimum phase plants. Letter grading supported by weekly hands-on laboratory work. Letter grading. Mr. McLasky (W).

174. Probability and Its Applications to Risk, Reliability, and Quality Control. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: Mathematics 33A. Introduction to probability theory; random variables, distributions, functions of random variables, models of failure of components, reliability, redundancy, complex systems, stress-strength models, fault tree analysis, statistical quality control by variables and by attributes, acceptance sampling. Letter grading. Mr. Rosen (W).

C175A. Probability and Stochastic Processes in Dynamical Systems. (4) Lecture, four hours; outside study, eight hours. Enforced requisites: courses 82, 107. Probability spaces, random variables, stochastic sequences and processes, expectation, conditional expectation, Gauss/Markov sequences, and minimum variance estimator (Kalman filter) with applications. Concurrently scheduled with course C277A. Letter grading. Mr. Snyder (F).

181A. Complex Analysis and Integral Transforms. (4) Lecture, four hours; outside study, eight hours. Enforced requisite: course 82. Complex variables, analytic functions, conformal mapping, contour integrals, singularities, residue theorem, Laplace transform: properties, convolution, inversion; Fourier transform: properties, convolution, FFT, applications in dynamics, vibrations, structures, and heat conduction. Letter grading. Mr. Eldredge (Not offered 2023-24).

183A. Introduction to Manufacturing Processes. (Lecture, laboratory, four hours; discussion, two hours; outside study, five hours. Enforced requisite: Materials Science 104. Manufacturing fundamentals. Materials in manufacturing, solidification processes, metal forming, casting, forming, and removal processes. Welding/joining, rapid prototyping, electronics manufacturing, microelectromechanical systems (MEMS) and nanotechnology. Letter grading.

Mr. C.-J. Kim (F, W, Sp)

M183B. Introduction to Micromachining and Nanofabrication. (Same as Bioengineering M153, Chemical Engineering M153, and Electrical and Computer Engineering M153.) Lecture, three hours; laboratory, four hours; outside study, five hours. Enforced requisites: Chemistry 20A, Physics 1A, 1B, 80A, 80B, 1C, 4AL. Introduction to general manufacturing methods, mechanisms, constraints, and microfabrication and nanofabrication. Focus on concepts, physics, and instruments of various microfabrication and nanofabrication techniques that have been broadly applied in industry and academia, including various photolithography technologies, physical and chemical deposition methods, and physical and chemical etching methods. Hands-on experience for fabricating microstructures and nanostructures in modern clean-room environment. Letter grading.

Mr. Chen, Mr. Chiu (F)

C183C. Rapid Prototyping and Manufacturing. (4) Lecture, four hours; laboratory, two hours; outside study, six hours. Enforced requisite: course 183A. Rapid prototyping (RP), solid freeform fabrication, or additive manufacturing has emerged as popular manufacturing technology to accelerate product creation in the last two decades. Machine for layered manufacturing builds parts directly from CAD models. This novel manufacturing technology enables building of parts that have traditionally been impossible to fabricate because of their complex shapes or variety in materials. In analogy to speed and flexibility of desktop publishing, rapid prototyping is also called desktop manufacturing, with actual three-dimensional solid objects instead of mere two-dimensional images. Methodology of rapid prototyping has also been extended into meso-/nano-scale to produce three-dimensional functional miniature components. Concurrently scheduled with course C297A. Letter grading.

Mr. Li (W)

185. Introduction to Radio Frequency Identification and Its Application in Manufacturing and Supply Chain Management. (Lecture, discussion, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course M20 or Civil Engineering M20 or Computer Science 31. Manufacturing today requires assembly of components, subassemblies, and assemblies of products allowing them to be tracked automatically as they move through the supply chain. RFID tags have memory and small CPU that allows information about product status to be written and transferred without contact. Tag data can then be forwarded by reader to enterprise software by way of RFID middleware layer. Study of how RFID is being utilized in manufacturing, with focus on automotive and aerospace. Letter grading.

Mr. Gadh (Sp)

Mr. Chiu (Sp)

C187L. Nanofabrication, Characterization, and Biodetection Laboratory. (4) Lecture, two hours; laboratory, three hours; outside study, seven hours. Multidisciplinary course that introduces laboratory techniques of nanofabrication, characterization, and biodetection. Basic physical, chemical, and biological principles related to these techniques, top-down and bottom-up (self-assembly) nanofabrication, nanomaterial characterization (AEM, SEM, etc.), and optical and electrochemical biosensors. Students encouraged to create their own ideas in self-designed experiments. Concurrently scheduled with course C287L. Letter grading.

Mr. Y. Chen (Sp)

188. Special Courses in Mechanical and Aerospace Engineering. (2 to 4) Lecture, two to four hours; outside study, four to eight hours. Special topics in mechanical and aerospace engineering for undergraduate students taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated once for credit with topic or instructor change. P/NP or letter grading.

188SA. Individual Studies for USIE Facilitators. (1), to be arranged. Enforced corequisite: Honors Collegium 101E. Limited to junior/senior USIE facilitators. Individually faciliated meetings with faculty mentor to discuss selected USIE seminar topic, conduct preparatory research, and begin preparation of syllabus. Individual contract with faculty mentor required. May not be repeated. Letter grading.

188SB. Individual Studies for USIE Facilitators. (1) Tutorial, to be arranged. Enforced requisite: course 188SA. Enforced corequisite: Honors Collegium 101E. Limited to junior/senior USIE facilitators. Individual study in regularly scheduled meetings with faculty mentor to discuss selected USIE seminar topic, conduct preparatory research, and begin preparation of syllabus. Individual contract with faculty mentor required. May not be repeated. Letter grading.

188SC. Individual Studies for USIE Facilitators. (2) Tutorial, to be arranged. Enforced requisite: course 188SB. Limited to junior/senior USIE facilitators. Individual study in regularly scheduled meetings with faculty mentor to finalize course syllabus. Individual contract with faculty mentor required. May not be repeated. Letter grading.

194. Research Group Seminars: Mechanical and Aerospace Engineering. (2 to 4) Seminar, two hours. Discussion of research methods and research group. Discussion of research methods and current literature in field. Student presentation of projects in research specialty. May be repeated for credit. P/NP or letter grading.

199. Directed Research in Mechanical and Aerospace Engineering. (2 to 8) Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation under guidance of faculty mentor. May be repeated for credit with approval. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading.

Mr. Chiu (Sp)

Graduate Courses

231A. Convective Heat Transfer Theory. (4) Lecture, four hours; outside study, eight hours. Required: course C250A. Conservation laws for flow of real fluids. Analysis of heat transfer in laminar and turbulent, incompressible and compressible flows, internal and external flows; free convection. Variable wall temperature, flow with nonuniform properties and developing boundary layers. Letter grading.

Ms. Lavine (F)

231B. Radiation Heat Transfer. (4) Lecture, four hours; outside study, eight hours. Required: course C250A. Radiative properties of materials and radiative energy transfer. Emphasis on fundamental concepts, including energy levels and electromagnetic waves and Maxwell's equations. Analytical and numerical methods for evaluating radiative properties and radiation transfer in absorbing, emitting, and scattering media. Applications cover solar-material interactions in addition to traditional areas such as combustion and thermal insulation. Letter grading.

Mr. Pilon (Sp)

Ms. Lavine (W)

C231. Microscopic Energy Transport. (4) Lecture, four hours; outside study, eight hours. Required: course C105D. Exploration of basic principles of transport of energy in natural and fabricated structures by three carriers: electrons, phonons, and molecules. Study of statistical mechanics, elementary carrier, common Landauer framework for heat flow, scattering and propagation of heat carriers, derivation of classical laws from microscopic transport equations, and deviation from classical laws at nanoscale. Term project. Concurrently scheduled with course C131G. Letter grading.

Mr. Fisher (F)

233. Nanoscience for Energy Technologies. (4) Lecture, four hours; outside study, eight hours. Introduction to fundamentals and modern techniques of energy transport, conversion, and storage at nanoscale, and recent development for these energy technologies involving nanotechnology. Focus on basics of thermal science. Solid state, quantum mechanics, electromagnetics, and statistical physics. Topic discussions given for examples that connect technological application, fundamental challenge, and scientific-solution-based nanotechnology to improve device performance and energy efficiency. Letter grading.

Mr. Hu (Not offered 2023-24)

235A. Nuclear Reactor Theory. (4) Lecture, four hours; outside study, eight hours. Underlying physics and mathematics of nuclear reactor (fission) core design, diffusion theory, reactor kinetics, slowing down and thermalization, multiplegroup methods, introduction to transport theory. Letter grading.

Mr. Abdou (Not offered 2023-24)

236. Energy and Environment. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Required: course C230, course C105A or equivalent. Global energy use and supply, electrical power generation, fossil fuel and nuclear power plants, renewable energy such as hydropower, biomass, geothermal, solar, wind, and ocean, fuel cells, transportation, energy conservation, air and water pollution, global warming. Concurrently scheduled with course C136. Letter grading.

C237. Design and Analysis of Smart Grids. (4) Lecture, four hours; outside study, eight hours. Demand response; transactive/price-based load control; home-area network, smart energy profile; advanced metering infrastructure; renewable energy integration; solar and wind generation; security; interconnection and deviation from classical laws; grid stability; energy storage and electric vehicles; monitoring; distribution and transmission grids; consumer-centric technologies; sensors, communications, and computing; wireless, wireline, and powerline communications for smart grids; grid modeling, stability, and control; frequency and voltage regulation; ancillary services; wide-area situational awareness; phasor measurements; analytical methods and tools for monitoring and control. Concurrently scheduled with course C137. Letter grading.

Mr. Gadh (F)

M237B. Fusion Plasma Physics and Analysis. (4) (Same as Electrical Engineering M287.) Lecture, four hours; outside study, eight hours. Fundamentals of plasmas at thermonuclear burning conditions. Fokker/Planck equation and ap-
242. Introduction to Multiferroic Materials. (4) Lecture, four hours; outside study, eight hours. Requisite: courses 105A, 150D. Introduction to basic concepts and tools of statistical thermodynamics. Abstract concepts of entropy, temperature, and chemical potential are explained by developing these concepts from ground up using only mechanical and statistical principles. Discussion of equilibrium properties of thermodynamic systems and associated distributions. Provides sound foundation for further studies in transport phenomena, plasma, chemical and biological processes, and related subjects. May be repeated for credit with topic change. S/U grading.

249L. Seminar: Current Topics in Transport Phenomena. (2 to 4) Lecture, four to four hours; outside study, four to eight hours. Enforced requisites: courses 103, 105A. Thermodynamic properties of gases, aircraft engine cycle analysis and component performance, component matching, advanced aircraft engine topics. Concurrently scheduled with course C150P. Letter grading.

250A. Foundations of Fluid Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 150A. Corequisite: course 182C. Introduction and development of fundamental principles of fluid mechanics at graduate level, with emphasis on incompressible flow. Flow kinematics, basic equations, constitutive relations, exact solutions on the Navier-Stokes equations, vorticity dynamics, decomposition of flow fields, potential flow. Letter grading.

250B. Viscous and Turbulent Flows. (4) Lecture, four hours; outside study, eight hours. Requisite: course 150A. Fundamental theory of fluid dynamics applied to study of fluid resistance. States of fluid motion discussed in order of advancing Reynolds number; wakes, boundary layers, instability, transition, and turbulent shear flows. Letter grading.

250C. Compressible Flows. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 150A, 150B. Effects of compressibility in viscous and inviscid flows. Steady and unsteady incompressible and supercritical flows; method of characteristics; small disturbance theories (linearized and hypersonic); shock dynamics. Letter grading.

250D. Computational Fluid Dynamics for Compressible Flows. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 105A, 150A. Computational fluid dynamics methods for nonequilibrium flows of real gases, and nonequilibrium hypersonic and high-temperature gas dynamics. Steady and unsteady inviscid subsonic and supersonic flows; method of characteristics; small disturbance theories (linearized and hypersonic); shock dynamics. Letter grading.

250E. Spectral Methods in Fluid Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 150A, 150B. Spectral methods applied to study of fluid resistance. States of fluid motion discussed in order of advancing Reynolds number; wakes, boundary layers, instability, transition, and turbulent shear flows. Letter grading.

250F. Hypersonic and High-Temperature Gas Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 150A. Molecular and chemical description of equilibrium and nonequilibrium hypersonic and high-temperature gas flows, chemical thermodynamics and statistical thermodynamics for calculation gas properties, equilibrium of real gases, vibrational and chemical rate processes, nonequilibrium flow of real gases, and computational fluid mechanics methods for nonequilibrium hypersonic flows. Letter grading.

250G. Fluid Dynamics of Biological Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 103. Mechanics of aquatic locomotion; insect and bird flight aerodynamics; pulsatile flow in circulatory system; neurology of blood; transport in microcirculation; role of fluid dynamics in arterial diseases. Concurrently scheduled with course C150G. Letter grading.

255M. Introduction to Microfluids/Nanofluids. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 105A, 150A. Thermodynamics of gases, aircraft engine cycle analysis and component performance, component matching, advanced aircraft engine topics. Concurrently scheduled with course C150P. Letter grading.

2560S. Spectroscopy and Molecular Gas Dynamics. (4) Lecture, four hours; outside study, eight hours. Introduction to science that governs interaction of light and matter (in gas phase). Review of key concepts of physical gas dynamics to establish micro- or molecular (non-continuum perspective) on gas properties and physical behavior. Material is structured within three subtopics of gas-phase spectroscopy: spectral line positions, spectral line intensities, and spectral line shapes. These capture spectroscopic interactions of atoms, diatomic molecules, and polyatomic molecules, and their respective rotational (\(T\)Hz), vibrational (IR), and electronic (UV/Vis) spectra. Presentation of absorption, emission, and scattering processes, associated optical measurement techniques. Integration of subject matter from physical sciences (quantum mechanics, statistical thermodynamics, and physical chemistry), covered at level appropriate for engineering. Letter grading.

252A. Stability of Fluid Motion. (4) Lecture, four hours; outside study, eight hours. Requisite: course 150A. Mechanisms by which laminar flows can become unstable and lead to turbulence of secondary motions. Linear stability theory; thermal, centrifugal, and shear instabilities; boundary layer instability. Nonlinear topics: subcritical, supercritical, transcritical instabilities, supercritical states, transition to turbulence. Letter grading.

252E. Data Science for Fluid Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 250C. Data analysis, modeling, control of fluid flows using modern linear algebra, modal analysis, reduced-order modeling, clustering, network science, and machine learning. Emphasis on extraction of physical causality and insights from fluid flow data. Letter grading.

252P. Plasma and Ionized Gases. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 152, 150A, 182B. Neutral and charged particle motion, magnetohydrodynamics, twodimensional plasma treatments, ion and electron diffusion, gas diffusion, Child/Langmuir law, basic plasma devices, electron emission and work function, thermal distributions, vacuum and vacuum systems, space-charge, particle collisions and ionization, plasma discharges, sheaths, and electric arcs. Letter grading. Mr. Wiz (Not offered 2023-24)

255C. Plasticity. (4) (Same as Civil Engineering 255C.) Lecture, four hours; outside study, eight hours. Requisite: course 150A or 156A. Linear elastostatics. Cartesian tensors; infinitesimal strain tensor; Cauchy stress tensor; strain energy; equilibrium equations; Cauchy stress, strain energy, and balance laws; small-strain theory; linear elasticity and plasticity; linearization of field equations; solution of selected problems. Letter grading. Mr. W. Ju, Mr. Mal (W)

256B. Nonlinear Elasticity. (4) (Same as Civil Engineering 256B.) Lecture, four hours; outside study, eight hours. Requisite: course 256A. Kinematics of deformation, material and spatial coordinates, strain and stress relations, strain and stress tensors, strain displacement relations; balance laws, Cauchy and Piola stresses, Cauchy equations of motion, balance of energy, stored energy; constitutive relations; elasticity, hyperelasticity, thermoelasticity; nonlinear elasticity and plasticity. Letter grading. Mr. W. Ju, Mr. Mal (W)

256C. Plasticity. (4) (Same as Civil Engineering 256C.) Lecture, four hours; outside study, eight hours. Requisite: course 256B. Kinematics of deformation, material and spatial coordinates, strain and stress tensors, strain displacement relations; balance laws, Cauchy and Piola stresses, Cauchy equations of motion, balance of energy, stored energy; constitutive relations; elasticity, hyperelasticity, thermoelasticity; linearization of field equations; solution of selected problems. Letter grading. Mr. W. Ju, Mr. Mal (Sp)

256C. Plasticity. (4) (Same as Civil Engineering 256C.) Lecture, four hours; outside study, eight hours. Requisite: course 256B. Kinematics of deformation, material and spatial coordinates, strain and stress tensors, strain displacement relations; balance laws, Cauchy and Piola stresses, Cauchy equations of motion, balance of energy, stored energy; constitutive relations; elasticity, hyperelasticity, thermoelasticity; linearization of field equations; solution of selected problems. Letter grading. Mr. W. Ju, Mr. Mal (Sp)

258A. Nanomechanics and Micromechanics. (4) Lecture, four hours; outside study, eight hours. Requistes: course M256A. Analytical and computational modeling methods to describe mechanical material behavior at scales ranging from atomic through microstructure or transitional and up to continuum. Discussion of atomistic simulation methods (e.g., molecular dynamics, Langevin dynamics, and kinetic Monte Carlo) and their applications at nanoscale. Development and applications of dislocation dynamics and statistical mechanics methods in areas of nanostucture and microstructure self-organization, heterogeneous plastic deformation, material instabilities, and failure phenomena. Presentation of technical applications of these emerging modeling techniques to surfaces areas and interfaces, dislocations and defects, surface growth, quantum dots, nanotubes, nanoclusters, thin films (e.g., optical thermal barrier coatings and ultrathin nanolayer materials), nano-identification, smart (active) materials, nano-photonic and microelectronics, and torsion. Letter grading. Mr. Ghoniem (Not offered 2023-24)

259A. Seminar: Advanced Topics in Fluid Mechanics. (4) Seminar, four hours; outside study, eight hours. Advanced study of topics in fluid mechanics; with intensive student participation involving assignments in research problems leading to term paper or oral presentation (possible help from guest lecturers). Letter grading. Mr. M. Santos (Sp) and Ms. Spears (W,Sp)

259B. Seminar: Advanced Topics in Solid Mechanics. (4) Seminar, four hours; outside study, eight hours. Advanced study in various fields of solid mechanics on topics which may vary from term to term. Topics include dynamics, elasticity, plasticity, and stability of solids. Letter grading. Mr. Mal (F)

260. Current Topics in Mechanical Engineering. (2 to 4) Seminar, two to four hours; outside study, four to eight hours. Designed for graduate mechanical and aerospace engineering students. Lectures, discussions, and student presentations and projects in areas of current interest in mechanical engineering. May be repeated for credit. S/U grading.

261B. Finite Element Analysis for Solids and Structures. (4) Lecture, four hours; outside study, eight hours. Requisite: course 150A or 156A, or completion of course 150B with consent of instructor. Recommended requisites: courses 1526M, 1526B, 1526A. Application of finite element method to classical and state-of-art modeling and design problems for solids and structures. Introduction to commercial finite element program—ABAQUS—and demonstration of how to use it in advanced way. Topics include review of finite element method, static and dynamic linear elasticity, finite element analysis, fracture, and implementation of user-defined subroutines in ABAQUS. Term projects using computers. Letter grading. Mr. Mal (Sp)

262. Mechanic of Intelligent Material Systems. (4) Lecture, four hours; outside study, eight hours. Recommended requisite: course 166C. Constitutive relations for electro-magneto-mechanical materials. Fiber-optic sensor technology. Micro/macromaterials, including spatial descriptions and transformations (Euler angles, Denavit-Hartenberg/DH parameters, equivalent angle vector), frame assignment procedure, direct kinematics, inverse kinematics (geometric and algebraic approaches), mechanical design topics. Concurrently scheduled with course C163A. Letter grading. Mr. Carman (Sp)

262A. Analytical Fracture Mechanics. (4) (Formerly numbered 263A.) Lecture, four hours; discussion, two hours; outside study, six hours. Recommended requisites: courses 155, 171A. Kinematical models of serial robotic manipulators, including spatial descriptions and transformations (Euler angles, Denavit-Hartenberg/DH parameters, equivalent angle vector), frame assignment procedure, direct kinematics, inverse kinematics (geometric and algebraic approaches), mechanical design topics. Concurrently scheduled with course C163A. Letter grading. Mr. Hong (F)

262B. Dynamics of Robotic Systems. (4) (Formerly numbered 263B.) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course C263A. Recommended: course 255B. Dynamics models of serial and parallel robotic manipulators, including review of spatial descriptions and transformations (Euler angles, Denavit-Hartenberg/DH parameters, equivalent angle vector), frame assignment procedure, direct kinematics, inverse kinematics (geometric and algebraic approaches), mechanical design topics. Concurrently scheduled with course C163B. Letter grading. Ms. Hong (W)

262C. Control of Robotic Systems. (4) (Formerly numbered 263C.) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course C263B. Sensors, actuators, and control schemes for robotic systems. Computed torque control, linear feedback control, impedance and force feedback control, and advanced control topics from nonlinear and adaptive control, hybrid control, nonholonomic systems, vision-based control, and perception. Concurrently scheduled with course C163C. Letter grading. Ms. Santos (Sp)

263D. Advanced Topics in Robotics and Control. (4) Lecture, four hours; outside study, eight hours. Enforced requisite: course C263C. Discussion of advanced topics in robotics and control, including kinematics, dynamics, control, mechanical design, advanced sensors and actuators, flexible links, manipulability, redundant systems, kinematic and dynamic robot interaction, teleoperation, haptics. Letter grading. Mr. Rosén (Not offered 2023-24)

263E. Bionic Systems Engineering. (4) Lecture, four hours; outside study, eight hours. Requisites: courses M20, M2, or equivalent. Introduction to design principles for bionic systems, including wearable robotics and implantable devices. Neural control of movement, neuromusculoskeletal modeling, actuator design, sensor integration, robotic control, neural interfaces, artificial muscles and tendons, and fundamentals of orthopaedic implants. Letter grading.

263F. Mechanics of Flexible Structures and Soft Robots. (4) Lecture, four hours; outside study, eight hours. Requisite: course C263E. Introduction to mechanisms and modeling of rigid rods, plates, shells, and robots. Rod and shell-like structures appear across wide range of length-scale from nanotubes to cables at kilometer-scale. Covers algorithms for numerical simulation of such structures, inspired by recent advances in field of computer graphics and machine learning. Stress analysis, finite element, biologically inspired geometric and neural ordinary differential equations are used for modeling of highly deformable structures. Such simulations are widely used in movies and video games for animation of hair and clothes. Final
project involves design and simulation of soft robot and any other engineered system. Principles of structural design, control, and estimation.

27D. Seminar: Special Topics in Dynamic Systems Control. (4) Seminar, four hours; outside study, eight hours. Requisite: current research topics in dynamic systems control, modeling, and control. Topics selected from process control, differential games, estimation, adaptive filtering, and robustness. Letter grading. Mr. Speyer (Not offered 2023-24)

273A. Robust Control System Analysis and Design. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 171A, M270A. Graduate-level introduction to analysis and design of multivariable control systems. Multivariable loop-shaping, performance requirements, model uncertainty representations, and robustness covered in detail from frequency-domain perspective. Structured singular value and its application to controller synthesis. Letter grading. Mr. Moskowy (Not offered 2023-24)

275A. System Identification. (4) Lecture, four hours; outside study, eight hours. Methods for identification of dynamical systems from input/output data, with emphasis on identification of discrete-time (digital) models of sampled-data systems. Coverage of conversion to continuous-time models. Models identified include transfer functions and state-space models. Discussion of applications in mechanical and aerospace engineering, including identification of flexible structures, microelectromechanical systems (MEMS) devices, and acoustic ducts. Letter grading.

279. Dynamics and Control of Biological Oscillators. (4) Lecture, four hours; discussion, two hours; outside study, eight hours. Preparation: familiarity with interconnections of gene expression, gene networks, cellular signaling, and viral infections. Nonlinear and linearized analysis of feedback mechanisms leading to oscillations and bistability. Modularity and robustness in interconnected networks in presence of parameter uncertainty and disturbances. Feedback engineering for setpoint regulation of cellular processes and bioproduction. Letter grading. Mr. Iwasaki (Sp)

M280B. Microelectromechanical Systems (MEMS) Fabrication. (4) As Bioengineering M250B and Electrical and Computer Engineering M250B.) Lecture, three hours; discussion, one hour; outside study, eight hours. Enforced: course M183B. Advanced discussion of micromachining processes used to construct MEMS. Coverage of many lithographic, deposition, and etching processes as well as their connection with microfabrication and integration. Materials issues such as chemical resistance, corrosion, mechanical properties, and residual/intrinsic stress. Letter grading. Mr. C-J. Kim (W)

281. Microfluidics. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 102, 103, 105D. Fundamental issues of being in microscopic world and mechanical engineering of microscale devices. Topics include scale issues, surface tension, superhydrophobic surfaces, microactuators, and electrowetting and applications. Letter grading. Mr. C-J. Kim (F)

M282. Microelectromechanical Systems (MEMS) Device Physics and Design. (4) As Bioengineering M252 and Electrical and Computer Engineering M252.) Lecture, four hours; discussion, one hour; outside study, seven hours. Introduction to MEMS design. Design methods, design rules, sensing and actuation mechanisms, microsensors, and microactuators. Design of MEMS to be produced with both foundry and nonfoundry processes. Computer-aided design for MEMS. Design project required. Letter grading. Mr. Chiou (Not offered 2023-24)

M287. Nanosciences and Technology. (4) (Same as Electrical and Computer Engineering M257.) Lecture, four hours; laboratory, two hours. Introduction to fundamentals of nanoscale science and technology. Basic physical principles, quantum mechanics, chemical bonding and nanostructures, top-down and bottom-up (self-assembly) nanofabrication, nanocharacterization, nanomaterials, nanoelectronics, and nobiomechanics. Introduction to new knowledge and techniques in nano areas to understand scientific principles behind nanotechnology and inspire students to create new ideas in multidisciplinary nano areas. Letter grading. Mr. Y. Chen (F)

C287L. Nanoscale Fabrication, Characterization, and Bioimaging. (4) Lecture, two hours; laboratory, two hours; outside study, eight hours. Introduction to multidisciplinary nanoscale techniques of fabrication, characterization, and bioimaging. Basic chemical, physical, and biological principles related to these techniques, top-down and bottom-up (self-assembly) nanofabrication, nanocharacterization (AEM, SEM, etc.), and optical and electrochemical biosensors. Students encouraged to create their own ideas in self-designed experiments. Concurrently scheduled with course C183C. Letter grading. Mr. Li (W)

M297B. Material Processing in Manufacturing. (4) (Same as Materials Science M297B.) Lecture, four hours; laboratory, eight hours. Enforced prerequisite: course 183A. Thermodynamics, principles of material processing: phase equilibria and transitions, transport mechanisms of heat and mass, nucleation and growth of microstructure. Applications in casting/solidification, welding, consolidation, chemical vapor deposition, infiltration, composites. Letter grading. Mr. Li (Not offered 2023-24)

M297C. Composites Manufacturing. (4) (Same as Materials Science M297C.) Lecture, four hours; outside study, eight hours. Enforced prerequisites: course 166C, Materials Science 151, Matrix materials, fibers, fiber preforms, elements of processing, autoclave/compression molding, filament winding, pultrusion, resin transfer molding, automation, material removal and assembly, metal and ceramic matrix composites, quality assurance. Letter grading. Mr. Li (Not offered 2023-24)

298. Seminar: Engineering. (2 to 4) Seminar, to be arranged. Limited to graduate mechanical and aerospace engineering students. Seminar may be organized in advanced technical fields. If appropriate, field trips may be arranged. May be repeated with topic change. Letter grading. (F)

M299A. Seminar: Systems, Dynamics, and Control Topics. (2) (Same as Chemical Engineering M297 and Electrical and Computer Engineering M248S.) Seminar, two hours; outside study, six hours. Limited to graduate engineering students. Presentations of research topics by leading academic researchers to graduate engineering students. Petitions for enrolment may be obtained from assistant dean, Graduate Studies. Supervised investigation of advanced technical topics. S/U grading.

596. Directed Individual or Tutorial Studies. (2 to 12) Tutorial, to be arranged. Limited to graduate mechanical and aerospace engineering students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies. Supervised investigation of advanced technical problems. S/U grading.

597A. Preparation for MS Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate mechanical and aerospace engineering students. Reading and preparation for MS comprehensive examination. S/U grading.

597B. Preparation for PhD Preliminary Examinations. (2 to 16) Tutorial, to be arranged. Limited to graduate mechanical and aerospace engineering students. Preparation for oral qualifying examination, including preliminary research on dissertation. S/U grading.

598. Research for and Preparation of MS Thesis. (2 to 12) Tutorial, to be arranged. Limited to graduate mechanical and aerospace engineering students. Supervised independent research for MS candidates, including thesis prospectus. S/U grading.

599. Research for and Preparation of PhD Dissertation. (2 to 16) Tutorial, to be arranged. Limited to graduate mechanical and aerospace engineering students. Usually taken after students have been advanced to candidacy. S/U grading.
Overview

The one-year Master of Engineering (MEng) is a self-supporting, professional degree designed to develop future engineering leaders. Tailored to those who wish to pursue technical management positions, the degree addresses the needs of both students and industry with high-tech skill set and management savvy. Students in the program develop technical mastery in emerging research areas, learning business and technology management skills while creating real-world projects with industry input.

Graduate Study

For admission information, see Graduate Programs Admission on page 27. The following introductory information is based on 2023-24 program requirements for UCLA graduate degrees. Complete program requirements are available at Program Requirements for UCLA Graduate Degrees. Students are subject to the detailed degree requirements as published in program requirements for the year in which they enter the program.

Master of Engineering

Course Requirements

Students must complete nine courses (36 units of graduate courses including one upper-division undergraduate course) in or related to the major subject areas:

- two technical core courses (8 units)
- three technical elective courses (12 units)
- three professional development electives (12 units)
- one capstone project course (4 units)

Students take two technical courses and one engineering professional development course in winter (8 units), two technical courses in summer (8 units), one technical and one engineering professional development course in spring (8 units), and one engineering professional development and one capstone project course in summer (8 units).

Areas of Study

Artificial Intelligence (AI)

Guy Van den Broeck, PhD (Computer Science), Area Director

The artificial intelligence program integrates faculty expertise from the departments of Computer Science, Computer Science, and Electrical and Computer Engineering. Study focuses on building smart machines capable of reasoning, learning, and acting intelligently, and performing tasks that typically require human intelligence.

Autonomous Systems

Tsu-Chin Tsao, PhD (Mechanical and Aerospace Engineering), Area Director

The autonomous systems program integrates faculty expertise from the departments of Computer Science, Electrical and Computer Engineering, and Mechanical and Aerospace Engineering. Study focuses on recent advances including dynamic systems and controls, embedded and cyber-physical systems, machine learning, and optimization. It also explores important autonomous system technologies including autonomous electric vehicles, smart grids, robotics, transportation networks, and more.

Data Science

Guy Van den Broeck, PhD (Computer Science), Area Director

The data science program integrates faculty expertise from the departments of Computational Medicine, Computer Science, and Electrical and Computer Engineering. Study focuses on unifying data mining and analysis, distributed and parallel systems, machining learning, and statistics to understand and analyze large amounts of data.

Digital Health Technology

Eleazar Eskin, PhD (Computer Science), Area Director

The digital health technology program integrates faculty expertise from the departments of Bioengineering, Computational Medicine, Computer Science, Electrical and Computer Engineering, and the David Geffen School of Medicine. Study focuses on digital health tools that have vast potential to improve the ability to accurately diagnose and treat disease, and to enhance healthcare delivery.

Green Energy Systems

Jenn-Ming Yang, PhD (Materials Science and Engineering), Interim Area Director

The green energy systems program integrates faculty expertise from the departments of Chemical and Biomolecular Engineering, Electrical and Computer Engineering, Materials Science and Engineering, and Mechanical and Aerospace Engineering. Study focuses on renewable energy and energy storage, including energy generation (fuel cells, solar energy, and other renewables); smart grid systems and grid integration; and storage systems (batteries, supercapacitors, and large-scale storage).

Integrated Circuit (IC) Design

C.K. Ken Yang, PhD (Electrical and Computer Engineering), Area Director

The integrated circuit (IC) design program trains students in fundamentals and skills required to effectively address challenges such as device variability, integrated circuit complexity, mixed-signal solutions, novel devices, and stringent performance requirements. The program combines classical analog and digital integrated circuit design courses, courses that emphasize modern mixed-signal techniques, and a capstone project course that offers realistic IC design experience. Students encouraged to specialize in digital or analog/mixed-signal/radio frequency IC design, but can customize their program from courses that cover the entire scope of modern IC design.

Internet of Things (IoT) Systems

Mani B. Srivastava, PhD (Computer Science, Electrical and Computer Engineering), Area Director

The Internet of Things program integrates faculty expertise from the departments of Computer Science and Electrical and Computer Engineering. Study focuses on the foundation needed to design, implement, and fabricate systems for the Internet of Things—where actuation, communication, computing, and sensing capabilities are embedded in and coupled with physical spaces and humans.

Translational Medicine

Song Li, PhD (Bioengineering), Area Director

The translational medicine program integrates faculty expertise from the departments of Bioengineering, Chemical and Biomolecular Engineering, Computational Medicine, the School of Dentistry, and the David Geffen School of Medicine. Study focuses on improving human health and longevity by translating discoveries in biomedical sciences into disease therapies. Translational medicine facilitates the development of diagnostic tools and therapeutics, and the application of systems biology and data sciences to biomedical problems.
Master of Science in Engineering Online Programs

4732 Boelter Hall
Box 951601
Los Angeles, CA 90095-1601
310-825-6542
Department website
Jenn-Ming Yang, PhD, Associate Dean

Overview

The primary purpose of the Master of Science in Engineering online degree programs is to enable employed engineers and computer scientists to augment their technical education beyond the Bachelor of Science degree and to enhance their value to the technical organizations in which they are employed. The training and education that the programs offer are of significant importance and usefulness to engineers, their employers, California, and the nation. It is at the MS level that engineers have the opportunity to learn a specialization in depth, and those engineers with advanced degrees may also renew and update their knowledge of the technology advances that continue to occur at an accelerating rate.

The MS programs are addressed to those highly qualified employed engineers who, for various reasons, do not attend the on-campus MS programs and who are keenly interested in developing up-to-date knowledge of cutting-edge engineering and technology.

Graduate Study

For admission information, see Graduate Programs Admission on page 27.

The following introductory information is based on 2023-24 program requirements for UCLA graduate degrees. Complete program requirements are available at Program Requirements for UCLA Graduate Degrees. Students are subject to the detailed degree requirements as published in program requirements for the year in which they enter the program.

MS in Engineering Online Programs

Course Requirements

The programs consist of nine courses that make up a program of study. At least five courses must be at the 200 level, and one must be a directed study course. The latter course satisfies the University of California requirement for a capstone event (in the on-campus program the requirement is covered by a comprehensive examination or a thesis); the directed study course consists of an engineering design project that is better suited for the working engineer/computer scientist.

The programs are structured in a manner that allows employed engineers/computer scientists to complete the requirements at a part-time pace (e.g., one 100/200-level course per term). Courses are scheduled so that the programs can be completed within two academic years plus one additional term.

Areas of Study

Data Science Engineering Program

Vvani P. Roychowdhury, PhD (Electrical and Computer Engineering), Area Director

The exponential growth of data generated by machines and humans present unprecedented challenges and opportunities. From the analysis of this big data, businesses can learn key insights about their customers to make informed business decisions. Scientists can discover previously unknown patterns hidden deep inside the mountains of data. In this program, students will learn key techniques used to design and build big data systems and gain familiarity with data-mining and machine-learning techniques that are the foundations behind successful information search, predictive analysis, smart personalization, and many other technology-based solutions to important problems in business and science.

Engineering Management Program

Robert M. McCann, PhD (Anderson Graduate School of Management), Area Director

The engineering management program focuses on providing entering and current engineering management personnel an opportunity to expand their business-related knowledge base and skills to enhance employment performance to the benefit of both the employee and employer. The program offers similar curriculum to that currently offered on campus by the professional schools.

All Internet-available lecturers are offered 24/7, with a weekly homeroom time to enhance the taped lectures and promote class interaction. The homerooms are held in early evenings to facilitate nonimpact with employee work schedules.

Environment and Water Resources Program

Jennifer A. Jay, PhD (Civil and Environmental Engineering), Area Director

Plentiful high-quality water is fundamental for society. However, drought, climate change, contamination, and growing populations pose challenges for water sustainability. Engineers are needed worldwide to find novel solutions in providing access to clean water. Key elements in this degree program are surface and groundwater processes; hydroclimatolgy; watershed response to disturbance; remote sensing for hydrologic applications; membrane separation in aqueous systems; aquatic chemistry; environmental microbiology; and the chemical fate, geochemical modeling, and transport of contaminants in the environment.

Mechanics of Structures Program

Ajit K. Mal, PhD (Mechanical and Aerospace Engineering), Area Director

The main objective of the mechanics of structures program is to provide students with the opportunity to develop the knowledge required for the analysis and synthesis of modern engineered structures. The fundamental concepts of linear and nonlinear elasticity, plasticity, fracture mechanics, finite element analysis, mechanics of composites, and structural vibrations are developed in a series of undergraduate and graduate courses. These concepts are then applied in solving industry-relevant problems in a number of graduate-level courses. Students develop hands-on experience in using popular finite element packages for solving realistic structural analysis problems.

Reliability Engineering Program

Ali Mosleh, PhD, NAE (Civil and Environmental Engineering, Materials Science and Engineering, Mechanical and Aerospace Engineering), Area Director

The program is designed with a fresh perspective that addresses the current needs of the industry for ensuring reliability of engineered products and services, but also anticipates future needs and pushes frontiers into the realms of machine learning, advanced prognostics and health monitoring, and advanced methods to tackle reliability of complex cyber-physical-human (CPH) systems.

Systems Engineering Program

Jenn-Ming Yang, PhD (Materials Science and Engineering), Interim Area Director

Systems engineering brings an integrated interdisciplinary approach to the development of complex engineered systems. The program at UCLA sets itself apart from others by combining the core elements of sys-
tems engineering (fundamentals of systems, model-based systems, project management, safety and reliability, and systems architecture) with disciplinary graduate-level engineering courses. This enables graduates to work as a systems engineer while drawing from a depth of knowledge at the disciplinary level.

MS in Engineering – Aerospace

Xiaolin Zhong, PhD (Mechanical and Aerospace Engineering), Area Director

The objective of this program is to provide students with a broad knowledge of major technical areas of aerospace engineering in order to fulfill the current and future needs of the aerospace industry. The major technical areas of this program include aerodynamics and computational fluid dynamics (CFD), propulsion, systems and control, and structures and dynamics. Undergraduate and graduate courses in the area of aerospace engineering cover a wide range of fundamental concepts of the science and engineering of aerodynamics, space technology, compressible flow, computational aerodynamics, aircraft and rocket propulsion systems, digital control of physical systems, linear dynamic systems, linear optimal control, design of aerospace structures, dynamics of structures, robust control system analysis and design, and probability and stochastic processes in dynamical systems.

MS in Engineering – Computer Networking

Songwu Lu, PhD (Computer Science), Area Director

Three undergraduate elective courses complement the basic background of the undergraduate computer science degree with concepts in security, sensors, and wireless communications. The graduate courses expose students to key applications and research areas in the network and distributed systems field. Two required graduate courses cover the Internet and emerging sensor embedded systems. The electives probe different applications domains, including wireless mobile networks, security, network management, distributed P2P systems, and multimedia applications.

MS in Engineering – Electrical

Izhak Rubin, PhD (Electrical and Computer Engineering), Area Director

The electrical engineering program covers a broad spectrum of specializations in communications and telecommunications, control systems, electromagnetics, embedded computing systems, engineering optimization, integrated circuits and systems, microelectromechanical systems (MEMS), nanotechnology, photonics and optoelectronics, plasma electronics, signal processing, and solid-state electronics.

MS in Engineering – Electronic Materials

Ya-Hong Xie, PhD (Materials Science and Engineering), Area Director

The electronic materials program provides students with a knowledge set that is highly relevant to the semiconductor industry. The program has four essential attributes: theoretical background, applied knowledge, exposure to theoretical approaches, and introduction to the emerging field of microelectronics, namely organic electronics. All faculty members have industrial experience and are currently conducting active research in these subject areas.

MS in Engineering – Integrated Circuits

Dejan Markovic, PhD (Electrical and Computer Engineering), Area Director

The integrated circuits program includes analog integrated circuit (IC) design, design and modeling of VLSI circuits and systems, RF circuit and system design, signal processing, and communication system design. Core courses may not be offered during the summer term. Alternative courses may be substituted with approval from the area director.

MS in Engineering – Manufacturing and Design

Xiaochun Li, PhD (Mechanical and Aerospace Engineering), Area Director

An advanced program of study that covers fundamental and applied topics in modern manufacturing and mechanical design. The program includes finite element methods in design, mechanics of intelligent materials systems, nano- and micro-manufacturing, material processing, rapid prototyping, composites manufacturing, design with composites, digital control, design of power transmission systems, design of high-temperature components, and design of smart grids. The program prepares students with the higher educational background and the competence that are necessary for today’s rapidly changing technology needs.

MS in Engineering – Materials Science

Yinmin (Morris) Wang, PhD (Materials Science and Engineering), Area Director

Materials engineering is concerned with the design, fabrication, and testing of engineering materials that must simultaneously fulfill dimensional properties, quality control, and economic requirements. Several manufacturing steps may be involved: (1) primary fabrication, such as solidification or vapor deposition of homogeneous or composite materials; (2) secondary fabrication, including shaping and microstructural control by operations such as mechanical working, machining, sintering, joining, and heat treatment; and (3) testing, which measures the degree of reliability of a processed part, destructively or non-destructively.

MS in Engineering – Mechanical

Ajit K. Mal, PhD (Mechanical and Aerospace Engineering), Area Director

The objective of this program is to provide students with a broad knowledge of the major areas of mechanical engineering in order to fulfill the current and future needs of the industry. The major areas include control, dynamics, fluid mechanics, heat transfer, mechanical design, mechanical systems, micro- and nanoelectromechanical systems, robotics, structural and solid mechanics, and thermodynamics. Undergraduate and graduate courses cover a wide range of fundamental concepts and advanced knowledge base in each of these areas. The program prepares students with the educational background and skills that are necessary to remain productive in today’s rapidly changing technical environment.

MS in Engineering – Signal Processing and Communications

Izhak Rubin, PhD (Electrical and Computer Engineering), Area Director

The program provides training in a set of related topics in signal processing and communications. Students receive advanced training in multimedia systems from the fundamentals of media representation and compression through transmission of signals over communications links and networks.

MS in Engineering – Structural Materials

Yinmin (Morris) Wang, PhD (Materials Science and Engineering), Area Director

The study of advanced structural materials provides students with a broad knowledge of the fundamental concepts of the science and engineering of advanced metallic and composite materials, damage tolerance and durability, design of aerospace structures, failure analysis and prevention, fracture mechanics, lightweight metallic and composite materials, nondestructive evaluation, and structural integrity and life prediction.
2. Technology and Society. (2) Seminar, two hours; outside study, four hours. Designed to engage engineering students in process of formal career development. Students learn about various components of internship/job application and practice preparing relevant materials for career-related social interactions. Development of skills and insights to successfully secure future opportunities, such as first industry internship. P/NP grading. (F)

23. Finding Industry Internship. (2) Seminar, two hours; outside study, four hours. Designed to engage engineering students in process of formal career development. Students learn about various components of internship/job application and practice preparing relevant materials for career-related social interactions. Development of skills and insights to successfully secure future opportunities, such as first industry internship. P/NP grading. (F)

24. Finding Undergraduate Research Opportunity. (2) Seminar, two hours; outside study, four hours. Designed to engage engineering students in process of securing research positions. Students learn about various components of research application and practice preparing relevant materials for research opportunities. Development of skills and insights to successfully secure future opportunities, such as undergraduate research positions. P/NP grading. (F)

25. Communicating Undergraduate Research Results. (2) Seminar, two hours; outside study, four hours. Designed to engage engineering students in process of communicating formal research. Students learn about various components of research application and practice preparing relevant materials for research opportunities. Development of skills and insights to successfully secure future opportunities, such as undergraduate research positions. P/NP grading. (F)

26. Finding Entry-Level Job. (2) Seminar, two hours; discussion, two hours; outside study, two hours. Designed to engage engineering students in process of getting ready to graduate and need help joining workforce. Focuses on how to apply to entry-level position in engineering field, and specifically industries that value engineering degree over technical experience. Offers suggestions to overcome typical barriers students encounter in securing entry-level position including students with no industry internships, lack of professional network, lack of hands-on technical experience, low grade-point average, lack of student organization extracurricular activities, international students, Deferred Action for Childhood Arrivals (DACA) students, and other low-confidence students. Students learn about various components of job application, practice preparing relevant materials, and prepare for career-related social interactions. Students develop skills and insights to successfully secure entry-level job as soon as possible after graduation. P/NP grading. (F)

87. Introduction to Engineering Disciplines. (4) Lecture, four hours; discussion, four hours; outside study, four hours. Introduction to engineering as professional opportunity for freshman students by exploring different engineering disciplines and functions engineers perform. Development of skills and techniques for academic excellence through team process. Investigation of national need underlying current effort to increase participation of historically underrepresented groups in U.S. technological work force. Letter grading. Mr. Wesel (F)

95. Internship Studies in Engineering. (1 to 4) Tutorial, one hour. Limited to first years/ sophomores. Internship studies course supervised by associate dean or designated faculty members. Further super- vision to be provided by organization for which students are doing internship. Students may be required to meet on regular basis with instructor and provide periodic reports of their experience. May not be applied toward major requirements. May be repeated for credit. Individual contract with associate dean required. P/NP grading. Mr. Wesel (F)

26A. Introduction to Engineering Design. Lecture, one hour; laboratory, one hour; outside study, four hours. Introduction to engineering design while building teamwork and communication skills and examination of engineering concepts offered at UCLA and of engineering careers. Completion of hands-on engineering design projects, preparation of short report describing projects, and presentation of results. Satisfactory/unsatisfactory grading. Mr. Reih (FW,Sp)

96B. Introduction to Engineering Design: Digital Imaging. (2) Lecture, one hour; laboratory, one hour; outside study, four hours. Recommended for undergraduate Aerospace Engineering, Bioengineering, Computer Science, Electrical Engineering, and Mechanical Engineering majors. Introduction to engineering design while building teamwork and communication skills and examination of engineering concepts offered at UCLA and of engineering careers. Hands-on experience with state-of-art solid-state imaging devices. How to focus, expose, record, and manipulate images. Design and construction of photographic technology from early chemical experiments to wide spread use of cell phone camera. Completion of hands-on engineering design projects, preparation of short report describing projects, and presentation of results. Letter grading. (F)

96C. Cybernetics: Introduction to Robotic Control Systems. (2) Lecture, one hour; laboratory, one hour; outside study, four hours. Complete introduction to robotics control systems that are critical and rapidly growing engineering technology with expanding societal impact. Designed to support entry-level students with primary principles of modern control systems. Students are provided with fundamental background in formal principles. Includes breakthrough technology providing hands-on experience with physical robotics control systems. Extensive use of graphical and animation methods to support understanding of mathematical concepts. Hands-on systems are provided in laboratory sections for each student for system design and characterization. Students connect personal computers to robotic control systems and have real-time access for configuration and control. Convenient computing tools are provided to support each design method, as well as real-time visualization and performance characterization. Letter grading. (Not offered 2023-24)

96E. Introduction to Engineering Design: Electrocardiogram. (2) Lecture, 90 minutes; laboratory, 90 minutes; outside study, three hours. Students learn and use concepts and techniques in electrical circuit design and analysis, cardiac electrophysiology, biophysics, microcontrollers, and computer programming. Students work in teams to design, construct, and test circuit boards capable of measuring human electrocardiograms by capturing data with microcontroller, with computer analysis and display. Students present their designs orally and in writing. Letter grading. (F, Sp)

96G. Introduction to Engineering Design: Go-Karts. (2) Lecture, 90 minutes; laboratory, 90 minutes; outside study, three hours. Students learn and use concepts and techniques in computer-aided design, finite element analysis, machining, electric motor performance, steering linkages, and general mechanical design and assembly to work in teams and construct and test go-karts. Students present their designs orally and in writing. Letter grading. (F, Sp)

96I. Introduction to Engineering Design: Internet of Things. (2) Formerly numbered 96C. Lecture, one hour; laboratory, one hour; outside study, four hours. Recommended for undergraduate Aerospace Engineering, Bioengineering, Computer Science, Electrical Engineering, and Mechanical Engineering majors. Introduction to engineering design while building teamwork and communication skills and examination of engineering concepts offered at UCLA and of engineering careers. Examination of state-of-art Internet of things (IoT) technology to offer students opportunity to rapidly develop innovative and inspiring systems that provide ideal introduction to computing systems and IoT applications specific to their major field. IoT technology has become one of most important advances in technology history with applications ranging from wearable devices for healthcare to residential monitoring systems, natural resource protection and management, intelligent ve-
hicles and transportation systems, robotics systems, and energy conservation. Completion of hands-on engineering design projects, preparation of short reports describing projects, and presentation of results. Letter grading.

Mr. Kaiser (F)

96R. Introduction to Engineering Design: Rockets. (2) Lecture 40 minutes; outside study, 90 minutes. This course is designed for outside study, three hours. Introduction to basic concepts in aerospace engineering, computer-aided design, finite element analysis, 3D printing, carbon fiber layup, telescope design, and assembly, and machine shop fabrication. Concepts applied to team-based design, construction, and testing of small 3D-printed rockets and larger, high-power rockets. Students present their designs orally and in writing, and evaluate their performance against other student teams. Rockets fired from Mosaic Desert launch site in class field trip. No prior experience or coursework needed. Students are expected to find a mentor. Students must be in good academic standing and enrolled in at least 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.

Upper-Division Courses

102. Synthetic Biosystems and Nanosystems Design. (4) Lecture, four hours; outside study, eight hours. Requisites: course M101, Life Sciences 3. Introduction to current progress in engineering to integrate biology and engineering disciplines. Design of basic technologies and systems that deal with dynamic behavior, noise, and uncertainties. Design project in which students are challenged to design novel biosystems and nanosystems for a non-trivial task required. Letter grading.

Mr. Liao

M103. Environmental Nanotechnology: Implications and Applications. (4) Same as Civil Engineering M165S. Lecture, four hours; discussion, two hours; outside study, four hours. Recommended prerequisite: course M101. Introduction to potential implications of nanotechnology to environmental systems as well as potential application of nanotechnology to environmental systems. Technical contents include three multidisciplinary areas: (1) chemical, physical, and biological properties of nanomaterials, (2) transport, reactivity, and toxicity of nanoscale materials in natural environmental systems, and (3) use of nanotechnology for energy and water production, plus environmental protection, monitoring, and remediation. Letter grading.

Mr. Hoek (Sp)

110. Introduction to Technology Management and Economics for Engineers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Fundamental principles of micro-level (individual, firm, and industry) and macro-level (government, international) economics as they relate to technology management. How individuals, firms, and governments impact successful commercialization of high technology products and services. Letter grading.

Mr. Monbuquet (FSp)

111. Introduction to Finance and Marketing for Engineers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Critical components of finance and marketing and research and practice as they impact the management of technology commercialization, internal (within firm) and external (in marketplace) marketing and financing of high-technology innovation. Concepts include present value, future value, discounted cash flow, internal rate of return, return on assets, return on equity, return on investment, interest rates, cost of capital, and product pricing. Projects are prepared and presented to groups of outside firms. Use of market research, segmentation, and forecasting in manage- ment of technological innovation. Letter grading.

Mr. Monbuquet (FW)

112. Laboratory to Market, Entrepreneurship for Engineers. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Critical components of entrepreneurship, finance, marketing, human resources, and accounting disciplines as they impact management of technology commercialization. Topics include introduction to management, team building, market forecasting, and entrepreneurial finance. Students work in small teams studying technology management plans to bring new technologies to market. Students select from set of available technology concepts, many generated at UCLA, that are in need of plans for movement from laboratory to market. Letter grading.

Mr. Monbuquet (W)

113. Product Strategy. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Designed for juniors/seniors. Introduction to current management concept of product development. Topics include product strategy, product platform, and product line strategy, trends in differentiation, product pricing, first-to-market versus fast-follower; growth strategy, growth through acquisition, and new ventures; product portfolio management; case studies; group discussions, and guest lectures by industry professionals. Letter grading.

Mr. Pao

116. Statistics for Management Decisions. (4) Lecture, four hours; outside study, eight hours. Management as well as engineering decisions nearly always take place in environment characterized by uncertainty. Probability provides mathematical framework for understanding how to make rational decisions when outcomes of actions are uncertain. Application of probability to product of reasoning from sample data, encompassing estimation, hypothesis testing, and regression analysis. Discussion of specific analytical techniques needed in later courses in program. Development of basic understanding of statistical analysis. Letter grading. Ms. Dolecek

120. Entrepreneurship for Scientists and Engineers. (2) Seminar, two hours; outside study, four hours. Students are designed to help undergraduate students. Identification of business opportunities and outline of basic requisites for viable business plans, followed by specific topics related to securing basic assets and finances needed to execute those plans. P/NP grading.

Mr. Wesel

160. Entrepreneurship and Venture Initiation for Engineers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Not open to students with credit for Management 160. Focus on processes and methodology for starting new ventures. Introduction to entrepreneurship from perspective of entrepreneur. Examination of core concepts and frameworks on idea generation, market analysis, fundraising, corporate structures, and financial accounting for entrepreneurial endeavors. Focus on fundamentals of building business, and also emphasis on how to think like an entrepreneur and need for constant learning on this subject. Letter grading.

163. Entrepreneurship and New Product Development for Engineers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Limited to juniors/seniors. Not open to students with credit for Management 163. Designed to deepen understanding of innovations and innovative processes related to creating new products. Inquiry into why, what, and how of making new products. New products are essential to any business (start-up or well-established) and thriving economies. Making success requires new product types of innovation. Availability of digital technologies and global outsourcing have accelerated pace of these innovations. Letter grading.

170. Project-Based Technology Bootcamp for Social Impact. (4) Seminar, five hours; outside study, five hours. Outside study, five hours. Design of technology covering various business, technology, and interpersonal topics such as data analysis, user interface, and user experience, and product development and collaboration. Application of learned skills to design social-impact problem and build solution in student teams coached by industry professionals. May be repeated for credit. P/NP or letter grade.

180. Engineering of Complex Systems. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Designed for junior/senior engineering majors. Holistic view of engineering discipline, covering infrastructure, information, and new techniques used in industry today. Multidisciplinary systems engineering perspective in which aspects of electrical, mechanical, material, and software engineering are incorporated. Three specific case studies in communication, sensor, and processing systems included to help students understand these concepts. Special attention paid to link material covered to engineering curriculum offered by UCLA. Help students integrate and enhance their understanding of knowledge already acquired. Motivation of students to continue their learning and reinforce lifelong learning habits. Letter grading.

Mr. Wesel (Sp)

182EW. Social Negotiation in Technology. (4) Lecture, five hours; discussion, three hours; outside study, four hours. Requisite: English Composition 3, 3D, 3DS, 3E, or 3SL. Not open for credit to students with credit for course 182EW, 183EW, 185EW, or 188EW. Places engineering in broader societal context through examination of some of key ethical, legal, and regulatory issues and frameworks relevant to design and deployment of emerging technology products and services. Historical examination of ethical and legal frameworks generally and in relation to technology. Exploration of series of specific technology-related topics to examine their broader ramifications. Topics may include driverless cars, algorithms and artificial intelligence, social media, digital privacy, and impact of technology on employment. Offers students tools enabling them to think more proactively and holistically about ethical and societal dimensions of their work as technology creators. Satisfies engineering writing requirement. Letter grading.

Mr. Wesel

183EW. Engineering and Society. (4) Lecture, four hours; discussion, three hours; outside study, five hours. Requisite: English Composition 3, 3D, 3DS, 3E, or 3SL. Not open for credit to students with credit for course 181EW, 183EW, 185EW, or 188EW. Limited to sophomore/junior/senior engineering students. Professional and ethical considerations in practice of engineering. Impact of technology on society and development of engineering professional and personal ethical values. Contemporary environmental, biological, legal, and other issues created by new technologies. Emphasis on research and writing within engineering framework. Three writing assignments and a final project totaling, including two individual technical essays and one team-written research report. Readings address technical issues and writing form. Satisfies engineering writing requirement. Letter grading.

Mr. Wesel (FW, Sp)
185EW. Art of Engineering Endeavors. (4) Lecture, four hours; outside study, four; outside internship, five; five hours. Enforced requisite: English Composition 3, 3D, 3DS, 3E, or 3SL. Not open for credit to students with credit for course 181EW, 182EW, 183EW, or 188EW. Required for engineering curriculums. Non-technical skills and experiences necessary for engineering career success. Importance of group dynamics in engineering practice. Teamwork and effective team engineering environments. Organization and control of multidisciplinary complex engineering projects. Forms of leadership and characteristics of effective leaders. How engineering, computer sciences, and technology relate to major ethical and social issues. Societal dependence on practice of engineering. Emphasis on research and writing in engineering environments. Satisfies engineering writing requirement. Letter grading.

188EW. Experimental Courses in Engineering Ethics. (4) Lecture, four hours; discussion, three hours; outside study, two; outside internship, one. Enforced requisite: English Composition 3, 3D, 3DS, 3E, or 3SL. Not open for credit to students with credit for course 181EW, 182EW, 183EW, or 188EW. Limited to junior/senior engineering students. Professional and ethical considerations in practice of engineering and computer science. Emphasis on research and writing within engineering and computer science. Writing and revision of about 20 pages total, including two individual technical essays. Readings address technical issues and writing form. Satisfies engineering writing requirement. Letter grading. (W)

191. Seminar Series in Engineering Research. (1 to 4) Seminar, one hour. Seminar series in cutting-edge engineering research at UCLA. Each seminar is given by UCLA graduate student researcher or post-doctoral scholar. Designed to be accessible to undergraduate students in any science, technology, engineering, and mathematics (STEM) major. Offers undergraduate students window into excitement of graduate student research experience. Also offers opportunities for graduate students to learn about what their peers are doing. P/NP grading.

192. Fundamentals of Engineering Mentorship. (2) Seminar, two hours; outside study, four hours. Principles and practical techniques for instruction of hands-on design, project planning, project preparation, classroom management, team collaboration, diversity awareness, fostering of group cohesion, and emergency procedures. Preparation of lessons and projects for academic year courses and high school summer outreach program, with practice presentations. May be repeated for credit. P/NP grading.

195. Internship Studies in Engineering. (1 to 4) Tutorial, one hour. Undergraduate seniors/interns intern two courses supervised by associate dean or designated faculty members. Further supervision to be provided by organization for which students are doing internship. Students may be required to meet on regular basis with instructor and provide periodic reports of their experience. May not be applied toward major requirements. May be repeated for credit. Individual contract with associate dean required. P/NP grading.

199. Directed Research in Engineering. (2 to 8) Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation under guidance of faculty member. Culminating paper project required. May be repeated with school approval. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading. (FW,SP)

Graduate Courses

200. Program Management Principles for Engineers and Professionals. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Practical review of necessary processes and procedures to successfully manage technology programs. Review of fundamentals of program planning, organizational structure, implementation, and performance tracking methods to provide program management with tools and techniques necessary for successful decision-making process that provides high-quality products on time and within budget. Letter grading.

Mr. Wesel

201. Systems Engineering. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Practical techniques for major elements of system engineering process. Coverage of key elements: system requirements and flow down, product development cycle, functional analysis, system synthesis and trade studies, budget allocations, risk management metrics, review and audit activities and documentation. Letter grading.

202. Reliability, Maintainability, and Supportability. (4) Lecture, four hours; outside study, eight hours. Requisite: course 181EW. Designed for graduate students. Practical systems. To build systems that can integrate smaller efforts while being constrained to meet specific levels of trust. Aspects include assessing vulnerability and its impacts on systems, establishing protection mechanisms, etc. One can use most secure components, that systems meet specified operational requirements, and that systems are constructed to perform complex functions. To build systems that can protect confidentiality, integrity, and availability in near real-time. System assurance addresses confidence—measured through analysis of architecture designs of major existing systems. Discussion of selected elements of architectural practices, such as representation models, design progression, and architecture frameworks. Examination of professionalization of system architecture principles. Letter grading.

Mr. Lynch, Mr. Wesel

203. System Architecture. (4) Lecture, four hours; outside study, four; outside internship, two. Designed for graduate students with BS degrees in engineering or science and one to two years work experience in selected domain. Art and science of architecting. Introduction to architecting method—paradigm and tools. Principles of architecting through analysis of architecture designs of major existing systems. Discussion of selected elements of architectural practices, such as representation models, design progression, and architecture frameworks. Examination of professionalization of system architecture principles. Letter grading.

Mr. Lynch, Mr. Wesel

204. Trusted Systems Engineering. (4) Lecture, four hours; outside study, four. The course is placed in information systems to behave properly, but cyber threats and breaches have become routine, including security, computer security, data security, cryptography, etc. One can use most secure components, and resulting system could still be vulnerable. Skills learned ensure that systems are architectured, designed, implemented, tested, and operated for specific levels of trust. Trust is placed in network security, computer security, data security, cryptography. System assurance addresses confidence—measured through analysis of architecture designs of major existing systems. Discussion of selected elements of architectural practices, such as representation models, design progression, and architecture frameworks. Examination of professionalization of system architecture principles. Letter grading.

Mr. Lynch, Mr. Wesel

211. Financial Management. (4) Lecture, four hours; outside study, eight hours. Introduction to concepts reflecting material generally covered in certain MBA core and elective courses. Integration of both theory—to introduce essential conceptual building blocks in accounting and finance—and empirical practice—to emphasize how these theories are actually implemented in real world. Cases, comprehensive problems, and readings provide students with as much hands-on experience in applying material presented as possible. Letter grading.

Mr. J-M. Yang

212. Intellectual Property Law and Strategy. (4) Lecture, four hours; outside study, eight hours. Prior knowledge of legal doctrines or materials not required. Intellectual property law is not just topic for lawyers. Engineers who have design responsibilities must understand how legal system in some instances protects their designs and in other instances stands as obstacle to what would otherwise be most efficient design choice. Engineers with management responsibilities must understand intellectual property law implications for everything from protecting inventions to strategic partnerships. Examination of intellectual property law, not only by learning fundamental rules associated with patent, copyright, trademark, and trade secret protection, but by studying current business strategies that these rules support. Examples and case studies to be taken from across content, technology, and pharmaceutical industries. Letter grading.

Mr. Lichtman, Mr. J-M. Yang

213. Data and Business Analytics. (4) Lecture, four hours; outside study, eight hours. Coverage of wide variety of spreadsheet models that can be used to solve business and engineering problems, with emphasis on mastery of Excel spreadsheet modeling as integral part of analytic decision making. Managerial models include data modeling, regression and forecasting, linear programming, network and distribution models, integer programming, simulation, and Monte Carlo simulation. Problems from operations, finance, and marketing taught by spread-
sheet examples and describe general managerial situations from various industries and disciplines. Development of spreadsheet models to facilitate decision making. Letter grading.

Mr. Mosleh (W)

214. Management Communication. (4) Lecture, four hours. Exploration of knowledge, attributes, skills, and strategies necessary to succeed communicatively in workplace, with focus on business presentation skills, visual and verbal persuasion skills, and interpersonal communication skills. Letter grading.

Mr. J-M. Yang

215. Entrepreneurship for Engineers. (4) Lecture, four hours; outside study, eight hours. Limited to graduate engineering students. Topics in starting and developing high-tech enterprises and intended for students who wish to complement their technical education with introduction to entrepreneurship. Letter grading.

Mr. Abe, Mr. Cong, Mr. Wesel (W)

299. Capstone Project. (4) Activity, 10 hours. Preparation: completion of minimum of four 200-level courses in online MS program. Project course that satisfies UCLA final comprehensive examination requirement of MS online degree in Engineering. Project is completed under individual guidance from UCLA Engineering faculty member and incorporates advanced knowledge learned in MS program of study. Letter grading.

Mr. Lynch (F, W, Sp)

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: apprentice personnel employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. (F, W, Sp)

470A-470D. Engineer in Technical Environment. (3 each) Lecture, three hours; outside study, six hours. Limited to Engineering Executive Program students. Theory and application of quantitative methods in analysis and synthesis of engineering systems for purpose of making management decisions. Optimization of outputs with respect to dollar costs, time, material, energy, information, and manpower. Case studies and individual projects. S/U or letter grading.

471A-471B-471C. Engineer in General Environment. (3–3–1.5) Lecture, three hours (courses 471A, 471B) and 90 minutes (course 471C). Limited to Engineering Executive Program students. Influences of human relations, laws, social sciences, humanities, and fine arts on development and utilization of natural and human resources. Interaction of technology and society past, present, and future. Change agents and resistance to change. S/U or letter (471A) grading; In Progress (471B) and S/U or letter (471C) grading.

472A-472D. Engineer in Business Environment. (3–3–3–1.5) Lecture, three hours (courses 472A, 472B, 472C) and 90 minutes (course 472D). Limited to Engineering Executive Program students. Language of business for engineering executive. Accounting, finance, business economics, business law, and marketing. Laboratory in organization and management problem solving. Analysis of actual business problems of firm, community, and nation, provided through cooperation and participation with California business corporations and government agencies. In Progress (472A, 472C) and S/U or letter grading (credit to be given on completion of courses 472B and 472D).

473A-473B. Analysis and Synthesis of Large-Scale System. (3–3) Lecture, two and one half hours; outside study, six hours. Limited to Engineering Executive Program students. Problem area of modern industry or government is selected as class project, and its solution is synthesized using quantitative tools and methods. Project also serves as laboratory in organization for goal-oriented technical group. In Progress (473A) and S/U (473B) grading.

495A. Teaching Assistant Training Seminar. (4) Seminar, four hours; outside study, eight hours. Preparation: appointment as teaching assistant. Limited to graduate engineering students. Seminar on communication of engineering principles, concepts, and methods, preparation, organization of material, presentation, use of visual aids, grading, advising, and rapport with students. S/U grading.

F

M495I. Teaching Preparation Seminar: Writing for Engineers. (4) (Same as English Composition M495I) Seminar, two and one half hours; outside study, nine and one half hours. Limited to graduate students. Required of all teaching assistants for Engineering writing courses not exempt by appropriate departmental or program training. Training and monitoring, with focus on composition pedagogy, assessment of student writing, guidance of revision process, and specialized writing problems that may occur in engineering writing contexts. Practical concerns of preparing students to write course assignments, marking and grading essays, and conducting peer reviews and conferences. S/U grading.

F, W, Sp

M495J. Supervised Teaching of Writing for Engineers. (2) (Same as English Composition M495J) Seminar, one hour; outside study, five hours. Enforced requisite: course M495I. Required of all teaching assistants in their initial term of teaching Engineering writing courses. Mentoring in group and individual meetings. Continued focus on composition pedagogy, assessment of student writing, guidance of revision process, and specialized writing problems that may occur in engineering writing contexts. Practical concerns of preparing students to write course assignments, marking and grading essays, and conducting peer reviews and conferences. S/U grading.

F, W, Sp

501. Cooperative Program. (2 to 8) Tutorial, to be arranged. Preparation: consent of UCLA graduate adviser and graduate dean, and host campus instructor, department chair, and graduate dean. Used to record enrollment of UCLA students in courses taken under cooperative arrangements with USC. S/U grading.
Center for Domain-Specific Computing (CDSC)
National Science Foundation (NSF) Expeditions in Computing Program and InTrans Program and industry partners
Jason (Jingsheng) Cong, PhD (Computer Science), Director
CDSC looks beyond parallelization and focuses on domain-specific customization as the next disruptive technology to bring orders-of-magnitude power-performance efficiency improvement. CDSC develops a general methodology for creating novel, customizable computing platforms; and associated compilation tools and runtime management environment to support domain-specific computing. Its recent focus is on design and implementation of accelerator-rich architectures, from single chips to data centers; and actively exploring the use of emerging computing technologies such as neuromorphic computing and quantum computing. It also develops highly automated compilation tools and runtime management software for customizable heterogeneous platforms including multicore CPUs, many-core GPUs, FPGAs, and quantum computers. By combining these capabilities, CDSC researchers are able to deliver a supercomputer-in-a-box or -in-a-cluster. This approach has been successfully applied to multiple application domains such as machine learning, big data analytics, medical imaging, and bioinformatics.

Center for Encrypted Functionalities
National Science Foundation (NSF) Secure and Trustworthy Cyberspace FRONTIER Award
Amit Sahai, PhD (Computer Science), Director
The Center for Encrypted Functionalities tackles the deep and far-reaching problem of general-purpose program obfuscation, which aims to make an arbitrary computer program unintelligible while preserving its functionality. Viewed in a different way, the goal of obfuscation is to enable software that can keep secrets: it makes use of secrets, but such that these secrets remain hidden even if an adversary can examine the software code in its entirety and analyze its behavior as it runs. Secure obfuscation could enable a host of applications, from hiding the existence of many vulnerabilities introduced by human error to hiding cryptographic keys within software.

The center’s primary mission is to transform program obfuscation from an art into a rigorous mathematical discipline. The center’s research work has been honored with multiple awards including the National Academy of Sciences 2022 Michael and Sheila Held Prize. In addition to its direct research program, the center organizes retreats and workshops to bring researchers together to carry out its mission. The center also engages in high-impact outreach efforts such as development of free massive open online courses (MOOCs), and engagement with incarcerated individuals through the Prison Mathematics Project. The center has trained many PhD students, including the 2022 ACM Doctoral Dissertation Award winner for the best computer science PhD thesis.

Center for Synthetic Control Across Length-scales for Advancing Rechargeables (SCALAR)
Department of Energy (DOE) Energy Frontier Research Center
Sarah Tolbert, PhD (Chemistry and Biochemistry, Materials Science and Engineering), Director
SCALAR aims to use the power of synthetic materials chemistry to design materials, interfaces, and architectures that address long-standing problems in electrochemical energy storage systems. A vital aspect of the SCALAR program is the simultaneous design of new functional materials at the atomic, nanoscale, and electrode levels in an effort to bring about meaningful advances in battery performance. The electrochemical energy storage problems that SCALAR addresses fall into three areas: increasing capacity through multi-electron redox, improving power density by reducing resistive losses in materials and electrodes, and improving the reversibility and cycling stability of electrode materials. SCALAR further takes advantage of the dynamic Southern California region, which houses a large number of world-class research universities. Four of them—Caltech, UC Santa Barbara, UC San Diego, and University of Southern California—and the Stanford Linear Accelerator Center national laboratory, join lead institution UCLA to make a regional hub for battery research that leverages all partners’ proximity and complementary facilities.

Center for Translational Applications of Nanoscale Multiferroic Systems (TANMS)
National Science Foundation (NSF) Engineering Research Center
Gregory P. Carman, PhD (Mechanical and Aerospace Engineering), Director; Jane P. Chang, PhD (Chemical and Biomolecular Engineering), Deputy Director
Established in 2012 as a result of a 10-year NSF cooperative agreement, TANMS is dedicated to advancing miniaturized electromagnetic devices. It has effectively pursued this mission through a comprehensive three-pillar approach encompassing research, translation, and education. At the core of TANMS’ strategy is collaboration with leading researchers in multiferroics spanning across universities, industries, and government agencies nationwide. Their combined expertise is addressing the challenges of utilizing magnetic control in advanced miniaturized electronics. As TANMS enters its 12th year and graduates from the NSF program, it has forged a valuable partnership with the UCLA Institute of Technology Advancement. This equips TANMS to extend its pioneering work beyond the confines of research, establishing a platform for innovation that bridges the gap between academic exploration and tangible real-world applications.

Center for Excellence for Green Nano-technologies (CEGN)
Kang L. Wang, PhD (Electrical and Computer Engineering), Director
CEGN undertakes frontier research and development in the areas of nanotechnology in energy and nanoelectronics. It tackles major issues of scaling, energy efficiency, energy generation, and energy storage faced by the electronics industry. CEGN researchers are innovating novel solutions through a number of complementary efforts that minimize power usage and cost without compromising electronic device performance. The approach is based on the integration of magnetic, carbon-based,
organic, and optoelectronic materials and devices.

King Abdullah City for Science and Technology (KACST) in Saudi Arabia and UCLA Samueli collaborate in CEGN under KACST’s established Joint Center of Excellence Program (JCEP) to promote educational technology transfer and research exchanges. KACST has an agreement with UCLA for research in nanoelectronics and clean energy for the next three years. KACST is both Saudi Arabia’s national science agency and its premier national laboratory. CEGN was awarded an additional $11 million through 2022 in its recent renewal effort, expanding on the work that was originally funded at $3.7 million.

Named Data Networking Project

National Science Foundation (NSF) Future Internet Architecture (FIA) Program

Lixia Zhang, PhD (Computer Science), Principal Investigator

While the Internet has far exceeded expectations, it has also stretched initial assumptions, often creating tussles that challenge its underlying communication model. The TCP/IP architecture was designed to create a communication network where packets named only communication endpoints. Sustained growth in e-commerce, digital media, social networking, and smartphone applications has led to dominant use of the Internet as a distribution network. Solving distribution problems through a point-to-point communication protocol is complex and error-prone.

The **Named Data Networking Project** investigates a new Internet architecture, called named data networking (NDN), that changes the host-centric TCP/IP architecture to a data-centric architecture. This conceptually simple shift has far-reaching implications for how we design, develop, deploy, and use networks and applications. Today’s TCP/IP architecture uses addresses to communicate; NDN directly uses application data names to fetch data. TCP/IP secures the data container and communication channels; NDN directly secures the data, decoupling trust in data from trust in hosts. The project takes an application-driven, experimental approach to design and build a variety of applications on NDN to drive the development and deployment of the architecture and its supporting modules, test prototype implementations, and encourage community use, experimentation, and feedback into the design.

The new Future Internet Architectures—Next Phase (FIA-NP) program began in May 2014. The Named Data Networking Project is now under FIA-NP funding.

Smart Grid Energy Research Center (SMERC)

Rajit Gadh, PhD (Mechanical and Aerospace Engineering), Director

SMERC performs research, develops technology, creates innovations, and demonstrates advanced technologies to enable the development of the next generation of the electric utility grid—the smart grid. SMERC is currently working on electric vehicle-to-grid integration (V1G and V2G), microgrids, distributed renewable integration including solar and wind, energy storage integration within microgrids, autonomous electric vehicles, distributed energy resources, automated demand response, cybersecurity, and consumer behavior. SMERC also furnishes thought leadership through partnership between utilities, renewable energy companies, technology providers, electric vehicle and electric appliance manufacturers, Department of Energy (DOE) research laboratories, and universities, so as to collectively work on envisioning, planning, and executing the smart grid of the future. The partnership recently launched the Energy for a Smart Grid (E5smart) Industry Consortium. It is expected that this smart grid will enable integration of renewable energy sources, allow for integration of electric vehicles and energy storage, improve grid efficiency and resilience, reduce power outages, allow for competitive energy pricing, and overall become more responsive to market, consumer, and societal needs. SMERC was a participant in the Los Angeles Department of Water and Power (LADWP) Regional Smart Grid Demonstration Project, which was funded by DOE at an estimated $120 million for LADWP and its partners combined. Also, a SMERC electric vehicle microgrid demonstration project was funded by the California Energy Commission.

WIN Institute of Neurotronics (WINs)

Nanoelectronics Research Initiative National Institute of Excellence

Kang L. Wang, PhD (Electrical and Computer Engineering), Director

Successor to the Western Institute of Nanoelectronics, WINs focuses on cutting-edge research including nanostructures for high-efficiency solar cells, patterned nanostructures for integrated active optoelectronics on silicon, and carbon nanotube circuits.

Through the multidisciplinary research efforts of WINs, the National Institute of Standards and Technology (NIST) awarded UCLA $6 million to build the Western Institute of Nanotechnology–Green Engineering and Metrology (WIN-GEM) located within the Engineering building suite on campus.
BS in Aerospace Engineering Curriculum

Aeronautics Track

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A — Chemical Structure¹</td>
<td>4</td>
</tr>
<tr>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 31A — Differential and Integral Calculus¹</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 1 — Undergraduate Seminar²</td>
<td>1</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory¹</td>
<td>7</td>
</tr>
<tr>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mathematics 32A — Calculus of Several Variables¹</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B/4AL — Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory¹</td>
<td>7</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective³</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Mathematics 32B — Calculus of Several Variables¹</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C/4BL — Electrodynamics, Optics, and Special Relativity/Electricity and Magnetism Laboratory¹</td>
<td>7</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective³</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 104 — Science of Engineering Materials²</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A — Linear Algebra and Applications¹</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 101 — Statics and Strength of Materials²</td>
<td>5</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 105A — Introduction to Engineering Thermodynamics²</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Electrical and Computer Engineering 100 — Electrical and Electronic Circuits¹</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 105D — Transport Phenomena²</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 166A — Analysis of Aerospace Structures²</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 107 — Introduction to Modeling and Analysis of Dynamic Systems²</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 150A — Intermediate Fluid Mechanics²</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective³</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 150B — Aerodynamics²</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering C150R (Rocket Propulsion Systems) or 161A (Intro to Astronautics) or 161B (Intro to Space Technology)²</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 171A — Introduction to Feedback and Control Systems²</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective³</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Aerospace Engineering Elective²</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering C150P — Aircraft Propulsion Systems²</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 154S — Flight Mechanics, Stability, and Control of Aircraft²</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course²</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 154A — Preliminary Design of Aircraft³</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 157 — Basic Mechanical and Aerospace Engineering Laboratory²</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course²</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 157A — Fluid Mechanics and Aerodynamics Laboratory³</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course²</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective³</td>
<td>5</td>
</tr>
</tbody>
</table>

TOTAL

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 50.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
4. See list of electives on page 114.
BS in Aerospace Engineering Curriculum
Space Track

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>1</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 1 — Undergraduate Seminar</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B/4AL — Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C/4BL — Electrodynamics, Optics, and Special Relativity/Electricity and Magnetism Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 104 — Science of Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 101 — Statics and Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 105A — Introduction to Engineering Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 106 (Intro to Computer Programming with MATLAB) or Computer Science 31 (Intro to Computer Science I)</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 102 — Dynamics of Particles and Rigid Bodies</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 103 — Elementary Fluid Mechanics</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Electrical and Computer Engineering 100 — Electrical and Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 105D — Transport Phenomena</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 166A — Analysis of Aerospace Structures</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 107 — Introduction to Modeling and Analysis of Dynamic Systems</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 100A — Intermediate Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 150B (Aerodynamics) or C150P (Aircraft Propulsion Systems)</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 150C — Rocket Propulsion Systems</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 171A — Introduction to Feedback and Control Systems</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Aerospace Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 157 — Basic Mechanical and Aerospace Engineering Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 161A — Introduction to Astronautics</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 161B — Introduction to Space Technology</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 157A — Fluid Mechanics and Aerodynamics Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 161C — Spacecraft Design</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>180</td>
</tr>
</tbody>
</table>

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 50.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
4. See list of electives on page 113.
BS in Bioengineering Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Bioengineering 1D—Introduction to Bioengineering(^2)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 20A—Chemical Structure(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3—English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A—Differential and Integral Calculus(^1)</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemistry and Biochemistry 20B/20L—Chemical Energetics and Change/General Chemistry Laboratory(^1)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B—Integration and Infinite Series(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A—Mechanics(^1)</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Chemistry and Biochemistry 30A—Organic Chemistry: Structure and Reactivity(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A—Calculus of Several Variables(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 18/4AL—Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory(^1)</td>
<td>7</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Bioengineering 100—Bioengineering Fundamentals(^2)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30B—Organic Chemistry II: Reactivity, Synthesis, and Spectroscopy(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32b—Calculus of Several Variables(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1C—Electrodynamics, Optics, and Special Relativity(^1)</td>
<td>5</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemistry and Biochemistry 30AL—General Chemistry Laboratory II(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Life Sciences 7A—Cell and Molecular Biology(^1)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A—Linear Algebra and Applications(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective(^1)</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Bioengineering 16/16L—Bioengineering Laboratory(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 31 (Introduction to Computer Science I) or Mechanical and Aerospace Engineering M20 (Introduction to Computer Programming with MATLAB)(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Life Sciences 7C—Physiology and Human Biology(^1)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B—Differential Equations(^1)</td>
<td>4</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Electrical and Computer Engineering 100—Electrical and Electronic Circuits(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective(^1)</td>
<td>5</td>
</tr>
<tr>
<td>2nd</td>
<td>Bioengineering 120—Biomedical Transducers(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Bioengineering 175—Machine Learning and Data-Driven Modeling in Bioengineering(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective(^1)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course(^1)</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Bioengineering 110—Biotransport and Bioreaction Processes(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Bioengineering 116—Principles of Biocompatibility(^2)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Bioengineering Elective(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course(^1)</td>
<td>4</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Bioengineering 177A—Bioengineering Capstone Design I(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Bioengineering Elective(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course(^1)</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Bioengineering 177B—Bioengineering Capstone Design II(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Bioengineering 180—System Integration in Biology, Engineering, and Medicine I(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective(^1)</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Bioengineering Elective(^1)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Bioengineering Elective(^1)</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL: 181

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 74.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
BS in Chemical Engineering Curriculum

Chemical Engineering Core Option

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 10—Introduction to Chemical and Biomolecular Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A—Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>Geography 1</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 31A—Differential and Integral Calculus</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B/20L—Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>Mathematics 31B—Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A—Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30A—Organic Chemistry I: Structure and Reactivity</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32A—Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A/4AL—Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th>UNITs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 100—Fundamentals of Chemical and Biomolecular Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30AL—General Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32B—Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C—Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 45—Biomolecular Engineering Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 102A—Thermodynamics I</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30B—Organic Chemistry II: Reactivity, Synthesis, and Spectroscopy</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A—Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 102B—Thermodynamics II</td>
<td>4</td>
</tr>
<tr>
<td>Civil and Environmental Engineering 20—Introduction to Computer Programming with MATLAB</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33B—Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th>UNITs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101A—Transport Phenomena I</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 109—Numerical and Mathematical Methods in Chemical and Biological Engineering</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101B—Transport Phenomena II: Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 104A—Chemical and Biomolecular Engineering Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101C—Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 103—Separation Processes</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th>UNITs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101B—Chemical and Biomolecular Engineering Laboratory II</td>
<td>6</td>
</tr>
<tr>
<td>Chemical Engineering 106—Chemical Reaction Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 107—Process Dynamics and Control</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 108A—Process Economics and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 108B—Chemical Process Computer-Aided Design and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL 180

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 64.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
BS in Chemical Engineering Curriculum
Biomedical Engineering Option

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN YEAR</td>
<td>UNITS</td>
</tr>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 10—Introduction to Chemical and Biomolecular Engineering ¹</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A—Chemical Structure ¹</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 31A—Differential and Integral Calculus ¹</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B/20L—Chemical Energetics and Change/General Chemistry Laboratory ¹</td>
<td>7</td>
</tr>
<tr>
<td>Mathematics 31B—Integration and Infinite Series ¹</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A—Mechanics ¹</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30A—Organic Chemistry I: Structure and Reactivity ¹</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32A—Calculus of Several Variables ²</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A/4AL—Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory ¹</td>
<td>7</td>
</tr>
<tr>
<td>SOPHOMORE YEAR</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 100—Fundamentals of Chemical and Biomolecular Engineering ³</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30AL—General Chemistry Laboratory II ³</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32B—Calculus of Several Variables ³</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C—Electrodynamics, Optics, and Special Relativity ³</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 45—Biomolecular Engineering Fundamentals ²</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 102A—Thermodynamics I ²</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30B—Organic Chemistry II: Reactivity, Synthesis, and Spectroscopy ¹</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A—Linear Algebra and Applications ¹</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 102B—Thermodynamics II ²</td>
<td>4</td>
</tr>
<tr>
<td>Civil and Environmental Engineering M20—Introduction to Computer Programming with MATLAB ²</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33B—Differential Equations ²</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101A—Transport Phenomena ²</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 109—Numerical and Mathematical Methods in Chemical and Biological Engineering ²</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective ³</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101B—Transport Phenomena II: Heat Transfer ²</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 104A—Chemical and Biomolecular Engineering Laboratory I ²</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective ³</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101C—Mass Transfer ²</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 103—Separation Processes ²</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course ³</td>
<td>4</td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 104B—Chemical and Biomolecular Engineering Laboratory II ²</td>
<td>6</td>
</tr>
<tr>
<td>Chemical Engineering 106—Chemical Reaction Engineering ³</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering CM145—Molecular Biotechnology for Engineers ²</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering Biomedical Elective ²</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 107—Process Dynamics and Control ²</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 108A—Process Economics and Analysis ²</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course ³</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective ³</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 108B—Chemical Process Computer-Aided Design and Analysis ²</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course ³</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective ³</td>
<td>5</td>
</tr>
</tbody>
</table>

TOTAL 180

¹. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 64.
³. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
BS in Chemical Engineering Curriculum / Biomolecular Engineering Option

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemical Engineering 10 – Introduction to Chemical and Biomolecular Engineering¹</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 20A – Chemical Structure¹</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A – Differential and Integral Calculus¹</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemistry and Biochemistry 20B/20L – Chemical Energetics and Change/General Chemistry Laboratory¹</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B – Integration and Infinite Series¹</td>
</tr>
<tr>
<td></td>
<td>Physics 1A – Mechanics¹</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Chemistry and Biochemistry 30A – Organic Chemistry I: Structure and Reactivity¹</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A – Calculus of Several Variables¹</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A – Linear Algebra and Applications¹</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemical Engineering 100 – Fundamentals of Chemical and Biomolecular Engineering²</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30AL – General Chemistry Laboratory II¹</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B – Calculus of Several Variables¹</td>
</tr>
<tr>
<td></td>
<td>Physics 1C – Electrodynamics, Optics, and Special Relativity¹</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemical Engineering 45 – Biomolecular Engineering Fundamentals²</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 102A – Thermodynamics I²</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 102B – Organic Chemistry II: Reactivity, Synthesis, and Spectroscopy¹</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B – Differential Equations¹</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Chemical Engineering 102B – Thermodynamics II²</td>
</tr>
<tr>
<td></td>
<td>Civil and Environmental Engineering M20 – Introduction to Computer Programming with MATLAB²</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B – Differential Equations¹</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli Ethics Course</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemical Engineering 101A – Transport Phenomena I²</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 109 – Numerical and Mathematical Methods in Chemical and Biological Engineering²</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective³</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemical Engineering 101B – Transport Phenomena II: Heat Transfer²</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 104A – Chemical and Biomolecular Engineering Laboratory I²</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective³</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Chemical Engineering 101C – Mass Transfer²</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering C125 – Bioseparations and Bioprocess Engineering²</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course³</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemical Engineering C115 – Biochemical Reaction Engineering²</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering CM145 – Molecular Biotechnology for Engineers²</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering Biomolecular Elective²</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemical Engineering 104D – Molecular Biotechnology Laboratory: From Gene to Product²</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 107 – Process Dynamics and Control²</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 108A – Process Economics and Analysis²</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course³</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Chemical Engineering 108B – Chemical Process Computer-Aided Design and Analysis²</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course¹</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective³</td>
</tr>
</tbody>
</table>

TOTAL

| Units | 180 |

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 64.
2. Counts as Engineering Concepts for ABET, total units Engineering Concepts = 75
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
BS in Chemical Engineering Curriculum
Environmental Engineering Option

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemical Engineering 10 — Introduction to Chemical and Biomolecular Engineering</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>English Composition 1 — English Composition, Rhetoric, and Language</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Chemistry and Biochemistry 30A — Organic Chemistry I: Structure and Reactivity</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physics 1A/4AL — Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemical Engineering 100 — Fundamentals of Chemical and Biomolecular Engineering</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30AL — General Chemistry Laboratory II</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physics 1C — Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemical Engineering 45 — Biomolecular Engineering Fundamentals</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 102A — Thermodynamics I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30B — Organic Chemistry II: Reactivity, Synthesis, and Spectroscopy</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Chemical Engineering 102B — Thermodynamics II</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Civil and Environmental Engineering M20 — Introduction to Computer Programming with MATLAB</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemical Engineering 101A — Transport Phenomena</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 109 — Numerical and Mathematical Methods in Chemical and Biological Engineering</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemical Engineering 101B — Transport Phenomena II: Heat Transfer</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 104A — Chemical and Biomolecular Engineering Laboratory I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Chemical Engineering 101C — Mass Transfer</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 103 — Separation Processes</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemical Engineering 104B — Chemical and Biomolecular Engineering Laboratory II</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 106 — Chemical Reaction Engineering</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering Environmental Elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemical Engineering 107 — Process Dynamics and Control</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 108A — Process Economics and Analysis</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Chemical Engineering 108B — Chemical Process Computer-Aided Design and Analysis</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering Environmental Elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL

180

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 64.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
BS in Chemical Engineering Curriculum

Semiconductor Manufacturing Engineering Option

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemical Engineering 10 — Introduction to Chemical and Biomolecular Engineering</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>English Composition 1 — English Composition, Rhetoric, and Language</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td>Chemistry and Biochemistry 30A — Organic Chemistry I: Structure and Reactivity</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physics 1B/4AL — Oscillations, Waves, Electric and Magnetic Fields/Laboratory</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemical Engineering 100 — Fundamentals of Chemical and Biomolecular Engineering</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30AL — General Chemistry Laboratory II</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physics 1C — Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>Chemical Engineering 45 — Biomolecular Engineering Fundamentals</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 102A — Thermodynamics I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30B — Organic Chemistry II: Reactivity, Synthesis, and Spectroscopy</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td>Chemical Engineering 102B — Thermodynamics II</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Civil and Environmental Engineering M20 — Introduction to Computer Programming with MATLAB</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemical Engineering 101A — Transport Phenomena I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 109 — Numerical and Mathematical Methods in Chemical and Biological Engineering</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>Chemical Engineering 101B — Transport Phenomena II: Heat Transfer</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 104A — Chemical and Biomolecular Engineering Laboratory I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td>Chemical Engineering 101C — Mass Transfer</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 103 — Separation Processes</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemical Engineering 106 — Chemical Reaction Engineering</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering or Materials Science and Engineering Elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>Chemical Engineering 104C/104CL — Semiconductor Processing/Laboratory</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 107 — Process Dynamics and Control</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 108A — Process Economics and Analysis</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td>Chemical Engineering 108B — Chemical Process Computer-Aided Design and Analysis</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering C115—Surface and Interface Engineering</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL

180

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 64.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
BS in Civil Engineering Curriculum

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A — Chemical Structure¹</td>
<td>4</td>
</tr>
<tr>
<td>Civil and Environmental Engineering I — Civil Engineering and Infrastructure¹</td>
<td>2</td>
</tr>
<tr>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 31A — Differential and Integral Calculus¹</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory¹</td>
<td>7</td>
</tr>
<tr>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics IA — Mechanics¹</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B/4AL — Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory¹</td>
<td>7</td>
</tr>
<tr>
<td>UCLA Samueli GE Effective¹</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering 91 (Statics) or Mechanical and Aerospace Engineering 101 (Statics and Strength of Materials)²</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics I — Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
<tr>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering 102 — Dynamics of Particles and Bodies¹</td>
<td>2</td>
</tr>
<tr>
<td>Civil and Environmental Engineering CI04 (Structure, Processing, and Properties of Civil Engineering Materials) or Materials Science and Engineering 104 (Science of Engineering Materials)³</td>
<td>4</td>
</tr>
<tr>
<td>Civil and Environmental Engineering 108 — Introduction to Mechanics of Deformable Solids³</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering M20 (Introduction to Computer Programming with MATLAB) or Computer Science 31 (Introduction to Computer Science 2)²</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33B (Differential Equations) or Mechanical and Aerospace Engineering 82 (Mathematics of Engineering)²</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 103 — Elementary Fluid Mechanics¹</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering 120 — Principles of Soil Mechanics²</td>
<td>4</td>
</tr>
<tr>
<td>Civil and Environmental Engineering T35A — Elementary Structural Analysis²</td>
<td>4</td>
</tr>
<tr>
<td>Civil and Environmental Engineering 150 — Introduction to Hydrology²</td>
<td>4</td>
</tr>
<tr>
<td>Civil and Environmental Engineering 153 — Introduction to Environmental Science²</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 102A (Thermodynamics I) or Mechanical and Aerospace Engineering 105A (Introduction to Engineering Thermodynamics)²</td>
<td>4</td>
</tr>
<tr>
<td>Major Field Elective²</td>
<td>4</td>
</tr>
<tr>
<td>Natural Science Course³</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering 103 — Applied Numerical Computing and Modeling in Civil and Environmental Engineering³</td>
<td>4</td>
</tr>
<tr>
<td>Civil and Environmental Engineering 110 (Introduction to Probability and Statistics for Engineers) or Civil and Environmental Engineering C111 (Machine Learning and Artificial Intelligence for Civil Engineering³</td>
<td>4</td>
</tr>
<tr>
<td>Major Field Electives (2)²</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering 190 — Professional Practice</td>
<td>2</td>
</tr>
<tr>
<td>Major Field Electives (2)²</td>
<td>8</td>
</tr>
<tr>
<td>Technical Breadth Course²</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Effective²</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Major Field Electives (2)²</td>
<td>8</td>
</tr>
<tr>
<td>Technical Breadth Course²</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Effective²</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Major Field Elective²</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course²</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Effective²</td>
<td>5</td>
</tr>
</tbody>
</table>

TOTAL 183

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 56.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
4. Must include required courses for two of the major field areas listed on page 51.
BS in Computer Engineering Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Computer Science 1 (Freshman Computer Science Seminar) or Electrical and Computer Engineering 1 (Undergraduate Seminar)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Computer Science 31—Introduction to Computer Science</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3—English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A—Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Computer Science 32—Introduction to Computer Science II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B—Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A—Mechanics</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Computer Science 33—Introduction to Computer Organization</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A—Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B—Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Electrical and Computer Engineering 3—Introduction to Electrical Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Engineering WO—Introduction to Engineering Design: Internet of Things</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B—Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A—Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 4AL (Mechanics Laboratory) or 4BL (Electricity and Magnetism Laboratory)</td>
<td>2</td>
</tr>
<tr>
<td>2nd</td>
<td>Computer Science 35L—Software Construction Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science M51A or Electrical and Computer Engineering M16—Logic Design of Digital Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B—Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1C—Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Electrical and Computer Engineering 102—Systems and Signals</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 61—Introduction to Discrete Structures</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical and Computer Engineering 10U—Electrical and Electronic Circuits</td>
<td>4</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Computer Science 111—Operating Systems Principles</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Probability Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Computer Science 118 (Computer Network Fundamentals) or Electrical and Computer Engineering 132B (Data Communications and Telecommunication Networks)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science M152A or Electrical and Computer Engineering M116L—Introductory Digital Design Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Computer Science 180—Introduction to Algorithms and Complexity</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical and Computer Engineering 115C—Digital Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Computer Science M151B or Electrical and Computer Engineering M116C—Computer Systems Architecture</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical and Computer Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Electrical and Computer Engineering 113</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical and Computer Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical and Computer Engineering Design Course</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Electrical and Computer Engineering Design Course</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL

181

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 49.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
4. See the list of electives on page 67 or list of electives on page 87.
BS in Computer Science Curriculum

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 1—Freshman Computer Science Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Computer Science 31—Introduction to Computer Science I</td>
<td>1</td>
</tr>
<tr>
<td>English Composition 3—English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 31A—Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 32—Introduction to Computer Science II</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 31B—Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics IA—Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 33—Introduction to Computer Organization</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics 32A—Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 18—Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 35L—Software Construction Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science M51A or Electrical and Computer Engineering M16—Logic Design of Digital Systems</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32B—Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mathematics 33A—Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 61—Introduction to Discrete Structures</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C—Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
<tr>
<td>Physics 4AL (Mechanics Laboratory) or 4BL (Electricity and Magnetism Laboratory)</td>
<td>2</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 111—Operating Systems Principles</td>
<td>5</td>
</tr>
<tr>
<td>Computer Science M152A or Electrical and Computer Engineering M116—Introductory Digital Design Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics 33B—Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 118—Computer Network Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science 180—Introduction to Algorithms and Complexity</td>
<td>4</td>
</tr>
<tr>
<td>Science and Technology Elective</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 131—Programming Languages</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science M128 or Electrical and Computer Engineering M16C—Computer Systems Architecture</td>
<td>4</td>
</tr>
<tr>
<td>Probability Elective</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 181—Introduction to Formal Languages and Automata Theory</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 130 (Software Engineering) or 152B (Digital Design Project Laboratory)</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td>Science and Technology Elective</td>
<td>4</td>
</tr>
<tr>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science Electives (2)</td>
<td>8</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td>Science and Technology Elective</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td>Additional coursework to meet 180-unit requirement</td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL 180

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 49.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
4. See list of electives on page 66.
5. Any excess or available units not already applied to another degree requirement will satisfy this unit.
BS in Computer Science and Engineering Curriculum

Freshman Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course(s)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Computer Science I—Freshman Computer Science Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Computer Science 31—Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3—English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A—Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Computer Science 32—Introduction to Computer Science II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B—Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics IA—Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Computer Science 33—Introduction to Computer Organization</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A—Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B—Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course(s)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Computer Science 35L—Software Construction Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science M51A or Electrical and Computer Engineering M16—Logic Design of Digital Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A—Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1C—Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
<tr>
<td>2nd</td>
<td>Mathematics 33A—Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 61—Introduction to Discrete Structures</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 4AL (Mechanics Laboratory) or 4BL (Electricity and Magnetism Laboratory)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Computer Science 180—Introduction to Algorithms and Complexity</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical and Computer Engineering 3—Introduction to Electrical Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B—Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Probability Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course(s)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Computer Science 111—Operating Systems Principles</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Electrical and Computer Engineering 100—Electrical and Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>2nd</td>
<td>Computer Science 131—Programming Languages</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science M152A or Electrical and Computer Engineering M116L—Introductory Digital Design Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Electrical and Computer Engineering 102—Systems and signals</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Computer Science 118—Computer Network Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science M151B or Electrical and Computer Engineering M116C—Computer Systems Architecture</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical and Computer Engineering 115C—Digital Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course(s)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Computer Science 152B—Digital Design Project Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 181—Introduction to Formal Languages and Automata Theory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>2nd</td>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical and Computer Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Additional coursework to meet 180 unit requirement</td>
<td>1</td>
</tr>
</tbody>
</table>

Total

- 180 units

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 49.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
4. See list of electives on page 65.
5. Any excess or available units not already applied to another degree requirement will satisfy this unit.
BS in Electrical Engineering Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>CS 31</td>
<td>Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>EN 3</td>
<td>English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>MATH 31A</td>
<td>Differential and Integral Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd Quarter</td>
<td>CHE 20A</td>
<td>Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CS 32</td>
<td>Introduction to Computer Science II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 31B</td>
<td>Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHYS 1A</td>
<td>Mechanics</td>
<td>5</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>ECE M16</td>
<td>Logic Design of Digital Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 32A</td>
<td>Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHYS 1B/4AL</td>
<td>Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory</td>
<td>7</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>ECE 113</td>
<td>Digital Signal Processing</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 131A</td>
<td>Probability and Statistics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samuei GE Elective</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>ECE Core Course</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ECE Design Course</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ECE Elective</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

2 | 2nd Quarter | ECE Core Course | | 4 |
	ECE Design Course		4
	ECE Elective		4
	Technical Breadth Course		4

3 | 3rd Quarter | ECE Core Course or ECE 33 | | 4 |
| | Technical Breadth Course | | 4 |
| | UCLA Samuei GE Elective | | 4 |

TOTAL | | | 182 |

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 47.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
4. See the list of electives on page 89.
BS in Materials Engineering Curriculum
Materials Engineering Option

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A — Chemical Structure¹</td>
<td>4</td>
</tr>
<tr>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Materials Science and Engineering 10 — Freshman Seminar: New Materials²</td>
<td>1</td>
</tr>
<tr>
<td>Mathematics 31A — Differential and Integral Calculus¹</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory¹</td>
<td>7</td>
</tr>
<tr>
<td>Mathematics 31B — Integration and Infinite Series¹</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1Á — Mechanics¹</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 104 — Science of Engineering Materials²</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32Á — Calculus of Several Variables²</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B — Oscillations, Waves, Electric and Magnetic Fields¹</td>
<td>5</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR	
1st Quarter	
Materials Science and Engineering 110/110L — Introduction to Materials Characterization A/Laboratory²	6
Mathematics 32B — Calculus of Several Variables¹	4
Physics 1C — Electrodynamics, Optics, and Special Relativity¹	5
2nd Quarter	
Materials Science and Engineering 90L — Physical Measurement in Materials Engineering²	2
Materials Science and Engineering 100 — Introduction to Polymers²	4
Mathematics 33Á — Linear Algebra and Applications¹	4
UCLA Samueli GE Elective²	5
3rd Quarter	
Civil and Environmental Engineering M20 (Intro to Computer Programming with MATLAB) or Computer Science 31 (Intro to Computer Science I)²	4
Electrical and Computer Engineering 100 — Electrical and Electronic Circuits²	4
Mathematics 33B (Differential Equations) or Mechanical and Aerospace Engineering 82 (Mathematics of Engineering)³	4
technical breadth Course³	4

JUNIOR YEAR	
1st Quarter	
Materials Engineering Laboratory Course³	2
Materials Science and Engineering 130 — Phase Relations in Solids³	4
Mechanical and Aerospace Engineering 101 — Statics and Strength of Materials³	4
technical breadth Course³	4
2nd Quarter	
Materials Science and Engineering 131/131L — Diffusion and Diffusion-Controlled Reactions/Laboratory³	6
Materials Science and Engineering 143A — Mechanical Behavior of Materials³	4
UCLA Samueli GE Elective³	5
3rd Quarter	
Civil and Environmental Engineering 108 — Introduction to Mechanics of Deformable Solids³	4
Materials Science and Engineering 132 — Structures and Properties of Metallic Alloys³	4
Materials Engineering Laboratory Course³	2
UCLA Samueli GE Elective³	5

SENIOR YEAR	
1st Quarter	
Materials Engineering Elective⁴	4
Materials Science and Engineering 160 — Introduction to Ceramics and Glasses³	4
UCLA Samueli Ethics Course	4
Upper-Division Mathematics Course³	4
2nd Quarter	
Materials Engineering Elective⁴	4
Materials Science and Engineering 120 — Physics of Materials³	4
Materials Science and Engineering 140A — Materials Selection and Engineering Design A³	3
UCLA Samueli GE Elective³	5
3rd Quarter	
Materials Science and Engineering 140B — Materials Selection and Engineering Design B³	3
Materials Engineering Elective⁴	4
Technical Breadth Course³	4
UCLA Samueli GE Elective³	4

TOTAL 180

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 54.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
4. See counselor in 6426 Boelter Hall for details.
5. See the list of approved mathematics courses on page 106.
BS in Materials Engineering Curriculum
Electronic Materials Option

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title and Code</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemistry and Biochemistry 20A</td>
<td>Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>English Composition 3</td>
<td>English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Materials Science and Engineering 11—Freshman Seminar: New Materials</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Mathematics 31A</td>
<td>Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemistry and Biochemistry 20B/20L</td>
<td>Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Mathematics 31B</td>
<td>Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Physics 1A</td>
<td>Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Materials Science and Engineering 104</td>
<td>Science of Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mathematics 32A</td>
<td>Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Physics 1B</td>
<td>Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title and Code</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Materials Science and Engineering 110/110L</td>
<td>Introduction to Materials Characterization A/Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Mathematics 32B</td>
<td>Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Physics 1C</td>
<td>Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electrical and Computer Engineering 101A</td>
<td>Engineering Electromagnetics</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Materials Science and Engineering 10L</td>
<td>Physical Measurement in Materials Engineering</td>
<td>2</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Materials Science and Engineering 112</td>
<td>Principles of Electronic Materials Processing</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Mathematics 33A</td>
<td>Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Civil and Environmental Engineering M20</td>
<td>Intro to Computer Programming with MATLAB</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electrical and Computer Engineering 100</td>
<td>Electrical and Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mathematics 33B</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title and Code</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Electronic Materials Laboratory Course</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Materials Science and Engineering 120</td>
<td>Phase Relations in Solids</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Mechanical and Aerospace Engineering 101</td>
<td>Statics and Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Technical Breadth Course</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Materials Science and Engineering 120L</td>
<td>Materials Science of Semiconductors/Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Materials Science and Engineering 131/131L</td>
<td>Diffusion and Diffusion-Controlled Reactions/Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Materials Science and Engineering 121/121L</td>
<td>Structures and Properties of Metallic Alloys</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electronic Materials Elective</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title and Code</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Electrical and Computer Engineering 121B</td>
<td>Principles of Semiconductor Device Design</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Technical Breadth Course</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Upper-Division Mathematics Course</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electronic Materials Elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Materials Science and Engineering 140A</td>
<td>Materials Selection and Engineering Design A</td>
<td>3</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Technical Breadth Course</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electronic Materials Elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Materials Science and Engineering 140B</td>
<td>Materials Selection and Engineering Design B</td>
<td>3</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>UCLA Samueli GE Elective</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 54.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
4. See counselor in 6426 Boelter Hall for details.
5. See the list of approved mathematics courses on page 106.
BS in Mechanical Engineering Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemistry and Biochemistry 20B/L — Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B/4AL — Waves, Electric and Magnetic Fields/Laboratory</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Materials Science and Engineering 104 — Science of Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1C/4BL — Electricity and Magnetic Field Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 94 — Introduction to Computer-Aided Design and Drafting</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 101 — Statics and Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 105A — Introduction to Engineering Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mechanical and Aerospace Engineering 102D (Intro to Computer Programming with MATLAB) or Computer Science 31</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 107 — Dynamics of Particles and Rigid Bodies</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 103 — Elementary Fluid Mechanics</td>
<td>4</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Electrical and Computer Engineering 100 — Electrical and Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 156A — Advanced Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 183A (Intro to Manufacturing Processes) or M183B (Intro to Microscale and Nanoscale Manufacturing)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Mechanical and Aerospace Engineering 105D — Transport Phenomena</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 107 — Introduction to Modeling and Analysis of Dynamic Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mechanical and Aerospace Engineering 131A (Intermediate Heat Transfer) or 133A (Engineering Thermodynamics)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 157 — Basic Mechanical and Aerospace Engineering Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 162A — Introduction to Mechanisms and Mechanical Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Electrical and Computer Engineering 110L — Circuit Measurements Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 171A — Introduction to Feedback and Control Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Mechanical and Aerospace Engineering 162D — Mechanical Engineering Design I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mechanical and Aerospace Engineering 162E — Mechanical Engineering Design II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UCLA Samueli GE Elective</td>
<td>5</td>
</tr>
</tbody>
</table>

TOTAL 181

1. Counts as Mathematics and Basic Sciences for ABET, total units Mathematics and Basic Sciences = 50.
3. Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and GE; details on page 22.
ABET, 113, 114, 115
academic excellence workshops, 14
academic policies, 16
academic residence requirement, undergraduate, 22
active materials laboratory, 117
administrative officers, 4
admission to the school
freshman, 19
graduate student, 27
transfer student, 19
undergraduate, 19
advanced placement examination credit, 19, 20–21, 24
advising, 8
CEED, 14
undergraduate, 24
aerospace engineering, see mechanical and aerospace engineering department, 113
AI in imaging and neuroscience research laboratory, 72
American Indian science and engineering society (AISES), 14
anatomical engineering group, 117
architecture specialization (PolyArch) laboratory, 73
Ashe student health center, 11
automated reasoning group, 72
autonomous intelligent networked systems center (CAINS), 75
autonomous vehicle systems instrumentation laboratory (AVSIL), 117
Bachelor of science degree requirements, 21
big data and genomics laboratory, 72
biocybernetics laboratory, 73
bioengineering department, 28
bachelor of science degree, 29
course descriptions, 32
curriculum, 141
faculty areas of thesis guidance, 31
fields of study, 30
doctorate, 26
graduate study, 30
undergraduate study, 29
bioinformatics minor, 67
biomechatronics laboratory, 118
biomolecular engineering laboratories, 43
bionics laboratory, 118
boiling heat transfer laboratory, 118
bridge review for enhancing engineering students (BREES), 14
building earthquake instrumentation network, 55
Career services, 11
center for autonomous intelligent networked systems (CAINS), 75
center for domain-specific computing (CDSC), 75
center for encrypted functionalities, 75
center for heterogeneous integration and performance scaling (CHIPS), 92
center of excellence for green nanotechnologies (CEGN), 137
ceramic processing laboratory, 108
chemical and biomolecular engineering department, 40
bachelor of science degree, 40
course descriptions, 45
curriculum, 142–146
facilities, 43
faculty areas of thesis guidance, 45
fields of study, doctorate, 26
graduate study, 42
undergraduate study, 40
chemical kinetics, catalysis, reaction engineering, and combustion laboratory, 43
chemistry of construction materials laboratory, 56
Chen research group, 120
circuits laboratories, 93
civil and environmental engineering department, 50
bachelor of science degree, 50
civil engineering curriculum, 147
course descriptions, 57
environmental engineering minor, 51
facilities, 55
instructional laboratories, 55
research laboratories, 55
faculty areas of thesis guidance, 56
fields of study, 54
doctorate, 26
graduate study, 51
undergraduate study, 50
clean energy research center Los Angeles (CERC-LA), 93
cognitive systems laboratory, 72
collaborative center for aerospace sciences (CCAS), 118
compilers laboratory, 74
complaints and grievances, student, 17
complex fluids and interfacial physics laboratory, 118
complex thermal systems modeling laboratory, 119
computational fluid dynamics laboratory, 118
computational genetics laboratory, 73
computational machine learning laboratory, 72
computer graphics and vision laboratory (GraViLab), 73
computer science department, 64
bachelor of science degrees, 64
bioinformatics minor, 67
computing resources, 75
course descriptions
bioinformatics, 77
computer science, 77
curriculum, 148–150
data science engineering minor, 67, 90
facilities, 71
artificial intelligence laboratories, 72
computational systems biology laboratories, 72
computer science centers, 75
computer systems architecture laboratories, 73
graphics and vision laboratories, 73
information and data management laboratories, 74
network systems laboratories, 74
software systems laboratories, 74
field areas of thesis guidance, 76
fields of study, 69
doctorate, 27
graduate study, 68
undergraduate study, 64
computing resources, 10
concurrent systems laboratory, 73
connection laboratory, 74
continuing education, UCLA extension, 10
correspondence directory, 8
counseling
academic, 8, 24
CEED, 14
curricula tables, BS degrees
aerospace engineering
aeronautics track, 139
space track, 140
bioengineering, 141
chemical engineering
biomedical option, 143
biomolecular option, 144
core option, 142
environmental option, 145
semiconductor manufacturing option, 146
civil engineering, 147
computer engineering, 148
computer science and engineering, 150
computer science, 149
electrical engineering, 151
materials engineering
electronic materials option, 153
materials option, 152
mechanical engineering, 154
cybernetic control laboratory (CyCLab), 118
Dashew international student center, 11
data science engineering minor, 67, 90
Davoyan research laboratory, 117
degrees
bachelor of science (BS), 21
doctorate, 26
engineer (Engr), 26
master of engineering (MEng), 26, 130
master of science (MS), 26
master of science in engineering online, 26
department requirements, undergraduate, 23
departmental scholar program, 16
design and manufacturing laboratory, 118
digital arithmetic and reconfigurable architecture laboratory, 73
disabilities, services for students with, 11
disclosure of student records, 18
domain-specific computing center (CDSC), 75, 137
dynamic nuclear acid systems laboratory, 118
e-health research laboratory (ER Lab), 73
electrical and computer engineering department, 86
bachelor of science degrees, 87
computing resources, 92
course descriptions, 96
curriculum
 computer, 148
electrical, 151
facilities and programs, 92
faculty areas of thesis guidance, 94
faculty groups and laboratories, 94
fields of study, doctorate, 27
graduate study, 90
multidisciplinary research facilities, 94
research centers and laboratories, 92
undergraduate study, 87
electrochemical engineering and catalysis laboratories, 43
electromagnetics laboratories, 93
electron microscopy laboratories, 108
electronic materials processing laboratory, 43
encrypted functionalities center, 75, 137
endowed chairs, 5
ergy and propulsion research laboratory, 118
engineering economics, learning, and networks center, 92
engineering geomatics field laboratory, 55
environmental engineering laboratories, 55
environmental engineering minor, 51
ethics requirement, undergraduate, 22
excellence in engineering and diversity center (CEED), 14
exceptional student admissions program, 16
experimental fracture mechanics laboratory, 55
experimental mechanics laboratory, 55
externally funded research centers and institutes, 137
F
fees and financial support, 12
graduate students, 13
undergraduate students, 12
fellowships, 13
financial aid, 12, 14
flexible research group, 118
freshman orientation course, 14
fusion science and technology center, 118
G
general education requirements, undergraduates, 22
glass and ceramics research laboratories, 108
grade disputes, 16
grading policy, 16
graduate student researcher, 13
grants, 12
green nanotechnologies center (CEGN), 137
grievances and complaints, student, 17
H
health center, 11
heat transfer laboratory, Morrin-Gier-Martinieli, 119
heterogeneous integration and performance scaling center (CHIPS), 92
high-frequency electronics center, 93
honorary societies, 15
honors
dean’s honors list, 25
Latin honors, 25
Hu research laboratory (H-Lab), 118
hydrology laboratory, 55
hypersonics and computational aerodynamics group, 119
I
information and computation security center (CICS), 75
information and data management group, 74
institutes, externally funded, 137
intelligent sensing and connectivity laboratory (ICON Lab), 74
international student services, 11
internet research laboratory (IRL), 74
L
language understanding and synthesis laboratory (PLUS), 72
large-scale machine learning (BigML) group, 72
large-scale structure test facility, 56
large-scale systems group, 74
laser laboratory, 93
laser spectroscopy and gas dynamics laboratory, 119
library facilities
 science and engineering library (SEL), 10
 university library system, 10
living accommodations, 12
living soft material engineering laboratory, 119
loans, 12
M
machine intelligence (MINT) group, 72
machine learning and genomics laboratory, 73
master of engineering program, 130
master of science in engineering online programs, 131
master study, 131
materials and plasma chemistry laboratory, 44
materials science and engineering department, 105
bachelor of science degree, 105
course descriptions, 109
curriculum, 152, 153
facilities, 108
faculty areas of thesis guidance, 108
fields of study, 107
doctorate, 27
graduate study, 106
mechanical and aerospace engineering department, 113
bachelor of science degrees, 113
centers, facilities, and laboratories, 117
course descriptions, 122
curriculum
 aerospace, 139, 140
 mechanical, 154
 faculty areas of thesis guidance, 121
 fields of study, 117
doctorate, 27
graduate study, 115
undergraduate study, 113
mechanical testing laboratory, 108
mechanical vibrations laboratory, 55
mechanics of soft materials laboratory, 119
mechatronics and controls laboratory, 119
MESA schools program, 14
metallurgical sample preparation laboratory, 108
micro- and nano-manufacturing laboratory, 119
multiscale thermosciences laboratory (MTSL), 119
N
named data networking project, 138
nanoelectronics research facility (Nanolab), 93
nano-materials research laboratory, 108
nanoparticle technology and air quality engineering laboratory, 44
nanoscale transport research group, 120
national science foundation (NSF), 138
national society of black engineers (NSBE), 15
natural language processing group, 11
network design automation laboratory, 74
networked and application systems (NAS) group, 74
neurotronics institute (WINs), 138
nondiscrimination, 16
O
official publications, 16
online master of science in engineering, 131
optofluidics systems laboratory, 120
organic electronic materials processing laboratory, 108
organizations, student, 14
P
Peng’s language understanding and synthesis (PLUS) laboratory, 72
photonics and optoelectronics laboratories, 93
physics of amorphous and inorganic soils laboratory (PARISlab), 56
Pilon research group, 120
plasma and beam assisted manufacturing laboratory, 120
plasma electronics facilities, 94
polices, academic, 16
policies and regulations, undergraduate, 23
polymer and separations research laboratory, 44
precollege outreach programs, 14
prizes and awards, 16
process systems engineering laboratory, 44
R
reinforced concrete laboratory, 55
research centers, externally funded, 137
robotics and mechanisms laboratory (Romela), 120
S
scalable analytics institute (ScAI), 75
scholarship requirement, undergraduate, 12
scholarships, 12, 14
school requirements, undergraduate, 22
schoolwide programs and courses, 133
graduate study, 133
scifacturing laboratory, 120
semiconductor and optical characterization laboratory, 108

sensors and instrumentation laboratory, 119
services for students with disabilities, 11
shop services center, 10
simulations of flow physics and acoustics
laboratory (SOFIA), 120
smart grid energy research center
(SMERC), 120, 138
societies, student and honorary, 15
society of Latino engineers and scientists
(SOLES), 15
society of women engineers (SWE), 15
software engineering and analysis laboratory
(SEAL), 75
software systems group, 75
soil mechanics laboratory, 55, 56
solid-state electronics facilities, 94
special programs, activities, and awards, 14
statistical and relational artificial intelligence
(StarAI) laboratory, 72
statistical machine learning laboratory, 72
structural design and testing laboratory, 55
student health center, 11
student organizations, 14

student records, disclosure of, 18
student societies, 15
student study center, 14
study list, 23
summer bridge program, 14
synthetic control across length scales for
advancing rechargeables center
(SCALAR), 137

T
teaching assistantships, 13
technical breadth requirement,
undergraduate, 22
thin film deposition laboratory, 108
thin films, interfaces, composites, character-
ization laboratory, 120
translational applications of nanoscale multi-
ferroic systems center (TANMS), 118, 137
translational research center, Koç, 93

U
unit requirement, undergraduate, 22
university requirements, undergraduate, 22

V
vision and image sciences collective, 73
vision laboratory, 74
VLSI architecture, synthesis, and technology
(VAST) laboratory, 73

W
web information systems laboratory, 74
WIN institute of neurotronics (WINs), 138
wireless networking group (WiNG), 74
women in engineering, 15
work-study programs, 12
writing requirement, undergraduate, 22

X
X-ray diffraction laboratory, 108
X-ray photoelectron spectroscopy and
atomic force microscopy facility, 108