A Message from the Dean

Since it welcomed its first engineering students more than 60 years ago, the UCLA Henry Samueli School of Engineering and Applied Science has been at the forefront of advanced interdisciplinary research. Among other notable achievements, the school is well-known as the birthplace of the Internet, for developing the first reverse-osmosis membrane for the desalination of water, and for other collaborative activities that have changed the way we interact with the world around us.

Our faculty and students are leaders in new frontiers of applied science and engineering research, in areas such as information technology, embedded systems and sensor networks, bioengineering, nanomanufacturing, and micro- and nanoelectromechanical systems.

UCLA Engineering is ideally situated to engage in interdisciplinary research and educational initiatives with others on campus and across Southern California. It benefits from proximity to the world-renowned David Geffen School of Medicine and the John E. Anderson Graduate School of Management, as well as the Los Angeles entertainment and media industries, Silicon Valley, the defense and aerospace industries, and a growing biotechnology sector.

Our newly-revised curriculum—with its emphasis on breadth of knowledge as well as depth—will prepare our students for success in meeting the ever-changing demands of the engineering profession. In addition, undergraduate student research opportunities are widely available and we encourage our students to take advantage of them.

Students may choose to work with individual faculty or to participate in any of the school’s world-class interdisciplinary research centers. These include the NSF Center for Embedded Networked Sensing, the NIH Center for Cell Control, the Center on Functional Engineered Nano Architectonics, and the NRI Western Institute of Nanoelectronics. Our faculty and students are also active partners in the California NanoSystems Institute located at UCLA. In addition, the school is developing its research breakthroughs into the commercial sector through the off-campus Institute for Technology Advancement.

Our distinguished faculty is composed of recognized experts in their fields, including 22 members of the National Academy of Engineering, and many junior faculty who are widely acclaimed for their work. Many faculty members are award-winning educators, and every faculty member, no matter how senior, teaches at least one undergraduate course each year.

We are seeking exceptional and dedicated students who share our desire to positively contribute to the engineering profession and society. I invite you to consider becoming a UCLA engineer.

Vijay K. Dhir
Dean
UCLA Henry Samueli School of Engineering and Applied Science
TO ALL STUDENTS:

Pursuant to the Federal Family Educational Rights and Privacy Act (FERPA), the Californian Information Practices Act, and the University of California Policies Applying to the Directory of Information from Student Records, students at UCLA have the right to (1) inspect and review records pertaining to themselves in their capacity as students, except as the right may be waived or qualified under Federal and State Laws and University Policies, (2) have withheld from disclosure, absent their prior written consent for release, personally identifiable information from their student records, except as provided by Federal and State Laws and University Policies, (3) inspect records maintained by UCLA of disclosures of personally identifiable information from their student records, (4) seek correction of their student records through a request to amend the records or, if such request is denied, through a hearing, and (5) file complaints with the U.S. Department of Education regarding alleged violations of the rights accorded them by FERPA.

UCLA, in accordance with Federal and State Laws and University Policies, has designated the following categories of personally identifiable information as "directory information" which UCLA may release and publish without the student's prior consent: name, address (local/mailing, permanent, and/or e-mail), telephone numbers, major field of study, dates of attendance, enrollment status, grade level, number of course units in which enrolled, degrees and honors received, the most recent previous educational institution attended, participation in officially recognized activities (including intercollegiate athletics), and the name, weight, and height of participants on intercollegiate athletic teams.

All announcements herein are subject to revision. Every effort has been made to ensure the accuracy of the information presented in the Announcement of the UCLA Henry Samueli School of Engineering and Applied Science. However, all courses, course descriptions, instructor designations, curricular degree requirements, and fees described herein are subject to change or deletion without notice. Further details on graduate programs are available in various Graduate Division publications which are available online at http://www.grad.ucla.edu.
Henry Samuelli School of Engineering and Applied Science

Officers of Administration

Vijay K. Dhir, Ph.D., Professor and Dean of the Henry Samuelli School of Engineering and Applied Science

Gregory J. Pottie, Ph.D., Professor and Associate Dean, Research and Physical Resources

Richard D. Wesel, Ph.D., Professor and Associate Dean, Academic and Student Affairs

Mary Okino, Ed.D., Assistant Dean, Chief Financial Officer

Jiun-Shyan (J-S) Chen, Ph.D., Professor and Chair, Civil and Environmental Engineering Department

Jason (Jingsheng) Cong, Ph.D., Professor and Chair, Computer Science Department

Timothy J. Deming, Ph.D., Professor and Chair, Bioengineering Department

Mark Goorsky, Ph.D., Professor and Chair, Materials Science and Engineering Department

Adrienne Lavine, Ph.D., Professor and Chair, Mechanical and Aerospace Engineering Department

Ali H. Sayed, Ph.D., Professor and Chair, Electrical Engineering Department

The Campus

UCLA is a large urban university situated between the city and the sea at the foot of the Santa Monica Mountains. Less than six miles from the Pacific, it is bordered by Sunset and Wilshire boulevards. As the city has grown physically and culturally, so has the campus, whose students and faculty mirror the cultural and racial diversity of today's Los Angeles. UCLA is one of the most widely respected and recognized universities in the world, and its impact on society can be felt into the far reaches of the globe. Students come from around the world to receive a UCLA education, and our alumni go on to become leaders in their fields, from elected officials to heads of international corporations.

UCLA is recognized as the West’s leading center for the arts, culture, and medical research. Each year, more than half a million people attend visual and performing arts programs on campus, while more than 300,000 patients from around the world come to the Ronald Reagan UCLA Medical Center for treatment. The university's 419-acre campus houses the College of Letters and Science and 11 professional schools. There are more than 38,500 students enrolled in 125 undergraduate and 200 graduate degree programs. Nearly one in every 140 Californians holds a UCLA degree.

UCLA is rated one of the best public research universities in the U.S. and among a handful of top U.S. research universities, public and private. The chief executive of the University is Chancellor Gene D. Block. He oversees all aspects of the University's three-part mission of education, research, and service.

Southern California has grown to become one of the nation’s dominant industrial centers, and the UCLA Henry Samuelli School of Engineering and Applied Science (HSSEAS) is uniquely situated as a hub of engineering research and professional training for this region.

The School

The UCLA College of Engineering (as it was known then) was established in 1943 when California Governor Earl Warren signed a bill to provide instruction in engineering at the UCLA campus. It welcomed its first students in 1945 and was dedicated as the Henry Samuelli School of Engineering and Applied Science in 2000. The school ranks among the top 10 engineering schools in public universities nationwide.

UCLA engineering faculty members are active participants in many interdisciplinary research centers. The Center for Embedded Networked Sensing (CENS) develops embedded networked sensing systems and applies this revolutionary technology to critical scientific and social applications. The Center for Cell Control (CCC) applies advanced engineering techniques and life sciences knowledge to control and understand how the cell works at the most basic level, with the goal of improving human health. The Center on Functional Engineered Nano Architectonics (FENA) leverages the latest advances in nanotechnology, molecular electronics, and quantum computing to extend semiconductor technology further into the realm of the nanoscale. The Western Institute of Nanoelectronics (WIN), among the world's largest joint research programs focusing on spintronics, brings together nearly 30 eminent researchers to explore critically needed innovations in semiconductor technology. Finally, the California NanoSystems Institute (CNSI)—a joint endeavor with UC Santa Barbara—develops the information, biomedical, and manufacturing technologies of the twenty-first century.

In addition, the school has identified critical areas for collaborative research that will have a major impact on the future of California and the world. Among these are biomedical informatics; alternative energy solutions; secure electronic transfer of information; new tools for the entertainment industry; systems, dynamics, and controls; advanced technologies for water reclamation; and new approaches and technologies for aerospace engineering.

And the school recently established the Institute for Technology Advancement (ITA), an off-campus institute dedicated to the effective transition of high-impact innovative research from UCLA to product development and commercialization. ITA nurtures and incubates breakthrough ideas to create new industrial products, as well as provides a learning platform for faculty members and students to engage in transitional technology research.

The school offers 29 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering. The Bachelor of Science degree is offered in Aerospace Engineering, Bioengineering, Chemical Engineering, Civil Engineering, Computer Science, Computer Science and Engineering, Electrical Engineering, Materials Engineering, and Mechanical Engineering. The undergraduate curricula leading to these degrees provide students with a solid foundation in engineering and applied science and prepare graduates for immediate practice of the profession as well as advanced studies. In addition to engineering courses, students complete about one year of study in the humanities, social sciences, and/or fine arts.

Master of Science and Ph.D. degrees are offered in Aerospace Engineering, Bioengineering, Chemical Engineering, Civil Engineering, Computer Science, Electrical Engineering, Manufacturing Engineering (M.S. only), Materials Science and Engineering, and Mechanical Engineering. A schoolwide online Master of Sci-
ence in Engineering degree program was approved in June 2006. The Engineer degree is a more advanced degree than the M.S. but does not require the research effort and orientation involved in a Ph.D. dissertation. For information on the Engineer degree, see Graduate Programs on page 23. A one-year program leading to a Certificate of Specialization is offered in various fields of engineering and applied science.

Endowed Chairs

Endowed professorships or chairs, funded by gifts from individuals or corporations, support the research and educational activities of distinguished members of the faculty. The following endowed chairs have been established in the Henry Samueli School of Engineering and Applied Science.

- L.M.K. Boelter Chair in Engineering
- Roy and Carol Doumani Chair in Biomedical Engineering
- Norman E. Friedmann Chair in Knowledge Sciences
- Evalyn Knight Chair in Engineering
- Levi James Knight, Jr., Chair in Engineering
- Nippon Sheet Glass Company Chair in Materials Science
- Northrop Grumman Chair in Electrical Engineering
- Northrop Grumman Chair in Electrical Engineering/Electromagnetics
- Northrop Grumman Opto-Electronic Chair in Electrical Engineering
- Ralph M. Parsons Chair in Chemical Engineering
- Jonathan B. Postel Chair in Computer Science
- Jonathan B. Postel Chair in Networking
- Raytheon Company Chair in Electrical Engineering
- Raytheon Company Chair in Manufacturing Engineering
- Charles P. Reames Endowed Chair in Electrical Engineering
- Edward K. and Linda L. Rice Endowed Chair in Materials Science
- Ben Rich Lockheed Martin Chair in Aeronautics
- Rockwell International Chair in Engineering
- William Frederick Seyer Term Chair in Materials Electrochemistry
- Wintek Endowed Chair in Electrical Engineering

The Engineering Profession

The following describes the challenging types of work HSSEAS graduates might perform based on their program of study.

Aerospace Engineering

Aerospace engineers conceive, design, develop, test, and supervise the construction of aerospace vehicle systems such as commercial and military aircraft, helicopters and other types of rotorcraft, and space vehicles and satellites, including launch systems. They are employed by aerospace companies, airframe and engine manufacturers, government agencies such as NASA and the military services, and research and development organizations.

Working in a high-technology industry, aerospace engineers are generally well versed in applied mathematics and the fundamental engineering sciences, particularly fluid mechanics and thermodynamics, dynamics and control, and structural and solid mechanics. Aerospace vehicles are complex systems. Proper design and construction involves the coordinated application of technical disciplines, including aerodynamics, structural analysis and design, stability and control, aeroelasticity, performance analysis, and propulsion systems technology.

Aerospace engineers use computer systems and programs extensively and should have at least an elementary understanding of modern electronics. They work in a challenging and highly technical atmosphere and are likely to operate at the forefront of scientific discoveries, often stimulating these discoveries and providing the inspiration for the creation of new scientific concepts.

The B.S. program in Aerospace Engineering emphasizes fundamental disciplines and therefore provides a solid base for professional career development in industry and graduate study in aerospace engineering. Graduate education prepares students for careers at the forefront of aerospace technology. The Ph.D. degree provides a strong background for employment by government laboratories, such as NASA, and industrial research laboratories supported by the major aerospace companies. It also provides the appropriate background for academic careers.

Bioengineering

At the interface of medical sciences, basic sciences, and engineering, bioengineering has emerged internationally as an established engineering discipline. As these disciplines converge in the twenty-first century, bioengineers solve problems in biology and medicine by applying principles of physical sciences and engineering while applying biological principles to create new engineering paradigms, such as biomimetic materials, DNA computing, and neural networking. The genomic and proteomic revolution will drive a new era in the bioengineering industry, and future bioengineers must combine proficiency in traditional engineering, basic sciences, and molecular sciences to function as effective leaders of multidisciplinary teams.

UCLA has a long history of fostering interdisciplinary training and is a superb environment for bioengineers. UCLA boasts the top hospital in the western U.S., nationally ranked medical and engineering schools, and numerous nationally recognized programs in basic sciences. Rigorously trained bioengineers are needed in research institutions, academia, and industry. Their careers may follow their bioengineering concentration (e.g., tissue engineering, bioMEMs, bioinformatics, image and signal processing, neuroengineering, cellular engineering, molecular engineering, biomechanics, nanofabrication, bioacoustics, biomaterials, etc.), but the ability of bioengineers to cut across traditional field boundaries will facilitate their innovation in new areas. For example, a bioengineer with an emphasis in tissue engineering may begin a career by leading a team to engineer an anterior cruciate ligament for a large orthopedic company, and later join a research institute to investigate the effects of zero gravity on mechanical signal transduction pathways of bone cells.

Chemical Engineering

Chemical engineers use their knowledge of mathematics, physics, chemistry, and biology to meet the needs of our technological society. They design, research, develop, operate, and manage the biochemical and petroleum industries and are leaders in the fields of energy and the environment, nanotechnology, systems engineering, biotechnology and biomedical engineering, and advanced materials processing. They are in charge of the chemical processes used by virtually all industries, including the pharmaceutical, biotechnology, food, paper, aerospace, automotive, water production and treatment, and semiconductor industries. Architectural, engineering, and construc-
tion firms employ chemical engineers for equipment and process design. It is also their mission to develop the clean and environmentally friendly technologies of the future.

Major areas of fundamental interest within chemical engineering are

1. Applied chemical kinetics, which involves the design of chemical processes and reactors, including combustion systems,
2. Transport phenomena, which involves the exchange of momentum, heat, and mass across interfaces and has applications to the separation of valuable materials from mixtures, or of pollutants from gas and liquid streams,
3. Thermodynamics, which is fundamental to both separation processes and chemical reactor design, and
4. Plant and process design, synthesis, optimization, simulation, and control, which provide the overall framework for integrating chemical engineering knowledge into industrial application and practice.

Civil and Environmental Engineering
Civil engineers plan, design, construct, and manage a range of physical systems, such as buildings, bridges, dams and tunnels, transportation systems, water and wastewater treatment systems, coastal and ocean engineering facilities, and environmental engineering projects, related to public works and private enterprises. Thus, civil and environmental engineering embraces activities in traditional areas and in emerging problem areas associated with modern industrial and social development.

The civil engineering profession demands rigorous scientific training and a capacity for creativity and growth into developing fields. In Southern California, besides employment in civil engineering firms and governmental agencies for public works, civil engineering graduates often choose the aerospace industry for assignments based on their structural engineering background. Graduates are also qualified for positions outside engineering where their broad engineering education is a valuable asset.

The curriculum leading to a B.S. in Civil Engineering provides an excellent foundation for entry into professional practice, as well as for graduate study in civil engineering and other related fields.

Computer Science and Engineering
Students specializing in the computer science and engineering undergraduate program are educated in a range of computer system concepts. As a result, students at the B.S. level are qualified for employment as applications programmers, systems programmers, digital system designers, digital system marketing engineers, and project engineers.

Undergraduates can major either in the computer science and engineering program or in the computer science program. Graduate degree programs in computer science prepare students for leadership positions in the computer field. In addition, they prepare graduates to deal with the most difficult problems facing the computer science field. University or college teaching generally requires the graduate degree.

Electrical Engineering
The electrical engineering discipline deals primarily with the sensing, analysis, and processing of information. It develops circuits, devices, algorithms, and theories that can be used to sense data, analyze data, extrapolate data, communicate data, and take action in response to the data collected. The Electrical Engineering Department is a recognized leader in education and research related to these subjects.

Manufacturing Engineering
Manufacturing engineering is an interdisciplinary field that integrates the basic knowledge of materials, design, processes, computers, and system analysis. The manufacturing engineering program is part of the Mechanical and Aerospace Engineering Department.

Specialized areas are generally classified as manufacturing processes, manufacturing planning and control, and computer-aided manufacturing.

Manufacturing engineering as an engineering specialty requires the education and experience necessary to understand, apply, and control engineering procedures in manufacturing processes and production methods of industrial commodities and products. It involves the generation of manufacturing systems, the development of novel and specialized equipment, research into the phenomena of fabricating technologies, and manufacturing feasibility of new products.

Coursework, independent studies, and research are offered in the manufacturing processes area, leading to an M.S. degree. This includes computer-aided design and computer-aided manufacturing, robotics, metal forming and metal cutting analysis, nondestructive evaluation, and design and optimization of manufacturing processes.

Materials Engineering
Materials engineering is concerned with the structure and properties of materials used in modern technology. Advances in technology are often limited by available materials. Solutions to energy problems depend largely on new materials, such as solar cells or materials for batteries for electric cars.

Two programs within materials engineering are available at UCLA:
1. In the materials engineering program, students become acquainted with metals, ceramics, polymers, and composites. Such expertise is highly sought by the aerospace and manufacturing industries. Materials engineers are responsible for the selection and testing of materials for specific applications. Traditional fields of metallurgy and ceramics have been merged in industry, and this program reflects the change.
2. In the electronic materials option of the materials engineering program, students learn the basics of materials engineering with a concentration in electronic materials and processing. The optional program requires additional coursework which includes five to eight electrical engineering courses.

In order to enter a career in research and development of new materials (such as new energy devices), an M.S. or Ph.D. degree is desirable.

Mechanical Engineering
Mechanical engineering is a broad discipline finding application in virtually all industries and manufactured products. The mechanical engineer applies principles of mechanics, dynamics, and energy transfer to the design, analysis, testing, and manufacture of consumer and industrial products. A mechanical engineer usually has specialized knowledge in areas such as design, materials, fluid dynamics, solid mechanics, heat transfer, thermodynamics, dynamics, control systems, manufacturing methods, and human factors. Applications of mechanical engineering include design
of machines used in the manufacturing and processing industries, mechanical components of electronic and data processing equipment, engines and power-generating equipment, components and vehicles for land, sea, air, and space, and artificial components for the human body. Mechanical engineers are employed throughout the engineering community as individual consultants in small firms providing specialized products or services, as designers and managers in large corporations, and as public officials in government agencies.

Mechanical engineers apply their knowledge to a wealth of systems, products, and processes, including energy generation, utilization and conservation, power and propulsion systems (power plants, engines), and commercial products found in the automotive, aerospace, chemical, or electronics industries.

The B.S. program in Mechanical Engineering at UCLA provides excellent preparation for a career in mechanical engineering and a foundation for advanced graduate studies. Graduate studies in one of the specialized fields of mechanical engineering prepare students for a career at the forefront of technology. The Ph.D. degree provides a strong background for employment by government laboratories, industrial research laboratories, and academia.
Facilities and Services

Teaching and research facilities at HSSEAS are in Boelter Hall, Engineering I, Engineering IV, and Engineering V, located in the southern part of the UCLA campus. Boelter Hall houses classrooms and laboratories for undergraduate and graduate instruction, the Office of Academic and Student Affairs (http://www.seasoasa.ucla.edu), the SEASnet computer facility (http://www.seas.ucla.edu/seasnet/), and offices of faculty and administration. The SEL/Engineering and Mathematical Sciences Library is also in Boelter Hall. The Shop Services Center and the Student and Faculty Shop are in the Engineering I building. The California NanoSystems Institute (CNSI) building hosts additional HSSEAS collaborative research activities.

Library Facilities

University Library System

The UCLA Library, a campuswide network of libraries serving programs of study and research in many fields, is among the top 10 ranked research libraries in the U.S. Total collections number more than 8 million volumes, and nearly 80,000 serial titles are received regularly. Some 15,000 serials and databases are electronically available, and the UCLA Library Catalog is linked to the library’s homepage at http://www.library.ucla.edu. Librarians are available to provide instruction for teaching assignments requiring the use of library resources. The library provides access to a variety of resources, including e-journals, e-books, and article databases, in addition to paper equivalents. Copy machines, Internet printers, and microform readers/printers are available at each SEL location. Reserve, interlibrary loan, and document delivery, as well as other services and useful engineering and science resources, are featured on the SEL website. See http://www.library.ucla.edu/sel/.

Services

Instructional Computer Facility

HSSEAS maintains a network of over 120 Sun Fire and Enterprise servers, Dell Poweredge Windows servers, Network Appliance RAID NFS servers, and Linux RAID NFS servers connected to a high-speed backbone network. The machines function as cycle, file, and application servers to approximately 630 Unix and Microsoft Windows workstations. Four open computer laboratories and one classroom for computerized instruction house 210 of the PC workstations. Remote access to HSSEAS coursework applications is provided via Microsoft Terminal Server.

UCLA Academic Technology Services (ATS) operates a 50-node, dual-processor Beowulf cluster that is used for performing lengthy, numerically intensive computations and for programs that can utilize parallel computing resources. ATS provides assistance to groups and individuals wishing to parallelize their codes or establish their own local Beowulf cluster. A UCLA Grid Portal and other high-performance computing resources are available.

The school's manufacturing engineering program operates a group of workstations dedicated to CAD/CAM instruction, and the Computer Science Department operates a network of SUN, PC, and Macintosh computers. The school is connected via high-speed network to the Internet, and computing resources at the national supercomputer centers are available.

Shop Services Center

The Shop Services Center is available to faculty, staff, and students for projects.

Continuing Education

UCLA Extension

Department of Engineering, Information Systems, and Technical Management

Frank E. Burris, Ph.D., Director
William R. Goodin, Ph.D., Associate Director

The UCLA Extension (UNEX) Department of Engineering, Information Systems, and Technical Management (540 UEX, 10995 Le Conte Avenue) provides one of the nation's largest selections of continuing engineering education programs. A short course program of 145 annual offerings draws participants from around the world for two- to five-day intensive programs. Many of these short courses are also offered on-site at companies and government agencies. The acclaimed Technical Management Program holds its seventy-sixth offering in September 2008 and seventy-seventh in March 2009.

The Information Systems Program—offering 128 classes annually, including seven certificate programs and one sequential program in evening, day, weekend, and online formats—covers a broad range of information technologies.

Each year, the department offers 103 classes in engineering disciplines that include manufacturing engineering, electrical engineering, astronomical engineering, construction management, mechanical engineering, environmental management, and PE review classes. In addition, 113 technical management offerings complement the engineering offerings. Most engineering and technical management classes are in a quarter-length, evening format. In addition, most of the technical management classes are now available online.

Call (310) 825-3344 for short course programs, (310) 825-3858 for the Technical Management Program, (310) 825-4100 for information systems and engineering programs, and (310) 206-1548 for technical management classes, or fax (310) 206-2815. See http://www.uclaextension.edu.

Career Services

The UCLA Career Center assists HSSEAS undergraduate and graduate students and alumni in exploring career possibilities, pre-
paring for graduate and professional school, obtaining employment and internship leads, and developing skills for conducting a successful job search.

Services include career consulting and counseling, skills assessments, workshops, employer information sessions, and a multimedia collection of career planning and job search resources. Bruinview™ provides undergraduate and graduate students with opportunities to meet one-on-one with employers seeking entry-level job candidates and offers 24-hour access to thousands of current full-time, part-time, seasonal, and internship positions. Annual career fairs for HSSEAS students are held in Fall and Winter quarters, and HSSEAS students are also welcomed at all Career Center-sponsored job fairs.

The Career Center staff also provides consultation services to HSSEAS student organizations. Engineering and Science career services are available at the UCLA Career Center, 501 Westwood Plaza, Strathmore Building, from 9 a.m. to 5 p.m. Monday through Friday, by appointment only. For more information call (310) 206-1915 or see http://career.ucla.edu.

Ashe Student Health and Wellness Center

The Arthur Ashe Student Health and Wellness Center (Student Health Service) is the campus health service and an outpatient health facility for all registered UCLA students. Many services are subsidized by registration fees, but there are minimal fees for all services. Visit, core laboratory test, and X-ray fees are all no-charge for students with the Student Health Insurance Plan (SHIP). There are co-pays for pharmaceuticals. Service fees for students without SHIP are billed directly to students’ BAR accounts.

If a student withdraws, is dismissed, has registration fees cancelled, or takes a leave of absence during a term, he or she continues to be eligible for health services for the remainder of the term at full cost. If a student with SHIP withdraws with a less than 100% refund, SHIP continues through the remainder of the term.

The cost of services received outside the Ashe Center is each student’s financial responsibility. Students who waive SHIP need to ensure that they are enrolled in a plan qualified to cover expenses incurred outside of the Ashe Center.

Office hours during the academic year are weekdays 8 a.m. to 6:30 p.m. except Fri-day, when service begins at 9 a.m.

Located at 221 Westwood Plaza (next to John Wooden Center); see http://www.studenthealth.ucla.edu.

For emergency care when the Ashe Center is closed, students may obtain treatment at the UCLA Medical Center Emergency Room or the nearest emergency room on a fee-for-service basis. It is the student’s responsibility to have insurance billed. A student with SHIP must have follow-up visits, after emergencies, in the Ashe Center. If care cannot be provided in the Ashe Center, the Ashe Center clinician will give the student a written referral to a network provider.

Services for Students with Disabilities

The Office for Students with Disabilities (OSD) provides a wide range of academic support services to regularly enrolled students with documented permanent or temporary disabilities in compliance with Section 504 of the Rehabilitation Act of 1973, the Americans with Disabilities Act (ADA) of 1990, and University policies. Academic support services are determined for each student based on specific disability-based requirements. Services include campus orientation and accessibility, note takers, readers, sign language interpreters, Learning Disability Program, registration assistance, test-taking facilitation, special parking assistance, real-time captioning, assistive listening devices, on-campus transportation, adaptive equipment, support groups and workshops, tutorial referral, special materials, housing assistance, referral to UCLA’s Disabilities and Computing Program, and processing of California Department of Rehabilitation authorizations. There is no fee for any of these services. All contacts and assistance are handled confidentially. Located at A255 Murphy Hall, voice (310) 825-1501, TTY (310) 206-6083; see http://www.osd.ucla.edu.

Dashew Center for International Students and Scholars

The Dashew Center for International Students and Scholars assists international students with questions about immigration, employment, government regulations, financial aid, academic and administrative procedures, cultural adjustment, and personal matters. The center provides visa assistance for faculty, researchers, and postdoctoral scholars. It also offers programming to meet the needs of the campus multicultural population. Located at 106 Bradley International Hall; see http://www.interationalcenter.ucla.edu.

Fees and Financial Support

Fees and Expenses

The 2008-09 annual UCLA student fees listed below are current as of publication. See the quarterly Schedule of Classes for

<table>
<thead>
<tr>
<th>2008-09 ANNUAL UCLA GRADUATE AND UNDERGRADUATE FEES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fees are subject to revision without notice</td>
</tr>
<tr>
<td>Graduate Students</td>
</tr>
<tr>
<td>University Registration Fee</td>
</tr>
<tr>
<td>Educational Fee</td>
</tr>
<tr>
<td>Undergraduate Students Association</td>
</tr>
<tr>
<td>Green Initiative Fee</td>
</tr>
<tr>
<td>Graduate Students Association Fee</td>
</tr>
<tr>
<td>Graduate Center Writing Fee</td>
</tr>
<tr>
<td>Ackerman Student Union Fee</td>
</tr>
<tr>
<td>Ackerman/Kerrickoff Seismic Fee</td>
</tr>
<tr>
<td>Wooden Center Fee</td>
</tr>
<tr>
<td>Student Programs, Activities, and Resources Complex Fee</td>
</tr>
<tr>
<td>Student Health Insurance Plan</td>
</tr>
<tr>
<td>Nonresident Tuition</td>
</tr>
<tr>
<td>Total mandatory fees</td>
</tr>
</tbody>
</table>
breakdown by term or see http://www.registrar.ucla.edu/fees/ for updates.

Students who are not legal residents of California (out-of-state and international students) pay a nonresident tuition fee. See the UCLA General Catalog appendix or the frequent questions residence section at http://www.registrar.ucla.edu for information on how to determine residence for tuition purposes; further inquiries may be directed to the Residence Deputy, 1113 Murphy Hall, UCLA, Los Angeles, CA 90024-1429.

In addition to the fees listed, students should be prepared to pay living expenses for the academic period.

Living Accommodations

Housing in Los Angeles, both on and off campus, is in great demand. Students should make arrangements early.

The Community Housing Office, 360 De Neve Drive, Box 951495, Los Angeles, CA 90095-1495, (310) 825-4491, http://www.cho.ucla.edu, provides information and current listings for University-owned apartments, cooperatives, private apartments, roommates, rooms in private homes, room and board in exchange for work, and short-term housing. A current BruinCard or a letter of acceptance and valid photo identification card are required for service.

For information on residence halls and suites, contact UCLA Housing Services, 360 De Neve Drive, Box 951381, Los Angeles, CA 90095-1381, (310) 206-7011; see http://www.housing.ucla.edu/myhousing/. Newly admitted students are sent UCLA Housing, which describes costs, locations, and eligibility for both private and UCLA-sponsored housing.

Financial Aid

Undergraduate Students

Financial aid at UCLA includes scholarships, grants, loans, and work-study programs. Applications for each academic year are available in January. The priority application deadline for financial aid for the 2009-10 academic year is March 2, 2009. With the exception of certain scholarships, awards are based on need as determined by national financial aid criteria. California residents must file the Free Application for Federal Student Aid (FAFSA). International students in their first year are ineligible for aid. Continuing undergraduate international students are asked to submit a separate Financial Aid Application for International Students.

Information on UCLA financial aid programs is available at the Financial Aid Office, A129J Murphy Hall, (310) 206-0400; see http://www.fao.ucla.edu.

Scholarships

All UCLA undergraduate scholarship awards are made on a competitive basis, with consideration given to academic excellence, achievement, scholastic promise, and financial need. Scholarships are awarded to entering and continuing undergraduates. The term and amount of the award vary; students are expected to maintain academic excellence in their coursework.

Regents Scholarships are awarded to students with an outstanding academic record and a high degree of promise. Regents Scholars receive a yearly honorarium if they have no financial need. If financial need is established, other scholarships and/or grants are awarded to cover that need. Need is determined according to financial aid criteria legislated by Congress.

HSSEAS Scholarships are awarded to entering and continuing undergraduate students based on criteria including financial need, academic excellence, community service, extracurricular activities, and research achievement. The school works with alumni, industry, and individual donors to establish scholarships to benefit engineering students. Currently, HSSEAS offers more than 62 undergraduate scholarship awards totaling more than $157,000. These scholarships are advertised throughout the academic year. For more information on all available scholarships, see http://seasoasa.ea.ucla.edu/scholarships/.

Grants

Cal Grants A and B are awarded by the California Student Aid Commission to entering and continuing undergraduate students who are U.S. citizens or eligible noncitizens and California residents. Based on financial need and academic achievement, these awards are applied toward educational and registration fees.

Federal Pell Grants are federal aid awards designed to provide financial assistance to those who need funds to attend post-high school educational institutions. Undergraduate students who are U.S. citizens or eligible noncitizens are required by the University to apply.

Federal Family Education Loan Program

Federal loans are available to undergraduate or graduate students who are U.S. citizens or eligible noncitizens and who are carrying at least a half-time academic workload. Information on loan programs is available from the Financial Aid Office, A129J Murphy Hall, or on the web at http://www.fao.ucla.edu.

When graduating, transferring, withdrawing, or taking a leave of absence, UCLA students who have received campus-based loans must complete an exit interview with Student Loan Services. The exit interview is provided to help students better understand and plan for loan repayment. Failure to complete an exit interview results in a hold being placed on all university services and records. In addition, if the campus-based loans become delinquent following separation from UCLA, all university services and records will be withheld. For further information concerning loan repayment, visit the Student Loan Services Office, A227 Murphy Hall, (310) 825-9864; see http://www.loans.ucla.edu.

Work-Study Programs

Under Federal Work-Study, the federal government pays a portion of the hourly wage and the employer contributes the balance. When possible, work is related to student educational objectives. Hourly pay rates comply with minimum wage laws and vary with the nature of the work, experience, and capabilities. Employment may be on or off campus. To be eligible, undergraduate and graduate students must demonstrate financial need and be a U.S. citizen or eligible noncitizen. Submission of the financial aid application is required.

Community Service is a component of the Federal Work-Study program. Students who secure a community service position are eligible to petition for an increase in work-study funds of up to $5,000 while at the same time reducing their Perkins and/or Stafford loan by the amount of the increase. Most community service positions are located off campus.

Students must be enrolled at least half-time (6 units for undergraduates, 4 for graduate students) and not be appointed at more than 50 percent time while employed at UCLA. Students not carrying the required
units or who exceed 50 percent time employment are subject to Social Security or Medicare taxation.

Graduate Students
A high percentage of HSSEAS graduate students receive departmental financial support.

Merit-Based Support
Three major types of merit-based support are available in the school:
1. Fellowships from University, private, or corporate funds.
2. Employment as a teaching assistant.
3. Employment as a graduate student researcher.

Fellowships usually provide stipends competitive with those of other major universities, plus registration and nonresident tuition fees (where applicable). These stipends may be supplemented by a teaching assistantship or graduate student researcher appointment. The awards are generally reserved for new students.

Teaching assistantships are awarded to students on the basis of scholarship and promise as teachers. Appointees serve under the supervision of regular faculty members.

Graduate student researcher (GSR) appointments are awarded to students on the basis of scholastic achievement and promise as creative scholars. Appointees perform research under the supervision of a faculty member in research work. Full-time employment in summer and interterm breaks is possible, depending on the availability of research funds from contracts or grants.

Since a graduate student researcher appointment constitutes employment in the service of a particular faculty member who has a grant, students must take the initiative in obtaining desired positions.

GSR appointments are generally awarded after one year of study at UCLA.

Applicants for departmental financial support must be accepted for admission to HSSEAS in order to be considered in the 2008-09 competition. Applicants should check the deadline for submitting the UCLA Application for Graduate Admission and the Fellowship Application for Entering Graduate Students with their preferred department.

Need-Based Aid
Unlike the awards above, which are based solely on merit and administered by HSSEAS, the University also provides work-study and low-interest loans based on financial need exclusively.

Need-based awards are administered by the Financial Aid Office in A129J Murphy Hall. Financial aid applicants must file the Free Application for Federal Student Aid.

Continuing graduate students should contact the Financial Aid Office in December 2008 for information on 2009-10 application procedures.

International graduate students are not eligible for need-based University financial aid nor for long-term student loans.

School of Engineering Fellowships
Fellowship packages offered by HSSEAS may include fellowship contributions from the following sources:

AT&T Fellowships. Supports doctoral study in electrical engineering; must be U.S. citizen or permanent resident; optional summer research at AT&T

Atlantic Richfield Company (ARCO) Fellowship. Department of Chemical and Biomolecular Engineering; supports study in chemical engineering

William and Mary Beedle Fellowship. Department of Chemical Biomolecular Engineering; supports study in chemical engineering

John J. and Clara C. Boelter Fellowship. Supports study in engineering

Leon and Alyne Camp Fellowship. Department of Mechanical and Aerospace Engineering; supports study in engineering; must be U.S. citizen

Deutsch Company Fellowship. Supports engineering research on problems that aid "small business" in Southern California

GTE Fellowship. Departments of Computer Science and Electrical Engineering; supports study in computer science and electrical engineering

IBM Doctoral Fellowship. Supports doctoral study in computer science

Intel Fellowship. Department of Computer Science; supports doctoral study in selected areas of computer science

Les Knesel Scholarship Fund. Department of Materials Science and Engineering; supports master’s or doctoral students in ceramic engineering

T.H. Lin Graduate Fellowship. Department of Civil and Environmental Engineering; supports study in the area of structures

Microelectronics Innovation and Computer Research Opportunities (MICRO). Supports students in electronic engineering, computer science, and materials science and engineering with interest in microelectronics who intend to remain in California after graduation; must be U.S. citizen or permanent resident

Microsoft Fellowship. Supports doctoral study in computer science

National Consortium for Graduate Degrees for Minority in Engineering and Science (GEM) Fellowships. Supports study in engineering and science to highly qualified individuals from communities where human capital is virtually untapped

NCR Fellowship. Department of Computer Science; supports doctoral study in computer science

Martin Rubin Scholarship. Supports two undergraduate or graduate students pursuing a degree in civil engineering with an emphasis in structural engineering

Henry Samueli Fellowship. Department of Electrical Engineering; supports master’s and doctoral students

Semiconductor Research Corporation Fellowship. Department of Electrical Engineering; supports doctoral students in microelectronics; must be U.S. citizen

Sun Microsystems Fellowship. Department of Computer Science; supports incoming graduate students in computer science

Texaco Scholarship. Department of Civil and Environmental Engineering; supports research in the area of environmental engineering

Many other companies in the area also make arrangements for their employees to work part-time and to study at UCLA for advanced degrees in engineering or computer science.

Special Programs, Activities, and Awards

Center for Excellence in Engineering and Diversity
The HSSEAS Center for Excellence in Engineering and Diversity (CEED) seeks to create a community of collaborative and sustainable partnerships that increase academic opportunities for urban, disadvantaged, and underrepresented students. CEED supports students in precollege, undergraduate, and graduate science, engineering, mathematics, and technology curricula.
Precollege Outreach Programs

Science and Mathematics Achievement and Research Training for Students (SMARTS). A six-week commuter and residential summer program, SMARTS provides a diverse group of 50 ninth to twelfth graders with rigorous inquiry-based engineering, mathematics, and science enrichment. Tenth and eleventh graders receive an introduction to the scientific process and to laboratory-based investigation through the Research Apprentice Program, sponsored by faculty and graduate research mentors in engineering.

MESA Schools Program (MSP). Through CEED, HSSEAS partners with middle and high school principals to implement MSP services, which focus on outreach and student development in engineering, mathematics, science, and technology. At individual school sites, four mathematics and science teachers serve as MSP advisers and coordinate the activities and instruction for 818 students. Advisers work as a team to deliver services that include SAT preparation. MSP prepares students for regional engineering and science competitions and provides an individual academic planning program, academic excellence workshops, CEED undergraduate mentors, field trips, and exposure to high-tech careers. The MSP goal is to increase the numbers of urban and educationally underserved students who are competitively eligible for UC admission, particularly in engineering and computer science.

Students are provided academic planning, SAT preparation, career exploration, and other services starting at the elementary school level through college. HSSEAS/CEED currently serves 15 schools in the Los Angeles Unified School District and four schools in the Inglewood Unified School District.

Undergraduate Programs

CEED currently supports some 200 underrepresented and disadvantaged engineering students. Components of the undergraduate program include

CEED Summer Bridge. A two-week intensive residential summer program, CEED Summer Bridge provides advanced preparation and exposure for Fall Quarter classes in mathematics, chemistry, and computer science.

Freshman Orientation Course. Designed to give CEED freshmen exposure to the engineering profession, “Engineering 87—Engineering Disciplines” also teaches the principles of effective study and team/community-building skills.

Academic Excellence Workshops (AEW). Providing an intensive mathematics/science approach to achieving mastery through collaborative learning and facilitated study groups, workshops meet twice a week for two hours and are facilitated by a Ph.D. student.

Bridge Review for Enhancing Engineering Students (BREES). Sponsored by Hewlett Packard. A 14-day intensive summer program designed to provide CEED students with the skills and knowledge to gain sufficient mastery, understanding, and problem solving skills in the core engineering courses. Current CEED students and incoming CEED transfer students take part in lectures and collaborative, problem-solving workshops facilitated by UCLA graduate students.

Research Intensive Series in Engineering for Underrepresented Populations (RISE-UP). During the summer of 2005, UCLA CEED began its Research Intensive Series in Engineering for Underrepresented Populations (RISE-UP). The purpose of this program is to keep engineering and computing students, particularly from underrepresented groups, interested in the fun of learning through a process in which faculty participate. The ultimate goal of this program is to encourage these young scholars to go on to graduate school and perhaps the professoriate.

Academic Advising and Counseling. CEED counselors assist in the selection of course combinations, professors, and course loads and meet regularly with students to assess progress and discuss individual concerns.

Tutoring. Review sessions and tutoring are provided for several upper division engineering courses.

Career Development. Presentations by corporate representatives and field trips to major company locations are offered. Other services include summer and full-time job placement and assistance.

Cluster Systems. Common class sections that team students. Cluster Systems facilitate group study and successful academic excellence workshops.

Student Study Center: A two-room complex with a study area open 24 hours a day, the Student Study Center also houses academic workshop rooms and a computer room and is used for tutoring, presentations, and engineering student organizations. The center has an electronic message board for campus, student organization, and CEED activities and numerous bulletin boards for scholarships and employment opportunities.

STEP-UP. Funded by the National Science Foundation, STEP for Underutilized Populations (STEP-UP) is a regional initiative designed to increase the number of students from Los Angeles urban core populations obtaining baccalaureate degrees in science, technology, engineering, and mathematics (STEM). Awarded in Fall 2004, this five-year, $1.8 million inter-institutional and multi-disciplinary initiative is led by the UCLA Center for Excellence in Engineering and Diversity in the Henry Samueli School of Engineering and Applied Science. Regional partners include California
State University, Los Angeles (CSULA) and a number of community colleges in the Los Angeles metropolitan area. The U.S. production of domestic engineers and physical scientists has declined since the high point of the mid-1980s, while that of other countries has increased dramatically. The fastest-growing segments of the U.S. population need to be prepared to enter these vital fields.

Nearly 82 percent of the 740,000 K-12 students in the Los Angeles Unified School District are African-American and Latino, yet a minuscule number of these students attempt post-secondary STEM fields, and fewer enroll in and complete degrees in these areas. The UCLA STEP-UP project provides academic learning communities and career-oriented intervention programs to improve access, counseling, and preparation for students with high interest in these subjects. The NSF has funded over 30 STEP projects across the country to address the growing imbalance between the need for technical talent and the U.S. production of engineers and computer and physical scientists. The NSF goal is to strengthen national and economic security by increasing the number of engineers from populations that under-participate in these fields.

Scholarships/Financial Aid
The Henry Samueli School of Engineering and Applied Science also participates in the NACME and GEM scholarships. The CEED Industry Advisory Board and support network provide significant contributions to program services and scholarships. Information may be obtained from the CEED director.

Student Organizations
UCLA CEED supports student chapters of three engineering organizations: the American Indian Science and Engineering Society (AISES), the National Society of Black Engineers (NSBE), and the Society of Latino Engineers and Scientists (SOLES), the UCLA chapter of the Society of Hispanic Professional Engineers (SHPE). These organizations are vital elements of the program.

American Indian Science and Engineering Society
Entering its 18th year on campus, AISES encourages American Indians to pursue careers as scientists and engineers while preserving their cultural heritage. The goal of AISES is to promote unity and cooperation and to provide a basis for the advancement of American Indians while providing financial assistance and educational opportunities. AISES devotes most of its energy to its outreach program where members conduct monthly science academies with elementary and precollege students from Indian Reservations. Serving as mentors and role models for younger students enables UCLA AISES students to further develop professionalism and responsibility while maintaining a high level of academics and increasing cultural awareness.

National Society of Black Engineers
Chartered in 1980 to respond to the shortage of blacks in science and engineering fields and to promote academic excellence among black students in these disciplines, NSBE provides academic assistance, tutoring, and study groups while sponsoring ongoing activities such as guest speakers, company tours, and participation in UCLA events such as Career Day and Engineers Week. NSBE also assists students with employment. Through the various activities sponsored by NSBE, students develop leadership and interpersonal skills while enjoying the college experience. See http://www.seas.ucla.edu/nsbe/.

Society of Latino Engineers and Scientists
Recognized as the national Chapter of the Year five times over the past ten years by the Society of Hispanic Professional Engineers (SHPE), SOLES promotes engineering as a viable career option for Latino students. SOLES is committed to the advancement of Latinos in engineering and science through endeavors to stimulate intellectual pursuit through group studying, tutoring, and peer counseling for all members. This spirit is carried into the community with active recruitment of high school students into the field of engineering. SOLES also strives to familiarize the UCLA community with the richness and diversity of the Latino culture and the scientific accomplishments of Latinos. SOLES organizes cultural events such as Latinos in Science, Cinco de Mayo, and cosponsors the Women in Science and Engineering (WISE) Day with AISES, NSBE, and SWE. By participating in campus events such as Career Day and Engineers Week, the organization’s growing membership strives to fulfill the needs of the individual and the community. See http://www.seas.ucla.edu/soles/.

Women in Engineering
Women make up about 19 percent of the undergraduate and 20 percent of HSSEAS graduate enrollment. Today’s opportunities for women in engineering are excellent, as both employers and educators try to change the image of engineering as a “males only” field. Women engineers are in great demand in all fields of engineering.

Society of Women Engineers
The Society of Women Engineers (SWE), recognizing that women in engineering are still a minority, has established a UCLA student chapter that sponsors field trips and engineering-related speakers (often professional women) to introduce the various options available to women engineers. The UCLA chapter of SWE, in conjunction with other Los Angeles schools, also publishes an annual résumé book to help women students find jobs and presents a career day for women high school students. See http://www.engineering.ucla.edu/swe/.

Student and Honorary Societies
Professionally related societies and activities at UCLA provide valuable experience in leadership, service, recreation, and personal satisfaction. The faculty of the school encourages students to participate in such societies and activities where they can learn more about the engineering profession in a more informal setting than the classroom. For more information, see http://www.engineer.ucla.edu/academics/organization.html.

EGSA Engineering Graduate Students Association
ESUC Engineering Society, University of California. Umbrella organization for all the engineering and technical societies at UCLA
ACM Association for Computing Machinery
AIAA American Institute of Aeronautics and Astronautics
AIChE American Institute of Chemical Engineers
AISES American Indian Science and Engineering Society
ASCE American Society of Civil Engineers
ASME American Society of Mechanical Engineers
BMES Biomedical Engineering Society
Chi Epsilon Civil Engineering Honor Society
ENGINuity Engineering project group
Eta Kappa Nu Electrical engineering honor society
EWB Engineers Without Borders
FEED Forum for Energy Economics and Development
IEEE Institute of Electrical and Electronic Engineers
LUG Linux Users Group
MRS Materials Research Society
NSBE National Society of Black Engineers
Phi Sigma Rho Engineering social sorority
PIE Pilipinos in Engineering Robotics Club
SAE Society of Automotive Engineers
SAMPE Society for the Advancement of Materials and Process Engineering
SOLES Society of Latino Engineers and Scientists
SWE Society of Women Engineers
Tau Beta Pi Engineering honor society
Triangle Social fraternity of engineers, architects, and scientists
Upsilon Pi Epsilon International honor society for the computing and information disciplines

Student Representation
The student body takes an active part in shaping policies of the school through elected student representatives on the school’s Executive Committee.

Prizes and Awards
Each year, certificates and award monies are presented at the HSSEAS annual commencement ceremony to recognize outstanding students who have contributed to the school.

The Russell R. O’Neill Distinguished Service Award is presented annually to an upper division student in good academic standing who has made outstanding contributions through service to the undergraduate student body, student organizations, and furtherance of the undergraduate engineering program, with emphasis on extracurricular activities.

The Harry M. Showman Engineering Prize is awarded to a UCLA engineering student or students who most effectively communicate the achievements, research results, or social significance of any aspect of engineering to a student audience, the engineering professions, or the general public.

The Engineering Achievement Award for Student Welfare is given to undergraduate and graduate engineering students who have made outstanding contributions to student welfare through participation in extracurricular activities and who have given outstanding service to the campus community.

Additional awards may be given to those degree candidates who have achieved academic excellence. Criteria may include such items as grade-point average, creativity, research, and community service.

Departmental Scholar Program
The school may nominate exceptionally promising juniors and seniors as Departmental Scholars to pursue bachelor’s and master’s degree programs simultaneously.

Minimum qualifications include the completion of 24 courses (96 quarter units) at UCLA, or the equivalent at a similar institution, the current minimum grade-point average required for honors at graduation, and the requirements in preparation for the major. To obtain both the bachelor’s and master’s degrees, Departmental Scholars fulfill the requirements for each program. Students may not use any one course to fulfill requirements for both degrees.

For details, consult the Office of Academic and Student Affairs in 6426 Boelter Hall well in advance of application dates for admission to graduate standing.

Official Publications
This Announcement of the Henry Samueli School of Engineering and Applied Science contains detailed information about the school, areas of study, degree programs, and course listings. The UCLA General Catalog (http://www.registrar.ucla.edu/catalog/), however, is the official and binding document for the guidance of students. UCLA students are responsible for complying with all University rules, regulations, policies, and procedures described in the catalog. Engineering students are advised to purchase it from the UCLA Store.

For rules and regulations on graduate study, see http://www.gdnet.ucla.edu.

Grade Disputes
If students believe that they have been graded unfairly, they should first discuss the issue with the instructor of the course. If the dispute cannot be resolved between the student and the instructor, the student may refer the issue to the Associate Dean for Academic and Student Affairs, 6426 Boelter Hall.

The associate dean may form an ad hoc committee to review the complaint. The ad hoc committee members are recommended by the appropriate department chair and the associate dean. The student receives a copy of the ad hoc committee’s report as well as a copy of the associate dean’s recommendation. The student’s file will contain no reference to the dispute.

The associate dean informs the students of their rights with respect to complaints and appeals at UCLA.

Nondiscrimination
The University of California, in accordance with applicable Federal and State Laws and University Policies, does not discriminate on the basis of race, color, national origin, religion, sex, gender identity, pregnancy (including pregnancy, childbirth, and medical conditions related to pregnancy and childbirth), disability, age, medical condition (cancer-related), ancestry, marital status, citizenship, sexual orientation, or status as a Vietnam-era veteran or special disabled veteran. The University also prohibits sexual harassment. This nondiscrimination policy covers admission, access, and treatment in University programs and activities.

Inquiries regarding the University’s student-related nondiscrimination policies may be directed to the UCLA Campus Counsel, 3149 Murphy Hall, Box 951405, Los Angeles, CA 90095-1405, (310) 825-4042. Speech- and hearing-impaired persons may call TTY (310) 206-6083.

Inquiries regarding nondiscrimination on the basis of disability covered by the Americans with Disabilities Act (ADA) of 1990 or Section 504 of the Rehabilitation Act of 1973 may be directed to Monroe Gorden, ADA and 504 Compliance, A239 Murphy Hall, UCLA, Box 951405, Los Angeles, CA 90095-1405, voice (310) 825-
Students may complain of any action which they believe discriminates against them on the ground of race, color, national origin, marital status, sex, sexual orientation, disability, or age and may contact the Office of the Dean of Students, 1206 Murphy Hall, and/or refer to Section 111.00 of the University of California Policies Applying to Campus Activities, Organizations, and Students (available in 1206 Murphy Hall or at http://www.ucop.edu/ucophome/coordrev/ucpolicies/aos/toc.html) for further information and procedures.

Harassment

Sexual Harassment

The University of California is committed to creating and maintaining a community where all persons who participate in University programs and activities can work and learn together in an atmosphere free from all forms of harassment, exploitation, or intimidation. Every member of the University community should be aware that the University is strongly opposed to sexual harassment and that such behavior is prohibited both by law and by University policy. The University will respond promptly and effectively to reports of sexual harassment and will take appropriate action to prevent, correct and, if necessary, discipline behavior that violates this policy. See http://www.sexualharassment.ucla.edu.

Definitions

Sexual harassment, as defined in the University of California Policies Applying to Campus Activities, Organizations, and Students (Section 160.00), reads in part: Sexually harassing expression which they believe discriminates against them on the ground of race, color, national origin, marital status, sex, sexual orientation, disability, or age and may contact the Office of the Dean of Students, 1206 Murphy Hall, and/or refer to Section 111.00 of the University of California Policies Applying to Campus Activities, Organizations, and Students (available in 1206 Murphy Hall or at http://www.ucop.edu/ucophome/coordrev/ucpolicies/aos/toc.html) for further information and procedures.

Complaint Resolution

Experience has demonstrated that many complaints of sexual harassment can be effectively resolved through informal intervention. Individuals who experience what they consider to be sexual harassment are advised to confront the alleged offender immediately and firmly. Additionally, an individual who believes that she or he has been sexually harassed may contact the Sexual Harassment Coordinator in 2241 Murphy Hall or a Sexual Harassment Information Center counselor for help and information regarding sexual harassment complaint resolution or grievance procedures at one of the locations listed below as determined by the complainant’s status at the University at the time of the alleged incident:

1. Campus Human Resources/Employee and Labor Relations, Manager, 200 UCLA Wilshire Center, (310) 794-0860
2. Campus Human Resources/Staff and Faculty Counseling Center, Coordinator, 380 UCLA Wilshire Center, (310) 794-0248
3. Center for Student Programming, Senior Associate Director, 105 Kerckhoff Hall, (310) 206-2623
4. Center for Women and Men, Director, B44 Student Activities Center, (310) 825-3945
5. Chancellor’s Office, Sexual Harassment Coordinator, 2241 Murphy Hall, (310) 206-3417
6. David Geffen School of Medicine, Dean’s Office, Special Projects Director, 12-138 Center for the Health Sciences, (310) 794-1958
7. Graduate Division, Office Manager, 1237 Murphy Hall, (310) 206-3269
8. Healthcare Human Resources, Employee Relations Manager, 400 UCLA Wilshire Center, (310) 794-0500
9. Lesbian Gay Bisexual Transgender Campus Resource Center, Director, B36 Student Activities Center, (310) 206-3628
10. Neuropsychiatric Hospital, Administration/Human Resources Associate Director, B7-370 Semel Institute, (310) 206-5258
11. Office of the Dean of Students, Assistant Dean of Students, 1206 Murphy Hall, (310) 825-3871
12. Office of Ombuds Services, 105 Strathmore Building, (310) 825-7627; 52-025 Center for the Health Sciences, (310) 206-2427
13. Office of Residential Life, Judicial Affairs Coordinator, Residential Life Building, 370 De Neve Drive, (310) 825-3401
14. School of Dentistry, Assistant Dean, Student Affairs, A0-111 Dentistry, (310) 825-2615
15. Student Legal Services, Director, 70 Dodd Hall, (310) 825-9894
16. Student Psychological Services, Director, Wooden Center West, (310) 825-0768
17. UCLA Extension, Human Resources Director, 629 UNEX Building, (310) 825-4287; Student Services Director, 214 UNEX Building, (310) 825-2656

Other Forms of Harassment

The University strives to create an environment that fosters the values of mutual respect and tolerance and is free from discrimination based on race, ethnicity, sex, religion, sexual orientation, disability, age, and other personal characteristics. Certainly harassment, in its many forms, works against those values and often corrodes a person’s sense of worth and interferes with one’s ability to participate in University programs or activities. While the University is committed to the free exchange of ideas and the full protection of free expression, the University also recognizes that words can be used in such a way that they no longer express an idea, but rather injure and intimidate, thus undermining the ability of individuals to participate in the University community. The University of California Policies Applying to Campus Activities, Organizations, and Students (hereafter referred to as Policies; http://www.ucop.edu/ucophome/coordrev/ucpolicies/aos/toc.html) presently prohibit a variety of conduct by students which, in certain contexts, may be regarded as harassment or intimidation. For example, harassing expression which is accompanied by physical abuse, threats of violence, or conduct that threatens the health or safety of any person on University property or in connection with official University functions may subject an offending student to University discipline under the provisions of Section 102.08 of the Policies.
Similarly, harassing conduct, including symbolic expression, which also involves conduct resulting in damage to or destruction of any property of the University or property of others while on University premises may subject a student violator to University discipline under the provisions of Section 102.04 of the Policies.

Further, under specific circumstances described in the Universitywide Student Conduct Harassment Policy (http://www.deanofstudents.ucla.edu), students may be subject to University discipline for misconduct which may consist solely of expression. Copies of this Policy are available in the Office of the Dean of Students, 1206 Murphy Hall, or in any of the Harassment Information Centers listed below:

1. Center for Women and Men, B44 Student Activities Center, (310) 825-3945, http://www.thecenter.ucla.edu
2. Dashew Center for International Students and Scholars, 106 Bradley Hall, (310) 825-1681, http://www.internationalcenter.ucla.edu

Complaint Resolution
One of the necessary measures in our efforts to assure an atmosphere of civility and mutual respect is the establishment of procedures which provide effective informal and formal mechanisms for those who believe that they have been victims of any of the above misconduct.

Many incidents of harassment and intimidation can be effectively resolved through informal means. For example, an individual may wish to confront the alleged offender immediately and firmly. An individual who chooses not to confront the alleged offender and who wishes help, advice, or information is urged to contact any of the Harassment Information Centers listed above.

In addition to providing support for those who believe they have been victims of harassment, Harassment Information Centers offer persons the opportunity to learn about the phenomena of harassment and intimidation; to understand the formal and informal mechanisms by which misunderstandings may be corrected and, when appropriate, student perpetrators may be disciplined; and to consider which of the available options is the most useful for the particular circumstances.

With regard to the Universitywide Student Conduct Harassment Policy, complainants should be aware that not all conduct which is offensive may be regarded as a violation of this Policy and may, in fact, be protected expression. Thus, the application of formal institutional discipline to such protected expression may not be legally permissible. Nevertheless, the University is committed to reviewing any complaint of harassing or intimidating conduct by a student and intervening on behalf of the complainant to the extent possible.
Undergraduate Programs

The Henry Samueli School of Engineering and Applied Science (HSSEAS) offers nine four-year curricula listed below (see the departmental listings for complete descriptions of the programs), in addition to an undergraduate minor in Environmental Engineering.

1. Bachelor of Science in Aerospace Engineering, B.S. A.E.
2. Bachelor of Science in Bioengineering, B.S. B.E.
3. Bachelor of Science in Chemical Engineering, B.S. Ch.E.
4. Bachelor of Science in Civil Engineering, B.S. C.E.
5. Bachelor of Science in Computer Science, B.S. C.S.
6. Bachelor of Science in Computer Science and Engineering, B.S. C.S.&E.
7. Bachelor of Science in Electrical Engineering, B.S. E.E.
8. Bachelor of Science in Materials Engineering, B.S. Mat.E.
9. Bachelor of Science in Mechanical Engineering, B.S. M.E.

The following curricula are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET), the nationally recognized accrediting body for engineering programs: aerospace engineering, chemical engineering, civil engineering, computer science and engineering, electrical engineering, materials engineering, and mechanical engineering. The computer science and computer science and engineering curricula are accredited by the Computing Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, (410) 347-7700.

Students applying as freshmen must submit their applications during the November 1 through 30 filing period. Transfer applicants may apply for Fall, Winter, or Spring Quarter subject to the deadlines posted at http://www.admissions.ucla.edu. In addition, it is essential that official test scores be received no later than the date in January when the December test scores are normally reported.

Applicants must submit scores from an approved core test of mathematics, language arts, and writing. This requirement may be satisfied by taking either (1) the ACT Assessment plus ACT Writing Test or (2) the SAT Reasoning Test. In addition, all applicants must complete two SAT Subject Tests in two different subject areas selected from history/social science, mathematics (Mathematics Level 2 only), laboratory science, and a language other than English.

Applicants to the school are strongly encouraged to take the following SAT Subject Tests: Mathematics Level 2 and a laboratory science test (Biology E/M, Chemistry, or Physics) that is closely related to the intended major.

Fulfilling the admission requirements, however, does not assure admission to the school. Limits have had to be set for the enrollment of new undergraduate students. Thus, not every applicant who meets the minimum requirements can be admitted. Although applicants may qualify for admission to HSSEAS in freshman standing, many students take their first two years in engineering at a community college and apply to the school at the junior level. Students who begin their college work at a California community college are expected to remain at the community college to complete the lower division requirements in chemistry, computer programming, English composition, mathematics, physics, and the recommended engineering courses before transferring to UCLA.

Admission

Applicants to HSSEAS must satisfy the general admission requirements of the University. See the Office of Admissions and Relations with Schools (UARS) website at http://www.admissions.ucla.edu for details. Applicants must select a major within the school when applying for admission. In the selection process many elements are considered, including grades, test scores, and academic preparation.

Admission as a Freshman

University requirements specify a minimum of three years of mathematics, including the topics covered in elementary and advanced algebra and two- and three-dimensional geometry. Additional study in mathematics, concluding with calculus or precalculus in the senior year, is strongly recommended and typical for applicants to HSSEAS.

Freshman applicants must meet the University subject, scholarship, and examination requirements described at http://www.admissions.ucla.edu.

Credit for Advanced Placement Tests

Students may fulfill part of the school requirements with credit allowed at the time of admission for College Board Advanced Placement (AP) Tests with scores of 3, 4, or 5. Students with AP Test credit may exceed the 213-unit maximum by the amount of this credit. AP Test credit for freshmen entering Fall Quarter 2008 fulfills HSSEAS requirements as indicated on the AP chart. Students who have completed 36 quarter units after high school graduation at the time of the examination receive no AP Test credit.

Admission as a Transfer Student

Admission as a junior-level transfer student is competitive. The University requires applicants to have completed a minimum of 60 transferable semester units (90 quarter units) and two transferable English courses prior to enrolling at UCLA. In addition, to be considered all applicants to HSSEAS majors must have at least a 3.2 grade-point average in their college work. Many of the majors in the school are impacted. Excellent grades, especially for courses in preparation for the major, are expected.

Completion of the required courses in preparation for the major is critical for admission. Articulation agreements between California community colleges and HSSEAS include college-specific course numbers for these requirements and can be found at http://www.assist.org. Applicants who are lacking two or more of the courses are unlikely to be admitted.

Required preparation for HSSEAS majors:

1. Mathematics, including calculus I and II, calculus III (multivariable), differential equations, and linear algebra
2. Calculus-based physics courses in mechanics, electricity and magnetism, and waves, sound, heat, optics, and modern physics
3. Chemistry, including two terms of general chemistry. The Computer Science and Computer Science and Engineer-
Henry Samueli School of Engineering and Applied Science

Advanced Placement Credit

All units and course equivalents to AP Tests are lower division. If an AP Test has been given UCLA course equivalency (e.g., Economics 2), it may not be repeated at UCLA for units or grade points.

<table>
<thead>
<tr>
<th>AP Test</th>
<th>Score</th>
<th>UCLA Lower Division Units and Course Equivalents</th>
<th>Credit Allowed for University and GE Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art History</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Art, Studio</td>
<td></td>
<td>8 units maximum for all tests</td>
<td></td>
</tr>
<tr>
<td>Drawing Portfolio</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Two-Dimensional Design Portfolio</td>
<td></td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Three-Dimensional Design Portfolio</td>
<td></td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Biology</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Chemistry</td>
<td>3</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>4 units (may petition for Chemistry 20A) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Computer Science</td>
<td></td>
<td>4 units maximum for both tests</td>
<td></td>
</tr>
<tr>
<td>Computer Science (A Test)</td>
<td>3, 4, or 5</td>
<td>2 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Computer Science (AB Test)</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Economics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroeconomics</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Economics 2 (4 excess units)</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Economics 2 (4 units)</td>
<td>4 units toward social analysis GE</td>
</tr>
<tr>
<td>Microeconomics</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Economics 1 (4 excess units)</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Economics 1 (4 units)</td>
<td>4 units toward social analysis GE</td>
</tr>
<tr>
<td>English</td>
<td></td>
<td>8 units maximum for both tests</td>
<td></td>
</tr>
<tr>
<td>Language and Composition</td>
<td>3</td>
<td>8 excess units</td>
<td>Satisfies Entry-Level Writing Requirement</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>English Composition 3 (5 units) plus 3 excess units</td>
<td>Satisfies Entry-Level Writing Requirement</td>
</tr>
<tr>
<td>Literature and Composition</td>
<td>3</td>
<td>8 excess units</td>
<td>Satisfies Entry-Level Writing Requirement</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>English Composition 3 (5 units) plus 3 excess units</td>
<td>Satisfies Entry-Level Writing Requirement</td>
</tr>
<tr>
<td>Environmental Science</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Geography, Human</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Government and Politics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparative</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>United States</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>Satisfies American History and Institutions Requirement</td>
</tr>
<tr>
<td>History</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>United States</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>Satisfies American History and Institutions Requirement</td>
</tr>
<tr>
<td>World</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Languages and Literatures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese Language and Culture</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Subject</td>
<td>3 Units</td>
<td>4 Units</td>
<td>5 Units</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>French Language</td>
<td>French 4 (4 units) plus 4 excess units</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>French 5 (4 units) plus 4 excess units</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>French 6 (4 units) plus 4 excess units</td>
<td>4 units toward philosophical and linguistic analysis GE</td>
<td></td>
</tr>
<tr>
<td>French Literature</td>
<td>8 excess units</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 GE units plus 3 excess units</td>
<td>5 units toward literary and cultural analysis GE</td>
<td></td>
</tr>
<tr>
<td>German Language</td>
<td>German 3 (4 units) plus 4 excess units</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>German 4 (4 units) plus 4 excess units</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>German 5 (4 units) plus 4 excess units</td>
<td>4 units toward philosophical and linguistic analysis GE</td>
<td></td>
</tr>
<tr>
<td>Japanese Language and Culture</td>
<td>8 excess units</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td>Latin</td>
<td>Latin 1 (4 units)</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Latin 3 (4 units)</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Latin 3 (4 units)</td>
<td>4 units toward literary and cultural analysis GE</td>
<td></td>
</tr>
<tr>
<td>Vergil</td>
<td>Latin 1 (4 units)</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Latin 3 (4 units)</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Latin 3 (4 units)</td>
<td>4 units toward literary and cultural analysis GE</td>
<td></td>
</tr>
<tr>
<td>Spanish Language</td>
<td>Spanish 4 (4 units) plus 4 excess units</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spanish 5 (4 units) plus 4 excess units</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spanish 6 (4 units) plus 4 excess units</td>
<td>4 units toward philosophical and linguistic analysis GE</td>
<td></td>
</tr>
<tr>
<td>Spanish Literature</td>
<td>8 excess units</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 GE units plus 3 excess units</td>
<td>5 units toward literary and cultural analysis GE</td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td>8 units maximum for both tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics (AB Test: Calculus)</td>
<td>4 excess units</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 excess units</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 units</td>
<td>May be applied toward Mathematics 31A</td>
<td></td>
</tr>
<tr>
<td>Mathematics (BC Test: Calculus)</td>
<td>8 excess units</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 excess units plus 4 units</td>
<td>4 units may be applied toward Mathematics 31A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 units</td>
<td>Mathematics 31A plus 4 units that may be applied toward Mathematics 31B</td>
<td></td>
</tr>
<tr>
<td>Music Theory</td>
<td>8 excess units</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td>8 units maximum for all tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics (B Test)</td>
<td>8 excess units</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td>Physics (C Test: Mechanics)</td>
<td>4 excess units</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 units (may petition for Physics 1A)</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td>Physics (C Test: Electricity and Magnetism)</td>
<td>4 excess units</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td>Psychology</td>
<td>4 excess units</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Psychology 10 (4 excess units)</td>
<td>No application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Psychology 10 (4 units)</td>
<td>4 units toward social analysis GE</td>
<td></td>
</tr>
<tr>
<td>Statistics</td>
<td>4 excess units</td>
<td>No application</td>
<td></td>
</tr>
</tbody>
</table>
ing majors and the electrical engineering and computer engineering options of the Electrical Engineering major require only one term of chemistry.

4. Computer programming, including either Fortran, Java, C, or C++. Applicants to the Computer Science, Computer Science and Engineering, and Electrical Engineering majors should take C++.

5. Biology, including one year of biology only for applicants to the Bioengineering major.

6. English composition courses, including one course equivalent to UCLA’s English Composition 3 and a second UC-transferable English composition course.

Transfer applicants may complete courses in addition to those above that satisfy degree requirements. Engineering and computer science courses appropriate for each major may be found at http://www.assist.org.

Lower Division Courses in Other Departments

- Chemistry and Biochemistry 20A. Chemical Structure (4 units)
- Chemistry and Biochemistry 20B. Chemical Energetics and Change (4 units)
- Chemistry and Biochemistry 20L. General Chemistry Laboratory (3 units)
- English Composition 3. English Composition, Rhetoric, and Language (5 units)
- Mathematics 31A. Differential and Integral Calculus (4 units)
- Mathematics 31B. Integration and Infinite Series (4 units)
- Mathematics 32A, 32B. Calculus of Several Variables (4 units each)
- Mathematics 33A. Linear Algebra and Applications (4 units)
- Mathematics 33B. Differential Equations (4 units)
- Physics 1A. Physics for Scientists and Engineers: Mechanics (5 units)
- Physics 1B. Physics for Scientists and Engineers: Oscillations, Waves, Electric and Magnetic Fields (5 units)
- Physics 1C. Physics for Scientists and Engineers: Electrodynamics, Optics, and Special Relativity (5 units)
- Physics 4AL, Physics Laboratory for Scientists and Engineers: Mechanics (2 units)
- Physics 4BL. Physics Laboratory for Scientists and Engineers: Electricity and Magnetism (2 units)

The courses in chemistry, mathematics, and physics are those required as preparation for majors in these subjects. Transfer students should select equivalent courses required for engineering or physical sciences majors.

Requirements for B.S. Degrees

The Henry Samueli School of Engineering and Applied Science awards B.S. degrees to students who have satisfactorily completed four-year programs in engineering studies.

Students must meet three types of requirements for the Bachelor of Science degree:

1. University requirements
2. School requirements
3. Department requirements

University Requirements

The University of California has two requirements that undergraduate students must satisfy in order to graduate: (1) Entry-Level Writing or English as a Second Language (ESL) requirement prior to completing the school writing requirement. Students admitted to the school are required to complete a two-term writing requirement—Writing I and engineering writing. Both courses must be taken for a letter grade, and students must receive grades of C or better (C– grades are not acceptable).

Writing I

The Writing I requirement must be satisfied by completing English Composition 3 or 3H with a grade of C or better (C– or a Passed grade is not acceptable) by the end of the second year of enrollment. The Writing I requirement may also be satisfied by scoring 4 or 5 on one of the College Board Advanced Placement Tests in English or a combination of a score of 720 or higher on the SAT Reasoning Test Writing Section and superior performance on the English Composition 3 Proficiency Examination.

Students whose native language is not English may satisfy the Writing I requirement by completing English as a Second Language (ESL) with a grade of C or better (C– or a Passed grade is not acceptable). Admission into the course is determined by completion of English as a Second Language 35 with a passing grade or proficiency demonstrated on the English as a Second Language Placement Examination (ESLPE).

Scholarship Requirement

In addition to the University requirement of at least a C (2.0) grade-point average in all courses taken at any University of California campus, students must achieve at least a 2.0 grade-point average in all upper division University courses offered in satisfaction of the subject and elective requirements of the curriculum. A 2.0 minimum grade-point average in upper division mathematics, upper division core courses, and the major field is also required for graduation.

Academic Residence Requirement

Of the last 48 units completed for the B.S. degree, 36 must be earned in residence in HSSEAS on this campus. No more than 16 of the 36 units may be completed in Summer Sessions at UCLA.

Writing Requirement

Students must complete the University’s Entry-Level Writing or English as a Second Language (ESL) requirement prior to completing the school writing requirement. Students admitted to the school are required to complete a two-term writing requirement—Writing I and engineering writing. Both courses must be taken for a letter grade, and students must receive grades of C or better (C– grades are not acceptable).

Writing I

The Writing I requirement must be satisfied by completing English Composition 3 or 3H with a grade of C or better (C– or a Passed grade is not acceptable) by the end of the second year of enrollment. The Writing I requirement may also be satisfied by scoring 4 or 5 on one of the College Board Advanced Placement Tests in English or a combination of a score of 720 or higher on the SAT Reasoning Test Writing Section and superior performance on the English Composition 3 Proficiency Examination.

Students whose native language is not English may satisfy the Writing I requirement by completing English as a Second Language (ESL) with a grade of C or better (C– or a Passed grade is not acceptable). Admission into the course is determined by completion of English as a Second Language 35 with a passing grade or proficiency demonstrated on the English as a Second Language Placement Examination (ESLPE).

Engineering Writing

The engineering writing requirement is satisfied by selecting one approved engineering writing (EW) course from the HSSEAS writing course list or by selecting one approved Writing II (W) course. The course must be completed with a grade of C or better (C– or a Passed grade is not accept-
Writing courses are listed in the Schedule of Classes at http://www.registrar.ucla.edu/soc/writing.htm. Writing courses also approved for general education credit may be applied toward the relevant general education foundational area.

Technical Breadth Requirement
The technical breadth requirement consists of a set of three courses providing sufficient breadth outside the student’s core program. A list of HSSEAS Faculty Executive Committee-approved technical breadth requirement courses is available in the Office of Academic and Student Affairs, and deviations from that list are subject to approval by the associate dean for Academic and Student Affairs. None of the technical breadth requirement courses selected by students can be used to satisfy other major course requirements.

Ethics Requirement
The ethics and professionalism requirement is satisfied by completing one course from Engineering 183 or 185 with a grade of C or better (C– or a Passed grade is not acceptable). The course may be applied toward the engineering writing requirement.

General Education Requirements
General education (GE) is more than a checklist of required courses. It is a program of study that (1) reveals to students the ways that research scholars in the arts, humanities, social sciences, and natural sciences create and evaluate new knowledge, (2) introduces students to the important ideas and themes of human cultures, (3) fosters appreciation for the many perspectives and the diverse voices that may be heard in a democratic society, and (4) develops the intellectual skills that give students the dexterity they need to function in a rapidly changing world.

This entails the ability to make critical and logical assessments of information, both traditional and digital; deliver reasoned and persuasive arguments; and identify, acquire, and use the knowledge necessary to solve problems.

Students may take one GE course per term on a Passed/Not Passed basis if they are in good academic standing and are enrolled in at least three and one-half courses (14 units) for the term. For details on P/NP grading, see Grading in the Academic Policies section of the UCLA General Catalog or consult the Office of Academic and Student Affairs.

Requirements for Students Who Entered Fall Quarter 2005 and Thereafter

FOUNDATIONS OF KNOWLEDGE
General education courses are grouped into three foundational areas: Foundations of the Arts and Humanities, Foundations of Society and Culture, and Foundations of Scientific Inquiry.

Five courses (24 units minimum) are required. Engineering writing and ethics requirement courses also approved for GE credit may be applied toward the relevant GE foundational areas.

Students must meet with a counselor in the Office of Academic and Student Affairs to determine the applicability of GE Cluster courses toward the engineering writing or GE requirements.

Courses listed in more than one category can fulfill GE requirements in only one of the cross-listed categories.

Foundations of the Arts and Humanities
Two 5-unit courses selected from two different subgroups:

- Literary and Cultural Analysis
- Philosophical and Linguistic Analysis
- Visual and Performance Arts Analysis and Practice

The aim of courses in this area is to provide perspectives and intellectual skills necessary to comprehend and think critically about our situation in the world as human beings. In particular, the courses provide the basic means to appreciate and evaluate the ongoing efforts of humans to explain, translate, and transform their diverse experiences of the world through such media as language, literature, philosophical systems, images, sounds, and performances. The courses introduce students to the historical development and fundamental intellectual and ethical issues associated with the arts and humanities and may also investigate the complex relations between artistic and humanistic expression and other facets of society and culture.

Foundations of Society and Culture
Two 5-unit courses, one from each subgroup:

- Historical Analysis
- Social Analysis

The aim of courses in this area is to introduce students to the ways in which humans organize, structure, rationalize, and govern their diverse societies and cultures over time. The courses focus on a particular historical question, societal problem, or topic of political and economic concern in an effort to demonstrate how issues are objectified for study, how data is collected and analyzed, and how new understandings of social phenomena are achieved and evaluated.

Foundations of Scientific Inquiry
One course (4 units minimum) from the Life Sciences subgroup or one course from Biomedical Engineering CM145/Chemical Engineering CM145, Chemistry and Biochemistry 153A, or Civil and Environmental Engineering M166/Environmental Health Sciences M166:

- Life Sciences

This requirement is automatically satisfied for Bioengineering majors, Chemical Engineering majors, and the biomedical engineering option of the Electrical Engineering major. The requirement may be satisfied for Civil Engineering majors if students select an approved major field elective that is also a course approved under Foundations of Scientific Inquiry.

The aim of courses in this area is to ensure that students gain a fundamental understanding of how scientists formulate and answer questions about the operation of both the physical and biological world. The courses also deal with some of the most important issues, developments, and methodologies in contemporary science, addressing such topics as the origin of the universe, environmental degradation, and the decoding of the human genome. Through lectures, laboratory experiences, writing, and intensive discussions, students consider the important roles played by the laws of physics and chemistry in society, biology, Earth and environmental sciences, and astrophysics and cosmology.

Foundations Course Lists
Creating and maintaining a general education curriculum is a dynamic process; consequently, courses are frequently added to the list. For the most current list of approved courses that satisfy the Foundations of Knowledge GE plan, consult an academic counselor or see http://www.registrar.ucla.edu/ge/.

Requirements for Students Who Entered Prior to Fall Quarter 2005
For the approved list of courses, see http://www.seasoasa.ucla.edu/ge.html.
Department Requirements

Henry Samueli School of Engineering and Applied Science departments generally set two types of requirements that must be satisfied for the award of the degree: (1) Preparation for the Major (lower division courses) and (2) the Major (upper division courses). Preparation for the Major courses should be completed before beginning upper division work.

Preparation for the Major
A major requires completion of a set of courses known as Preparation for the Major. Each department sets its own Preparation for the Major requirements; see the Departments and Programs section of this announcement.

The Major
Students must complete their major with a scholarship average of at least a 2.0 (C) in all courses in order to remain in the major. All courses in the major department must be taken for a letter grade. See the Departments and Programs section of this announcement for details on each major.

Policies and Regulations
Degree requirements are subject to policies and regulations, including the following:

Student Responsibility
Students should take advantage of academic support resources, but they are ultimately responsible for keeping informed of and complying with the rules, regulations, and policies affecting their academic standing.

Study List
Study Lists require approval of the dean of the school or a designated representative. It is the student's responsibility to present a Study List that reflects satisfactory progress toward the Bachelor of Science degree, according to standards set by the faculty. Study Lists or programs of study that do not comply with these standards may result in enforced withdrawal from the University or other academic action.

Undergraduate students in the school are expected to enroll in at least 12 units each term. Students enrolling in less than 12 units must obtain approval by petition to the dean prior to enrollment in courses. The normal program is 16 units per term. Students may not enroll in more than 21 units per term unless an Excess Unit Petition is approved in advance by the dean.

Minimum Progress
Full-time HSSEAS undergraduate students must complete a minimum of 36 units in three consecutive terms in which they are registered.

Credit Limitations
Some portions of Advanced Placement (AP) Test credit are evaluated by corresponding UCLA course number. If students take the equivalent UCLA course, a deduction of UCLA unit credit is made prior to graduation. See the AP chart.

Credit earned through the College Level Examination Program (CLEP) may not be applied toward the bachelor's degree.

After students have completed 105 quarter units (regardless of where the units are completed), they do not receive unit credit or subject credit for courses completed at a community college.

No credit is granted toward the bachelor's degree for college foreign language courses equivalent to quarter levels one and two if the equivalent of level two of the same language was completed with satisfactory grades in high school.

Double Majors
Students in good academic standing may be permitted to have a double major consisting of a major within HSSEAS and a major outside the school (e.g., Electrical Engineering and Economics). Students are not permitted to have a double major within the school (e.g., Chemical Engineering and Civil Engineering). Contact the Office of Academic and Student Affairs for details.

Advising
It is mandatory for all students entering undergraduate programs to have their course of study approved by an academic counselor. After the first term, curricular and career advising is accomplished on a formal basis. Students are assigned a faculty adviser in their particular specialization in their sophomore year or earlier.

In addition, all undergraduate students are assigned, by major, to an academic counselor in the Office of Academic and Student Affairs who provides them with advice regarding general requirements for the degrees and University and school regulations and procedures. It is the students' responsibility to periodically meet with their academic counselor in the Office of Academic and Student Affairs, as well as with their faculty adviser, to discuss curriculum requirements, programs of study, and any other academic matters of concern.

Curricula Planning Procedure
1. Students normally follow the curriculum in effect when they enter the school. California community college transfers may also select the curriculum in the catalog in effect at the time they began their community college work in an engineering program, providing attendance has been continuous since that time.

2. HSSEAS undergraduate students following a catalog year prior to 2006-07 may use the computerized HSSEAS Academic Program Planner (APP), an interactive self-advising system that informs users if their academic programs meet the requirements for graduation. Students beginning upper division coursework in the major are required to submit an Academic Program Proposal to the Office of Academic and Student Affairs for approval by the associate dean. Students following the 2006-07 catalog year and thereafter will be notified by the Office of Academic and Student Affairs of a new program called Degree Audit Reporting System (DARS).

The student's regular faculty adviser is available to assist in planning electives and for discussions regarding career objectives. Students should discuss their elective plan with the adviser and obtain the adviser's approval.

Students should also see any member or members of the faculty specially qualified in their major for advice in working out a program of major courses.

Students are assigned to advisers by majors and major fields of interest. A specific adviser or an adviser in a particular engineering department may be requested by submitting a Request for Assignment to Faculty Adviser form available in the Office of Academic and Student Affairs.

Academic counselors in the Office of Academic and Student Affairs assist students with University procedures and answer questions related to general requirements.
Honors

Dean’s Honors List
Students following the engineering curricula are eligible to be named to the Dean’s Honors List each term. Minimum requirements are a course load of at least 15 units (12 units of letter grade) with a grade-point average equal to or greater than 3.7. Students are not eligible for the Dean’s Honors List if they receive an Incomplete (I) or Not Passed (NP) grade or repeat a course. Only courses applicable to an undergraduate degree are considered toward eligibility for Dean’s Honors.

Latin Honors
Students who have achieved scholastic distinction may be awarded the bachelor’s degree with honors. Students eligible for 2008-09 University honors at graduation must have completed 90 or more units for a letter grade at the University of California and must have attained a cumulative grade-point average at graduation which places them in the top five percent of the school (GPA of 3.889 or better) for summa cum laude, the next five percent (GPA of 3.814 or better) for magna cum laude, and the next 10 percent (GPA of 3.618 or better) for cum laude. The minimum GPAs required are subject to change on an annual basis. Required GPAs in effect in the graduating year determine student eligibility.

Based on grades achieved in upper division courses, engineering students must have a 3.889 grade-point average for summa cum laude, a 3.814 for magna cum laude, and a 3.618 for cum laude. For all designations of honors, students must have a minimum 3.25 GPA in their major field courses. To be eligible for an award, students should have completed at least 80 upper division units at the University of California.
The Henry Samueli School of Engineering and Applied Science (HSSEAS) offers courses leading to the Master of Science and Doctor of Philosophy degrees, to the Master of Science in Engineering online degree, to the Master of Engineering degree, and to the Engineer degree. The school is divided into seven departments that encompass the major engineering disciplines: aerospace engineering, bioengineering, chemical engineering, civil engineering, computer science, electrical engineering, manufacturing engineering, materials science and engineering, and mechanical engineering. It also offers a graduate interdepartmental degree program in biomedical engineering. Graduate students are not required to limit their studies to a particular department and are encouraged to consider related offerings in several departments.

Also, a one-year program leading to a Certificate of Specialization is offered in various fields of engineering and applied science.

Master of Science Degrees

The Henry Samueli School of Engineering and Applied Science offers the M.S. degree in Aerospace Engineering, Biomedical Engineering, Chemical Engineering, Civil Engineering, Computer Science, Electrical Engineering, Manufacturing Engineering, Materials Science and Engineering, and Mechanical Engineering. The thesis plan requires seven formal courses and a thesis, which may be written while the student is enrolled in two individual study courses. The comprehensive examination plan requires nine formal courses and a comprehensive examination. In some fields students may be allowed to use the Ph.D. major field examination to satisfy the M.S. comprehensive examination requirement. Full-time students complete M.S. programs in an average of five terms of study (about a year and a half). To remain in good academic standing, an M.S. student must obtain a 3.0 grade-point average overall and a 3.0 GPA in graduate courses.

Established Fields of Study for the Ph.D.

Students may propose other fields of study when the established fields do not meet their educational objectives.

Biomedical Engineering Interdepartmental Program

Biomechanics, biomechanics, biomaterials, and tissue engineering
Biomedical instrumentation
Biomedical signal and image processing and bioinformatics
Medical imaging informatics
Molecular and cellular bioengineering
Neuroengineering

Chemical and Biomolecular Engineering Department

Chemical engineering

Civil and Environmental Engineering Department

Environmental engineering
Geotechnical engineering
Hydrology and water resources engineering
Structures (structural mechanics and earthquake engineering)

Computer Science Department

Artificial intelligence
Computational systems biology
Computer networks
Computer science theory
Computer system architecture
Graphics and vision
Information and data management
Software systems

Electrical Engineering Department

Circuits and embedded systems
Physical and wave electronics
Signals and systems

Materials Science and Engineering Department

Ceramics and ceramic processing
Electronic and optical materials
Structural materials

Mechanical and Aerospace Engineering Department

Applied mathematics (established minor field only)
Applied plasma physics (minor field only)
Dynamics
Fluid mechanics
Heat and mass transfer
Manufacturing and design

Engineer Degree

The Engineer (Engr.) degree is similar to the Ph.D. degree in that the program of study is built around a major and two minor fields, and the preliminary written and oral examinations are the same. However, a dissertation is not required. Unlike the Ph.D. degree, the Engineer degree does have a formal course requirement of a minimum of 15 (at least nine graduate) courses beyond the bachelor's degree, with at least six courses in the major field (minimum of four graduate courses) and at least three in each minor field (minimum of two graduate courses in each).

Ph.D. Degrees

The Ph.D. programs prepare students for advanced study and research in the major areas of engineering and computer science. To complete the Ph.D. all candidates must fulfill the minimum requirements of the Graduate Division. Major and minor fields may have additional course and examination requirements. For further information, contact the individual departments. To remain in good academic standing, a Ph.D. student must obtain an overall grade-point average of 3.25.

Master of Engineering

The Master of Engineering (M.Engr.) degree is granted to graduates of the Engineering Executive Program, a two-year work-study program consisting of graduate-level professional courses in the management of technological enterprises. For details, write to the HSSEAS Office of Academic and Student Affairs, 6426 Boelter Hall, UCLA, Box 951601, Los Angeles, CA 90095-1601, (310) 825-2514.

The primary purpose of the Master of Science in Engineering online degree program is to enable employed engineers and computer scientists to augment their technical education beyond the Bachelor of Science degree and to enhance their value to the technical organizations in which they are employed. For further information, see http://msengrol.seas.ucla.edu.

Master of Engineering Degree

The Master of Engineering (M.Engr.) degree is granted to graduates of the Engineering Executive Program, a two-year work-study program consisting of graduate-level professional courses in the management of technological enterprises. For details, write to the HSSEAS Office of Academic and Student Affairs, 6426 Boelter Hall, UCLA, Box 951601, Los Angeles, CA 90095-1601, (310) 825-2514.
Nanoelectromechanical/microelectromechanical systems (NEMS/MEMS)
Structural and solid mechanics
Systems and control
For more information on specific research areas, contact the individual faculty member in the field that most closely matches the area of interest.

Admission

Applications for admission are invited from graduates of recognized colleges and universities. Selection is based on promise of success in the work proposed, which is judged largely on the previous college record.

Candidates whose engineering background is judged to be deficient may be required to take additional coursework that may not be applied toward the degree. The adviser helps plan a program to remedy any such deficiencies, after students arrive at UCLA.

Entering students normally are expected to have completed the B.S. degree requirements with at least a 3.0 grade-point average in all coursework taken in the junior and senior years.

Students entering the Engineer/Ph.D. program normally are expected to have completed the requirements for the master's degree with at least a 3.25 grade-point average and to have demonstrated creative ability. Normally the M.S. degree is required for admission to the Ph.D. program. Exceptional students, however, can be admitted to the Ph.D. program without having an M.S. degree.

For information on the proficiency in English requirements for international graduate students, see Graduate Admission in the Graduate Study section of the UCLA General Catalog or refer to http://www.gdnet.ucla.edu/gasaa/admissions/INTLREQT.HTM.

To submit a graduate application, see http://www.seasoasa.ucla.edu/prospective/graduate.html. From there connect to the site of the preferred department or program and go to the online graduate application.

Graduate Record Examination

Applicants to the HSSEAS graduate programs are required to take the General Test of the Graduate Record Examination (GRE). Specific information about the GRE may be obtained from the department of interest.

Obtain applications for the GRE by contacting the Educational Testing Service, P.O. Box 6000, Princeton, NJ 08541-6000; http://www.gre.org.
Faculty members in the Department of Bioengineering believe that the interface between biology and the physical sciences represents an exciting area for science in the twenty-first century. Bioengineering has established itself as an independent field and engineering discipline, resulting in the formation of many new bioengineering departments and the redefinition of established programs. Faculty members have embraced this unique opportunity by developing an innovative curriculum, creating state-of-the-art facilities, and performing cutting-edge research. Instead of treating bioengineering as an application of traditional engineering, it is taught as an applied science discipline in its own right. The bioengineering program is a structured compilation of unique forward-looking courses dedicated to producing graduates who are well-grounded in the fundamental sciences and highly proficient in rigorous analytical engineering tools necessary for lifelong success in the wide range of possible bioengineering careers. The program provides a unique engineering educational experience that responds to the growing needs and demands of bioengineering.

Department Mission
Bioengineering is a diverse multidisciplinary field that has established itself as an independent engineering discipline. The school is developing a small yet innovative Bioengineering Department that is dedicated to producing graduates who are well-grounded in fundamental sciences and the rigorous analytical engineering tools necessary for lifelong success in the many possible bioengineering careers.

Undergraduate Program Objectives
The goal of the bioengineering curriculum is to provide students with the fundamental scientific knowledge and engineering tools necessary for graduate study in engineering or scientific disciplines, continued education in health professional schools, or employment in industry. There are three main objectives: (1) to provide students with rigorous training in engineering and fundamental sciences, (2) to provide knowledge and experience in state-of-the-art research in bioengineering, and (3) to provide problem-solving and team-building skills to succeed in a career in bioengineering.

Apatite-coated poly(D,L-lactic-co-glycolic) acid (PLGA) scaffolds for bone tissue engineering.
Graduate Study
Although the graduate program in bioengineering is currently being developed, individuals who would like to conduct research in the laboratories of the professors in the Bioengineering Department should apply to the graduate program in the Biomedical Engineering Interdepartmental Program (http://www.bme.ucla.edu).

Faculty Areas of Thesis Guidance

Professors
Denise Aberle, M.D. (Kans, 1979)
Medical imaging informatics: imaging-based clinical trials, medical data visualization
Timothy J. Deming, Ph.D. (U.C Berkeley, 1993)
Polymer synthesis, polymer processing, supramolecular materials, organometallic catalysis, biomimetic materials, polypeptides
Warren G. Grundfest, M.D., FACS (Columbia, 1980)
Eximer laser, minimally invasive surgery, biolaser spectroscopy
Edward J. Lasker, Ph.D. (U.S.C, 1972), M.D.
Stem cell identification, regenerative medicine, systems biology

Associate Professors
James Dunn, M.D., Ph.D. (Harvard, MIT, 1992)
Tissue engineering, stem cell therapy, regenerative medicine
Biomaterials, cell-material interactions, materials processing, tissue engineering, prosthetic and regenerative dentistry

Assistant Professors
Dino Di Carlo, Ph.D. (U.C Berkeley, 2006)
Microfluidics, biomedical microdevices, cellular diagnostics, cell analysis and engineering
Daniel T. Kamei, Ph.D. (MIT, 2001)
Molecular cell bioengineering, rational design of molecular therapeutics, systems-level analysis of cellular processes, molecular modeling, quantitative cell biology
Andrea M. Kasko, Ph.D. (U. Akron, 2004)
Polymer synthesis, biomaterials, tissue engineering, cell-material interactions

Adjunct Assistant Professor
Skin tissue engineering, bone tissue engineering, vascular tissue engineering, wound healing

Lower Division Courses
10. Introduction to Bioengineering. (2) Lecture, two hours; discussion, one hour; outside study, three hours. Preparation: high school biology, chemistry, mathematics, physics. Introduction to scientific and technological bases for established and emerging subfields of bioengineering, including biocomposites, bioinstrumentation, and biocomputing, biocomputing proteomics, and biocomputing, biocomputing emerging subfields of bioengineering, including biocomposites, bioinstrumentation, and biocomputing, biocomputing proteomics, and biocomputing, biocomputing

110. Biophysics and Bioengineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Preparation: Chemistry 20A, 20B, 30A, Mathematics 32B. Introduction to the problems of the nervous system, focusing on the molecular and cellular bases of neural function, including signal transduction, ion channel function, and synaptic transmission.

115. Biotechnology. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Preparation: Chemistry 1A, 1B, 2A, 2B, 3A, 3B. This course will cover the fundamentals of biotechnology, including molecular biology, gene expression, cloning, and protein expression. It will also cover the applications of biotechnology in medicine, agriculture, and the environment.

120. Biomedical Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Preparation: Chemistry 1A, 1B, 2A, 2B, 3A, 3B. This course will cover the fundamentals of biomedical engineering, including the design and analysis of medical devices, biomaterials, and cellular systems.

165. Bioethics and Regulatory Policies in Bioengineering. (4) Lecture, four hours; discussion, two hours; outside study, six hours. This course will cover the ethical and regulatory issues surrounding bioengineering, including the design and testing of medical devices, the regulation of clinical trials, and the impact of emerging technologies on healthcare and society.

175. Principles of Biocompatibility. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Preparation: Chemistry 1A, 1B, 2A, 2B, 3A, 3B. This course will cover the principles of biocompatibility, including the design and testing of medical devices, the regulation of clinical trials, and the impact of emerging technologies on healthcare and society.

Mr. Grundfest, Mr. Schmidt (W)

M131. Nanopore Sensing. (4) Same as Biomedical Engineering CM131.) Lecture, four hours; discussion, two hours; outside study, six hours. Preparation: Chemistry 1A, 1B, 2A, 2B, 3A, 3B. This course will cover the fundamentals of nanopore sensing, including the design and testing of medical devices, the regulation of clinical trials, and the impact of emerging technologies on healthcare and society.

Mr. Grundfest, Mr. Schmidt (F)

M172. Design of Minimally Invasive Surgical Tools. (4) Same as Biomedical Engineering CM172.) Lecture, three hours; discussion, two hours; outside study, seven hours. Preparation: Chemistry 1A, 2A, 2B, 3A, 3B. This course will cover the fundamentals of surgical tools, including the design and testing of medical devices, the regulation of clinical trials, and the impact of emerging technologies on healthcare and society.

Mr. Grundfest, Mr. Schmidt (F)
180. System Integration in Biology, Engineering, and Medicine I. (4) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: courses 100, 110, 120, Life Sciences 3, Physics 4BL. Corequisite: course 180L Part I of two-part series. Molecular basis of normal physiology and pathophysiology, and engineering design principles of cardiovascular and pulmonary systems. Fundamental engineering principles of selected medical therapeutic devices. Letter grading. Mr. Dunn, Mr. Wu (F)

180L System Integration in Biology, Engineering, and Medicine I Laboratory. (3) Lecture, one hour; laboratory, four hours; clinical visits, three hours; outside study, one hour. Corequisite: course 180. Hands-on experimentation and clinical applications of selected medical therapeutic devices associated with cardiovascular and pulmonary disorders. Letter grading. Mr. Dunn, Mr. Wu (F)

181. System Integration in Biology, Engineering, and Medicine II. (4) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisite: course 180L. Corequisite: course 181L Part II of two-part series. Molecular basis of normal physiology and pathophysiology of selected organ systems; engineering design principles of digestive and urinary systems. Fundamental engineering principles of selected medical therapeutic devices. Letter grading. Mr. Dunn, Mr. Wu (F)

181L System Integration in Biology, Engineering, and Medicine II Laboratory. (3) Lecture, one hour; laboratory, four hours; clinical visits, three hours; outside study, one hour. Corequisite: course 181. Hands-on experimentation and clinical applications of molecular basis of normal physiology and pathophysiology of selected organ systems; engineering design principles of digestive and urinary systems. Letter grading. Mr. Dunn, Mr. Wu (W)

182A-182B-182C. Bioengineering Capstone Design I, II, III. (4-4-4) Lecture, two hours; laboratory, six hours; outside study, four hours. Lectures, design seminars, and discussions with faculty advisory panel. Working in teams, students compete to develop innovative bioengineering solutions to meet specific sets of design criteria (design and make strongest self-assembled biorobots or most stable UCLA logo or most selective and efficient biomarker sensors, etc.). Letter grading. 182A. Requisites: course 120, Physics 4BL. Development, writing, and oral defense of student design proposals. 182B. Requisite: course 182A. Exploration of different experimental and computational methods. Ordering of specific materials and software that are relevant to student projects. 182C. Requisite: course 182B. Construction of student designs, project updates, presentation of final projects in written and oral format, and team competition. Mr. Deming (F.W.Sp)

M183. Targeted Drug Delivery and Controlled Drug Release. (4) Same as Biomedical Engineering CM183.) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 20A, 20B, 20L. New therapeutics require comprehensive understanding of modern biology, physiology, biomaterials, and engineering. Targeted delivery of genes and drugs and their controlled release are important in treatment of challenging diseases and relevant to tissue engineering and regenerative medicine. Drug pharmacodynamics and clinical pharmacokinetics. Application of engineering principles (diffusion, transport, kinetics) to problems of drug formulation and delivery to establish rationale for design and development of novel drug delivery systems that can provide spatial and temporal control of drug release. Introduction to biomaterials with specialized structural and functional properties. Exploration of both chemistry of materials and physical presentation of devices and compounds used in delivery and release. Letter grading. Ms. Kasko (F)

188. Special Courses in Bioengineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Special topics in bioengineering for undergraduate students that are taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated once for credit with topic or instructor change. Letter grading.

194. Research Group Seminars: Bioengineering. (4) Seminar, three hours. Limited to bioengineering undergraduate students who are part of research group. Study and analysis of current topics in bioengineering. Discussion of current research literature in research specialty of faculty member teaching course. Student presentation of projects in research specialty. May be repeated for credit. Letter grading.

199. Directed Research in Bioengineering. (2 to 8) Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation under guidance of faculty mentor. Cumulating paper or project required. May be repeated for credit with school approval. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading.

Biomedical Engineering

Interdepartmental Program

UCLA

5121 Engineering V

Box 951600

Los Angeles, CA 90095-1600

(310) 267-4985

fax: (310) 794-5956

e-mail: bme@ea.ucla.edu

http://www.bme.ucla.edu

Timothy J. Deming, Ph.D., Chair

Faculty Advisory Committee

Timothy J. Deming, Ph.D. (Bioengineering, Chemistry and Biochemistry)

Bruce S. Dunn, Ph.D. (Materials Science and Engineering)

Chih-Ming Ho, Ph.D. (Mechanical and Aerospace Engineering)

Hooshang Kangarloo, M.D. (Pediatrics, Radiological Sciences)

Ichiro Nishimura, D.D.S., D.M.Sc., D.M.D. (Dentistry)

James N. Weiss, M.D. (Cardiology)

Professors

Denise Aberle, M.D. (Bioengineering, Radiological Sciences)

Abeer A.H. Alwan, Ph.D. (Electrical Engineering)

Rajive Bagrodia, Ph.D. (Computer Science)

Francisco Bezania, Ph.D. (Physiology)

Arnold J. Berk, M.D. (Microbiology, Immunology, and Molecular Genetics)

Angelo Caputo, Ph.D. (Dentistry)

Gregory P. Carman, Ph.D. (Mechanical and Aerospace Engineering)

Tony F.C. Chan, Ph.D. (Mathematics)

Peng-Shen Chen, Ph.D., in Residence (Medicine)

Yong Chen, Ph.D. (Mechanical and Aerospace Engineering)

Samson Chow, Ph.D. (Molecular and Medical Pharmacology)

Mark Cohen, Ph.D. (Neurology, Psychiatry and Biobehavioral Sciences, Radiological Sciences)

Jean B. deKernion, M.D. (Urology)

Joseph L. Demer, M.D., Ph.D. (Neurology, Ophthalmology)

Linda L. Demer, M.D., Ph.D. (Cardiology, Physiology)

Timothy J. Deming, Ph.D. (Bioengineering, Chemistry and Biochemistry)

Vijay K. Dhir, Ph.D. (Mechanical and Aerospace Engineering)

Joseph J. DiStefano III, Ph.D. (Computer Science, Medicine)

Bruce H. Dobkin, M.D. (Neurology)

Gary Duckweiler, M.D., Ph.D. (Radiological Sciences)

Bruce S. Dunn, Ph.D. (Materials Science and Engineering)

V. Reggie Edgerton, Ph.D. (Physiological Science)

Jack L. Feldman, Ph.D. (Neurobiology, Physiological Science)

Harold R. Fetterman, Ph.D. (Electrical Engineering)

Gerald A.M. Finerman, M.D. (Orthopaedic Surgery)
Scope and Objectives

The Biomedical Engineering Interdepartmental Program trains specially qualified engineers and scientists to work on engineering applications in either medicine or biotechnology. Graduates apply engineering principles to current needs and contribute to future advances in the fields of medicine and biotechnology. Fostering careers in industry or academia, the program offers students the choice of an M.S. or Ph.D. degree in eight distinct fields of biomedical engineering.

In addition to selected advanced engineering courses, students are required to take specially designed biomedical engineering courses to ensure a minimal knowledge of the appropriate biological sciences. Students receive practical training via an M.S. or Ph.D. research thesis or dissertation in biomedical engineering. Faculty members have principal appointments in departments across campus and well-equipped laboratories for graduate student research projects.

Graduate Study

For information on graduate admission, see Graduate Programs, page 23. The following introductory information is based on the 2008-09 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnet.ucla.edu/gasaa/library/pgmrq
or behavior of living systems, including cybernetics-based integrative properties encompasses the systems engineering/emphasis on systems and integration. This interests in systems biology biosystems intended for science or engineering students. Graduate study in biocybernetics is Biocybernetics

Fields of Study

Biocybernetics
Graduate study in biocybernetics is intended for science or engineering students interested in systems biology biosystems or biomedical systems, with an emphasis on systems and integration. This encompasses the systems engineering/cybernetics-based integrative properties or behavior of living systems, including their regulation, control, integration, and intercommunication mechanisms, and their associated measurement, visualization, and mathematical and computer modeling. The program provides directed interdisciplinary biosystem studies to establish a foundation in system and information science, mathematical modeling, measurement and integrative biosystem science, as well as related specialized life sciences domain studies. It fosters careers in research and teaching in systems biology engineering, medicine, and/or the biomedical sciences, or research and development in the biomedical or pharmaceutical industry. At the system and integration level, biocybernetics methodology is quite broadly applicable to a large spectrum of biomedical problems.

Typical research areas include basic and clinical problems in biomedical systems, systems biology, all types of biocontrol systems, imaging systems, pharmaceutical systems, biotechnology systems, bioinformatics, genomics, neuroscience, and remote sensing systems for the life sciences. Faculty research areas include computational biology, computational biochemistry, and metabolism; computational cardiology and neuroendocrinology; biodeling of diseases, cellular processes, metabolic control systems, and gene networks; modeling in genomics, pharmacokinetics, and pharmacodynamics; vision, robotics, speech processing, neuroscience, artificial and real neural network modeling, normative expert systems, wireless remote sensing systems, telemedicine, visualization, and virtual clinical environments.

Biomechanics, Biomaterials, and Tissue Engineering
Three subfields—biomechanics, biomaterials, and tissue engineering—encompass this broad field. The properties of bone, muscles, and tissues, the replacement of natural materials with artificial compatible and functional materials such as polymer composites, ceramics, and metals, and the complex interactions between implants and the body are studied.

Biomedical Engineering Ph.D.
The Ph.D. program prepares students for advanced study and research in biomedical engineering. The Ph.D. preliminary examination typically consists of both written and oral parts. To receive a pass on the examination, students must receive a pass on both parts. An oral qualifying/advance ment to candidacy examination, coursework for two minor fields of study, and defense of the dissertation are also required. The major field consists of six courses, and each minor field consists of three 4-unit courses, of which two must be graduate (200-level) courses. One minor must be in another field of biomedical engineering. Students must maintain a grade-point average of 3.25 or better in all courses.

Course Requirements

Core Courses (Required): Biomedical Engineering C201, CM202, CM203, CM286B, and either M296A or M296B.

Biocybernetics can serve as a minor field for other Ph.D. majors if students complete the following courses with a grade-point average of B+: Biomedical Engineering CM286B, and one additional graduate-level elective from the additional foundations or electives list.

Core Courses (Required): Biomedical Engineering C201, CM202, CM203, CM286B, CM286C, and either M296A or Biomathematics 220.

Biomechanics, Biomaterials, and Tissue Engineering
Three subfields—biomechanics, biomaterials, and tissue engineering—encompass this broad field. The properties of bone, muscles, and tissues, the replacement of natural materials with artificial compatible and functional materials such as polymer composites, ceramics, and metals, and the complex interactions between implants and the body are studied.

Course Requirements

Core Courses (Required): Biomedical Engineering C201, C204, C205, C206, and two courses from CM240, CM280, C283, C285, Bioengineering 176, Molecular Cell,
and Developmental Biology 100, 104, 138, M140, 165A, 168. Electives. Students are expected to fulfill the remaining course requirements from courses in this group listed on the Biomedical Engineering website at http://www.bme.ucla.edu/programs/studyplans.html.

Biomedical Instrumentation
The biomedical instrumentation field trains biomedical engineers in the applications and development of instrumentation used in medicine and biotechnology. Examples include the use of lasers in surgery and diagnostics, sensors for detection and monitoring of disease, and microelectromechanical systems (MEMS) devices for controlled drug delivery, surgery, or genetics. The principles underlying each instrument and the specific needs in medical applications are emphasized.

Course Requirements
Core Courses (Required). Biomedical Engineering C201, C204, C205, C206, CM250A, Electrical Engineering 100.
Electives. Students are expected to fulfill the remaining course requirements from courses in this group listed on the Biomedical Engineering website at http://www.bme.ucla.edu/programs/studyplans.html.

Biomedical Signal and Image Processing and Bioinformatics
The biomedical signal and image processing and bioinformatics field encompasses techniques for the acquisition, processing, classification, and analysis of digital biomedical signals, images, and related information, classification and analysis of biomedical data, and decision support of clinical processes. Sample applications include (1) digital imaging research utilizing modalities such as X-ray imaging, computed tomography (CT), and magnetic resonance (MR), positron emission tomography (PET) and SPECT, optical microscopy, and combinations such as PET/MR, (2) signal processing research on hearing to voice recognition to wireless sensors, and (3) bioinformatics research ranging from image segmentation for content-based retrieval from databases to correlating clinical findings with genomic markers. Graduates of the program integrate advanced digital processing and artificial intelligence technologies with healthcare activities and biomedical research. They are prepared for careers involving innovation in the fields of signal processing, medical imaging, and medical-related informatics in either industry or academia.

Course Requirements
Students selecting biomedical signal and image processing and bioinformatics as a minor field must take three courses, of which at least two must be graduate (200-level) courses.
Core Courses (Required). Biomedical Engineering C201, CM202, CM203, M214A, Electrical Engineering 113, 211A.
Remedial Courses. Electrical Engineering 102, Program in Computing 10A, 10B.

Medical Imaging Informatics
The objective of the medical imaging informatics field is to train students in imaging-based medical informatics. Specifically, the program's aims are to enable (1) students from engineering backgrounds to become familiar with aspects of clinical and medical environments, such that they are able to appropriately apply their skills and knowledge in these domains, (2) students from medical backgrounds to learn sufficient expertise in current information and engineering technologies to address specific problems within clinical environments, (3) all students to be experts within the field of imaging-based medical informatics, becoming experienced in dealing with diverse biomedical data (imaging and text), and (4) all students to learn to work in a multidisciplinary group of researchers and individuals, enabling new developments within the field.
The underlying goal is to foster a community for students and faculty members from multiple disciplines (represented by individuals from the Schools of Engineering, Education and Information Studies, Medicine, and Public Health) to participate in the growing area of medical imaging informatics.

Course Requirements

Molecular and Cellular Bioengineering
The field of molecular and cellular bioengineering encompasses the engineering of enzymes, cellular metabolism, biological signal transduction, and cell-cell interactions. Research emphasizes the fundamental basis for diagnosis, disease treatment, and redesign of cellular functions at the molecular level. The field interacts closely with the fields of bioinstrumentation (MEMS), tissue engineering, and neuroengineering. Graduates of the program are targeted principally for employment in academia, in government research laboratories, and in the biotechnology, pharmaceutical, and biomedical industries.

Course Requirements
Electives. Students are expected to fulfill the remaining course requirements from courses in this group listed on the Biomedical Engineering website at http://www.bme.ucla.edu/programs/studyplans.html.

Neuroengineering
The neuroengineering field is a joint endeavor between the Neuroscience Interdepartmental Ph.D. Program in the Geffen School of Medicine and the Biomedical Engineering Interdepartmental Graduate Program in HSSEAS. The objectives of the neuroengineering field are to enable (1) students with a background in engineering to develop and execute projects that address problems that have a neuroscientific base, (2) students with a background in biological sciences to develop and execute projects that make use of state-of-the-art technology, and (3) all trainees to develop the capacity for the multidisciplinary teamwork that is necessary for new scientific insights and dramatic technological progress. Courses and research projects are cosponsored by faculty members in both HSSEAS and the Brain Research Institute (BRI).

Requisites for Admission. Students entering the neuroengineering program have graduated with undergraduate degrees in engineering, physics, chemistry, or one of
the life sciences (for example, biology, microbiology, immunology, and molecular genetics, molecular, cell, and developmental biology, neuroscience, physiology, or psychology). Engineering students must have taken at least one undergraduate course in biology, one course in chemistry, and a year of physics. Students from non-engineering backgrounds are required to have taken courses in undergraduate calculus, differential equations, and linear algebra, in addition to at least one year of undergraduate courses in each of the following: organic chemistry and biochemistry, physics, and biology. Students lacking one or more requisite courses, if they are otherwise admissible, are provided an opportunity for appropriate coursework or tutorial during the summer before they enter the neuroengineering program.

Written Preliminary Examination. The Ph.D. preliminary examination typically consists of three written parts—two in neuroscience and one in neuroengineering. To receive a pass on all parts, students must fail the examination may repeat it only once, subject to approval of the faculty examination committee.

Students who are in a field other than neuroengineering and who select neuroengineering as a minor must take Biomedical Engineering M260, M263, and Neuroscience 205.

Core Courses (Required). Biomedical Engineering M260, Neuroscience M202, M207, and either Biomedical Engineering M263 or Neuroscience 205.

Electives. During the first and second years, students take at least three courses selected from a menu of new and existing courses.

Biomedical engineering category: Biomedical Engineering C201, M261A, M261B, M261C.

MEMS category: Biomedical Engineering CM250A, Mechanical and Aerospace Engineering CM280L, 284.

Neuroscience category: Neuroscience M201, M263, M273, 274.

Students without previous exposure to MEMS should take Biomedical Engineering CM150L; those without previous exposure to neuroscience should take Physiological Science 111A; those without previous exposure to signal processing should take Electrical Engineering 102 and 113. Both courses are offered every term.

Seminars (First-Year). Two seminars in problem-based approaches to neuroengineering are required. All first-year students take a new graduate seminar series in Winter and Spring Quarters which is co-taught each term by one instructor from HSSEAS and one from the Brain Research Institute. Each seminar introduces students to a single area of neuroengineering and challenges them to develop critical skills in evaluating primary research papers and to design new approaches to current problems. Topics include pattern generation, sensory signal processing, initiation and control of movement, microsensors, neural networks, photonics, and robotics.

Research Seminars. In addition to the formal coursework listed above, all students attend a series of weekly research seminars that allow both students and faculty members to become more conversant with the broad range of subjects in neuroengineering.

Seminars (Second-Year). All second-year students take a seminar course each term specifically designed for the neuroengineering program. Each course is co-taught by one faculty member from the Brain Research Institute and one from HSSEAS and often include outside UCLA faculty speakers or members of the Industrial Advisory Board.

Lower Division Courses

19. Fiat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.

Upper Division Courses

C101. Introduction to Biomedical Engineering. (4) Lecture, three hours; laboratory, three hours; outside study, six hours. Designed for physical sciences, life sciences, and engineering students. Introduction to wide scope of biomedical engineering via treatment of selected important individual topics by small team of specialists. Concurrently scheduled with course C201. Letter grading.

CM102. Basic Human Biology for Biomedical Engineers I. (4) Same as Physiological Science CM102.) Lecture, three hours; laboratory, two hours. Preparation: human molecular biology, biochemistry, and cell biology. Not open for credit to Physiological Science majors. Broad overview of basic biological activities and organization of human body in system (organs/tissue) to system basis, with particular emphasis on molecular basis. Modeling/simulation of functional aspect of biological system included. Actual demonstration of biomedical instruments, as well as visits to biomedical facilities. Concurrently scheduled with course CM202. Letter grading.

CM103. Basic Human Biology for Biomedical Engineers II. (4) Same as Physiological Science CM103.) Lecture, three hours; laboratory, two hours. Preparation: human molecular biology, biochemistry, and cell biology. Not open for credit to Physiological Science majors. Broad overview of basic biological activities and organization of human body in system (organs/tissue) to system basis, with particular emphasis on molecular basis. Modeling/simulation of functional aspect of biological system included. Actual demonstration of biomedical instruments, as well as visits to biomedical facilities. Concurrently scheduled with course CM202. Letter grading.

CM104. Physical Chemistry of Biomolecules. (4) (Same as Bioengineering M104.) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 20A, 20B, 30A, Life Sciences 2, 3. To understand biological materials and design synthetic replacements, it is imperative to understand their physical chemistry. Biomacromolecules such as protein or DNA can be analyzed and characterized by applying fundamentals of polymer physical chemistry. Investigation of polymer structure and conformation, bulk properties, chain dynamics and phase behavior, polymer networks, and viscoelasticity. Application of engineering principles to problems involving biomacromolecules such as protein conformation, solvation of charged species, and separation and characterization of biomacromolecules. Concurrently scheduled with course C204. Letter grading.

CM105. Bioconjugate Chemistry and Bioconjugates. (4) (Same as Bioengineering M105.) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: Chemistry 20A, 20B, 20L. Highly recommended: one organic chemistry course. Bioconjugate chemistry is science of coupling biomolecules for wide range of applications. Oligonucleotides may be coupled to one surface in gene chip, or one protein may be coupled to one polymer to enhance its stability in serum. Wide variety of bioconjugates are used in delivery of pharmaceuticals, in sensors, in medicinal diagnostics, and in tissue engineering. Basic concepts of chemical ligation, including choice and design of conjugate linkers depending on type of biomolecule and desired application, such as degradable versus nondegradable linkers. Preservation, design and synthesis of synthetic bioconjugates for some sample applications. Concurrently scheduled with course C205. Letter grading.

Mr. Deming (W)
CM106. Topics in Biophysics, Channels, and Membranes. (4) (Same as Bioengineering M106.) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: Chemistry 14C, Life Sciences 1, 2, 3, 4, Mathematics 33B, Physics 1C, 4AL, 4BL. Coverage in depth of physical processes associated with biological membranes and channel proteins, with specific emphasis on electrophysiology. Basic physical principles governing electrostatics in dielectric media, building on complexity to ultimately address action potentials and signal propagation in nerves. Topics include Nernst-Planck and Poisson/Boltzmann equations, Nernst potential, Donnan equilibrium, GHK equations, energy barriers in ion channels, cable equation, action potentials, Hodgkin/Huxley equations, impulse propagation, axon geometry and conduction, dendritic integration. Concurrently scheduled with course C206. Letter grading.

CM131. Nanopore Sensing. (4) (Same as Biotechnology M131.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Bioengineering 100, 120, Life Sciences 2, 3, Physics 1A, 1B, 1C. Analysis of sensors based on measurements of fluctuating ionic conductance through artificial or protein nanopores. Physics of pore conductance. Applications to single molecule detection and DNA sequencing, fabrication, ionic conductance through pores and transverse pulse sensing, theory and instrumentation of applications to single molecule detection and DNA sequencing, laboratory M131.) Lecture, four hours; laboratory, four hours; outside study, one hour. Requisites: Chemistry 20A, 20B, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Corequisite: course CM135. Hands-on introduction to micromachining technologies and microelectromechanical systems (MEMS) laboratory. Methods of micromachining and how these methods can be used to produce variety of MEMS, including microstructures, microsensors, and microactuators. Students design microfabrication processes capable of achieving desired MEMS device. Concurrently scheduled with course CM250A. Letter grading.

CM150L. Introduction to Micromachining and Microelectromechanical Systems (MEMS) Laboratory. (2) (Formerly named CM150L.) (Same as Electrical Engineering CM150L and Mechanical and Aerospace Engineering CM180L.) Lecture, one hour; laboratory, four hours; outside study, one hour. Requisites: Chemistry 20A, 20B, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Corequisite: course CM150L. Hands-on introduction to micromachining and microelectromechanical (MEMS) laboratory. Methods of micromachining and how these methods can be used to produce variety of MEMS, including microstructures, microsensors, and microactuators. Students design microfabrication processes capable of achieving desired MEMS device. Concurrently scheduled with course CM250A. Letter grading.

CM186A. Introduction to Computational and Systems Biology. (2) (Same as Computational and Systems Biology M186A and Computer Science CM186A.) Lecture, two hours; outside study, four hours. Requisites: Computer Science 31 (or Program in Computing 10A), Mathematics 31A, 31B. Survey course designed to introduce students to computational and systems modeling and computing in biology and medicine, providing flavor, culture, and cutting-edge contributions of burgeoning computational multidisciplinary biosciences and aiming for more in-depth coverage for joining them. Introduction to computational and systems biology research at UCLA in systems biology, bioinformatics, genomics, neuroengineering, tissue engineering, systems biology software, biomedicine, clinical trials, multiscale systems, biosystem simulation, and/or other computational and systems biology/biomedical engineering areas. P/NP grading.

CM186B. Computational Systems Biology: Modeling and Simulation of Biological Systems. (5) (Formerly numbered M186B.) (Same as Computational and Systems Biology M186B and Computer Science CM186B.) Lecture, four hours; laboratory, three hours; discussion, one hour; outside study, seven hours. Requisites: Computer Science 31 (or Program in Computing 10A), Mathematics 31A, 31B. Survey course designed to introduce students to computational and systems modeling and computing in biology and medicine, providing flavor, culture, and cutting-edge contributions of burgeoning computational multidisciplinary biosciences and aiming for more in-depth coverage for joining them. Introduction to computational and systems biology research at UCLA in systems biology, bioinformatics, genomics, neuroengineering, tissue engineering, systems biology software, biomedicine, clinical trials, multiscale systems, biosystem simulation, and/or other computational and systems biology/biomedical engineering areas. P/NP grading.

CM187. Introduction to Tissue Engineering. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: course CM102 or CM202, Chemistry 20A, 20B, 20L. Tissue engineering applies principles of biology and physical sciences to engineering approaches to regenerate tissues and organs. Guiding principles for proper selection of three basic components for tissue engineering: cells, scaffolds, and molecular signals. Concurrently scheduled with course CM283. Letter grading.

CM188. Biomaterials-Tissue Interactions. (4) Lecture, three hours; outside study, nine hours. Requisites: course CM180. In-depth exploration of host-cell interactions, design of biomaterials, tissue engineering and self-regenerating tissues, biocompatibility and infection, extracellular matrix, cell adhesion, and role of mechanical forces. Concurrently scheduled with course CM283. Letter grading.

CM193. Targeted Drug Delivery and Controlled Drug Release. (4) (Same as Bioengineering M193.) Lecture, three hours; discussion, one hour; outside study, seven hours. Requisites: Chemistry 20A, 20B, 20L. New therapeutic approaches that can achieve state-of-the-art controlled release are important in treatment of challenging diseases and relevant to tissue engineering and regenerative medicine. Drug pharmacodynamics and clinical pharmacokinetics. Application of engineering principles (diffusion, transport, kinetics) to problems in drug formulation and delivery to establish rationale for design and development of novel drug delivery systems that can provide spatial and temporal control of drug release. Introduction to biomaterials with specialized structural and interfacial properties. Exploration of both chemical modification and physical techniques and compounds used in delivery and release. Concurrently scheduled with course CM283. Letter grading.

Ms. Kasko (F)

Mr. Wu (Sp)

Mr. Grundfest (W)

Mr. DiStefano (F)

Ms. Kasko (F)

Mr. DiStefano (W)

Mr. Grundfest (F)

Ms. Kasko (F)

Mr. Liu (F)

Mr. Wu (W)
CM186C. Biomodeling Research and Research Communication Workshop. (2 to 4) (Formerly numbered CM186BL.) (Same as Computational and System Biology 186B, and Computer Science 186L.) Lecture, one hour; discussion, two hours; laboratory, one hour; outside study, eight hours. Requisite: course CM186B. Closely directed, interactive, and real research experience in active quantitative systems biology research laboratory. Direction on how to focus on topics of current interest in scientific community that align with student interests and capabilities. Critiques of oral presentations and written progress reports explain how to proceed with search for research results. Major emphasis on effective research reporting, both oral and written. Concurrently scheduled with course CM689C. Letter grading. Mr. DiStefano (Sp)

C187. Applied Tissue Engineering: Clinical and Industrial Perspectives. (4) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: course CM102, Chemistry 20A, 20B, 20L, Life Sciences 1 or 2. Overview of central topics of tissue engineering, with focus on how to build artificial tissues into regulated clinically viable products. Topics include biomaterials selection, cell source, delivery methods, FDA approval processes, and physical/chemical and biological testing. Case studies include skin and artificial skin, bone and cartilage, blood vessels, neurotissue engineering, and liver, kidney, and other organs. Clinical and industrial perspectives of tissue engineering products. Manufacturing constraints and regulations on challenges in design and development of tissue-engineering devices. Concurrently scheduled with course C287. Letter grading. Mr. Wu (F)

188. Special Courses in Biomedical Engineering. (4) Lecture, four hours; outside study, eight hours. Special topics in biomedical engineering for undergraduate students that are taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated for credit. Letter grading.

Graduate Courses

C201. Introduction to Biomedical Engineering. (4) Lecture, three hours; laboratory, three hours; outside study, six hours. Designed for physical sciences, life sciences, and engineering students. Introduction to understanding of biological engineering via treatment of selected important individual topics by small team of specialists. Concurrently scheduled with course C101. Letter grading. Mr. Kanei (F)

CM202. Basic Human Biology for Biomedical Engineers I. (4) (Same as Physiological Science CM202.) Lecture, three hours; laboratory, two hours. Preparation: human molecular biology, biochemistry, and cell biology. Not open for credit to Physiological Science majors. Broad overview of basic biological activities and organization of human body in system (organ/tissue) to system basis, with particular emphasis on molecular basis. Modeling/simulation of functional aspect of biological system included. Actual demonstration of biomedical instruments, as well as visits to biomedical facilities. Concurrently scheduled with course CM102. Letter grading. Mr. Grundfest (F)

CM204. Physical Chemistry of Biomacromolecules. (4) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 20A, 20B, 30A, Life Sciences 2 & 3. To understand biophysical models and materials design synthetic replacements, it is imperative to understand their physical chemistry. Biomacromolecules such as protein or DNA can be analyzed and characterized by applying fundamental tenants of polymer physical chemistry. Investigation of polymer structure and conformation, bulk and solution thermodynamics, and phase behavior; polymer networks, and viscoelasticity. Application of engineering principles to problems involving biomacromolecules such as protein conformation, solvation of charged species, and separation and characterization of DNA in capillary electrophoresis and capillary electrophoresis with course CM104. Letter grading. Ms. Kasko (F)

C205. Biopolymer Chemistry and Bioconjugates. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Highly recommended: one organic chemistry course. Bioconjugate chemistry is science of coupling biomolecules for wide range of applications. Diol-aldehydes may be coupled to one surface in gene chip, or one protein may be coupled to one polymer to enhance its stability in serum. Wide variety of bioconjugates are used in delivery of pharmacologicals, in sensors, in medical diagnostics, and in tissue engineering. Basic concepts of chemical ligation, including choice and design of conjugate linkers depending on type of biomolecule and desired application. Bioconjugates and their linkers. Presentation and discussion of design and synthesis of synthetic bioconjugates for some sample applications. Concurrently scheduled with course CM105. Letter grading. Mr. Deming (W)

M215. Biochemical Reaction Engineering. (4) (Same as Chemical Engineering CM215.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: Chemical Engineering 101C. Use of previously learned concepts of biochemical chemistry, thermodynamics, transport phenomena, and reaction kinetics to develop tools needed for technical design and economic analysis of biological reactors. Letter grading. Mr. Liao (Sp)

M217. Biomedical Imaging. (4) (Same as Electrical Engineering M217.) Lecture, three hours; laboratory, two hours; outside study, seven hours. Requisite: Electrical Engineering 114 or 211A. Mathematical principles of medical imaging modalities: X-ray, computed tomography, positron-emission tomography, single photon emission computed tomography, magnetic resonance imaging. Basic principles of each imaging system, image reconstruction algorithms, system configurations and their effects on reconstruction algorithms, specialized imaging techniques for specific applications such as flow imaging. Letter grading.

220. Introduction to Medical Informatics. (2) Lecture, two hours; outside study, four hours. Designed for graduate students. Introduction to research topics and issues in medical informatics for students new to field. Definition of this emerging field of study, current research efforts, and future directions in research. Key issues in medical informatics to introduce students to different application domains, such as information system architectures, data and process modeling, information extraction and representations, information retrieval and visualization, health services research, telemedicine. Emphasis on current research endeavors and applications. S/U grading. Mr. El-Saden (F)

221. Human Anatomy and Physiology for Medical Informatics. (4) Lecture, four hours; outside study, eight hours. Corequisite: course 222. Designed for graduate students. Introduction to basic human anatomy and physiology, with particular emphasis on visualization of anatomy and physiology from imaging perspective. Topics include chest, cardiac, neurology, gastrointestinal/genitourinary, and musculoskeletal systems. Examination of basic imaging physics (magnetic resonance, computed tomography, ultrasound, computed radiography) to provide context for imaging modalities predominantly used to view human anatomy. Geared toward nonphysicians who require more formal understanding of anatomy and physiology. Letter grading. Mr. Kangarloo (F)

222. Clinical Rotation Medical Informatics. (2) Lecture, two hours; laboratory, four hours. Corequisite: course 221. Designed for graduate students. Clinical rotation through medical imaging modalities and clinical environments. Exposure to challenges of medical practice today and clinical usage of imaging, including computed tomography, magnetic resonance, and other traditional forms of image acquisition. Designed to provide students with real-world exposure to practical applications of imaging and to reinforce learning of anatomy and physiology. Letter grading.

223A-223B-223C. Programming Laboratories for Medical Informatics I, II, III. (4-4-4) Lecture, two hours; laboratory, two hours. Designed for graduate students. Programming laboratories to support coursework in other medical informatics core curriculum courses. Exposure to programming concepts for medical applications, with focus on basic abstraction techniques used in image processing and medical information system infrastructures (HL7, DICOM). Letter grading. 223A. Integrated with course 222 to reinforce concepts presented with practical experience. Projects focus on understanding medical networking issues and implementation of basic protocols for healthcare environments. Letter of Dismissal: DISCOM. 223B. Requisite: course 223A. Integrated with courses 224A and 227 to reinforce concepts presented with practical experience. Projects focus on understanding medical networking issues and implementation of basic protocols for healthcare environments. Letter of Dismissal: DISCOM. 223C. Requisite: course 223B. Integrated with courses 224B and M225 to reinforce concepts presented with practical experience. Projects focus on medical image storage and retrieval. Letter grading.
224A. Physics and Informatics of Medical Imaging. (4) Lecture, four hours; laboratory, eight hours. Requisites: Mathematics 33A, 33B. Designed for graduate students. Introduction to principles of medical imaging and informatics for nonphysicists. Overview of core imaging modalities: computed radiography (CR), computed tomography (CT), magnetic resonance (MR), and ultrasound (US). Emphasis on physics of image formation and image reconstruction methods. Overview of DICOM data models, basic medical image processing, content-based image retrieval, PACS, and image data management. Current research efforts, with focus on clinical applications and new types of information available. Geared toward nonphysicists to provide basic understanding of issues related to basic medical image acquisition. Letter grading. Mr. Morioka (W)

224B. Advanced Imaging for Informatics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 224A. Additional modalities and current research in imaging. Topics include nuclear medicine, functional magnetic resonance imaging (fMRI), MR diffusion/perfusion, and optical imaging, with focus on image analysis and visualization tools. Basic physics principles behind these newer imaging concepts, with exposure to seminal works. Current research efforts, with focus on clinical applications and new types of information available. Geared toward nonphysicists to provide basic understanding of issues related to advanced medical image acquisition and to understand functionality of imaging databases and image models facilitating the exchange of image data for clinical and research purposes. Letter grading. Mr. Morioka (Sp)

M225. Bioseparations and Bioprocess Engineering. (4) (Same as Chemical Engineering CM225.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Chemical Engineering 101C and 103, or Chemistry 156. Separation strategies, unit operations, and economic factors used to design processes for isolating and purifying biomaterials. Various approaches to concentrate and purify biopharmaceuticals that are products of biological reactors. Letter grading. Mr. Monbouquette (W)

226. Medical Knowledge Representation. (4) Seminar, four hours; outside study, eight hours. Designed for graduate students. Issues related to medical knowledge representation and its application in healthcare processes. Topics include data structures used for representing knowledge (conceptual graphs, frame-based models), different data models for representing spatio-temporal information, rule-based implementations, current statistical methods for discovery of knowledge (C4.5, clustering, statistical classifiers, and hierarchical classification), and basic information retrieval. Review of work in constructing ontologies, with focus on problems in implementation and definition. Core courses: artificial intelligence, coding schemes, and standardized indices/terminologies (SNOMED, UMLS, MeSH, LOINC). Letter grading.

M. Taira (Sp)

227. Medical Information Infrastructures and Internet Technologies. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Introduction to networking, communications, and information infrastructures in medical environment. Exposure to basic concepts related to networking at several levels: low-level (TCP/IP services), medium-level (network topologies), and high-level (distributed computing). Web-based services implementing telecommunication: telemedicine, clinical registration protocols (HL7, DICOM) and current medical information systems (HIS, RIS, PACS). Advances in networking, such as wireless, Internet2/gigabit networks, peer-to-peer topologies. Introduction to security and encryption in networked environment. Letter grading. Mr. Bui (F)

228. Medical Decision Making. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Overview of issues related to medical decision making. Introduction to concept of evidence-based medicine and decision processes related to process of care and outcomes. Basic probability and statistics to understand research results and evaluations, and algorithmic methods for decision-making processes (Bayes theorem, decision trees). Study design, hypothesis testing, and estimation. Focus on technical advances in medical decision support systems and expert systems, with review of classic and current research. Introduction to common statistical and decision-making software packages to familiarize students with current tools. Letter grading. Mr. Kangarloo (W)

C231. Nanopore Sensing. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Bioengineering 100, 120, Life Sciences 2, 3, Physics 1A, 1B, 1C. Analysis of sensors based on measurements of fluctuating ionic conductance through artificial or protein nanopores. Physics of pore conductance. Applications to single molecule detection and DNA sequencing. Review of current literature and technological applications. History and instrumentation of resistive pulse sensing, theory and instrumentation of electrical measurements in electrochemistry. Lecture, three hours; discussion, one hour. Mr. Schmidt (F)

CM240. Introduction to Biomechanics. (4) (Same as Mechanical and Aerospace Engineering CM240.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: Mechanical and Aeronautical Engineering 101, 102, 156A. Introduction to functional mechanisms of human body; skeletal adaptations to optimize load transfer, movement, and function. Dynamics and kinematics. Fluid mechanics applications. Heat and mass transfer. Power generation. Laboratory simulations and tests. Concurrently scheduled with course CM131. Letter grading. Mr. Gupta (W)

CM245. Molecular Biotechnology for Engineers. (4) (Same as Chemical Engineering CM245.) Lecture, four hours; discussion, one hour; outside study, eight hours. Selected topics in molecular biology that form the foundation of biotechnology and biomedical industry today. Topics include recombinant DNA technology, molecular research tools, manipulation of gene expression, directed mutagenesis and protein engineering, DNA-based diagnostics and DNA microarrays, antibody and protein-based diagnostics, genomics and bioinformatics, isolation of human genes, gene therapy, and tissue engineering. Concurrently scheduled with course CM145. Letter grading. Mr. Liao (F)

M248. Introduction to Biological Imaging. (4) (Same as Biomedical Physics M248 and Pharmacology M248.) Lecture, three hours; laboratory, one hour; outside study, seven hours. Exploration of role medical imaging in modern biology and medicine, including imaging principles, instrumentation, image processing, and applications of imaging for range of modalities. Practical experience provided through series of imaging laboratories. Letter grading.

CM250A. Introduction to Micromachining and Microelectromechanical Systems (MEMS). (4) (Formerly numbered M250A.) (Same as Electrical Engineering CM250A and Mechanical and Aerospace Engineering CM280A.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Chemistry 20A, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Corequisite: course CM250B. Hands-on introduction to micromachining and microelectromechanical systems (MEMS) laboratory. Methods of micromachining and how these methods can be used to produce variety of MEMS, including microstructures, microsensors, and microactuators. Designing MEMS to be produced with both foundry and nonfoundry processes. Computer-aided design for MEMS. Design project required. Letter grading. Mr. Judy (F)

M259H. Biomechanics of Traumatic Injury. (4) (Same as Environmental Health Sciences M259H.) Lecture, four hours; outside study, eight hours. Requisites: Mathematics 32A, 32B, 33A, 33B, Life Sciences 3, Physics 1A, 1B, 1C. Introduction to physics of motor proteins and cytoskeleton: mass, stiffness and damping of proteins, thermal forces and diffusion, chemical forces, polymer mechanics, structures of cytoskeletal filaments, mechanics of cytoskeleton, polymerization of cytoskeletal filaments, force generation by cytoskeletal filaments, active polymerization, motor protein structure and operation. Emphasis on engineering perspective. Letter grading. Mr. Liu (W)
M296C. Advanced Topics and Research in Biomedical Systems Modeling and Computing. (4) (Same as Computer Science M296C and Medicine M270E.) Lecture, four hours; outside study, eight hours. Requisite: course M296A. Recommended: course M296B. Research techniques and experience on special topics involving models, modeling methods, and/or computing in biological and medical sciences. Review and critique of literature. Research problem searching and formulation. Approaches to solutions. Individual M.S.- and Ph.D.-level project training. Letter grading. Mr. DiStefano (Sp)

M296D. Introduction to Computational Cardiology. (4) (Same as Computer Science M296D.) Lecture, four hours; outside study, eight hours. Requisite: course CM186B. Introduction to mathematical modeling and computer simulation of cardiac electrophysiological process. Ionic models of action potential (AP). Theory of AP propagation in one-dimensional and two-dimensional cardiac tissue. Simulation on sequential and parallel supercomputers, choice of numerical algorithms, to optimize accuracy and to provide computational stability. Letter grading. Mr. Kogan (F-Sp)

298. Special Studies in Biomedical Engineering. (4) Lecture, four hours; outside study, eight hours. Study of selected topics in biomedical engineering taught by resident and visiting faculty members. Letter grading.

299. Seminar: Biomedical Engineering Topics. (2) Seminar, two hours; outside study, four hours. Designed for graduate biomedical engineering students. Seminar by leading academic and industrial biomedical engineers from UCLA, other universities, and biomedical engineering companies such as Baxter, Amgen, Medtronic, and Guidant on development and application of recent technological advances in discipline. Exploration of cutting-edge developments and challenges in wound healing models, stem cell biology, angiogenesis, signal transduction, gene therapy, cDNA microarray technology, bioartificial cultivation, nano- and micro-hybrid devices, scaffold engineering, and bioinformatics. S/U grading. Mr. Wu (F.W.Sp)

375. Teaching Apprentice Practicum. (4) Seminar, to be arranged. Preparation: apprentice personnel employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading.

495. Teaching Assistant Training Seminar. (2) Seminar, two hours; outside study, four hours. Limited to graduate biomedical engineering students. Required of all departmental teaching assistants. May be taken concurrently while holding TA appointment. Seminar on communicating bioengineering and biomedical engineering principles, concepts, and methods; teaching assistant preparation, organization, and presentation of material, including use of visual aids, grading, advising, and rapport with students. S/U grading. Mr. Kamei (F)

596. Directed Individual or Tutorial Studies. (2 to 8) Tutorial, to be arranged. Limited to graduate biomedical engineering students. Petition forms to request enrollment may be obtained from program office. Supervised investigation of advanced technical problems. S/U grading.

597A. Preparation for M.S. Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate biomedical engineering students. Reading and preparation for M.S. comprehensive examination. S/U grading.

597B. Preparation for Ph.D. Preliminary Examinations. (2 to 16) Tutorial, to be arranged. Limited to graduate biomedical engineering students. Preparation for oral qualifying examination, including preliminary research on dissertation. S/U grading.

597C. Preparation for Ph.D. Oral Qualifying Examination. (2 to 16) Tutorial, to be arranged. Limited to graduate biomedical engineering students. Preparation for oral qualifying examination, including preliminary research on dissertation. S/U grading.

598. Research for and Preparation of M.S. Thesis. (2 to 12) Tutorial, to be arranged. Limited to graduate biomedical engineering students. Supervised independent research for M.S. candidates, including thesis prospectus. S/U grading.

599. Research for and Preparation of Ph.D. Dissertation. (2 to 16) Tutorial, to be arranged. Limited to graduate biomedical engineering students. Usually taken after students have been advanced to candidacy. S/U grading.

Chemical and Biomolecular Engineering

UCLA
5531 Boelter Hall
Box 951592
Los Angeles, CA 90095-1592

(310) 825-2046
fax: (310) 206-4107
http://www.chemeng.ucla.edu

Professors

Jane P. Chang, Ph.D., Chair
Jane P. Chang, Ph.D., Vice Chair

Professors Emeriti

Jane P. Chang, Ph.D., Ken Nobe, Ph.D.

Associate Professor

Yi Tang, Ph.D.

Assistant Professors

Gerassimos Orkoulas, Ph.D.

Scope and Objectives

The Department of Chemical and Biomolecular Engineering conducts undergraduate and graduate programs of teaching and research that focus on the areas of cellular and biomolecular engineering, systems engineering, and semiconductor manufacturing and span the general themes of energy/environment and nanotechnology. Aside from the fundamentals of chemical engineering (applied mathematics, thermodynamics, transport phenomena, kinetics, reactor engineering and separations), particular emphasis is focused on metabolic engineering, protein engineering, systems biology, synthetic biology, bio-nano-technology, biomaterials, air pollution, water production and treatment, combustion, environmental multimedia modeling, pollution prevention, aerosol processes, combinatorial catalysis, molecular simulation, process modeling/
simulation/control/optimization/integration/synthesis, membrane science, semiconductor processing, chemical vapor deposition, plasma processing and simulation, electrochemistry and corrosion, polymer engineering, and hydrogen production.

Students are trained in the fundamental principles of these fields while acquiring sensitivity to society's needs—a crucial combination needed to address the challenge of continued industrial growth and innovation in an era of economic, environmental, and energy constraints.

The undergraduate curriculum leads to a B.S. in Chemical Engineering, is accredited by ABET and AIChE, and includes the standard core curriculum, as well as biomedical engineering, biomolecular engineering, environmental engineering, and semiconductor manufacturing engineering options. The department also offers graduate courses and research leading to M.S. and Ph.D. degrees. Both graduate and undergraduate programs closely relate teaching and research to important industrial problems.

Undergraduate Mission and Program Objectives

The mission of the undergraduate program is to educate future leaders in chemical and biomolecular engineering who effectively combine their broad knowledge of mathematics, physics, chemistry, and biology with their engineering analysis and design skills for the creative solution of problems in chemical and biological technology and for the synthesis of innovative (bio)chemical processes and products. This goal is achieved by producing chemical and biomolecular engineering alumni who (1) draw readily on a rigorous education in mathematics, physics, chemistry, and biology in addition to the fundamentals of chemical engineering to creatively solve problems in chemical and biological technology and for the synthesis of innovative (bio)chemical processes and products. (2) incorporate social, ethical, environmental, and economical considerations, including the concept of sustainable development, into chemical and biomolecular engineering practice, (3) lead or participate successfully on multidisciplinary teams assembled to tackle complex multifaceted problems that may require implementation of both experimental and computational approaches and a broad array of analytical tools, and (4) pursue graduate study and achieve an M.S. or Ph.D. degree in the sciences and engineering and/or achieve success as professionals in diverse fields, including business, medicine, and environmental protection, as well as chemical and biomolecular engineering, as evidenced by professional position, responsibilities, and salary, as well as salary increases and promotion.

Undergraduate Study

Chemical Engineering B.S.

The ABET-accredited chemical engineering curricula provide a high quality, professionally oriented education in modern chemical engineering. The biomedical engineering, biomolecular engineering, environmental engineering, and semiconductor manufacturing engineering options provide students an opportunity for exposure to a subfield of chemical and biomolecular engineering. In all cases, balance is sought between engineering science and practice.

Chemical Engineering Core Option

Preparation for the Major

Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Computer Science 31; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL.

The Major

Required: Chemical Engineering 100, 101A, 101B, 101C, 102A, 102B, 103, 104AL, 104B, 106, 107, 108A, 108B, 109; Chemistry and Biochemistry 113A, 153A; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and two elective courses (8 units) from Chemical Engineering 110, C111, C112, 113, C114, C115, C116, C118, C119, C125, C140.

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

Biomedical Engineering Option

Preparation for the Major

Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Computer Science 31; Life Sciences 2, 3; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL.

The Major

Required: Chemical Engineering 100, 101A, 101B, 101C, 102A, 102B, 103, 104AL, 104B, 106, 107, 108A, 108B, 109; Chemistry and Biochemistry 113A, 153A; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and one biomedical elective course (4 units) from Chemical Engineering C115,
C125, CM145 (another chemical engineering elective may be substituted for one of these with approval of the faculty adviser).

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

Biomolecular Engineering Option

Preparation for the Major
 Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Computer Science 31; Life Sciences 2, 3; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL, 4BL.

The Major
 Required: Chemical Engineering 100, 101A, 101B, 101C, 102A, 102B, 104AL, 104D, 104DL, 107, 108A, 108B, 109, C115, C125, Chemistry and Biochemistry 113A, 153A; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and one biomolecular elective course (4 units — Chemical Engineering CM145 is recommended; another chemical engineering elective may be substituted with approval of the faculty adviser).

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

Environmental Engineering Option

Preparation for the Major
 Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Computer Science 31; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL, 4BL.

The Major
 Required: Chemical Engineering 100, 101A, 101B, 101C, 102A, 102B, 103, 104AL, 104C, 104CL, 106, 107, 108A, 108B, 109, C116, Chemistry and Biochemistry 113A, 153A; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and one elective course (4 units) from Materials Science and Engineering 104, 120, 121, 122, or 150 plus one elective course (4 units) from Electrical Engineering 2, 100, 121B, 123A, or 123B.

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

Graduate Study

For information on graduate admission, see Graduate Programs, page 23. For additional information regarding the B.S., M.S., and Ph.D. in Chemical Engineering, refer to the Chemical and Biomolecular Engineering Department brochure.

The following introductory information is based on the 2008-09 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnet.ucla.edu/gasaalibrary/pgmintro.htm. Students are subject to the detailed degree requirements as published in Program Requirements for the year in which they matriculate.

The Department of Chemical and Biomolecular Engineering offers Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Chemical Engineering.

Chemical Engineering M.S.

Areas of Study
 Consult the department.

For the semiconductor manufacturing field, the program requires that students have advanced knowledge, assessed in a comprehensive examination, of processing semiconductor devices on the nanoscale.

Course Requirements

The requirements for an M.S. degree are a thesis, nine courses (36 units), and a 3.0 grade-point average in the graduate courses. Chemical Engineering 200, 210, and 220 are required for all M.S. degree candidates. Two courses must be taken from offerings in the Chemical and Biomolecular Engineering Department, while two Chemical Engineering 598 courses involving work on the thesis may also be selected. The remaining two courses may be taken from those offered by the department or any other field in life sciences, physical sciences, mathematics, or engineering. At least 24 units must be in letter-graded 200-level courses.

All M.S. students are required to enroll in the seminar, Chemical Engineering 299, during each term in residence. A program of study that encompasses these requirements must be submitted to the departmental Student Affairs Office for approval before the end of the student’s second term in residence.

Undergraduate Courses

No lower division courses may be applied toward graduate degrees. In addition, the following upper division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199; Civil and Environmental Engineering 106A, 108, 199; Computer Science M152A, 152B, 199; Electrical Engineering 100, 101, 102, 103, 110L, M116L, 199; Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 150, 160, 161L, 199; Mechanical and Aerospace Engineering 102, 103, 105A, 105D, 199.

Semiconductor Manufacturing

The requirements for the M.S. degree in the field of semiconductor manufacturing are 10 courses (44 units) and a minimum 3.0 grade-point average overall and in the graduate courses. Students are required to take Chemical Engineering 104C/104CL, C216, 270, 270R, Electrical Engineering 123A, Materials Science and Engineering 121. In addition, two departmental elective courses and two electrical engineering or materials science and engineering electives must be selected, with a minimum of two at the 200 level. A total of at least five graduate (200-level) courses is required. Approved elective courses include Chemical Engineering C214, C218, C219, 223, C240, Electrical Engineering 124, 221A,
Courses taken by students who are not enrolled in the semiconductor manufacturing field may not be applied toward the 10-course requirement for the degree. A program of study encompassing the course requirements and/or substitutions must be submitted to the graduate adviser for approval before the end of the first term in residence.

Field Experience. Students may take Chemical Engineering 270R in the field, working at an industrial semiconductor fabrication facility. This option must meet all course requirements and must be approved by the graduate adviser and the industrial sponsor of the research.

Comprehensive Examination Plan
The comprehensive examination plan is not available for fields other than semiconductor manufacturing.

For the semiconductor manufacturing field, when all coursework is completed, students should enroll in Chemical Engineering 597A to prepare for the comprehensive examination, which tests their knowledge of the engineering principles of semiconductor manufacturing. In case of failure, the examination may be repeated once with the consent of the graduate adviser.

Thesis Plan
Consult the graduate adviser. The thesis plan is not available for the semiconductor manufacturing field.

Chemical Engineering Ph.D.

Major Fields or Subdisciplines
Consult the department.

Course Requirements
All Ph.D. students must take six courses (24 units), including Chemical Engineering 200, 210, and 220. Two additional courses must be taken from those offered by the Chemical and Biomolecular Engineering Department. The third course can be selected from offerings in life sciences, physical sciences, mathematics, or engineering. All of these units must be in letter-graded 200-level courses. Students are encouraged to take more courses in their field of specialization. The minor field courses should be selected in consultation with the research adviser. A 3.33 grade-point average in graduate courses is required. A program of study to fulfill the course requirements must be submitted for approval to the departmental Student Affairs Office no later than one term after successful completion of the preliminary oral examination.

All Ph.D. students are required to enroll in the seminar, Chemical Engineering 299, during each term in residence.

For information on completing the Engineer degree, see Engineering Schoolwide Programs.

Preliminary and Qualifying Examinations
All Ph.D. students must take a preliminary oral examination that tests their understanding of chemical engineering fundamentals in the areas of thermodynamics, transport phenomena, and chemical kinetics and reactor design. The examination normally is taken during the second term in residence, and a 3.33 grade-point average in graduate coursework is required to be eligible to take the examination. Students are asked to solve the examination problems in writing and then present them orally to a faculty committee. Students whose first degree is not in chemical engineering may petition to postpone the examination to the following year. Any student failing the Ph.D. preliminary examination may petition to reenter the Ph.D. program after successfully completing the requirements for the M.S., including an M.S. thesis. If the petition is granted, the student may be approved to take the preliminary examination concurrently with the master's thesis defense.

After successfully completing the required courses and the preliminary oral examination, students must pass the written and oral qualifying examinations. These examinations focus on the dissertation research and are conducted by a doctoral committee consisting of at least four faculty members nominated by the Department of Chemical and Biomolecular Engineering, in accordance with University regulations.

The written qualifying examination consists of a dissertation research proposal that provides a clear description of the problem considered, a literature review of the current state of the art, and a detailed research plan that is to be followed to solve the problem. Students submit their dissertation research proposals to their doctoral committees. The written examination is due in the seventh week of the Winter Quarter of the second year in residence.

The University Oral Qualifying Examination consists of an oral defense of the dissertation research proposal and is administered by the doctoral committee. The oral examination is held no less than two weeks after submitting the written examination.

Note: Doctoral Committees. A doctoral committee consists of a minimum of four members. Three members, including the chair, are “inside” members and must hold appointments in the Chemical and Biomolecular Engineering Department at UCLA. The “outside” member must be a UCLA faculty member outside the Chemical and Biomolecular Engineering Department.

Facilities

Biomolecular Engineering Laboratories
The Biomolecular Engineering laboratories are equipped for cutting-edge genetic, biomolecular, and cellular engineering teaching and research. Facilities and equipment include (1) DNA microarray printing and scanning facility, (2) fluorescence microscopy, (3) real-time PCR thermocycler, (4) UV-visible and fluorescence spectrophotometers, (5) HPLC and LC-mass spectrometer, (6) aerobic and anaerobic bioreactors from bench top to 100-liter pilot scale, (7) protein purification facility, (8) potentiostat/galvanostat and impedance analyzer for electroenzymology, (9) membrane extruder and multangle laser light scattering for production and characterization of biological and semi-synthetic colloids such as micelles and vesicles, and (10) phosphomager for biochemical assays involving radiolabeled compounds.

Microbial cells are genetically and metabolically engineered to produce novel compounds that are used as drugs, specialty chemicals, and food additives. Novel gene-metabolic circuits are designed and constructed in microbial cells to perform complex and non-native cellular behavior. These designer cells are cultured in bioreactors, and intracellular states are monitored using DNA microarrays and RT-PCR. Such investigations are coupled with genomic and proteomic efforts, and mathematical modeling, to achieve system-wide understanding of the cell.

Protein engineering is being used to generate completely novel compounds that have important pharmaceutical value. Bacteria are being custom-designed to synthesize important therapeutic compounds that have anticancer, cholesterol-lowering, and/or antibiotic activities. Biosensors are being
micromachined for detecting neurotransmitters in vivo. New biosensing schemes also are being invented for the detection of endocrine disrupting chemicals in the environment and for the high-throughput screening of drug candidates. Naturally occurring protein nanocapsules are being redesigned at the genetic level for applications in drug delivery and materials synthesis. Finally, the enzymology of extremely thermophilic microbes is being explored for applications in specialty chemical synthesis.

Chemical Kinetics, Catalysis, Reaction Engineering, and Combustion Laboratory

The Chemical Kinetics, Catalysis, Reaction Engineering, and Combustion Laboratory is equipped with advanced research tools for experimental and computational studies in chemical kinetics, catalytic materials, and combustion, including quadrupole mass spectrometer (QMS) systems to sample reactive systems with electron impact and photoionization capabilities; several fully computerized gas chromatograph/mass spectrometer (GC/MS) systems for gas analysis; fully computerized array channel microreactors for catalyst discovery and optimization; several flat premixed and diffusion flame burners and flow reactors to study combustion and other fast reactions; a laser photoionization (LP) time-of-flight (TOF) mass spectrometer for the ultra-sensitive, real-time detection of trace pollutants in the gas phase; a gravimetric microbalance to study heterogeneous reactions; and several state-of-the-art supermicro workstations for numerical investigations in fluid mechanics, detailed chemical kinetic modeling, and computational quantum chemistry.

Electrochemical Engineering and Catalysis Laboratories

With instrumentation such as rotating ring-disk electrodes, electrochemical packed-bed flow reactors, gas chromatographs, potentiostats, and function generators, the Electrochemical Engineering and Catalysis Laboratories are used to study metal, alloy, and semiconductor corrosion processes, electro-deposition and electroless deposition of metals, alloys, and semiconductors for GMR and MEMS applications, electrochemical energy conversion (fuel cells) and storage (batteries), and biocatalysts for transforming biomass-derived organic compounds into useful chemicals, fuels, and pharmaceuticals. The catalysis facility is equipped to support various types of catalysis projects, including catalytic hydrocarbon oxidation, selective catalytic reduction of NOx, and Fischer-Tropsch synthesis.

Electronic Materials Processing Laboratory

The Electronic Materials Processing Laboratory focuses on the synthesis and patterning of multifunctional complex oxide films and nanostructures with tailored electronic, chemical, thermal, mechanical, and biological properties. Experimental and theoretical studies are combined to understand the process chemistry and surface kinetics in atomic layer deposition, plasma etching and deposition processes, and gas-phase surface functionalization processes. Novel devices including advanced microelectronics, optoelectronics, and chemical sensors are realized at nano-dimensions as the technologies become more advanced. The laboratory is equipped with a state-of-the-art advanced rapid thermal processing facility with in-situ vapor phase processing and atomic layer deposition capabilities; advanced plasma processing tools including thin film deposition and etching, and diagnostics including optical emissions spectroscopy, Langmuir probe, and quadrupole mass spectrometry; a surface analytical facility including X-ray photoelectron spectroscopy, Auger electron spectroscopy, ultra-violet photoelectron spectroscopy, reflection high energy electron diffraction, spectroscopic ellipsometry, photoluminescence, and infrared spectroscopy; and a complete set of processing tools available for microelectronics and MEMS fabrication in the Nanoelectronic Research Facility. With the combined material characterization and electronic device fabrication, the reaction kinetics including composition and morphology, and the electrical property of these materials can be realized for applications in the next generation electronic devices and chemical or biological MEMS.

Materials and Plasma Chemistry Laboratory

The Materials and Plasma Chemistry Laboratory is equipped with state-of-the-art instruments for studying the molecular processes that occur during chemical vapor deposition (CVD) and plasma processing. CVD is a key technology for synthesizing advanced electronic and optical devices, including solid-state lasers, infrared, visible, and ultraviolet detectors and emitters, solar cells, heterojunction bipolar transistors, and high-electron mobility transistors. The laboratory houses a commercial CVD reactor for the synthesis of III-V compound semiconductors. This tool is interfaced to an ultra-high vacuum system equipped with scanning tunneling microscopy, low-energy electron diffraction; infrared spectroscopy and X-ray photoelectron spectroscopy. This apparatus characterizes the atomic structure of compound semiconductor heterojunction interfaces and determines the kinetics of CVD reactions on these surfaces.

The atmospheric plasma laboratory is equipped with multiple plasma sources and state-of-the-art diagnostic tools. The plasmas generate, at low temperature, beams of atoms and radicals well-suited for surface treatment, cleaning, etching, deposition, and sterilization. Applications are in the biomedical, electronics, and aerospace fields. The laboratory is unique in that it characterizes the reactive species generated in atmospheric plasmas and their chemical interactions with surfaces.

Nanoparticle Technology and Air Quality Engineering Laboratory

Modern particle technology focuses on particles in the nanometer (nm) size range with applications to air pollution control and commercial production of fine particles. Particles with diameters between 1 and 100 nm are of interest both as individual particles and in the form of aggregate structures. The Nanoparticle Technology and Air Quality Engineering Laboratory is equipped with instrumentation for online measurement of aerosols, including optical particle counters, electrical aerosol analyzers, and condensation particle counters. A novel low-pressure impactor designed in the laboratory is used to disperse particles for morphological analysis in size ranges down to 50 nm (0.05 micron). Also available is a high-volumetric flow rate impactor suitable for collecting individual particles for chemical analysis. Several types of specially designed aerosol generators are also available, including a laser ablation chamber, tube furnaces, and a specially designed aerosol microreactor. Concern with nanoscale phenomena requires the use of advanced systems for particle observation and manipulation. Students have direct access to modern facili-
ties for transmission and scanning electron microscopy. Located near the laboratory, the Electron Microscopy facilities staff provide instruction and assistance in the use of these instruments. Advanced electron microscopy has recently been used in the laboratory to make the first systematic studies of atmospheric nanoparticle chain aggregates. Such aggregate structures have been linked to public health effects and to the absorption of solar radiation. A novel nansctructure manipulation device, designed and built in the laboratory, makes it possible to probe the behavior of nanoparticle chain aggregates of a type produced commercially for use in nanocomposite materials; these aggregates are also released by sources of pollution such as diesel engines and incinerators.

Polymer and Separations Research Laboratory

The Polymer and Separations Research Laboratory is equipped for research on membranes, water desalination, adsorption, chemical sensors, polymerization kinetics, surface engineering with polymers and the behavior of polymeric fluids in confined geometries. Instrumentation includes a high resolution multiprobe Atomic Force Microscope (AFM) and a quartz crystal microbalance system for membrane and sensor development work. An atmospheric plasma surface structuring system is available for nanotructuring ceramic and polymeric surfaces for a variety of applications that include membrane performance enhancement and chemical sensor arrays. Analytical equipment for polymer characterization includes several high-pressure liquid chromatographs for size exclusion chromatography equipped with different detectors, including refractive index, UV photodiode array, conductivity, and a photodiode array laser light scattering detector. The laboratory has a research-grade FTIR with a TGA interface, a thermogravimetric analysis system, and a dual column gas chromatograph. Equipment for viscometric analysis includes high- and low-pressure capillary viscometer, narrow gap cylindrical couette viscometer, cone-and-plate viscometer, intrinsic viscosity viscometer system and associated equipment. Flow equipment is also available for studying fluid flow through channels of different geometries (e.g., capillary, slit, porous media). The evaluation of polymeric and novel ceramic-polymer membranes, developed in the laboratory, is made possible with reverse osmosis, pervaporation, and cross-flow ultrafiltration systems equipped with online detectors. Studies of high recovery membrane desalination are carried out in a membrane concentrator/crystallizer system. Resin sorption and regeneration studies can be carried out with a fully automated system.

Process Systems Engineering Laboratory

The Process Systems Engineering Laboratory is equipped with state-of-the-art computer hardware and software used for the simulation, design, optimization, control, and integration of chemical processes. Several personal computers and workstations, as well as an 8-node dual-processor cluster, are available for teaching and research. SEASnet and campuswide computational facilities are also available to the laboratory's members. Software for simulation and optimization of general systems includes MINOS, GAMS, MATLAB, CPLEX, and LINDO. Software for simulation of chemical engineering systems includes HYSYS for process simulation and CACHE-FUJITSU for molecular calculations. UCLA-developed software for heat/power integration and reactor network attainable region construction are also available.

Faculty Areas of Thesis Guidance

Professors

Professors Emeriti

Associate Professor

Yi Tang, Ph.D. (Cal Tech, 2002) Biosynthesis of proteins/polypeptides with unnatural amino acids, synthesis of novel antibiotics/antitumor products

Assistant Professors

Lower Division Courses

2. Technology and Environment. (4) Lecture, four hours; outside study, eight hours. Natural and anthropogenic flows of materials at global and regional scales. Case studies of natural cycles include global warming (CO2 cycles), stratospheric ozone depletion (chlorine and ozone cycles), and global nitrogen cycles. Flow of materials in industrial economies compared and contrasted with natural flows; presentation of lifecycle methods for evaluating environmental impact of processes and products. P/NP or letter grading.

10. Introduction to Chemical and Biomolecular Engineering. (1) Lecture, one hour. General introduction to field of chemical and biomolecular engineering. Description of how chemical and biomolecular engineering analysis and design skills are applied for creative solution of current technological problems in production of microelectronic devices, design of chemical plants for minimum environmental impact, application of nanotechnology to chemical sensing, and genetic-level design of recombinant microbes for chemical synthesis. Letter grading.

19. Fiat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.
Upper Division Courses

100. Fundamentals of Chemical and Biomolecular Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Chemistry 20B, 20L, Mathematics 32B (may be taken concurrently), Physics 1A. Introduction to analysis and design of industrial chemical processes. Material and energy balances. Introduction to programming in MATLAB. Letter grading. Mr. Monbouquette (F)

Mr. Cohen, Mr. Hicks (F)

Ms. Chang, Mr. Hicks (W)

101C. Mass Transfer. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 100, 101B, 102B. Introduction to analysis of mass transfer in systems of interest to chemical engineering practice. Fundamentals of mass species transport. Fick law of diffusion, diffusion in chemically reacting flows, interphase mass transfer, multicomponent systems. Letter grading.

Mr. Cohen, Mr. Hicks (Sp)

102A. Thermodynamics I. (4) (Formerly numbered M105A.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Mathematics 33A, 33B. Thermodynamics of chemical and biological processes. Work, energy, heat, and first law of thermodynamics. Second law, extremum principles, entropy, and free energy, ideal and real gases, property evaluation. Thermodynamics of flow systems. Applications of first and second laws in biological processes and living organisms. Letter grading.

Mr. Lu, Mr. Orkoulas (W)

Mr. Lu, Mr. Orkoulas (Sp)

103. Separation Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 100, 101B. Application of principles of heat, mass, and momentum transport to design and operation of separation processes such as distillation, gas absorption, filtration, and reverse osmosis. Letter grading. Ms. Chang, Mr. Senkan (Sp)

104A. Chemical Engineering Laboratory I. (6) Lecture, two hours; laboratory, eight hours; outside study, seven hours. Requisites: courses 100, 101B, 102B. Measurements of temperature, pressure, flow rate, viscosity, and fluid composition in chemical processes. Methods of data acquisition, equipment selection and fabrication, and laboratory safety. Development of written and oral communication skills. Letter grading. Mr. Hicks (W/Sp)

104AL Chemical and Biomolecular Engineering Laboratory I. (3) Lecture, six hours; discussion, one hour; outside study, seven hours. Requisites: courses 100, 101B, 102B. Open not open for credit to students with credit for course 104A. Measurements of temperature, pressure, flow rate, viscosity, and fluid composition in chemical process units. Methods of data acquisition, equipment selection and fabrication, and laboratory safety. Development of written and oral communication skills. Letter grading.

Mr. Monbouquette (W/Sp)

104B. Chemical and Biomolecular Engineering Laboratory II. (6) Lecture, two hours; laboratory, eight hours; outside study, four hours; other, four hours. Requisites: courses 101C, 103, 104A. Course consists of four experiments in chemical engineering process units, each of two weeks duration. Students present their results both written and orally. Written report includes sections on theory, experimental procedure, scaleup and process design, and error analysis. Letter grading.

Mr. Senkan (F)

104C. Semiconductor Processing. (3) Lecture, four hours; discussion, six hours; laboratory, six hours; other, six hours. Requisite: course 101. Corequisite: course 104CL. Basic engineering principles of semiconductor unit operations, including fabrication and characterization of semiconductor devices. Investigation of processing steps used to make CMOS devices, including wafer cleaning, oxidation, diffusion, lithography, chemical vapor deposition, plasma etching, metallization, and statistical design of experiments and error analysis. Presentation of student results in both written and oral form. Letter grading.

Ms. Chang, Mr. Hicks (Sp)

104CL. Semiconductor Processing Laboratory. (3) Laboratory, four hours. Requisite: course 101C. Corequisite: course 104C. Series of experiments that emphasize basic engineering principles of semiconductor unit operations, including fabrication and characterization of semiconductor devices. Investigation of processing steps used to make CMOS devices, including wafer cleaning, oxidation, diffusion, lithography, chemical vapor deposition, plasma etching, and metallization. Hands-on device testing includes transistors, diodes, and capacitors. Letter grading.

Mr. Cohen, Mr. Hicks (Sp)

106. Chemical Reaction Engineering. (4) Lecture, four hours; discussion, four hours; outside study, six hours. Requisites: courses 100, 101C, 102B. Fundamentals of chemical kinetics and catalysis. Introduction to analysis and design of homogeneous and heterogeneous chemical reactors. Letter grading. Ms. Senkan (F)

107. Process Dynamics and Control. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 101C, 103 or 125, 106 or 115. Principles of dynamics modeling and start-up behavior of chemical engineering processes. Chemical process control elements. Design and applications of chemical process computer control. Letter grading.

Mr. Christofides, Mr. Manousiouthakis (W)

108A. Process Economics and Analysis. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 103, 109, or 104A, 106 or 115. Integration of chemical engineering fundamentals such as transport phenomena, thermodynamics, separation operations, and reaction engineering into simple economic models for purpose of designing chemical processes and evaluating alternatives. Letter grading. Mr. Manousiouthakis (W)

108B. Chemical Process Computer-Aided Design and Analysis. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: Computer Science 31. Recommended: courses 103 or 125, 106 or 115, 108A. Introduction to application of some mathematical and computing methods to chemical engineering design problems; use of simulation programs as automated method of performing steady state material and energy balance calculations. Letter grading.

Mr. Manousiouthakis (Sp)

109. Numerical and Mathematical Methods in Chemical and Biological Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Preparation: basic knowledge of MATLAB programming. Numerical methods for computation of solution of systems of linear or nonlinear algebraic equations, ordinary differential equations, and eigenvalue problems. Chemical engineering problems used throughout to illustrate application of these methods. Use of MATLAB as platform (programming environment) to write programs based on numerical methods to problems in chemical engineering. Letter grading.

Ms. Chang, Mr. Hicks (W)

110. Intermediate Engineering Thermodynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 102B. Principles and engineering applications of statistical and phenomenological thermodynamics. Determination of partition function in terms of simple molecular models and spectroscopic data; ideal gases; phase equilibrium; nonequilibrium thermodynamics and coupled transport processes. Letter grading. Mr. Nobe (Sp)

C111. Cryogenics and Low-Temperature Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 102A, 102B (or Materials Science 130). Fundamentals of cryogenics and cryoengineering science pertaining to industrial low-temperature processes. Basic approaches to analysis of cryofluids and envelopes needed for operation of cryogenic systems; low-temperature behavior of matter, optimization of cryosystems and other special conditions. Concurrently scheduled with course C211. Letter grading.

Mr. Manousiouthakis (F)

C112. Polymer Processes. (4) Lecture, four hours; outside study, eight hours. Requisite: course 101A, Chemistry 20A. Formation of polymers, criteria for selecting reaction scheme, polymerization techniques, polymer characterization. Mechanical properties. Rheology of macromolecules, polymer process engineering. Diffusion in polymer systems. Use of polymers in biomedical applications and in microelectronics. Concurrently scheduled with course C212. Letter grading. Mr. Cohen, Mr. Lu (Sp)

113. Air Pollution Engineering. (4) Lecture, four hours; discussion, three hours; outside study, five hours. Requisites: courses 101C, 102B. Integrated approach to air pollution, including concentrations of atmospheric pollutants, air pollution standards, air pollution sources and control technology, and relationship of air quality to emission sources. Links air pollution to multimedia environmental assessment. Letter grading.
C114. Electrochemical Processes and Corrosion. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 102A, 102B (or Materials Science 130). Fundamentals of electrochemistry and engineering applications to industrial electrochemical processes and metallic corrosion. Primary emphasis on fundamental approach to analysis of electrochemical engineering processes. Specific topics include corrosion of metals and semiconductors, electrochemical metal and semiconductors, surface finishing, passivity, electrophoresis, electrodeposition, batteries and fuel cells, electro-synthesis and bioelectrochemical processes. May be concurrently scheduled with course C214. Letter grading.

Mr. Nobe (F)

C115. Biochemical Reaction Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 101C. Use of previously learned concepts of biophysical chemistry, thermodynamics, transport phenomena, and reaction kinetics to develop tools needed for technical design and economic analysis of biological reactors. May be concurrently scheduled with course CM215. Letter grading.

Mr. Liao, Ms. Segura (F)

C116. Surface and Interface Engineering. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Requisite: Chemistry 113A. Introduction to surfaces and interfaces of engineering materials, particularly catalytic surfaces and thin films for solid-state electronic devices. Topics include classification of crystals and surfaces, analysis of structure and composition of crystals and their surfaces and interfaces. Fundamental in clean technologies, including catalytic surfaces, interfaces in microelectronics, and solid-state laser. May be concurrently scheduled with course C216. Letter grading.

Ms. Chang, Mr. Hicks (Sp)

Mr. Cohen (W)

Mr. Manousiouthakis (Sp)

C121. Membrane Science and Technology. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 101A, 101C, 103. Fundamentals of membrane science and technology, with emphasis on separations at micro, nano, and molecular/angstrom scale with membranes. Relationship between structure/ morphology of dense and porous membranes and their separation characteristics. Use of nanotechnology for design of selective membranes and models of membrane transport (flux and selectivity). Examples provided from various fields/applications, including biotechnology, microelectronics, chemical processes, sensors, and biomedical devices. Concurrently scheduled with course C221. Letter grading.

Mr. Cohen (W)

C124. Cell Material Interactions. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course CM145, Life Sciences 2.3. Introduction to design and synthesis of biomaterials for regenerative medicine, in vitro cell culture, and drug delivery. Biological principles of cellular microenvironment and design of extracellular matrix analogues using biomaterials engineering principles. Biomaterials for growth factor, and DNA and siRNA delivery as therapeutics and to facilitate tissue regeneration. Use of stem cells in tissue engineering. Concurrently scheduled with course C224. Letter grading.

Ms. Segura (W)

C125. Bioseparations and Bioprocess Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 101C and 103, or Chemistry 156. Separation strategies, unit operations, and economic factors used to design processes for isolating and purifying materials like whole cells, enzymes, food additives, or pharmaceuticals that are products of biological reactors. Concurrently scheduled with course CM225. Letter grading.

Mr. Monbouquette (Sp)

C135. Advanced Process Control. (4) Lecture, four hours; discussion, one hour; molecular study, seven hours. Enforced requisite: course 107. Introduction to advanced process control. Topics include (1) Lyapunov stability for autonomous nonlinear systems including linearization about to state stability, interconnected systems, and small gain theorems, (3) design of nonlinear and robust controllers for various classes of nonlinear systems, (4) model predictive control of systems, (5) advanced methods for tuning of classical controllers, and (6) introduction to control of distributed parameter systems. Concurrently scheduled with course C225. Letter grading.

Mr. Christofides (Sp)

F (or W)

CM145. Molecular Biotechnology for Engineers. (4) (Same as Biomedical Engineering CM145.) Lecture, four hours; discussion, one hour; outside study, eight hours. Selected topics in molecular biology that form foundation of biotechnology and biomedical industry today. Topics include recombinant DNA technology, molecular research tools, manipulation of gene expression, directed mutationesis and protein engineering, DNA-based diagnostics and RNA microarrays, antibody and protein-based diagnostics, genomics and bioinformatics, isolation of human genes, gene therapy, and tissue engineering. Concurrently scheduled with course CM245. Letter grading.

Mr. Liao, Mr. Tang (F)

188. Special Courses in Chemical Engineering. (4) Seminar, four hours; outside study, eight hours. Special topics in chemical engineering for undergraduate students that are taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated once for credit with topic or instructor change. Letter grading.

194. Research Group Seminars: Chemical Engineering. (4) Seminar, four hours; outside study, eight hours. Designed for undergraduate students who are part of research group. Discussion of research methods and current literature in field. May be repeated for credit. Letter grading.

199. Directed Research in Chemical Engineering. (2 to 8) Tutorial, to be arranged. Limited to juniors/seniors. Supervised or independent investigation of selected topics under guidance of faculty mentor. Culminating paper or project required. May be repeated for credit with school approval. Individual contract required. Enrollment petitions available in Office of Academic and Student Affairs. Letter grading.

(F,W,Sp)

Graduate Courses

200. Advanced Engineering Thermodynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 102B. Phenomenological and statistical thermodynamics of chemical and physical systems with engineering applications. Presentation of role of atomic and molecular spectra and intermolecular forces in interpretation of thermodynamic properties of gases, liquids, solids, and plasmas. Letter grading.

Mr. Nobe (F)

201. Methods of Molecular Simulation. (4) Lecture, four hours; outside study, eight hours. Requisite: course 200 or Chemistry 223A or Physics 215A. Modern simulation techniques for classical molecular systems. Monte Carlo and molecular dynamics in various ensembles. Applications to liquids, solids, and polymers. Letter grading.

Mr. Senkan (F)

C211. Cryogenics and Low-Temperature Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 102A, 102B (or Materials Science 130). Fundamentals of cryogenics and cryoengineering science pertaining to industrial low-temperature processes. Basic approaches to analysis of cryofluids and envelopes needed for operation of cryogenic systems; low-temperature behavior of matter, optimization of cryosystems and other special conditions. Concurrently scheduled with course C111. Letter grading.

Mr. Cohen, Mr. Lu (Sp)

C212. Polymer Processes. (4) Lecture, four hours; outside study, eight hours. Requisites: course 101A, Chemistry 30A. Formation of polymers, criteria for selecting reaction scheme, polymerization techniques, polymer characterization. Mechanical properties. Rheology of macromolecules, polymer process engineering, Diffusion in polymeric systems. Polymers in biological, medical, and in microelectronics. Concurrently scheduled with course C112. Letter grading.

Mr. Cohen, Mr. Lu (Sp)

C214. Electrochemical Processes and Corrosion. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 102A, 102B (or Materials Science 130). Fundamentals of electrochemistry and engineering applications to industrial electrochemical processes and metallic corrosion. Primary emphasis on fundamental approach to analysis of electrochemical and corrosion processes. Specific topics include corrosion of metals and semiconductors, electrochemical metal and semiconductors, surface finishing, passivity, electroporation, electroreversal deposition, batteries and fuel cells, electrolysis and bioelectrochemical processes. May be concurrently scheduled with course C114. Letter grading.

Mr. Nobe (F)

CM215. Biochemical Reaction Engineering. (4) (Same as Biomedical Engineering M215.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 101C. Use of previously learned concepts of biochemical chemistry, thermodynamics, transport phenomena, and reaction kinetics to develop tools needed for technical design and economic analysis of biological reactors. Concurrently scheduled with course C115. Letter grading.

Mr. Liao, Ms. Segura (F)
C216. Surface and Interface Engineering. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Requisite: Chemistry 113A. Introduction to surfaces and interfaces of engineering materials, particularly catalytic surface and thin films for solid-state electronic devices. Topics include classification of crystals and surfaces, analysis of structure and composition of crystals and their surfaces and interfaces. Examination of engineering applications, including catalytic surfaces, interfaces in microelectronics, and solid-state lasers. Must be concurrently scheduled with course C116. Letter grading. Ms. Chang, Mr. Hicks (Sp)

C217. Electrochemical Engineering. (4) Lecture, four hours; outside study, eight hours. Requisite: course C114, Transport phenomena in electrochemical systems; relationships between molecular transport, convection, and electrode kinetics, along with applications to industrial electrochemistry, fuel cell design, and modern battery technology. Letter grading. Mr. Nobe (F)

C220. Advanced Mass Transfer. (4) Lecture, four hours; outside study, eight hours. Requisite: course 101C. Advanced treatment of mass transfer, with applications to industrial separation processes, gas cleaning, pulmonary bioengineering, controlled release systems, and reactor design; molecular and constitutive theories of diffusion, interfacial transport, membrane transport, convective mass transfer, concentration boundary layers, turbulent transport, and mass transfer. Letter grading. Mr. Cohen (F)

C221. Membrane Science and Technology. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 101A, 101C, 103. Fundamentals of membrane science and technology, with emphasis on separations at micro, nano, and molecular/angstrom scale with membranes. Relationship between structure/morphology of dense and porous membranes and their separation characteristics. Use of nanotechnology for design of selective membranes and models of membrane transport (flux and selectivity). Examples provided from various fields/applications, including biotechnology, microelectronics, chemical processes, sensors, and bio-medical devices. Concurrently scheduled with course C212. Letter grading. Mr. Cohen (W)

C222B. Stochastic Optimization and Control. (4) Lecture, four hours; outside study, eight hours. Requisites: course C222A. Introduction to nonlinear systems theory and estimation theory. Prediction, Kalman filter, smoothing of discrete and continuous systems. Stochastic control, systems with multiplicative noise. Applications to control of chemical processes. Stochastic optimization, stochastic linear and dynamic programming. S/U or letter grading. Mr. Manousiouthakis (W)

C223. Design for Environment. (4) Lecture, four hours; outside study, eight hours. Requisites: course C223A. Introduction to design and modeling of green sustainable systems: building codes, environmental impact assessment. Use of parametric modeling, computer-aided design tools, materials selection methods. Letter grading. Mr. Cohen (W)

C224. Cell Material Interactions. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course CM145, Life Sciences 2, 3. Introduction to design and synthesis of biomaterials for regenerative medicine, in vitro cell culture, and drug delivery. Biological principles of cellular microenvironment and design of extracellular matrix analogs using biological and engineering principles. Biomaterials for growth factor, and DNA and siRNA delivery as therapeutics and to facilitate regeneration. Use of stem cells in tissue engineering. Concurrently scheduled with course C124. Letter grading. Ms. Segura (W)

CM225. Bioseparations and Bioprocesse Engineering. (4) [Same as Biological Engineering M225.] Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 101C, 103, 105. Separation strategies, unit operations, and economic factors used to design processes for isolating and purifying materials like whole cells, enzymes, food additives, or pharmaceuticals. Design of bioreactors. Letter grading. Concurrently scheduled with course C125. Letter grading. Mr. Mombouquette (Sp)

C231. Molecular Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 106 or 110. Analysis and design of molecular-beam systems. Molecular-beam sampling of reactive mixtures in combustion chambers or gas jets. Molecular-beam studies of gas-surface interactions, including energy accommodation and heterogeneous reactions. Applications to air pollution control and to catalysis. Letter grading.

C232. Combustion Processes. (4) Lecture, four hours; outside study, eight hours. Requisite: course 106, 200, or Mechanical and Aerospace Engineering C132A. Fundamentals: change equations for multi-component reactive mixtures, rate laws, Applications: combustion, including burning of (1) premixed gases or (2) condensed fuels. Detonation. Sound absorption and dispersion. Letter grading. Mr. Senkan (Sp)

C234. Plasma Chemistry and Engineering. (4) Lecture, four hours; outside study, eight hours. Designed for graduate chemistry or engineering students. Application of chemistry, physics, and engineering principles to design and operation of plasma and ion-beam systems such as plasma processing, sputtering, oxidation, and cleaning of materials. Examination of atomic, molecular, and ionic phenomena in plasma and ion-beam processing of semiconductors, etc. Letter grading. Mr. Chang, Mr. Hicks (Sp)

C235. Advanced Process Control. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: course 107. Introduction to advanced process control. Topics include (1) Lyapunov stability for autonomous nonlinear systems including converse theorems, (2) input to state stability, interconnected systems, and small gain theorems, (3) design of nonlinear and robust control for various classes of nonlinear systems, (4) model predictive control of linear and nonlinear systems, (5) advanced methods for tuning of classical controllers, and (6) introduction to control of distributed parameter systems. Concurrently scheduled with course C135. Letter grading. Mr. Christofides (Sp)

C236. Chemical Vapor Deposition. (4) Lecture, four hours; outside study, eight hours. Requisite: course 101C. Chemical vapor deposition is widely used to deposit thin films that comprise microelectronic devices. Topics include reactor design, transport phenomena, gas and surface chemical kinetics, structure and composition of deposited films, and relationship between process conditions and film properties. Letter grading. Mr. Hicks (W)

C240. Fundamentals of Aerosol Technology. (4) Lecture, four hours; outside study, eight hours. Requisite: course 101C. Technology of particle/gas systems with applications to gas cleaning, commercial production of fine particles, and catalysis. Particle transport, deposition, and collection, in vitro cell culture, and use of high-throughput experimentation methods, dynamics and control of particle formation processes. Concurrently scheduled with course C140. Letter grading. Mr. Liao (Sp)

C245. Molecular Biotechnology for Engineers. (4) [Same as Biological Engineering CM245.] Lecture, four hours; discussion, one hour; outside study, eight hours. Selected topics in molecular biology that form foundation of biotechnology and biomedical industry today. Topics include recombinant DNA technology, molecular research tools, manipulation of gene expression, directed mutagenesis and protein engineering. DNA-based diagnostics and DNA microarrays, antibody and protein-based diagnostics, genomics and bioinformatics, isolation of human genes, gene therapy, and tissue engineering. Concurrently scheduled with course CM145. Letter grading. Ms. Segura (W)

C250. Computer-Aided Chemical Process Design. (4) Lecture, four hours; outside study, eight hours. Requisite: course 108B. Application of optimization methods in chemical process design; computer aids in process engineering; process modeling, systematic flowsheet invention; process synthesis; optimal design and operation of large-scale chemical processing systems. Letter grading. Mr. Manousiouthakis (F)

270. Principles of Reaction and Transport Pheno-
nomena. (4) Lecture, four hours; laboratory, eight
hours. Fundamentals in transport phenomena, chem-
ical reaction kinetics, and thermodynamics at mole-
cular level. Topics include Boltzmann equation, micro-
scopic chemical kinetics, transition state theory, and
statistical analysis. Examination of engineering appli-
cations related to state-of-art research areas in
chemical engineering. Letter grading. Ms. Chang (W)

270R. Advanced Research in Semiconductor Manufac-
turing. (4) Laboratory, nine hours; outside study, nine hours. Limited to graduate chemical engi-
eering students in M.S. semiconductor manufactur-
ning option. Supervised research in processing semi-
conductor materials and devices. Letter grading.

M280A. Linear Dynamic Systems. (4) Same as Electrical Engineering M240A and Mechanical and
Aerospace Engineering M270A.) Lecture; four hours;
outside study, eight hours. Requisite: Electrical Engi-
neering 141 or Mechanical and Aerospace Engineer-
ing 171A. State-space description of linear time-in-
variant (LTI) and time-varying (LTV) systems in con-
tinuous and discrete time. Linear algebra concepts
such as eigenvalues and eigenvectors, singular val-
ues, Cayley/Hamilton theorem, Jordan form; solution
of state equations; stability, controllability, observabil-
ity, realizability, and minimality. Stabilization design
via state feedback and observers; separation principle.
Connections with transfer function techniques. Letter
grading.

M280C. Optimal Control. (4) (Same as Electrical
Engineering M240C and Mechanical and Aerospace
Engineering M270C.) Lecture, four hours; outside study,
outside study, eight hours. Requisite: Electrical Engineering
240B or Mechanical and Aerospace Engineering
270B. Applications of variational methods, Pontryagin
maximum principle, Hamilton/Jacobibellman equa-
tion (dynamic programming) to optimal control of
dynamic systems modeled by nonlinear ordinary differ-
eential equations. Letter grading.

M282A. Nonlinear Dynamic Systems. (4) (Same as
Electrical Engineering M242A and Mechanical and
Aerospace Engineering M272A.) Lecture, four
hours; outside study, eight hours. Requisite: course
M280A or Electrical Engineering M240A or Mechani-
cal and Aerospace Engineering M270A. State-space
techniques for studying solutions of time-invariant
and time-varying nonlinear dynamic systems with
emphasis on stability Lyapunov theory (including
converse theorems), invariance, center manifold the-
orem, input-to-state stability and small-gain theorem.
Letter grading.

283C. Analysis and Control of Infinite Dimension-
al Systems. (4) Lecture, four hours; outside study, eight
hours. Requisites: courses M280A, M282A. De-
signed for graduate students. Introduction to ad-
vanced dynamical analysis and controller synthesis
methods for nonlinear infinite dimensional systems.
Topics include (1) linear operator and stability theory
(basic results on Banach and Hilbert spaces, semi-
group theory, convergence theory in function spac-
es), (2) nonlinear model reduction (linear and nonlinear
Galerkin method, proper orthogonal decomposi-
tion), (3) nonlinear and robust control of nonlinear
hyperbolic and parabolic partial differential equations
(PDEs). (4) applications to transport-reaction pro-
ces. Letter grading. Mr. Christofides

284A. Optimization in Vector Spaces. (4) Lecture,
four hours; outside study, eight hours. Requisites:
Electrical Engineering 236A, 236B. Review of func-
tional analysis concepts. Convexity, convergence,
continuity. Minimum distance problems for Hilbert and
Banach spaces. Lagrange multiplier theorem in Ban-
Mr. Manousoshakis

290. Special Topics. (2 to 4) Seminar, four hours.
Requisites for each offering announced in advance
by department. Advanced and current study of one
or more advanced topics of chemical engineering, such
as chemical process dynamics and control, fuel cells
and batteries, membrane transport, advanced chemi-
cal engineering analysis, polymers, optimization in
chemical process design. May be repeated for credit
with topic change. Letter grading.

M297. Seminar: Systems, Dynamics, and Control
Topics. (2) (Same as Electrical Engineering M248S
and Mechanical and Aerospace Engineering
M296A.) Seminar, two hours; outside study, six
hours. Limited to graduate engineering students. Pre-
sentations of research topics by leading academic re-
searchers from fields of systems, dynamics, and con-
trol. Students who work in these fields present their
papers and results. S/U grading.

298A-298Z. Research Seminars. (2 to 4 each)
Seminar, to be arranged. Requisites for each offering
announced in advance by department. Lectures, dis-
cussions, student presentations, and projects in areas
of current interest. May be repeated for credit. S/U
grading.

299. Departmental Seminar. (2) Seminar, two
hours. Limited to graduate chemical engineering
students. Seminars by leading academic and industrial chemi-
cal engineers on development or application of recent
technological advances in discipline. May be repeat-
ed for credit. S/U grading.

375. Teaching Apprentice Practicum. (1 to 4)
Seminar, to be arranged. Preparation: apprentice
personnel employment as teaching assistant, associ-
ate, or fellow. Teaching apprenticeship under active
guidance and supervision of recent graduate faculty
responsible for curriculum and instruction at UCLA.
May be repeated for credit. S/U grading.

495B. Teaching with Technology for Teaching As-
sistants. (4) Tutorial, two hours; outside study, four
hours; one-month intensive training at beginning of Fall
Quarter. Limited to graduate chemical engineering
students. Required of all new teaching assistants. Special sem-
inar on communicating chemical engineering prin-
iples, concepts, and methods; teaching assistant
preparation, organization, and presentation of materi-
al, including use of grading, advising, and rapport
with students. S/U grading.

495B. Teaching with Technology for Teaching As-
sistants. (2) Seminar, two hours; outside study, four
hours; one-month intensive training at beginning of Fall
Quarter. Limited to graduate chemical engineering
students. Required of all new teaching assistants. Special sem-
inar on communicating chemical engineering prin-
iples, concepts, and methods; teaching assistant
preparation, organization, and presentation of materi-
al, including use of grading, advising, and rapport
with students. S/U grading.

506. Directed Individual or Tutorial Studies. (2 to
8) Tutorial, to be arranged. Limited to graduate chem-
ical engineering students. Petition forms to request
approval must be obtained from assistant dean,
Graduate Studies. Supervised investigation of ad-
vanced technical problems. S/U grading.

507A. Preparation for M.S. Comprehensive Exam-
ination. (2 to 12) Tutorial, to be arranged. Limited to
graduate chemical engineering students in M.S. semi-
iconductor manufacturing option. Reading and prepa-
ration for M.S. comprehensive examination. S/U
grading.

507B. Preparation for Ph.D. Preliminary Examin-
ations. (2 to 16) Seminar, to be arranged. Limited to
graduate chemical engineering students. S/U grad-
ing.

507C. Preparation for Ph.D. Oral Qualifying Exam-
ination. (2 to 16) Tutorial, to be arranged. Limited to
graduate chemical engineering students. Preparation
for oral qualifying examination, including preliminary

598. Research and Preparation of M.S. Thesis.
(2 to 12) Tutorial, to be arranged. Limited to graduate
chemical engineering students. Supervised indepen-
dent research for M.S. candidates, including thesis
prospectus. S/U grading.

599. Research for and Preparation of Ph.D. Dis-
sertation. (2 to 16) Tutorial, to be arranged. Limited to
graduate chemical engineering students. Usually
taken after students have been advanced to candida-
cy. S/U grading.

Scope and Objectives
The civil and environmental engineering programs at
UCLA include structural engineering, structural mechanics,
geotechnical engineering, earthquake

Civil and Environmental Engineering
UCLA
5731 Boelter Hall
Box 951593
Los Angeles, CA 90095-1593
(310) 825-1346
fax: (310) 206-2222
e-mail: ceedept@cee.ucla.edu
http://cee.ucla.edu

Jiun-Shyan (J-S) Chen, Ph.D., Chair
Jonathan P. Stewart, Ph.D., Vice Chair
Keith D. Stolzenbach, Ph.D., Vice Chair

Professors
Jiun-Shyan (J-S) Chen, Ph.D.
Jiann-Wen Ju, Ph.D.
Michael K. Stenstrom, Ph.D.
Jonathan P. Stewart, Ph.D.
Keith D. Stolzenbach, Ph.D.
Michael A. vacation, Ph.D.
John W. Wallace, Ph.D.
William W.-Y. Yeh, Ph.D.

Professors Emeriti
Stanley B. Dong, Ph.D.
Lewis P. Felton, Ph.D.
Michael E. Fournier, Ph.D.
Gary C. Hart, Ph.D.
Poul V. Lade, Ph.D.
Tung Hua Lin, D.Sc.
Chung Yen Liu, Ph.D.
Richard L. Perrine, Ph.D.
Mosh F. Rubinstein, Ph.D.
Lucien A. Schmit, Jr., M.S.
Lawrence G. Selna, Ph.D.

Associate Professors
Ertugrul Taciroglu, Ph.D.
Eric M.V. Hoek, Ph.D.
Steven A. Margulis, Ph.D.

Assistant Professors
Scott J. Brandenberg, Ph.D.
Terri S. Hogue, Ph.D.
Jennifer A. Jay, Ph.D.
Steven A. Margulis, Ph.D.
Jian Zhang, Ph.D.

Senior Lecturers
Sim-Lin Lau, Ph.D.
Christopher Tu, Ph.D.

Adjunct Professors
Thomas C. Harmon, Ph.D.
Na-Zheng Sun, Ph.D.

Adjunct Associate Professors
Donald R. Kendall, Ph.D.
Issam Najm, Ph.D.
Daniel E. Pradel, Ph.D.
Thomas Sabol, Ph.D.

Assistant Professors
Ertugrul Taciroglu, Ph.D.
Eric M.V. Hoek, Ph.D.
Steven A. Margulis, Ph.D.

Assistant Professors
Scott J. Brandenberg, Ph.D.
Terri S. Hogue, Ph.D.
Jennifer A. Jay, Ph.D.
Steven A. Margulis, Ph.D.
Jian Zhang, Ph.D.

Senior Lecturers
Sim-Lin Lau, Ph.D.
Christopher Tu, Ph.D.

Adjunct Professors
Thomas C. Harmon, Ph.D.
Na-Zheng Sun, Ph.D.

Adjunct Associate Professors
Donald R. Kendall, Ph.D.
Issam Najm, Ph.D.
Daniel E. Pradel, Ph.D.
Thomas Sabol, Ph.D.

Scope and Objectives
The civil and environmental engineering programs at UCLA include structural engineering, structural mechanics, geotechnical engineering, earthquake
engineering, hydrology and water resources engineering, and environmental engineering.

The ABET-accredited civil engineering curriculum leads to a B.S. in Civil Engineering, a broad-based education in structural engineering, geotechnical engineering, hydrology and water resources engineering, and environmental engineering. This program is an excellent foundation for entry into professional practice in civil engineering or for more advanced study. The department also offers the undergraduate Environmental Engineering minor.

At the graduate level, M.S. and Ph.D. degree programs are offered in the areas of structures (including structural/earthquake engineering and structural mechanics), geotechnical engineering, hydrology and water resources engineering, and environmental engineering. In these areas, research is being done on a variety of problems ranging from basic physics and mechanics problems to critical problems in earthquake engineering and in the development of new technologies for pollution control and water distribution and treatment.

Department Mission
The Civil and Environmental Engineering Department seeks to exploit its subfield teaching and research strengths as well as to engage in multidisciplinary collaboration. This occurs within the context of a central guiding theme: engineering sustainable infrastructure for the future. Under this theme the department is educating future engineering leaders, most of whom will work in multidisciplinary environments and confront a host of twenty-first-century challenges. With an infrastructure-based vision motivating its teaching and research enterprise, the department conceptualizes and orients its activity toward broadening and deepening fundamental knowledge of the interrelationships among the built environment, natural systems, and human agency.

Undergraduate Program Objectives
The objectives of the ABET-accredited civil engineering curriculum at UCLA are to (1) provide graduates with a solid foundation in basic mathematics, science, and humanities, as well as fundamental knowledge of relevant engineering principles, (2) provide students with the capability for critical thinking, engineering reasoning, problem solving, experimentation, and teamwork, (3) prepare graduates for advanced study and/or professional employment within a wide array of industries or governmental agencies, (4) produce graduates who understand ethical issues associated with their profession and who are able to apply their acquired knowledge and skills to the betterment of society, and (5) foster in students a respect for the educational process that is manifest by a lifelong pursuit of learning.

Undergraduate Study
Civil Engineering B.S.

Preparation for the Major
Required: Chemistry and Biochemistry 20A, 20B, 20L; Civil and Environmental Engineering 1, 15; Computer Science 31 (or another programming course approved by the Faculty Executive Committee); Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C (or Electrical Engineering 1), 4AL.

The Major
Required: Chemical Engineering 102A or Mechanical and Aerospace Engineering 105A, Civil and Environmental Engineering 101, 103, 108, 110, 120, 135A, 151, 153, Materials Science and Engineering 104, Mechanical and Aerospace Engineering 103, 182A; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and at least nine major field elective courses (36 units) that must include the required courses in two of the following tracks:

Environmental Engineering: One laboratory course from Civil and Environmental Engineering 156A or 156B or M166L and one major project design course from 157B or 157C; recommended: courses 154, 155, 163, 164, M166

Geotechnical Engineering: Civil and Environmental Engineering 121 and 128L; recommended: courses 123, 125, 135B, 137, 142

Structural Engineering and Mechanics: Civil and Environmental Engineering 135B, one lecture course from 130, M135C, 137, 141, or 142, one laboratory course from 130L, 135L, 137L, or 142L (must select 130L or 137L or 142L if 135L is selected from structures major project design list), and one structures major project design course from 135L or 144 or 147 (must select 144 or 147 if 135L is selected from laboratory list); recommended: courses 121, 125, 130, 130L, 135L, 137, 137L, 141, 142, 142L, 143, 144, 147

Water Resources Engineering: Civil and Environmental Engineering 150 and 157L; recommended: courses 154, 156A, 157A, 157M

Additional Elective Options: Civil and Environmental Engineering 105, 106A, 180, 181, Earth and Space Sciences 100,
Environmental Engineering Minor

The Environmental Engineering minor is designed for students who wish to augment their major program of study with courses addressing issues central to the application of environmental engineering to important environmental problems facing modern society in developed and developing countries. The minor provides students with a greater depth of experience and understanding of the role that environmental engineering can play in dealing with environmental issues.

To enter the minor, students must be in good academic standing (2.0 grade-point average or better) and file a petition in the Office of Academic and Student Affairs, 6426 Boelter Hall.

Required Lower Division Course (5 units): Mathematics 3C or 32A.

Required Upper Division Courses (24 units minimum): Civil and Environmental Engineering 153 and five courses from 151, 154, 155, 156A, M166, Chemical Engineering C118, Environmental Health Sciences C125, C164.

No more than two upper division courses may be applied toward both this minor and a major or minor in another department or program, and at least 16 units applied toward the minor must be taken in residence at UCLA. Transfer credit for any of the above is subject to departmental approval; consult the undergraduate counselors before enrolling in any courses for the minor.

Each minor course must be taken for a letter grade, and students must have a minimum grade of C (2.0) in each and an overall grade-point average of 2.0 or better. Successful completion of the minor is indicated on the transcript and diploma.

Graduate Study

For information on graduate admission, see Graduate Programs, page 23.

The following introductory information is based on the 2008-09 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnnet.ucla.edu/gasas/library/pgmrqintro.htm. Students are subject to the detailed degree requirements as published in Program Requirements for the year in which they matriculate.

The Department of Civil and Environmental Engineering offers Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Civil Engineering.

Civil Engineering M.S.

Course Requirements

Students may select either the thesis plan or comprehensive examination plan. At least nine courses are required, a majority of which must be in the Civil and Environmental Engineering Department. At least five of the courses must be at the 200 level. In the thesis plan, seven of the nine must be formal 100- or 200-series courses. The remaining two may be 59B courses involving work on the thesis. In the comprehensive examination plan, 500-series courses may not be applied toward the nine-course requirement. A minimum 3.0 grade-point average is required in all coursework.

Each major field has a set of required preparatory courses which are normally completed during undergraduate studies. Equivalent courses taken at other institutions can satisfy the preparatory course requirements. The preparatory courses cannot be used to satisfy course requirements for the M.S. degree; courses must be selected in accordance with the lists of required graduate and elective courses for each major field.

Undergraduate Courses. No lower division courses may be applied toward graduate degrees. In addition, the following upper division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199; Civil and Environmental Engineering 106A, 108, 199; Computer Science M125A, 152B, M171L, 199; Electrical Engineering 100, 101, 102, 103, 110L, M116L, M171L, 199; Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 140, 141L, 150, 160, 161L, 199; Mechanical and Aerospace Engineering 102, 103, 105A, 105D, 199.

The M.S. degree offers four fields of specialization that have specific course requirements.

Environmental Engineering Required Preparatory Courses. Chemistry and Biochemistry 20A, 20B, 20L; Civil and Environmental Engineering 150 or 151, 153; Mathematics 32A, 33A; Mechanical and Aerospace Engineering 103, 105A; Physics 1A, 1B, 4AL, 4BL.

Geotechnical Engineering

Required Preparatory Courses. Civil and Environmental Engineering 108, 120, 121.

Required Graduate Courses. Civil and Environmental Engineering 220, 221, 223, 224.

Major Field Elective Courses. Minimum of three courses must be selected from Civil and Environmental Engineering 123, 125, 128L, 222, 225, 226, 227, 228L.

Hydrology and Water Resources Engineering

Required Preparatory Courses. Chemistry and Biochemistry 20A, 20B, 20L; Civil and Environmental Engineering 150 or 151, 153; Mathematics 32A, 32B, 33A; Mechanical and Aerospace Engineering 103, 105A; Physics 1A, 1B, 4AL, 4BL.

Required Graduate Courses. Minimum of five courses must be selected from Civil and Environmental Engineering 250A through 250D, 251A through 251D, 252, 253, and 260, with a minimum of three from 251A through 251D, 252, 253, 260.

Elective Courses. Civil and Environmental Engineering 150, 164, 254A, 255A, 255B,
Adviser. Once with the consent of the graduate failure, the examination may be repeated examination. In case of comprehensive examination committee, which The examination is administered by a comprehensive examination plan: Atmospheric and Oceanic Sciences M203A, 218, Computer Science 270A, 271A, 271B, Electrical Engineering 236A, 236B, 236C, M237, Mathematics 269A, 269B, 269C.

Students may petition the department for permission to pursue programs of study that differ from the above norms.

Structural/Earthquake Engineering Required Preparatory Courses: Civil and Environmental Engineering 135A, 135B, 141, 142.

Required Graduate Courses: Civil and Environmental Engineering 235A, 246; at least three of the following courses: Civil and Environmental Engineering 225, 235B, 241, 242, 243A, 244.

Structural Mechanics

Required Preparatory Courses: Civil and Environmental Engineering 130, 135A, 135B.

Required Graduate Courses: Civil and Environmental Engineering 232, 235A, 235B, 236, M237A.

Elective Courses. Undergraduate: No more than two courses from Civil and Environmental Engineering M135C, 137, 137L; graduate: Civil and Environmental Engineering M230A, M230B, M230C, 233, 235C, 238, 244, 246, 247, Mechanical and Aerospace Engineering 269B.

Comprehensive Examination Plan

In addition to the course requirements, under this plan there is a comprehensive written examination covering the subject matter contained in the program of study. The examination is administered by a comprehensive examination committee, which may conduct an oral examination in addition to the written examination. In case of failure, the examination may be repeated once with the consent of the graduate adviser.

Thesis Plan

In addition to the course requirements, under this plan students are required to write a thesis on a research topic in civil and environmental engineering supervised by the thesis adviser. An M.S. thesis committee reviews and approves the thesis. No oral examination is required.

Civil Engineering Ph.D.

Major Fields or Subdisciplines

Environmental engineering, geotechnical engineering, hydrology and water resources engineering, structural/earthquake engineering, and structural mechanics.

Course Requirements

There is no formal course requirement for the Ph.D. degree, and students may theoretically substitute coursework by examinations. However, students normally take courses to acquire the knowledge needed for the required written and oral preliminary examinations. The basic program in study for the Ph.D. degree is built around one major field and two minor fields. The major field has a scope corresponding to a body of knowledge contained in a detailed Ph.D. field syllabus available on request from the department office. Each minor field normally embraces a body of knowledge equivalent to three courses from the selected field, at least two of which are graduate courses. Grades of B– or better, with a grade-point average of at least 3.33 in all courses included in the minor field, are required. If students fail to satisfy the minor field requirements through coursework, a minor field examination may be taken (once only). The minor fields are chosen to support the major field and are usually subsets of other major fields.

Written and Oral Qualifying Examinations

After mastering the body of knowledge defined in the major field, students take a written preliminary examination. When the examination is passed and all coursework is completed, students take an oral preliminary examination that encompasses the major and minor fields. Both preliminary examinations should be completed within the first two years of full-time enrollment in the Ph.D. program. Students may not take an examination more than twice.

After passing both preliminary examinations, students take the University Oral Qualifying Examination. The nature and content of the examination are at the discretion of the doctoral committee, but ordinarily include a broad inquiry into the student's preparation for research. The doctoral committee also reviews the prospectus of the dissertation at the oral qualifying examination.

Note: Doctoral Committees. A doctoral committee consists of a minimum of four members. Three members, including the chair, must be "inside" members who hold full-time faculty appointments in the Civil and Environmental Engineering Department at UCLA. The "outside" member must be a UCLA faculty member outside the Civil and Environmental Engineering Department.

Fields of Study

Environmental Engineering

Research in environmental engineering focuses on the understanding and management of physical, chemical, and biological processes in the environment and in engineering systems. Areas of research include process development for water and wastewater treatment systems and the investigation of the fate and transport of contaminants in the environment.

Geotechnical Engineering

Research in geotechnical engineering focuses on understanding and advancing the state of knowledge on the effects that soils and soil deposits have on the performance, stability, and safety of civil engineering structures. Areas of research include laboratory investigations of soil behavior under static and dynamic loads, constitutive modeling of soil behavior, behavior of structural foundations under static and dynamic loads, soil improvement techniques, response of soil deposits and earth structures to earthquake loads, and the investigation of geotechnical aspects of environmental engineering.

Hydrology and Water Resources Engineering

Ongoing research programs deal with hydrologic processes, statistics related to climate and hydrology, multiobjective water resources planning and management, numerical modeling of solute transport in groundwater, remediation studies of contaminated soil and groundwater, and optimization of conjunctive use of surface water and groundwater.
Structures (Structural Mechanics and Earthquake Engineering)

Research in structural mechanics is directed toward improving the ability of engineers to understand and interpret structural behavior through experiments and computer analyses. Areas of special interest include computer analysis using finite-element techniques, structural dynamics, nonlinear behavior, plasticity, micromechanics of composites, damage and fracture mechanics, structural optimization, probabilistic static and dynamic analysis of structures, and experimental stress analysis.

Designing structural systems capable of surviving major earthquakes is the goal of experimental studies on the strength of full-scale reinforced concrete structures, computer analysis of soils/structural systems, design of earthquake resistant masonry, and design of seismic-resistant buildings and bridges.

Teaching and research areas in structural/earthquake engineering involve assessing the performance of new and existing structures subjected to earthquake ground motions. Specific interests include assessing the behavior of reinforced concrete buildings and bridges, as well as structural steel, masonry, and timber structures. Integration of analytical studies with laboratory and field experiments is emphasized to assist in the development of robust analysis and design tools, as well as design recommendations. Reliability-based design and performance assessment methodologies are also an important field of study.

Facilities

The Civil and Environmental Engineering Department has a number of laboratories to support its teaching and research:

Instructional Laboratories

Advanced Soil Mechanics Laboratory
The Advanced Soil Mechanics Laboratory is used for presenting and performing advanced triaxial, simple shear, and consolidation soil tests. It is also used for demonstration of cyclic soil testing techniques and advanced data acquisition and processing.

Environmental Engineering Laboratories
The Environmental Engineering Laboratories are used for the study of basic laboratory techniques for characterizing water and wastewaters. Selected experiments include measurement of biochemical oxygen demand, suspended solids, dissolved oxygen hardness, and other parameters used in water quality control.

Experimental Fracture Mechanics Laboratory
The Experimental Fracture Mechanics Laboratory is used for preparing and testing specimens using modern dynamic testing machines to develop an understanding of fracture mechanics and to become familiar with experimental techniques available to study crack tip stress fields, strain energy release rate, surface flaws, and crack growth in laboratory samples.

Mechanical Vibrations Laboratory
The Mechanical Vibrations Laboratory is used for conducting free and forced vibration and earthquake response experiments on small model structures such as a three-story building, a portal frame, and a water intake/outlet tower for a reservoir. Two electromagnetic exciters, each with a 30-pound dynamic force rating, are available for generating steady state forced vibrations. A number of accelerometers, LVDTs (displacement transducers), and potentiometers are available for measuring the motions of the structure. A laboratory view-based computer-controlled dynamic data acquisition system, an oscilloscope, and a spectrum analyzer are used to visualize and record the motion of the model structures.

Two small electromagnetic and servohydraulic shaking tables (1.5 ft. x 1.5 ft. and 2 ft. x 4 ft.) are available to simulate the dynamic response of structures to base excitation such as earthquake ground motions.

Reinforced Concrete Laboratory
The Reinforced Concrete Laboratory is available for students to conduct monotonic and cyclic loading to verify analysis and design methods for moderate-scale reinforced concrete slabs, beams, columns, and joints, which are tested to failure.

Soil Mechanics Laboratory
The Soil Mechanics Laboratory is used for performing experiments to establish data required for soil classification, soil compaction, shear strength of soils, soil settlement, and consolidation characteristics of soils.

Structural Design and Testing Laboratory
The Structural Design and Testing Laboratory is used for the design/optimization, construction, instrumentation, and testing of small-scale structural models to compare theoretical and observed behavior. Projects provide integrated design/laboratory experience involving synthesis of structural systems and procedures for measuring and analyzing response under load.

Research Laboratories

Building Earthquake Instrumentation Network
The Building Earthquake Instrumentation Network consists of more than 100 earthquake strong motion instruments in three campus buildings to measure the response of actual buildings during earthquakes. When combined with over 50 instruments placed in four Century City high-rises and retail buildings, this network, which is maintained by the U.S. Geological Society and State of California Division of Mines and Geology Strong Motion Program, represents the most detailed building instrumentation network in the world. The goal of the research conducted using the response of these buildings is to improve computer modeling methods and the ability of structural engineers to predict the performance of buildings during earthquakes.

Environmental Engineering Laboratories
The Environmental Engineering Laboratories are used for conducting water and wastewater analysis, including instrumental techniques such as GC, GC/MS, HPLC, TOC, IC, and particle counting instruments. A wide range of wet chemical analysis can be made in this facility with 6,000 square feet of laboratory space and an accompanying 4,000-square-foot rooftop facility where large pilot scale experiments can be conducted. Additionally, electron microscopy is available in another laboratory.

Recently studies have been conducted on oxygen transfer, storm water toxicity, transport of pollutants in soil, membrane fouling, removal from drinking water, and computer simulation of a variety of environmental processes.

Experimental Mechanics Laboratory
The Experimental Mechanics Laboratory supports two major activities: the Optical Metrology Laboratory and the Experimental Fracture Mechanics Laboratory.

In the Optical Metrology Laboratory, tools of modern optics are applied to engineering problems. Such techniques as holography, speckle-interferometry, Moiré analysis,
and fluorescence-photo mechanics are used for obtaining displacement, stress, strain, or velocity fields in either solids or liquids. Recently, real-time video digital processors have been combined with these modern optical technical techniques, allowing direct interfacing with computer-based systems such as computer-aided testing or robotic manufacturing.

The Experimental Fracture Mechanics Laboratory is currently involved in computer-aided testing (CAT) of the fatigue fracture mechanics of ductile material. An online dedicated computer controls the experiment as well as records and manipulates data.

Large-Scale Structure Test Facility
The Large-Scale Structure Test Facility allows investigation of the behavior of large-scale structural components and systems subjected to gravity and earthquake loadings. The facility consists of a high-bay area with a 20 ft. x 50 ft. strong floor with anchor points at 3 ft. on center. Actuators with servohydraulic controllers are used to apply monotonic or cyclic loads. The area is serviced by two cranes. The facilities are capable of testing large-scale structural components under a variety of axial and lateral loadings. Associated with the laboratory is an electrohydraulic universal testing machine with force capacity of 100 tons. The machine is used mainly to apply tensile and compressive loads to specimens so that the properties of the materials from which the specimens are made can be determined. It can also be used in fatigue-testing of small components.

Soil Mechanics Laboratory
The Soil Mechanics Laboratory is used for standard experiments and advanced research in geotechnical engineering, with equipment for static and dynamic triaxial and simple shear testing. Modern computer-controlled servo-hydraulic closed-loop system supports triaxial and simple shear devices. The system is connected to state-of-the-art data acquisition equipment. The laboratory also includes special simple shear apparatuses for small-strain static and cyclic testing and for one-dimensional or two-dimensional cyclic loading across a wide range of frequencies. A humidity room is available for storing soil samples.

Faculty Areas of Thesis Guidance

Professors
Jian-Shyan (J-S) Chen, Ph.D. (Northwestern, 1989)
Finite element methods, meshfree methods, large deformation mechanics, inelasticity, contact problems, structural dynamics
Jiann-Wen Ju, Ph.D. (UC Berkeley, 1986)
Damage mechanics, mechanics of composite materials, computational plasticity, micromechanics, concrete modeling and durability, computational mechanics

Michael K. Stenstrom, Ph.D. (Clemson, 1976)
Process development and control for water and wastewater treatment plants
Jonathan P. Stewart, Ph.D. (UC Berkeley, 1996)
Geotechnical engineering, earthquake engineering
Keith D. Stolzenbach, Ph.D. (MIT, 1971)
Environmental fluid mechanics, fate and transport of pollutants, dynamics of particles
Mladen Vucetic, Ph.D. (Rensselaer, 1986)
Geotechnical engineering, soil dynamics, geotechnical earthquake engineering, experimental studies of static and cyclic soil properties

John W. Wallace, Ph.D. (UC Berkeley, 1988)
Earthquake engineering, design methodologies, seismic evaluation and retrofit, large-scale testing laboratory and field testing
William W-G. Yeh, Ph.D. (Stanford, 1967)
Hydrology and optimization of water resources systems

Professors Emeriti
Stanley B. Dong, Ph.D. (UC Berkeley, 1962)
Structural mechanics, structural dynamics, finite element methods, numerical methods and mechanics of composite materials
Lewis P. Felton, Ph.D. (Carnegie Institute of Technology, 1964)
Structural analysis, structural mechanics, automated optimum structural design, including reliability-based design
Michael E. Fourney, Ph.D. (Cal Tech, 1963)
Experimental mechanics, special emphasis on application of modern optical techniques
Gary C. Hart, Ph.D. (Stanford, 1968)
Structural engineering analysis and design of buildings for earthquake and wind loads, structural dynamics, and uncertainty and risk analysis of structures
Poul V. Lade, Ph.D. (UC Berkeley, 1972)
Soil mechanics, stress-strain and strength characteristics of soils, deformation and stability analyses of foundation engineering problems
Chung Yen Liu, Ph.D. (Cal Tech, 1962)
Fluid mechanics, environmental, numerical
Richard L. Perrine, Ph.D. (Stanford, 1953)
Resource and environmental problems—chemical, petroleum, or hydrological, physics of flow through porous media, transport phenomena, kinetics
Mooshe F. Rubinstein, Ph.D. (UCLA, 1961)
Systems analysis and design, problem-solving and decision-making models
Lucien A. Schmit, Jr., M.S. (MIT, 1950)
Structural mechanics, optimization, automated design methods for structural systems and components, application of finite element analysis techniques and mathematical programming algorithms in structural design, analysis and synthesis methods for fiber composite structural components
Lawrence G. Selina, Ph.D. (UC Berkeley, 1967)
Reinforced concrete, earthquake engineering

Associate Professors
Eric M.V. Hoek, Ph.D. (Yale, 2001)
Physical and chemical environmental processes, colloidal and interfacial phenomena, environmental membrane separations, bio-adhesion and bio-fouling
Steven A. Margulis, Ph.D. (MIT, 2002)
Surface hydrology, hydroclimatology, remote sensing, data assimilation
Ertugrul Tacioglu, Ph.D. (Illinois, Urbana-Champaign, 1998)
Computational structural and solid mechanics and constitutive modeling of materials

Assistant Professors
Scott J. Brandenburg, Ph.D. (UC Davis, 2005)
Geotechnical earthquake engineering, soil-structure interaction, liquefaction, data acquisition and processing, numerical analysis
Terri S. Hogue, Ph.D. (Arizona, 2003)
Surface hydrology, hydroclimatology, rainfall-runoff modeling, operational flood forecasting, parameter estimation, model optimization techniques, sensitivity analysis, land-surface-atmosphere interactions, surface vegetation atmosphere transfer schemes (SVATS), and carbon flux modeling
Jennifer A. Jay, Ph.D. (MIT, 1999)
Aquatic chemistry, environmental microbiology
Jian Zhang, Ph.D. (UC Berkeley, 2002)
Earthquake engineering, structural dynamics and mechanics, seismic protective devices and strategies, soil-structure interaction, and bridge engineering

Senior Lecturer
Christopher Tu, Ph.D. (UC Davis, 1975)
Groundwater movement and surface water hydrology

Adjunct Professors
Thomas C. Harmon, Ph.D. (Stanford, 1992)
Water resource management, engineering economics analysis of water and environmental planning, drought, water resources management, numerical analysis and optimization

Adjunct Associate Professors
Donald R. Kendall, Ph.D. (UCLA, 1989)
Water resource management, engineering economics analysis of water and environmental planning, drought, water resources management, numerical analysis and optimization
Issam Najm, Ph.D. (Illinois, Urbana-Champaign, 1990)
Water chemistry: physical and chemical processes in drinking water treatment
Daniel E. Pradel, Ph.D. (U. Tokyo, 1987)
Soil mechanics and foundation engineering
Thomas Sabol, Ph.D. (UCLA, 1985)
Soil mechanics and foundation engineering

Lower Division Courses
1. Introduction to Civil Engineering. (2) Lecture, two hours. Introduction to scope of civil engineering profession, including earthquake, environmental, geotechnical, structural, transportation, and water resources engineering. P/NP grading. Mr. Chen (F)

15. Introduction to Computing for Civil Engineers. (2) Lecture, two hours. Introduction to computer programming using MATLAB. Selected topics in programming, with emphasis on numerical techniques and methodology as applied to civil engineering problems. Letter grading. Mr. Chen, Mr. Ju (F,WSp)
106A. Problem Solving in Engineering Economy. (4) Lecture, four hours; outside study, eight hours. Design and presentation of problem-solving and decision-making framework for economic analysis of engineering projects. Foundation for understanding corporate financial practices and accounting. Decisions on capital investments and choice of alternative projects. Introduction to use of engineering economics in analysis of inflation and public investments. Letter grading. Mr. Veh (F)

110. Introduction to Probability and Statistics for Engineers. (4) Lecture, four hours; outside study, eight hours. Requisites: Mathematics 32A, 33A. Recommended: course 15. Introduction to fundamental concepts and principles of probability and statistics used in civil engineering, with focus on how these concepts are used in experimental design and sampling, data analysis, risk and reliability analysis, and project design under uncertainty. Topics include basic probability concepts, random variables and analytical probability distributions, functions of random variables, estimating parameters from observational data, regression, hypothesis testing, and Bayesian concepts. Letter grading. Mr. Stolzenbach (Sp)

120. Principles of Soil Mechanics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 15, 103, 108. Introduction to soil mechanics and design for structures and as material of construction. Soil formation, classification, physical and mechanical properties, soil compaction, earth pressures, consolidation, and shear strength. Letter grading. Mr. Vocetic (F)

121. Advanced Geotechnical Design. (4) Lecture, four hours; outside study, eight hours. Requisite: course 121. Analysis and design of earth dams, including seepage piping, and slope stability analyses. Case history studies involving landslides, settlement, and expansive soil problems, and design of repair methodologies for those problems. Within context of above technical problems, emphasis on preparation of professional engineering documents such as proposals, work acknowledgement, figures, plans, and reports. Letter grading. Mr. Stewart (Sp)

128L. Soil Mechanics Laboratory. (4) Lecture, one hour; laboratory, eight hours; outside study, three hours. Requisites: credit course 128 or corequisite course 120. Laboratory experiments to be performed by students to obtain soil parameters required for designed structures. Soil classification, grain size distribution, Atterberg limits, specific gravity, compaction, expansion index, consolidation, shear strength determination. Design problems, laboratory report writing. Letter grading. Mr. Brandenberg (F,Sp)

130. Elementary Structural Mechanics. (4) Lecture, four hours; discussion, four hours; outside study, six hours. Requisite: course 108. Analysis of stress and strain, phenomenological material behavior, extension, bending, and transverse shear stresses in beams and joints, pressure and force in beams, torsion of beams, warping, column instability and failure. Letter grading. Mr. Taciroglu (W)

130L. Experimental Structural Mechanics. (4) Lecture, four hours; laboratory, four hours; outside study, four hours. Requisite or corequisite course 130. Lectures and laboratory experiments in various fundamental mechanics testing of metals, plastics, and concrete. Direct tension, direct compression, ultrasonic nondestructive evaluation. Elastic buckling of columns. Fracture mechanics testing and fracture toughness. Splitting and flexural tension. Elastic, plastic, and fracture behavior of FEM, and monitoring and instrumentation. USBR. Cyclic loading. Microstructures of concrete. Size effects. Letter grading. Mr. Ju (W)

135A. Elementary Structural Analysis. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 15, 103, 108. Introduction to structural analysis; classification of structural elements; analysis of statically determinate trusses, beams, and frames; deflections in elementary structures; virtual work; analysis of indeterminate structures using force method; introduction to displacement method and energy concepts. Letter grading. Mr. Ju (F)

135B. Intermediate Structural Analysis. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 135A. Analysis of truss and frame structures using matrix methods; matrix force method; matrix displacement method; analysis concepts based on theorem of virtual work; moment distribution. Letter grading. Mr. Ju (W)

M135C. Introduction to Finite Element Methods. (4) (Formerly numbered 135C.) (Same as Mechanical and Aerospace Engineering 156A or 156B.) Introduction to finite element methods of FEM and applications to structural and solid mechanics and heat transfer. Direct matrix structural analysis; weighted residual, least squares, and Ritz approximation methods; shape functions; convergence properties; isoparametric formulation of multidimensional heat flow and elasticity; numerical integration. Practical use of FEM software; geometric and analytical modeling; preprocessing and postprocessing techniques; term projects with computers. Letter grading. Mr. Chen, Mr. Klug (F,Sp)

135L. Structural Design and Testing Laboratory. (4) Lecture, two hours; laboratory, four hours; outside study, six hours. Requisites: courses 15, 135A. Limited enrollment. Computer-aided optimum design, construction, instrumentation, and test of small-scale mechanical structures using computer-aided design and computer-aided interpretation systems for comparison of experimental and theoretically predicted behavior. Letter grading. Mr. Ju (Sp)

137. Elementary Structural Dynamics. (4) Lecture, four hours; discussion, four hours; outside study, six hours. Requisite: course 135B. Basic structural dynamics course for civil engineering students. Elastic, free, forced vibration, and earthquake response analysis for single stories, frames, and trusses. Analysis for strength of free and restrained structures. Systematic, bending, and torsional vibration of beams. Letter grading. Mr. Ju (F)
137L. Structural Dynamics Laboratory. (4) Lecture, two hours; laboratory, six hours; outside study, four hours. Requisite or corequisite: course 137. Calibration of instrumentation for dynamic measurements. Determination of natural frequencies and damping factors from free vibrations. Determination of natural frequencies, mode shapes, and damping factors from forced vibrations. Dynamic similarity. Letter grading. Mr. Ju (F)

141. Steel Structures. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 135A. Introduction to building codes. Fundamentals of load and resistance factor design of steel elements. Design of tension and compression members. Design of beams and beam columns. Simple connection design. Introduction to computer modeling and design process. Letter grading. Mr. Wallace (F)

142L. Reinforced Concrete Structural Laboratory. (4) Lecture, two hours; laboratory, six hours; outside study, four hours. Requisites: courses 135B, 142. Limited enrollment. Design considerations for reinforced concrete beams, columns, slabs, and joints evaluated using analysis and experiments. Links between theory, building codes, and experimental results. Students demonstrate accuracies and limitations of codes and procedures used in design of reinforced concrete structures. Development of skills for written and oral presentations. Letter grading. Mr. Wallace (Sp)

143. Design of Prestressed Concrete Structures. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 135A, 142. Prestressing and post-tensioning techniques. Properties of concrete and prestressing steel. Design considerations; anchorage/bonding of cables/wires; flexure analysis by superposition and strength methods, draping of cables, deflection and stiffness, indeterminate structures, imitation of prestressing. Letter grading. Mr. Wallace (W)

150. Introduction to Hydrology. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: Mechanical and Aerospace Engineering 103. Recommended: course 15. Study of hydrologic cycle and relevant atmospheric processes, water and energy balance, radiation, precipitation formation, evaporation, evapotranspiration, groundwater flow, storm runoff, and flood processes. Letter grading. Mr. Margulis (F)

151. Introduction to Water Resources Engineer- ing. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 135A. Technical aspects of Mechanical and Aerospace Engineering 103. Principles of hydraulics, flow of water in open channels and pressure conduits, reservoirs and dams, hydraulic machinery, and power generation. Introduction to basic concepts in water resources engineering. Letter grading. Ms. Hogue (W)

153. Introduction to Environmental Engineering Science. (4) Lecture, four hours; outside study, eight hours; discussion, two hours; laboratory, four hours. Requisites: courses 135A, 150, 151. Introduction to water resource management and environmental science. Environmental issues, environmental systems, and environmental problems. Letters and numbers, descriptive vs. mathematical models of environmental systems. Letter grading. Mr. Stenstrom (W)

154. Chemical Fate and Transport in Aquatic Environments. (4) Lecture, four hours; outside study, eight hours. Recommended requisite: course 153. Fundamental physical, chemical, and biological principles governing movement and fate of chemicals in surface waters and groundwater. Topics include phytoplankton in various aquatic environments. Historical development of water-air exchange, acid-base equilibria, oxidation-reduction chemistry, chemical sorption, biogeochemical, and bioaccumulation. Practical quantitative problem solution, solved and transport models of water and transport through natural and man-made systems. Exploration of chemical and stress water in environment. Field trip. Letter grading. Mr. Stenstrom (F)

155. Unit Operations and Processes for Water and Wastewater Treatment. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 153. Biological, chemical, and physical methods used to modify water quality. Fundamentals of unit operations used in design of wastewater treatment systems. Letter grading. Mr. Stenstrom (F)

156A. Environmental Chemistry Laboratory. (4) Lecture, four hours; laboratory, four hours; outside study, four hours. Requisite: course 153. Biological, chemical, and physical methods used to modify water quality. Fundamentals of unit operations used in design of wastewater treatment systems. Design project illustrating remedial investigation and feasibility study. Letter grading. Ms. Stolzenbach (F)

156B. Environmental Engineering Unit Operations and Processes Laboratory. (4) Laboratory, six hours; discussion, two hours; outside study, four hours. Requisites: Chemistry 20A, 20B. Basic laboratory techniques in analytical chemistry related to water and wastewater analysis. Tested techniques include gravimetric analysis, titrimetry spectrophotometry, and redox systems. PH and electrical conductivity. Concepts to be applied to analysis of "real" water samples in course 156B. Letter grading. Ms. Stenstrom (F)

157A. Hydrologic Modeling. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 103, 150, 151. Introduction to hydrologic modeling. Topics selected from areas of (1) process models and their role in remotely sensed data; (2) steady state and transport, (2) pipe flow and water distribution systems, (3) rainfall-runoff modeling, and (4) groundwater flow modeling, with emphasis on use of industry-standard models and computer software. Letter grading. Mr. Marzoula (Sp)

157B. Design of Water Treatment Plants. (4) Lecture, two hours; discussion, two hours; laboratory, four hours; other, four hours. Requisite: course 155. Water quality standards and regulations, overview of water quality process design of unit operations, pre-design of water treatment plants, hydraulics of plants, process control, and cost estimation. Letter grading. Mr. Stenstrom (Sp)

157C. Design of Wastewater Treatment Plants. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 153, 155. Process design of wastewater treatment plants, including primary and secondary treatment, design detail review of existing plants, process control, and economics. Letter grading. Ms. Hogue (W)

157L. Hydrologic Analysis and Design. (4) Lecture, two hours; laboratory, four hours; outside study, six hours. Requisites: courses 150 and/or 151. Collection, compilation, and interpretation of data for quantification of surface water components of hydrologic cycle, including precipitation, evaporation, infiltration, and runoff. Use of hydrologic variables and parameters for development, construction, and application of water balance models for water and wastewater treatment, waste disposal, air pollution, global environmental problems. Field trip required. Letter grading. Ms. Hogue (W)

157M. Hydrology of Mountain Watersheds. (4) Lecture, one hour; fieldwork, four hours; laboratory, three hours; outside study, four hours; one field trip. Requisite: course 150 or 157L. Advanced field- and laboratory-based course with focus on study of hydrologic and geochemical processes in snow-dominated and mountainous regions. Students measure and quantify snowpack properties, snowmelt, discharge, evaporation, infiltration, soil properties, and local meteorology, as well as investigate geochemical properties of surface and groundwater systems. Exploration of rating curves, stream classification, and flooding potential. Extended field trip required. Letter grading. Ms. Hogue (Sp)

163. Introduction to Atmospheric Chemistry and Air Pollution. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 153, Chemistry 20A, 20B, Mathematics 31A, 31B, Physics 1A, 1B. Describes physical and chemical processes for removal of contaminants. Water quality, air pollution, aerosol pollution, formation/deposition of acid precipitation, fate of anthropogenic pollutants, and selected global chemical cycle(s). Control technologies. Letter grading. Mr. Stenstrom (Sp)

M166. Environmental Microbiology. (4) Same as Environmental Health Sciences M166L. Lecture, four hours; discussion, two hours; outside study, six hours. Recommended requisite: course 153. Microbial cell and its metabolic capabilities, microbial genet- ics and its potentials, growth of microbes and kinetics of growth, microbial ecology and diversity, microbiolo- gy of wastewater treatment, probing of microbes, public health microbiology, pathogen control. Letter grading. Ms. Jay (F)

M166L. Environmental Microbiology and Biotechnol- ogy Laboratory. (1) (Formerly numbered 166L). (Same as Environmental Health Sciences M166L). Laboratory, two hours; outside study, two hours. Corequisite: course M166. General laboratory practice within environmental microbiology, sampling of environmental samples, classical and modern molecular techniques for enumeration of microbes from environmental samples, techniques for determination of microbial activity in environmental samples, laboratory setups for studying environmental biotechnology. Letter grading. Ms. Jay (W)
180. Introduction to Transportation Engineering. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Designed for juniors/seniors. General characteristics of transportation systems, including streets and highways, rail, transit, air, and water. Capacity considerations including time-space diagrams and queuing. Components of transportation system design, including horizontal and vertical alignment, cross sections, earthwork, drainage, and pavement. Letter grading. Mr. Stewart (Sp)

181. Traffic Engineering Systems: Operations and Control. (4) Lecture, four hours; fieldwork/laboratory, two hours; outside study, six hours. Designed for juniors/seniors. Applications of traffic flow theories; data collection and analyses; intersection capacity analyses; simulation models; traffic signal design; signal timing design, implementation, and performance evaluation; Intelligent Transportation Systems concepts, architecture, and integration. Letter grading. Mr. Stewart (F)

188. Special Courses in Civil and Environmental Engineering. (2 to 6) Lecture, to be arranged; outside study, to be arranged. Special topics in civil engineering for undergraduate students that are taught on an elective basis, such as the soil behavior taught by resident and visiting faculty members. May be repeated once for credit with topic or instructor change. Letter grading. (FW,Sp)

194. Research Group Seminars: Civil and Environmental Engineering. (2 to 8) Seminar, two to eight hours; outside study, four to 16 hours. Designed for undergraduate students who are part of research group. Discussion of research methods and current literature in field or of research of faculty members or students. May be repeated for credit. Letter grading.

199. Directed Research in Civil and Environmental Engineering. (2 to 8) Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation under guidance of faculty mentor. Culminating paper or project required. May be repeated for credit with approval of individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading. (FW,Sp)

Graduate Courses

222. Introduction to Soil Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 120. Review of engineering problems involving soil dynamics. Fundamentals of soil behavior: effective stress concept, soil response to seismic loading. Use of computer programs for finite elements analysis. Letter grading. Mr. Vucetic (W)

223. Earth Retaining Structures. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 120, 121. Basic concepts of theory of earth pressure behind retaining structures. Various solutions to special problems of retaining structures. Letter grading. Mr. Vucetic (W)

225. Geotechnical Earthquake Engineering. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 125 (may be taken concurrently), 222. Analysis of earthquake-induced ground failure, including soil liquefaction, cyclic softening of clays, seismic compression, surface fault rupture, and seismic slope stability. Ground response effects on earthquake ground motion. Soil-structure interaction, including inertial and kinematic interaction and foundation deformations under seismic loading. Letter grading. Mr. Stewart (Sp)

226. Geoenvironmental Engineering. (4) Lecture, four hours; outside study, eight hours. Requisite: course 120. Field of geoenvironmental engineering involves application of geotechnical principles to environmental problems and environmental regulations, waste characterization, geochemistry, solid waste landfills, subsurface barrier walls, and disposal of high water content materials. Letter grading. Mr. Stewart, Mr. Vucetic (Sp)

227. Numerical Methods in Geotechnical Engineering. (4) Lecture, four hours; outside study, eight hours. Requisite: course 220. Introduction to basic concepts of computer modeling of soils using finite element methods. Analysis of model behavior based on plasticity and plasticity theories. Special emphasis on numerical applications and identification of modeling concerns such as instability, bifurcation, nonexistence, and nonuniqueness of solutions. Letter grading. Mr. Vucetic (W)

228L. Advanced Soil Mechanics Laboratory. (4) Lecture, one hour; laboratory, six hours; outside study, five hours. Requisites: courses 120, 121. Lectures and laboratory studies covering more advanced aspects of laboratory determination of soil properties and their application to design. Tests to determine permeability, consolidation, and shear strength. Review of advanced instrumentation and measurement techniques. Letter grading. Mr. Vucetic (W)

M230A. Linear Elasticity. (4) (Same as Mechanical and Aerospace Engineering M256A.) Lecture, four hours; outside study, eight hours. Requisite: course M230A. Kinematics of deformation, material and spatial coordinates, deformation gradient tensor, nonlinear and linear strain tensors, strain displacement relations; balance laws, Cauchy and Piola stress. An introduction to eigenvalues and eigenvectors of stress-strain tensors. Letter grading. Mr. Ju, Mr. Mal (W)

M230B. Nonlinear Elasticity. (4) (Same as Mechanical and Aerospace Engineering M256B.) Lecture, four hours; outside study, eight hours. Requisite: course M230A. Kinematics of deformation, material and spatial coordinates, deformation gradient tensor, nonlinear and linear strain tensors, strain displacement relations; balance laws, Cauchy and Piola stress. An introduction to eigenvalues and eigenvectors of stress-strain tensors. Letter grading. Mr. Ju, Mr. Mal (W)

M230C. Plasticity. (4) (Formerly numbered M239.) (Same as Mechanical and Aerospace Engineering M256C.) Lecture, four hours; outside study, eight hours. Requisites: Mechanical and Aerospace Engineering M256A, M256B. Classical rate-independent plasticity theory, yield functions, flow rules and thermodynamics. Classical rate-dependent viscoplasticity, Perzyna and Duvoirt/Lions types of viscoplasticity: Thermoplasticity and creep. Return mapping algorithms for plasticity and viscoplasticity. Finite element implementations. Letter grading. Mr. Ju, Mr. Mal (Sp)

232. Theory of Plates and Shells. (4) Lecture, four hours; outside study, eight hours. Requisite: course 130. Small and large deformation theories of thin plates; energy methods; free vibrations; membrane theory of shells; axisymmetric deformations of cylindrical and spherical shells, including bending. Letter grading. Mr. Ju (F)

234. Advanced Topics in Structural Mechanics. (4) Lecture, four hours; outside study, eight hours. Limited to graduate engineering students. Current topics in composite materials, computational methods, finite element analysis, structural synthesis, nonlinear mechanics, and structural mechanics in general. Topics may vary from term to term. Letter grading. Mr. Ju (Sp)

235A. Advanced Structural Analysis. (4) Lecture, four hours; outside study, eight hours. Requisite: course 132. Recommendation: Review of matrix force and displacement methods of structural analysis; virtual work theorem, virtual forces, and displacements; theorems on stationary value of total and complementary potential energy, minimum total potential energy, Maxwell/Betti theorems, effects of approximations, introduction to finite element analysis. Letter grading. Mr. Ju, Mr. Taciroglu (F)

235B. Finite Element Analysis of Structures. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 130, 235A. Direct energy formulations for deformable systems; solution methods for linear equations; analysis of structural systems with one-dimensional elements; introduction to variational calculus; discrete element displacement, force, and mixed methods for membrane, plate, shell structures; incremental effects. Letter grading. Mr. Ju, Mr. Taciroglu (Sp)

Mr. Ju (Sp)

Mr. Benkendis, Mr. Ju (W)

Mr. Chen (Sp)

Mr. Wallace (W)

Mr. Wallace (W)

243A. Behavior and Design of Reinforced Concrete Structural Elements. (4) Lecture, four hours; outside study, eight hours. Requisite: course 142. Advanced topics on design of reinforced concrete structures, including stress-strain relationships for plain and confined concrete, moment-curvature analysis of sections, and design for shear. Design of slender and low-rise walls, as well as design of beam-column joints. Introduction to displacement-based design and applications of strut-and-tie models. Letter grading.

Mr. Wallace (F)

243B. Response and Design of Reinforced Concrete Structural Systems. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 243A, 246. Information on response and behavior of reinforced concrete buildings to earthquake ground motions. Topics include use of elastic and inelastic response spectra, role of strength, stiffness, and ductility in design, use of prescriptive versus performance-based design methodologies, and applications of elastic and inelastic analysis techniques for new and existing construction. Letter grading.

Mr. Wallace (W)

244. Structural Loads and Safety for Civil Structures. (4) Lecture, four hours; outside study, eight hours. Requisite: course 141 or 142 or 143 or 144. Modeling of uncertainties in structural loads and structural mechanics; structural safety analysis; and calculation of capacity reduction factors. Letter grading.

Mr. Ju (F)

Ms. Zheng (Sp)

Mr. Ju (Sp)

249. Selected Topics in Structural Engineering, Mechanics, and Geotechnical Engineering. (2) Lecture, two hours; outside study, six hours. Review of recent research and development in structural engineering, structural mechanics, and geotechnical engineering. Structural analysis, finite elements, structural stability, dynamics of structures, structural design for earthquake, buckling of beams, sliding bearings, passive energy dissipation devices, response of structures with isolation and passive energy dissipation devices, static and dynamic analysis procedures, code provisions and design methods for seismically isolated structures. Letter grading.

Ms. Zhang (Sp)

250A. Surface Water Hydrology. (4) Lecture, four hours; outside study, eight hours. Requisites: course 150. In-depth study of surface water hydrology, including discussion and interrelationship of major topics such as rainfall and evaporation, soils and infiltration properties, runoff and snowmelt processes. Introduction to rainfall-runoff modeling, floods, and policy issues involved in water resource engineering and management. Letter grading.

Mr. Hu, Mr. Stewart, Mr. Taciroglu, Mr. Wallace (W,F,Sp)

Mr. Yeh (W)

250C. Hydraemeteorology. (4) Lecture, four hours. Requisite: course 250A. In-depth study of hydrometeorological processes. Role of hydrology in climate system, precipitation and evaporation processes, atmospheric radiation, exchange of mass, heat, and momentum between soil and vegetation surface and overlying atmosphere, flux and transport in turbulent boundary layer, basic remote sensing principles. Letter grading.

Mr. Margulis (W)

250D. Water Resources Systems Engineering. (4) Lecture, four hours; outside study, eight hours. Requisite: course 151. Application of mathematical programming techniques to water resources systems. Topics include reservoir management and operation; optimal timing, sequencing and sizing of water resource projects; and multibjective planning and concurrent use of surface water and groundwater. Emphasis on management of water quantity. Letter grading.

Mr. Yeh (Sp)

251A. Rainfall-Runoff Modeling. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 250A, 251B. Introduction to hydrologic modeling concepts, including rainfall-runoff analysis, input data, uncertainty analysis, lumped and distributed modeling, parameter estimation and sensitivity analysis, and application of models for flood forecasting and prediction of streamflows in water resource applications. Letter grading.

Ms. Hogue (Sp)

251B. Contaminant Transport in Groundwater. (4) (Formerly numbered 251C.) Lecture, four hours; outside study, eight hours. Requisites: courses 250B, 253. Phenomena and mechanisms of hydrodynamic dispersion, governing equations of mass transport in porous media, various analytical solutions, determination of dispersion parameters by laboratory and field experiments, biological and reactive transport in multiphase flow, remediation design, software packages and applications. Letter grading.

Mr. Margulis

251C. Remote Sensing with Hydrologic Applications. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 250A, 250C. Introduction to basic physical concepts of remote sensing as they relate to surface and atmospheric hydrologic processes. Applications include radiative transfer modeling and retrieval of hydrologically relevant parameters such as topography, soil moisture, snow properties, vegetation, and precipitation. Letter grading.

Mr. Margulis

251D. Hydrologic Data Assimilation. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 250A, 250C. Introduction to basic concepts of classical and Bayesian estimation theory for purposes of hydrologic data assimilation. Applications geared toward assimilating disparate observations into dynamic models of hydrological systems. Letter grading.

Mr. Margulis

252. Engineering Economic Analysis of Water and Environmental Planning. (4) Lecture, four hours; outside study, eight hours. Requisites: course 152 or more courses numbered 100, 101. Economic theory and applications in analysis and management of water and environmental problems; application of price theory to water resource management and renewable resources; benefit-cost analysis with applications to water resources and environmental planning. Letter grading.

Mr. Yeh (Sp)

Mr. Stenstrom (F)

254A. Environmental Aquatic Inorganic Chemistry. (4) Lecture, four hours; outside study, eight hours. Requisites: Chemistry 20B, Mathematics 31A, 31B, Physics 1A, 1B. Equilibrium and kinetic descriptions of chemical behavior of metals and inorganic ions in natural fresh/marine surface waters and in water treatment. Processes include acid-base chemistry and alkalinity (carbonate system), complexation, precipitation/dissolution, absorption oxidation/reduction, and photochemistry. Letter grading.

Mr. Stenstrom (F)
255A. Physical and Chemical Processes for Water and Wastewater Treatment. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 155, 254A. Review of momentum and mass transfer, chemical reaction engineering, coagulation and flocculation, granular filtrations, sedimentation, carbon adsorption, gas transfer, disinfection, oxidation, and membrane processes. Letter grading. Mr. Stenstrom (W)

255B. Biological Processes for Water and Wastewater Treatment. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 254A, 255A. Fundamentals of environmental engineering microbiology; kinetics of microbial growth and biological oxidation; applications for activated sludge, gas transfer, fixed-film processes, aerobic and anaerobic digestion, sludge disposal, and biological nutrient removal. Letter grading. Mr. Stenstrom (Sp)

258A. Membrane Separations in Aquatic Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 254A. Applications of membrane separations to desalination, water reclamation, brine disposal, and ultrapure water systems. Discussion of reverse osmosis, ultrafiltration, electrodialysis, and fixed-film processes, and exchange technologies from both practical and theoretical standpoints. Letter grading. Mr. Stenstrom (W)

259A. Selected Topics in Environmental Engineering. (2 to 4) Lecture, four hours; outside study, eight hours. Review of recent research and developments in environmental engineering. Water and wastewater treatment systems, nonpoint pollution, multimedia impacts. May be repeated for credit. S/U grading. Mr. Stolzenbach (F, W, Sp)

259B. Selected Topics in Water Resources. (2 to 4) Lecture, four hours; outside study, eight hours. Review of recent research and developments in water resources. Water supply and hydrology, global climate change, economic planning, optimization of water resources development. May be taken for maximum of 4 units. Letter grading.

260. Advanced Topics in Hydrology and Water Resources. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 250A, 250B, 250D. Current research topics in inverse problem of parameter estimation, experimental design, conjunctive use of surface and groundwater, multiobjective water resources planning, and optimization of water resource systems. Topics may vary from term to term. Letter grading. Mr. Stenstrom (F, W, Sp)

261. Colloidal Phenomena in Aquatic Systems. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 254A, 255A. Colloidal interactions, colloid stability, colloidal hydrodynamics, surface chemistry, adsorption of pollutants on colloidal surfaces, transport of colloids in porous media, coagulation, and particle deposition. Considerations of applications to colloidal processes in aquatic environments. Letter grading. Mr. Stenstrom (Sp)

261B. Advanced Biological Processes for Water and Wastewater Treatment. (4) Lecture, four hours; outside study, eight hours. Requisite: course 255B. In-depth treatment of selected topics related to biological treatment of waters and wastewaters, such as biodegradation of xenobiotics, pharmaceuticals, emerging pollutants, toxicity, and nutrients. Discussion of theoretical aspects, experimental observations, and recent literature. Application to important and emerging environmental problems. Letter grading.

262A. Introduction to Atmospheric Chemistry. (4) (Same as Atmospheric and Oceanic Sciences M203A.) Lecture, three hours. Requisite for undergraduates: Chemistry 20B. Principles of chemical kinetics, thermochromistry, spectroscopy, and photochemistry; chemical composition and history of Earth’s atmosphere; biogeochemical cycles of key atmospheric constituents; basic photochemistry of troposphere and stratosphere, upper atmosphere chemical processes; air pollution; chemistry and climate. S/U or letter grading. (W)
Scope and Objectives

Computer science is concerned with the design, modeling, analysis, and applications of computer-related systems. Its study at UCLA provides education at the undergraduate and graduate levels necessary to understand, design, implement, and use the software and hardware of digital computers and digital systems. The programs provide comprehensive and integrated studies of subjects in computer system architecture, computer networks, distributed computer systems, programming languages and software systems, information and data management, artificial intelligence, computer science theory, computational systems biology and bioinformatics, and computer vision and graphics.

The undergraduate and graduate studies and research projects in computer science are supported by significant computing resources. In addition to the departmental computing facility, there are over a dozen research laboratories specializing in areas such as distributed systems, multimedia computer communications, distributed sensor networks, VLSI systems, VLSI CAD, embedded and reconfigurable systems, computer graphics, bioinformatics, and artificial intelligence. Also, the Cognitive Systems Laboratory is engaged in studying computer systems that emulate or support human reasoning. The Biocybernetics Laboratory is devoted to multidisciplinary research involving the application of engineering and computer science methods to problems in biology and medicine.

The B.S. degree may be attained either through the Computer Science and Engineering major or through the Computer Science major described below.

In addition to the B.S. in Computer Science and Engineering and the B.S. in Computer Science, HSSEAS offers M.S. and Ph.D. degrees in Computer Science, as well as minor fields for graduate students seeking engineering degrees. In cooperation with the John E. Anderson Graduate School of Management, the Computer Science Department offers a concurrent degree program that enables students to obtain the M.S. in Computer Science and the M.B.A. (Master of Business Administration).

Department Mission

The Computer Science Department strives for excellence in creating, applying, and imparting knowledge in computer science and engineering through comprehensive
educational programs, research in collaboration with industry and government, dissemination through scholarly publications, and service to professional societies, the community, state, and nation.

Computer Science and Engineering Undergraduate Program Objectives

The computer science and engineering undergraduate program educational objectives are that our alumni (1) make valuable technical contributions to design, development, and production in their practice of computer science and computer engineering, in related engineering or application areas, and at the interface of computer and physical systems, (2) demonstrate strong communication skills and the ability to function effectively as part of a team, (3) demonstrate a sense of societal and ethical responsibility in their professional endeavors, and (4) engage in professional development or postgraduate education to pursue flexible career paths amid future technological changes.

Computer Science Undergraduate Program Objectives

The computer science undergraduate program educational objectives are that our alumni (1) make valuable technical contributions to design, development, and production in their practice of computer science and related engineering or application areas, particularly in software systems and algorithmic methods, (2) demonstrate strong communication skills and the ability to function effectively as part of a team, (3) demonstrate a sense of societal and ethical responsibility in their professional endeavors, and (4) engage in professional development or postgraduate education to pursue flexible career paths amid future technological changes.

Undergraduate Study

Computer Science and Engineering B.S.

The ABET-accredited computer science and engineering curriculum at UCLA provides the education and training necessary to design, implement, test, and utilize the hardware and software of digital computers and digital systems. The curriculum has components spanning both the Computer Science and Electrical Engineering Departments. Within the curriculum students study all aspects of computer systems from electronic design through logic design, MSI, LSI, and VLSI concepts and device utilization, machine language design, implementation and programming, operating system concepts, systems programming, networking fundamentals, higher-level language skills, and application of these to systems. Students are prepared for employment in a wide spectrum of high-technology industries.

The computer science and engineering curriculum is accredited by the Computing Accreditation Commission and the Engineering Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, (410) 347-7700.

Preparation for the Major

Required: Chemistry and Biochemistry 20A; Computer Science 1, 31, 32, 33, 35L, M51A (or Electrical Engineering M16); Electrical Engineering 1, 2, 10; Mathematics 31A, 31B, 32A, 32B, 33A, 33B, 61; Physics 1A, 1B, 4AL, 4BL.

The Major

Required: Computer Science 101, 111, 118, 131, M151B (or Electrical Engineering M116C), M152A (or Electrical Engineering M116L), 152B, 180, 181, Electrical Engineering 102, 110, 110L, 115A, 115C, Statistics 110A; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and three upper division computer science elective courses (12 units), one of which must be selected from Computer Science 143 or 161 or 174A. Electrical Engineering 103 may be substituted for one elective (credit is not given for both Computer Science 170A and Electrical Engineering 103 unless one of the courses is included in the technical breadth area in engineering mathematics), and 4 units of either Computer Science 194 or 199 may be applied as an elective by petition.

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

Computer Science B.S.

The computer science curriculum is designed to accommodate students who want professional preparation in computer science but do not necessarily have a strong interest in computer systems hardware. The curriculum consists of components in computer science, a minor or technical support area, and a core of courses from the social sciences, life sciences, and humanities. Within the curriculum, students study subject matter in software engineering, principles of programming languages, data structures, computer architecture, theory of computation and formal languages, operating systems, distributed systems, computer modeling, computer networks, compiler construction, and artificial intelligence. Majors are prepared for employment in a wide range of industrial and business environments.

The computer science curriculum is accredited by the Computing Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, (410) 347-7700.

Preparation for the Major

Required: Chemistry and Biochemistry 20A; Computer Science 1, 31, 32, 33, 35L, M51A (or Electrical Engineering M16); Electrical Engineering 1; Mathematics 31A, 31B, 32A, 32B, 33A, 33B, 61; Physics 1A, 1B, 4AL, 4BL.

The Major

Required: Computer Science 101, 111, 118, 131, M151B (or Electrical Engineering M116C), M152A (or Electrical Engineering M116L), 180, 181, Statistics 110A; three upper division science and technology courses (12 units) not used to satisfy other requirements, that may include three computer science courses, three courses to augment the technical breadth courses requirement, or three courses selected from one of the following: astronomy, atmospheric and oceanic sciences, biological chemistry, biomathematics, chemical and biomolecular engineering, chemistry and biochemistry, civil and environmental engineering, Earth and space sciences, economics, electrical engineering, information studies, linguistics, management, materials science and engineering, mathematics, mechanical and aerospace engineering, microbiology, immunology, and molecular genetics, molecular biology, molecular, cell, and developmental biology, physics — courses selected from outside the school must be approved by petition; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and six upper division computer science elective courses (24 units), two of which must be selected from Computer Science 143, 161, 174A and one of which must be from 112 or 170A or Electrical Engineering 103.
Graduate Study
For information on graduate admission, see Graduate Programs, page 23.

The following introductory information is based on the 2008-09 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnet.ucla.edu/gasaa/library/pgmrqintro.htm. Students are subject to the degree requirements as published in Program Requirements for the year in which they matriculate.

The Department of Computer Science offers Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Computer Science and participates in a concurrent degree program with the John E. Anderson Graduate School of Management.

Computer Science M.S.

Course Requirements
Course Requirement. A total of nine courses is required for the M.S. degree, including a minimum of five graduate courses. No specific courses are required, but a majority of both the total number of formal courses and the total number of graduate courses must consist of courses offered by the Computer Science Department.

Undergraduate Courses. No lower division courses may be applied toward graduate degrees. In addition, the following upper division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199, Civil and Environmental Engineering 106A, 108, 199; Computer Science M152A, 152B, 199; Electrical Engineering 100, 101, 102, 103, 110L, M116L, 199; Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 140, 141L, 150, 160, 161L, 199; Mechanical and Aerospace Engineering 102, 103, 105A, 105D, 199.

Breadth Requirement. M.S. degree students must satisfy the computer science breadth requirement by the end of the fourth term in graduate residence at UCLA. The requirement is satisfied by mastering the contents of five undergraduate courses or equivalent: Computer Science 180, two courses from 111, 118, and M151B, one course from 130, 131, or 132, and one course from 143, 161, or 174A. A UCLA undergraduate course taken by graduate students cannot be used to satisfy graduate degree requirements if students have already received a grade of B– or better for a course taken elsewhere that covers substantially the same material.

For the M.S. degree, students must also complete at least three terms of Computer Science 201 with grades of Satisfactory. Competence in any or all courses in breadth requirements may be demonstrated in one of three ways:
1. Satisfactory completion of the course at UCLA with a grade of B– or better
2. Satisfactory completion of an equivalent course at another university with a grade of B– or better
3. Satisfactory completion of a final examination in the course at UCLA

Comprehensive Examination Plan
In the comprehensive examination plan, at least five of the nine courses must be 200-series courses. The remaining four courses may be either 200-series or upper division courses. No units of 500-series courses may be applied toward the comprehensive examination plan requirements.

Thesis Plan
In the thesis plan, seven of the nine courses must be formal courses, including at least four from the 200 series. The remaining two courses must be 598 courses involving work on the thesis.

The thesis is a report on the results of student investigation of a problem in the major field of study under the supervision of the thesis committee, which approves the subject and plan of the thesis and reads and approves the complete manuscript. While the problem may be one of only limited scope, the thesis must exhibit a satisfactory style, organization, and depth of understanding of the subject. Students should normally start to plan the thesis at least one year before the award of the M.S. degree is expected. There is no examination under the thesis plan.

Computer Science M.S./Management M.B.A.
The Department of Computer Science and the John E. Anderson Graduate School of Management offer a concurrent degree program that enables students to complete the requirements for the M.S. in Computer Science and the M.B.A. (Master of Business Administration) in three academic years. Students should request application materials from both the M.B.A. Admissions Office, John E. Anderson Graduate School of Management, and the Department of Computer Science.

Computer Science Ph.D.

Major Fields or Subdisciplines
Artificial intelligence; computational systems biology; computer networks; computer science theory; computer system architecture; graphics and vision; information and data management; and software systems.

Course Requirements
Normally, students take courses to acquire the knowledge needed to prepare for the written and oral preliminary examinations and for conducting Ph.D. research. The basic program of study for the Ph.D. degree is built around the fundamental examination, the major field requirement, and two minor fields. The major field and at least one minor field must be in computer science.

The fundamental examination is common for all Ph.D. candidates in the department and is also known as the written qualifying examination.

To satisfy the major field requirement, students are expected to attain a body of knowledge contained in six courses, as well as the current literature in the area of specialization. In particular, students are required to take a minimum of four graduate courses in the major field of Ph.D. research, selecting these courses in accordance with guidelines specific to the major field. Guidelines for course selection in each major field are available from the departmental Student Affairs Office.

Grades of B– or better, with a grade-point average of at least 3.33 in all courses used to satisfy the major field requirement, are required. Students are required to satisfy the major field requirement within the first
nine terms after enrolling in the graduate program.

Each minor field normally embraces a body of knowledge equivalent to three courses, at least two of which are graduate courses. Grades of B– or better, with a grade-point average of at least 3.33 in all courses included in the minor field, are required. By petition and administrative approval, a minor field may be satisfied by examination.

Breadth Requirement. Ph.D. degree students must satisfy the computer science breadth requirement by the end of the fourth term in graduate residence at UCLA. The requirement is satisfied by mastering the contents of five undergraduate courses or equivalent: Computer Science 180, two courses from 111, 118, and M151B, one course from 130, 131, or 132, and one course from 143, 161, or 174A. A UCLA undergraduate course taken by graduate students cannot be used to satisfy graduate degree requirements if students have already received a grade of B– or better for a course taken elsewhere that covers substantially the same material.

For the Ph.D. degree, students must also complete at least three terms of Computer Science 201 with grades of Satisfactory (in addition to the three terms of 201 that may have been completed for the M.S. degree). Competence in any or all courses may be demonstrated in one of three ways:

1. Satisfactory completion of the course at UCLA with a grade of B– or better
2. Satisfactory completion of an equivalent course at another university with a grade of B– or better
3. Satisfactory completion of a final examination in the course at UCLA

For requirements for the Graduate Certificate of Specialization, see Engineering Schoolwide Programs.

Written and Oral Qualifying Examinations

The written qualifying examination consists of a high-quality paper, solely authored by each student. The paper can be either a research paper containing an original contribution or a focused critical survey paper. The paper should demonstrate that the student understands and can integrate and communicate ideas clearly and concisely. It should be approximately 10 pages single-spaced, and the style should be suitable for submission to a first-rate technical conference or journal. The paper must represent work that the student did as a graduate student at UCLA. Any contributions that are not the student's own, including those of the student's adviser, must be explicitly acknowledged in detail. Prior to submission, the paper must be approved by the student's adviser on a cover page with the adviser's signature indicating approval. After submission, the paper must be reviewed and approved by at least two other members of the faculty. There are two deadlines a year for submission of papers. After passing the preliminary examination and coursework for the major and minor fields, the student should form a doctoral committee and prepare to take the University Oral Qualifying Examination. A doctoral committee consists of a minimum of four members. Three members, including the chair, must hold appointments in the Computer Science Department at UCLA. The remaining member must be a UCLA faculty member outside the Computer Science Department. The nature and content of the oral qualifying examination are at the discretion of the doctoral committee but ordinarily include a broad inquiry into the student's preparation for research. The doctoral committee also reviews the prospectus of the dissertation at the oral qualifying examination.

Fields of Study

Artificial Intelligence

Artificial intelligence (AI) is the study of intelligent behavior. While other fields such as philosophy, psychology, neuroscience, and linguistics are also concerned with the study of intelligence, the distinguishing feature of AI is that it deals primarily with information processing models. Thus the central scientific question of artificial intelligence is how intelligent behavior can be reduced to information processing. Since even the simplest computer is a completely general information processing device, the test of whether some behavior can be explained by information processing mechanisms is whether a computer can be programmed to produce the same behavior. Just as human intelligence involves gathering sensory input and producing physical action in the world, in addition to purely mental activity, the computer for AI purposes is extended to include sense organs such as cameras and microphones, and output devices such as wheels, robotic arms, and speakers.

The predominant research paradigm in artificial intelligence is to select some behavior which seems to require intelligence on the part of humans, to theorize about how the behavior might be accounted for, and to implement the theory in a computer program to produce the same behavior. If successful, such an experiment lends support to the claim that the selected behavior is reducible to information processing terms, and may suggest the program's architecture as a candidate explanation of the corresponding human process.

The UCLA Computer Science Department has active research in the following major subfields of artificial intelligence:

1. **Problem solving.** Analysis of tasks, such as playing chess or proving theorems, that require reasoning about relatively long sequences of primitive actions, deductions, or inferences
2. **Knowledge representation and qualitative reasoning.** Analysis of tasks such as commonsense reasoning and qualitative physics. Here the deductive chains are short, but the amount of knowledge that potentially may be brought to bear is very large
3. **Expert systems.** Study of large amounts of specialized or highly technical knowledge that is often probabilistic in nature. Typical domains include medical diagnosis and engineering design
4. **Natural language processing.** Symbolic, statistical, and artificial neural network approaches to text comprehension and generation
5. **Computer vision.** Processing of images, as from a TV camera, to infer spatial properties of the objects in the scene (three-dimensional shape), their dynamics (motion), their photometry (material and light), and their identity (recognition)
6. **Robotics.** Translation of a high-level command, such as picking up a particular object, into a sequence of low-level control signals that might move the joints of a robotic arm/hand combination to accomplish the task; often this involves using a computer vision system to locate objects and provide feedback
7. **Machine learning.** Study of the means by which a computer can automatically improve its performance on a task by acquiring knowledge about the domain
8. **Parallel architecture.** Design and programming of a machine with thousands or even millions of simple processing elements to produce intelligent behavior; the human brain is an example of such a machine.

Computational Systems Biology

This field can be selected as a major or minor field for the Ph.D. in Computer Science.

Subject Matter and Course Offerings

Emphasis is on integrative computational and mathematical modeling methodologies, algorithms, and quantitative methods for life sciences applications, both basic and applied. Integrative here puts the focus on biological (or medical) systems (systems biology), that is, computational mathematical modeling and simulation approaches to biological systems. Research topics typically involve one or more of the following areas:

1. Integrated computational and biological approaches to organismic, cellular, and mechanism-level studies of biological, including biomedical, systems. Modeling and simulation of cancer and other disease processes: neural, neuroendocrine, immune, and metabolic systems
2. Pharmacokinetics (PK), pharmacodynamics (PD), and physiologically-based PK modeling (PBPK)
3. Optimization of clinical therapy models
4. Modeling methodology for life science research, including experiment design simulation and optimization
5. Software development for modeling and model selection, and for kinetic analysis of biological systems, with emphasis on expert systems, user-friendly interfaces and universally available world wide web based software systems
6. Integrated modeling and experimental research in physiology, pharmacology, biochemistry, genomics, bioinformatics and related fields, developing the interface between (theoretical) modeling and laboratory experimentation and data analysis
7. Computational cardiology
8. Genomics, proteomics, metabolomics, and microarray data modeling

AREAS INCLUDED IN THE COMPUTER NETWORKS FIELD

Typical Systems Studied

- Computer networks
- Packet switching
- Multiprogramming systems
- Parallel processing systems
- High-performance computers
- Distributed processing systems
- Time-shared systems
- Satellite and ground radio packet switching systems
- Cellular radio systems
- Personal communication networks

Tools Used

- Local-area networks
- Communication processors
- High-speed networks
- Photonic networks
- Neural networks
- Communication protocols
- Network control procedures (centralized and distributed)
- Mobile networks

Computer Networks

The computer networks field involves the study of computer networks of different types, in different media (wired, wireless), and for different applications. Besides the study of network architectures and protocols, this field also emphasizes distributed algorithms, distributed systems, and the ability to evaluate system performance at various levels of granularity (but principally at the systems level). In order to understand and predict systems behavior, mathematical models are pursued that lead to the evaluation of system throughput, response time, utilization of devices, flow of jobs and messages, bottlenecks, speedup, power, etc. In addition, students are taught to design and implement computer networks using formal design methodologies subject to appropriate cost and objective functions. The tools required to carry out this design include probability theory, queuing theory, distributed systems theory, mathematical programming, control theory, operating systems design, simulation methods, measurement tools, and heuristic design procedures. The outcome of these studies is provide the following:

1. An appropriate model of the computer system under study
2. An adequate (exact or approximate) analysis of the behavior of this model
3. The validation of the model as compared to simulation and/or measurement of the system
4. Interpretation of the analytical results in order to obtain behavioral patterns and key parameters of the system
5. Design methodology

Resource Allocation

A central problem in the design and evaluation of computer networks deals with the allocation of resources among competing demands (e.g., wireless channel bandwidth allocation to backlogged stations). In fact, resource allocation is a significant element in most of the technical (and nontechnical) problems we face today. Most of our resource allocation problems arise from the unpredictability of the demand for the use of these resources, as well as from the fact that the resources are geographically distributed (as in computer networks). The computer networks field encounters such resource allocation problems in many forms and in many different computer system configurations. Our goal is to find allocation schemes that permit suitable concurrency in the use of devices (resources) so as to achieve efficiency and equitable allocation. A very popular approach in distributed systems is allocation on demand, as opposed to prescheduled allocation. On-demand allocation is found to be effective, since it takes advantage of statistical averaging effects. It comes in many forms in computer networks and is known by names such as asynchronous time division multiplexing, packet switching, frame relay, random access, and so forth.

Computer Science Theory

Computer science is in large measure concerned with information processing systems, their applications, and the corresponding problems of representation, transformation, and communication. The computer science fields are concerned with different aspects of such systems, and each has its own “theoretical component” with appropriate models for description and analysis, algorithms for solving the related problems, and mathematical tools. Thus in a certain sense “computer science theory” involves all of computer science and participates in all disciplines.
The term theoretical computer science has come to be applied nationally and intentionally to a certain body of knowledge emphasizing the interweaving themes of computability and algorithms, interpreted in the broadest sense. Under computability, one includes questions concerning which tasks can and cannot be performed by information systems of different types restricted in various ways, as well as the mathematical analysis of such systems, their computations, and the languages for communication with them. Under algorithms, one includes questions concerning (1) how a task can be performed efficiently under reasonable assumptions on available resources (e.g., time, storage, type of processor), (2) how efficiently a proposed system performs a task in terms of resources used, and (3) the limits on how efficiently a task can be performed. These questions are often addressed by first developing models of the relevant parts of an information processing system (e.g., the processors, their interconnections, their rules of operation, the means by which instructions are conveyed to the system, or the way the data is handled) or of the input/output behavior of the system as a whole. The properties of such models are studied both for their own interest and as tools for understanding the system and improving its performance or applications.

Computer System Architecture

Computer system architecture deals with the design, implementation, and evaluation of computer systems and their building blocks. It deals with general-purpose systems as well as embedded special-purpose systems. The field also encompasses the development of tools to enable system designers to describe, model, fabricate, and test highly complex computer systems.

Computer systems are implemented as a combination of hardware and software. Hence, research in the field of computer architecture often involves both hardware and software issues. The requirements of application software and operating systems, together with the capabilities of compilers, play a critical role in determining the features implemented in hardware. At the same time, the computer architect must also take into account the capabilities and limitations of the underlying implementation technology as well as of the design tools.

The goal of research in computer architecture is to develop building blocks, system organizations, design techniques, and design tools that lead to improved performance and reliability as well as reduced power consumption and cost. Corresponding to the richness and diversity of computer systems architecture research at UCLA, a comprehensive set of courses is offered in the areas of advanced processor architecture, arithmetic processor systems, parallel and distributed architectures, fault-tolerant systems, reconfigurable systems, embedded systems, and computer-aided design of VLSI circuits and systems.

1. **Novel architectures** encompass the study of computations which are performed in ways that are quite different than those used by conventional machines. Examples include various domain-specific architectures characterized by high computational rates, low power, and reconfigurable hardware implementations.

2. **The study of high-performance processing algorithms** deals with algorithms for very high-performance numerical processing. Techniques such as redundant-digit representations of number systems, fast arithmetic, and the use of highly parallel arrays of processing elements are studied with the goal of providing the extremely high processing speeds required in a number of upcoming computer applications.

3. **The study of computational algorithms and structures** deals with the relationship between computational algorithms and the physical structures which can be employed to carry them out. It includes the study of interconnection networks, and the way that algorithms can be formulated for efficient implementation where regularity of structure and simplicity of interconnections are required.

4. **Computer-aided design of VLSI circuits and systems** is an active research area which develops techniques for the automated synthesis and analysis of large-scale systems. Topics include high-level and logic-level synthesis, technology mapping, physical design, interconnect modeling, and optimization of various VLSI technologies such as full-custom designs, standard cells, programmable logic devices (PLDs), multichip modules (MCMs), system-on-a-chip (SoCs), network-on-a-chip (NoC), system-in-a-package (SiPs), and design for nanotechnologies.

5. **VLSI architectures and implementation** is an area of current interest and collaboration between the Electrical Engineering and Computer Science Departments that addresses the impact of large-scale integration on the issues of computer architecture. Application of these systems in medicine and healthcare, multimedia, finance, etc. is being studied in collaboration with other schools on campus.

Graphics and Vision

Information and Data Management

The information and data management field focuses on basic problems of modeling and managing data and knowledge, and their relation with other fundamental areas of computer science, such as operating systems and networking, programming languages, and human-computer interface design.

A data management system embodies a collection of data, devices in which the data are stored, and logic or programs used to manipulate that data. Information management is a generalization of data management in which the “data” being stored are permitted to be arbitrarily complex data structures, such as rules and trees. In addition, information management goes beyond simple data manipulation and query, and includes inference mechanisms, explanation facilities, and support for distributed and web-based access.

The need for rapid, accurate information is pervasive in all aspects of modern life. Modern systems are based on the coordination and integration of multiple levels of data representation, from characteristics of storage devices to conceptual and abstract levels. As human enterprises have become more complex, involving more complicated decisions and trade-offs among decisions, the need for sophisti-
ated information and data management has become essential.

Software Systems
The programming languages and systems field is concerned with the study of theory and practice in the development of software systems. Well-engineered systems require appreciation of both principles and architectural trade-offs. Principles provide abstractions and rigor that lead to clean designs, while systems-level understanding is essential for effective design.

Principles here encompass the use of programming systems to achieve specified goals, the identification of useful programming abstractions or paradigms, the development of comprehensive models of software systems, and so forth. The thrust is to identify and clarify concepts that apply in many programming contexts.

Development of software systems requires an understanding of many methodological and architectural issues. The complex systems developed today rely on concepts and lessons that have been extracted from years of research on programming languages, operating systems, database systems, knowledge-based systems, real-time systems, and distributed and parallel systems.

Facilities
Departmental laboratory facilities for instruction and research include:

Artificial Intelligence Laboratories
Artificial Intelligence Laboratory
The Artificial Intelligence Laboratory is used for investigating knowledge representation systems, pattern recognition, expert systems, intelligent user agents, planning, problem solving, heuristic search, and related areas.

Cognitive Systems Laboratory
The Cognitive Systems Laboratory is used for studying systems that emulate human cognition, especially learning, planning, and reasoning under uncertainty. Topics include causal reasoning, knowledge discovery, knowledge compilation, physical systems diagnosis, and automated explanation. See http://singapore.cs.ucla.edu.

Collaborative Design Laboratory
The Collaborative Design Laboratory is used for investigating methods for effective computer support of small teams involved in design and research.

Computational System Biology Laboratories

Biocybernetics Laboratory
The Biocybernetics Laboratory emphasizes integrative, interdisciplinary computational biology and experimentation in life sciences, medicine, physiology, and pharmacology. Laboratory pedagogy involves development and exploitation of the synergistic and methodologic interface between modeling and laboratory data and experimentation, and integrated approaches for solving complex biosystem problems from sparse biodata. See http://biocyb.cs.ucla.edu.

Biomedical Engineering Laboratory
The Biomedical Engineering Laboratory was established jointly by HSSEAS and the School of Medicine to support courses and research projects in health care information systems, covering issues in user requirement specifications, image data processing and retrieval, feature abstraction, simulation and analysis, visualization, and systems integration.

Computational Cardiology Laboratory
The Computational Cardiology Laboratory is a computational laboratory for mathematical modeling and computer simulation of cardiac systems in normal and pathological conditions. The goals of laboratory researchers are two-fold: to find the mechanism of heart fibrillation, the main cause of sudden cardiac death; and to improve the efficiency of computer simulation by using parallel computer architecture with specially-developed numerical algorithms. All research is carried out in collaboration with the UCLA Cardiology Department.

Human/Computer Interface Laboratory
The Human/Computer Interface Laboratory focuses on the use of cognitive science concepts to design more reliable user-friendly interfaces with computer and communication systems and the modeling and visualization of scientific data. See http://www.cs.ucla.edu/hcip/.

Computer Graphics and Vision Laboratories

CIVS Center for Image and Vision Science
The Center for Image and Vision Science supports interdisciplinary research between the departments of Statistics and Computer Science in various aspects of visual modeling and inference. See http://civs.stat.ucla.edu/research.html.

W. M. Keck Laboratory for Computer Vision
The laboratory, sponsored by a grant from the W. M. Keck Foundation, hosts a variety of high-end equipment for vision research including a full 360-degree light dome, 3-D laser scanners, cameras, lights, lenses, mobile robots, and virtual reality setup to support vision research in the departments of Statistics, Computer Science, Psychology, and Neuroscience.

MAGIX: Modeling Animation and Graphics Laboratory
The MAGIX: Modeling Animation and Graphics Laboratory is used for research on computer graphics, especially targeted towards the video game and motion picture industries, with emphasis on geometric, physics-based, and artificial life modeling and animation, including motion capture techniques, biomechanical simulation, behavioral animation, and graphics applications of machine learning, AI, and robotics. See http://www.magix.ucla.edu.

UCLA Collective on Vision and Image Sciences

UCLA Vision Laboratory
The UCLA Vision Laboratory is used for computer vision research, in particular the processing of sensory information to retrieve mathematical models of the environment in order for machines to interact with it. Applications include shape analysis, visual motion analysis, visual recognition, 3-D reconstruction, and vision-based control (for instance, autonomous vehicle navigation). See http://vision.ucla.edu.

Computer Networks Laboratories

CENS Systems Laboratory
The CENS Systems Laboratory is used for research on the architectural challenges posed by massively distributed, large-scale, physically coupled, and usually untethered and small-form-factor computing systems. Through prototype implementations and simulation, such issues as data diffusion protocols, localization, time synchronization, low-power wireless communications, and self-configuration are explored. See http://lecs.cs.ucla.edu.
Computer Communications Laboratory
The Computer Communications Laboratory is used for investigating local-area networks, packet-switching networks, and packet-radio networks.

High-Performance Internet Laboratory
The High-Performance Internet Laboratory is used for investigating high-performance quality of service (QoS) techniques in the Internet, including QoS routing in Internet domains, QoS fault-tolerant multicast, TCP congestion control, and gigabit network measurements. See http://www.cs.ucla.edu/NRL/hpl/.

Internet Research Laboratory
The Internet Research Laboratory (IRL) is used for exploring the forefront of current Internet architecture and protocol development, including quantifying the dynamics in large-scale networks and securing large-scale systems such as the Internet routing infrastructure and Domain Name System (DNS). See http://iri.cs.ucla.edu.

Network Research Laboratory
The Network Research Laboratory is used for investigating wireless local-area networks (with specific interest in ad-hoc networks, vehicular networks, and personal-area networks) and the interaction between wired and wireless network layers, middleware, and applications. Activities include protocol development, protocol analysis and simulation, and wireless testbed experiments. See http://www.cs.ucla.edu/NRL/wireless/.

Computer Science Theory Laboratories
Center for Information and Computation Security (CICS)
The Center for Information and Computation Security (CICS) promotes all aspects of research and education in cryptography and computer security. See http://www.cs.ucla.edu/security/.

Theory Laboratory
The Theory Laboratory is used for developing theoretical foundations for all areas of computer science. Activities include fundamental research into algorithms, computational complexity, distributed computing, cryptography, hardware and software security, quantum computing, biological computing, machine learning, and computational geometry.

Computer Systems Architecture Laboratories
Concurrent Systems Laboratory
The Concurrent Systems Laboratory is used for investigating the design, implementation, and evaluation of computer systems that use state-of-the-art technology to achieve high performance and high reliability. Projects involve both software and hardware, and often focus on parallel and distributed systems in the context of general-purpose as well as embedded applications. See http://www.cs.ucla.edu/csd/research/labs/csl/.

Digital Arithmetic and Reconfigurable Architecture Laboratory
The Digital Arithmetic and Reconfigurable Architecture Laboratory is used for fast digital arithmetic (theory, algorithms, and design) and numerically intensive computing on reconfigurable hardware. Research includes floating-point arithmetic, online arithmetic, application-specific architectures, and design tools. See http://arithmetic.cs.ucla.edu

Embedded and Reconfigurable System Design Laboratory
The Embedded and Reconfigurable System Design Laboratory is used for studying reconfigurable cores in embedded systems that provide the required adaptability and reconfigurability, and the design and CAD aspects of low-power embedded systems. See http://er.cs.ucla.edu.

VLSI CAD Laboratory
The VLSI CAD Laboratory is used for computer-aided design of VLSI circuits and systems. Areas include high-level and logic-level synthesis, technology mapping, physical design, interconnect modeling and optimization of various VLSI technologies such as full-custom designs, standard cells, programmable logic devices (PLDs), multichip modules (MCMs), system-on-a-chip (SOCs), system-in-a-package (SiPs), and design for nanotechnologies. See http://cadlab.cs.ucla.edu.

Information and Data Management Laboratories
Data Mining Laboratory
The Data Mining Laboratory is used for extraction of patterns, anomalies, concepts, classification rules, and other forms of high-level relationships that are latent in large commercial and scientific databases. See http://dml.cs.ucla.edu/main.html.

Knowledge-Based Multimedia Medical Distributed Database Systems Laboratory
The Knowledge-Based Multimedia Medical Distributed Database Systems Laboratory is used for developing new methodologies to access multimedia (numeric, text, image/picture) data by content and feature rather than by artificial keys such as patient ID. See http://www.kmed.cs.ucla.edu.

Multimedia Stream System Laboratory
The Multimedia Stream System Laboratory is used for investigation and development of stream-based data model constructs and the corresponding querying facilities in response to the growing requirements of advanced multimedia database applications. See http://www.mmss.cs.ucla.edu.

Multimedia Laboratories
The Multimedia Laboratories is used for research on all aspects of multimedia: physical and logical modeling of multimedia objects, real-time delivery of continuous multimedia, operating systems and networking issues in multimedia systems, and development of multimedia courseware. See http://www.mmms.cs.ucla.edu.

UCLA Web Information Systems Laboratory
The UCLA Web Information Systems Laboratory is used for investigating Web-based information systems. The laboratory seeks to develop the enabling technology for such systems by integrating the Web with database systems. Current projects focus on the preservation and warehousing of XML and database information to support temporal queries on historical archives, and data systems management systems to support advanced queries and data mining applications on the massive streams of information that are continuously flowing through the Web. See http://wis.cs.ucla.edu.

Software Systems Laboratories
Compilers Laboratory
The Compilers Laboratory is used for research into compilers, embedded systems, and programming languages.

Distributed Simulation Laboratory
The Distributed Simulation Laboratory is used for research on operating system support and applications and utilization of special architectures such as the Intel Hypercube.
Laboratory for Advanced System Research
The Laboratory for Advanced System Research is used for developing advanced operating systems, distributed systems, and middleware and conducting research in systems security.

Parallel Computing Laboratory
The Parallel Computing Laboratory is used for research in scalable simulation, providing an efficient lightweight simulation language, as well as tools for large-scale parallel simulation on modern supercomputers. See http://pcl.cs.ucla.edu.

Software Systems Laboratory
The Software Systems Laboratory is used for research into the design, implementation, and evaluation of operating systems, networked systems, programming languages, and software engineering tools. Some of these research laboratories also provide support for upper division and/or graduate courses.

Computing Resources
In summarizing the resources now available to conduct experimentally based research in the UCLA Computer Science Department, it is useful to identify the major components of the research environment: the departmental computing facility, other hardware and software systems, administrative structure, and technical support staff.

Hardware
Computing facilities range from large campus-operated supercomputers to a major local network of servers and workstations that are administered by the department computing facilities (DCF) or school network (SEASnet). The departmental research network includes Sun servers and shared workstations, on the school’s own Ethernet TCP/IP local network. A wide variety of peripheral equipment is also part of the facility, and many more research-group workstations share the network; the total number of machines exceeds 700, the majority running the UNIX operating system. The network consists of switched 10/100/1000 ethernet to the desktop with a gigabit backbone connection. The department LAN is connected to the campus gigabit backbone. An 802.11g wireless network is also available to faculty, staff, and graduate students.

Administrative Structure
The central facilities and wide-area networking are operated by the campuswide Communications Technology Services. Access to the departmental and SEASNet machines is controlled so as to maximize the usefulness of these computers for education and research, but no direct charges are involved.

Technical Support Staff
The support staff consists of hardware and software specialists. The hardware laboratory supports network connections, configures routers, switches, and network monitoring tools. The software group administers the department UNIX servers, providing storage space and backup for department users.

Faculty Areas of Thesis Guidance

Professors
Rajive L. Bagrodia, Ph.D. (U. Texas, 1987)
Wireless networks, nomadic computing, parallel programming, performance evaluation of computer and communication systems
Alfonso F. Cardenas, Ph.D. (UCLA, 1969)
Database management, distributed heterogeneous and multimedia (text, image, picture, video, voice) systems, information systems planning and development methodologies, software engineering, medical informatics, legal and intellectual property issues
Tony F.C. Chan, Ph.D. (Stanford, 1978)
Image processing and computer vision, multilevel techniques for VLSI physical design, computational techniques for brain mapping
Wesley W. Chu, Ph.D. (Stanford, 1966)
Distributed computing, distributed database, memory management, computer communications, performance measurement and evaluation for distributed systems and multiaccess packet-switched systems
Jason (Jingsheng) Cong, Ph.D. (Illinois, 1990)
Computer-aided design of VLSI circuits, fault-tolerant design of VLSI systems, design and analysis of algorithms, computer architecture, reconfigurable computing, design for nanotechnologies
Adnan Y. Darwiche, Ph.D. (Stanford, 1993)
Knowledge representation and automated reasoning (symbolic and probabilistic), applications to diagnosis, prediction, planning, and verification
Joseph J. DiStefano III, Ph.D. (UCLA, 1966)
Biocybernetics; computational systems biology; dynamic biosystems modeling, simulation, clinical therapy and experiment design optimization methodologies; pharmacokinetic (PK), pharmacodynamic (PD), and physiologically-based PK (PBPK) modeling; knowledge-based (expert) systems for life science research
Michael G. Dyer, Ph.D. (Yale, 1982)
Artificial intelligence; natural language processing, connectionist, cognitive, and animal modeling
Milos D. Ercegovac, Ph.D. (Illinois, 1975)
Application-specific architectures, digital computer arithmetic, digital design, low-power systems, reconfigurable systems
Deborah L. Estrin, Ph.D. (MIT, 1985)
Sensor networks, embedded network sensing, environmental monitoring, computer networks
Eliezer M. Gafni, Ph.D. (MIT, 1982)
Computer communication, networks, mathematical programming algorithms
Mario Gerla, Ph.D. (UCLA, 1973)
Wireless ad-hoc networks; MAC, routing and transport protocols, vehicular communications, peer-to-peer mobile networks, personal-area networks (Bluetooth and Zigbee), underwater sensor networks, Internet transport protocols (TCP, streaming), Internet path characterization, capacity and bandwidth estimates, analytic and simulation models for network and protocol performance evaluation
Sheila A. Greibach, Ph.D. (Harvard, 1963)
Theoretical computer science, computational complexity, program schemes and semantics, formal languages, automata, computability
Problem solving, heuristic search, planning in artificial intelligence
Multimedia systems, database systems, data mining
*Rafael Ostrovsky, Ph.D. (MIT, 1992)
Theoretical computer science algorithms, cryptography, complexity theory, randomization, network protocols, geometric algorithms, data mining
Stanley J. Osher, Ph.D. (NYU, 1966)
Scientific computing and applied mathematics
Jens Palsberg, Ph.D. (Aarhus U., Denmark, 1992)
Compilers, embedded systems, programming languages
D. Stott Parker, Jr., Ph.D. (Illinois, 1978)
Data mining, information modeling, scientific computing, bioinformatics, database and knowledge-based systems
Modrag Potkonjak, Ph.D. (UC Berkeley, 1991)
Computer-aided analysis and synthesis of system level designs, behavioral synthesis, and interaction between high-performance application-specific computations and communications
Majid Sarrafzadeh, Ph.D. (Illinois, 1987)
Computer engineering, embedded systems, VLSI CAD, algorithms
Stefano Soatto, Ph.D. (Cal Tech, 1996)
Computer vision; shape analysis, motion analysis, texture analysis, 3-D reconstruction, vision-based control; computer graphics; image-based modeling and rendering; medical imaging; registration, segmentation, statistical shape analysis; autonomous systems; sensor-based control, planning non-linear filtering; human-computer interaction: vision-based interfaces, visibility, visualization
Mani B. Srivastava, Ph.D. (UC Berkeley, 1992)
Energy aware networking and computing, embedded networking, embedded low-power wireless systems and applications of wireless and embedded technology
Demetri Terzopoulos, Ph.D. (MIT, 1984)
Computer graphics, computer vision, medical image analysis, computer-aided design, artificial intelligence
Alan L. Yuille, Ph.D. (Cambridge University, 1986)
Computer vision, computational models of cognition, machine learning
Carlo Zaniolo, Ph.D. (UCLA, 1976)
Knowledge bases and deductive databases, parallel execution of PROLOG programs, formal software specifications, distributed systems, artificial intelligence, and computational biology

* Also Professor of Medicine
† Also Professor of Mathematics
Lixia Zhang, Ph.D. (MIT, 1989)
Computer network, Internet architecture, protocol designs, security and resiliency of large-scale systems

Song Chun Zhu, Ph.D. (Harvard, 1996)
Computer vision, statistical modeling and computing, vision and visual arts, machine learning

Professors Emeriti
Aligdis A. Avizienis, Ph.D. (Illinois, 1960)
Digital computer architecture and design, fault-tolerant computing, digital arithmetic
Bertram Russel, Ph.D. (UCLA, 1962)
Computer systems architecture, interactive computer graphics
Jack W. Carlyle, Ph.D. (UC Berkeley, 1961)
Communication, computation theory and practice, algorithms and complexity, discrete system theory, developmental and probabilistic systems
Gerald Estrin, Ph.D. (Wisconsin, 1951)
Computer systems architecture, methodology and supporting tools for design of concurrent systems, automating design teamwork, restructurable architectures
Thelma Estrin, Ph.D. (Wisconsin, 1951)
Biomedical engineering, application of technology and computers to health care, computer methods in neuroscience, engineering education
Leonard Kleinrock, Ph.D. (MIT, 1963)
Computer networks, computer-communication systems, resource sharing and allocation, computer systems modeling analysis and design, queuing systems theory and applications, performance evaluation of congestion-prone systems, performance evaluation and design of distributed multiaccess packet-switching systems, wireless networks, mobile computing, nomadic computing, and distributed and parallel processing systems
Allen Klein, Ph.D. (UC Berkeley, 1986)
Pattern recognition, picture processing, biomedical applications, mathematical modeling
Lawrence P. McNamee, Ph.D. (Pittsburgh, 1964)
Computer graphics, discrete simulation, digital filtering, computer-aided design, LSI fabrication techniques, printed circuit board design
Michael A. Melkanoff, Ph.D. (UCLA, 1965)
Programming languages, data structures, database design, relational models, simulation systems, robotics, computer-aided design and manufacturing, numerical- and symbolic-computer-aided design, printed circuit board design
Judea Pearl, Ph.D. (Polytechnic Institute of Brooklyn, 1965)
Artificial intelligence, philosophy of science, reasoning under uncertainty, causal inference, causal and counterfactual analysis
David A. Rennels, Ph.D. (UCLA, 1973)
Digital computer architecture and design, fault-tolerant computing, digital arithmetic

Information processing in biological systems, with emphasis on neuroscience, cybernetics, online laboratory computer systems, and pattern recognition, analog and hybrid systems/ signal processing

Associate Professors
Junghoo (John) Cho, Ph.D. (Stanford, 2002)
Databases, web technologies, information discovery and integration
Songwu Lu, Ph.D. (Illinois, 1999)
Integrated-service support over heterogeneous networks, e.g. mobile computing environments, Internet and Active network: networking and computing, wireless communications and networks, computer communication networks, dynamic game theory, dynamic systems, neural networks, and information economics
Amir Sahai, Ph.D. (MIT, 2000)
Theoretical computer science, cryptography, computer security, algorithms, error-correcting codes and learning theory
Yuvat Tamir, Ph.D. (UC Berkeley, 1985)
Computer systems, computer architecture, software systems, parallel and distributed systems, dependable systems, cluster computing, reliable network services, interconnection networks and switches, multi-core architectures, reconfigurable systems
Song-Chun Zhu, Ph.D. (Harvard, 1996)
Computer vision, statistical modeling and computing, vision and visual arts

Assistant Professors
Eleazar Eskin, Ph.D. (Columbia, 2002)
Bioinformatics, genetics, genomics, machine learning
Petros Faloutsos, Ph.D. (Toronto, 2002)
Computer graphics, computer animation
Edward Kohler, Ph.D. (MIT, 2001)
Operating systems, software systems, programming languages and systems, networking systems
Adam W. Meyerson, Ph.D. (Stanford, 2002)
Approximation algorithms, randomized algorithms, online algorithms, theoretical problems in networks and databases
Rupak Majumdar, Ph.D. (UC Berkeley, 2003)
Computer-aided verification of hardware and software systems; logic and automata theory; embedded, hybrid, and probabilistic systems
Programming language design, static type systems, formal methods, software model checking, compiler Techniques
Glenn D. Reinman, Ph.D. (UC San Diego, 2001)
Microprocessor architecture, exploitation of instruction/thread/memory-level parallelism, power-efficient design, hardware/software co-design, multicore and multiprocessor design

Senior Lecturer
Leon Levine, M.S. (MIT, 1949), Emeritus
Computer methodology

Lecturers P.S.O.E.
Paul R. Eggert, Ph.D. (UCLA, 1980)
Programming languages, programming systems principles, compilers, Internet
David A. Smallberg, M.S. (UCLA, 1998)
Programming languages, software development

Adjunct Professors
Boris Kogan, Ph.D. (Moscow, Russia, 1962)
Mathematical modeling and computer simulation (using parallel supercomputers) of dynamic processor in excitable biological systems, particularly mechanisms of heart arrhythmias, fibrillation and defibrillation
M. Yahya “Medy” Sanadidi, Ph.D. (UCLA, 1982)
Computer networking, path characteristics estimation and applications in flow control, adaptive streaming and overlay design, probability models of computing systems, algorithms and networks

Adjunct Associate Professor
Peter L. Reiher, Ph.D. (UCLA, 1987)
Computer and network security, ubiquitous computing, file systems, distributed systems

Lower Division Courses

1. Freshman Computer Science Seminar. (1)
Seminar, one hour; discussion, one hour. Introduction to departmental resources and principal topics and key ideas in computer science and computer engineering. Assignments given to bolster independent study and writing skills. Letter grading.

Mr. Cong (F)

2. Great Ideas in Computer Science. (4) Lecture, four hours; outside study, eight hours. Broad coverage of liberal arts and social sciences students of computer science theory, technology, and implications, including artificial and neural machine intelligence, computability limits, virtual reality, cellular automata, artificial life, programming languages survey, and philosophical and societal implications. P/NP or letter grading.

Mr. Dyer (Sp)

19. Fiat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance taught by the faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

31. Introduction to Computer Science I. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Introduction to object-oriented software development. Functions, recursion, Arrays, strings, pointers. Abstract data types, object-oriented programming. Examples and exercises from computer science theory and applications. Letter grading.

Mr. Palsberg, Mr. Smallberg (F,W,Sp)

Mr. Palsberg, Mr. Smallberg (W,Sp)

33. Introduction to Computer Organization. (5) Lecture, four hours; discussion, two hours; outside study, nine hours. Enforced prerequisite: course 32. Introduction to course on computer architecture, assembly language, and operating systems fundamentals. Number systems, machine language, and assembly language. Procedure calls, stacks, interrupts, and traps. Assemblers, linkers, and loaders. Operating systems concepts: processes and process management, input/output (I/O) programming, memory management, file systems. Letter grading.

Mr. Palsberg, Mr. Smallberg (F,Sp)

35L. Software Construction Laboratory. (2) Formerly numbered 35.) Laboratory, four hours; outside study, two hours. Corequisite: course 31. Fundamentals of common user-level systems environments, particularly open-source tools to be used in upper division computer science courses. Letter grading.

Mr. Eggert, Mr. Palsberg (F,W,Sp)

MS1A. Logic Design of Digital Systems. (4) Same as Electrical Engineering M16.) Lecture, four hours; discussion; two hours; outside study, six hours. Introduction to digital systems. Specification and implementation of combinational and sequential systems. Standard logic modules and programmable logic arrays. Specification and implementation of algorithmic systems: data and control sections. Number systems and arithmetic algorithms. Error control codes for digital information. Letter grading.

Mr. Ereogovac, Mr. Potoknjak (F,W,Sp)

97. Variable Topics in Computer Science. (1 to 4) Lecture, one to four hours; discussion, zero to two hours. Designed for freshmen/sophomores. Variable topics in computer science not covered in regular computer science courses. May be repeated once for credit with topic or instructor change. Letter grading.

Mr. Smallberg
Upper Division Courses

101. Upper Division Computer Science Seminar. (1) Seminar; one hour; discussion, one hour. Introduction to current research, trends, emerging areas, and contemporary issues in computer science and engineering. Assignments given to bolster independent study and writing skills. Letter grading.

Mr. Ercogevac (Sp)

Mr. Eggert, Mr. Kohler (F.W.Sp)

112. Computer System Modeling Fundamentals. (4) Lecture, four hours; outside study, eight hours. Requisite: Statistics 110A. Designed for juniors/seniors. Probability, stochastic processes, applied in computer science. Basic methodological tools include random variables, conditional probability, expectation and higher moments, Bayes theorem; Markov chains. Applications include probabilistic algorithms, evidential reasoning, analysis of algorithms and data structures, reliability, communication protocols and queuing models. Letter grading.

Mr. Muntz (W)

113. Introduction to Distributed Embedded Systems. (4) Lecture, four hours; laboratory, four hours; outside study, four hours. Requisites: courses 111, 118. Introduction to basic concepts needed to understand and implement wireless distributed embedded systems. Topics include design implications of energy and otherwise resource-constrained nodes, network self-configuration and adaptation, localization and time synchronization, applications, and usage issues such as human interfaces, safety, and security. Heavily project based. Letter grading.

Ms. Estrin

M117. Computer Networks: Physical Layer. (4) Formerly numbered 117.) (Same as Electrical Engineering M117.) Lecture, four hours; discussion, four hours; outside study, 10 hours. Not open to students with credit for course M171L. Introduction to fundamental data communication concepts underlying and supporting modern networks, with focus on physical and media access layers of network protocol stack. Systems include high-speed LANs (e.g., fast and gigabit Ethernet), optical DWDM (dense wavelength division multiplexing), time division SONET networks, wireless LANs (IEEE802.11), and ad hoc wireless and personal area networks (e.g., Bluetooth). Experimental laboratory sessions included. Letter grading.

Mr. Gerla (W)

118. Computer Network Fundamentals. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 32, 33, 35L. Designed for juniors/seniors. Introduction to design and performance evaluation of computer networks, including such topics as what protocols are, layered network architecture, Internet protocol architecture, network applications, transport protocols, routing algorithms and protocols, internetworking, congestion control, and link layer protocols including Ethernet and wireless channels. Letter grading.

Mr. Gerla, Ms. Zhang (F.W.Sp)

CM121. Introduction to Bioinformatics. (4) (Same as Chemistry CM160A.) Lecture, three hours; discussion, one hour. Course 180 or Program in Computing 60 with grade of C- or better, and Biostatistics 100A or 110A or Mathematics 170A or Statistics 100A or 110A. Introduction to bioinformatics and methodologies, with emphasis on concepts and techniques involving new bioinformatics tools. Focus on sequence analysis and alignment algorithms. Concurrently scheduled with course CM221. P/NP or letter grading.

Mr. Eskin (F)

CM124. Computational Genomics. (4) (Same as Human Genetics CM124.) Lecture, three hours; discussion, one hour; outside study, eight hours. Preparation: one statistics course and familiarity with any programming language. Requisite: course 118 or 35L. Designed for undergraduate students, as well as students from biological sciences and medical school. Introduction to current quantitative understanding of human genetics and computational interdisciplinary research in genetics. Topics include introduction to genetics, human population history, linkage analysis, association analysis, association study design, isolated and admixed populations, population substructure, human structural variation, model organisms, and genotyping technologies. Computational techniques include those from statistics and computer science. Concurrently scheduled with course CM224. Letter grading.

Mr. Eskin (Sp)

130. Software Engineering. (4) Lecture, four hours; laboratory, two hours; outside study, six hours. Requisites: courses 32, 35L. Recommended: Engineering 183 or 185. Structured programming, program specification, program proving, modularity, abstract data types, composite design, software tools, software control systems, program testing, team programming. Letter grading.

Mr. Eggert, Mr. Majumdar (W.Sp)

131. Programming Languages. (4) Lecture, four hours; laboratory, two hours; outside study, six hours. Requisites: courses 32, 35L, 111, 118. Introduction to modern language concepts in design and use of programming languages, including abstraction, modularity, control mechanisms, types, declarations, syntax, and semantics. Study of several different language paradigms, including functional, object-oriented, and logic programming. Letter grading.

Mr. Eggert, Mr. Millstein (F.W.Sp)

132. Compiler Construction. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 32, 35L, 111, 118. Compiler: lexical and syntactic analysis; semantic analysis and code generation; theory of parsing. Letter grading.

Mr. Eggert, Mr. Palsberg (W.Sp)

133. Parallel and Distributed Computing. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 111 may be taken concurrently. 131. Distributed memory and shared memory parallel architectures; asynchronous parallel languages: MPI; Maise; primitives for parallel computation; specification of parallelism, interprocess communication and synchronization; design of parallel programs for scientific computation and distributed systems. Letter grading.

Mr. Bagrodia (F)

136. Introduction to Computer Security. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 111, 118. Introduction to basic concepts of information security necessary for students to understand risks and mitigations associated with protection of systems and data. Topics include security models and architectures, security threats and risk analysis, access control and authentication, cryptography, network security, secure application design, and ethics and law. Letter grading.

Mr. Eggert, Mr. Reiher

Mr. Cardenas, Mr. Zanio (F.W)

144. Web Applications. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 32, 33, and 35L. Enforced requisite: course 143. Important concepts and theory for building effective and safe Web applications and first-hand experience with basic tools. Topics: HTML, Java, basic Web architecture and protocol, XML, and XML query language, mapping between XML and relational models, information retrieval model and theory, security and user model, Web services and distributed transactions. Letter grading.

Mr. Cho (W)

M151B. Computer Systems Architecture. (4) (Same as Electrical Engineering M116C.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 33, and 35L or Electrical Engineering M116. Recommended: courses 111, and M151A or Electrical Engineering M116L. Computer system organization and design, implementation of CPU datapath and control, instruction set design, memory hierarchy (caches, main memory, virtual memory) organization and management, input/output subsystems (bus structures, interrupts, DMA), performance evaluation, pipeline processors, operating systems. Letter grading.

Mr. Reinman, Mr. Tamir (F,W,Sp)

Mr. Ercogevac (W, odd years)

M152A. Introductory Digital Laboratory Design. (2) (Same as Electrical Engineering M118L.) Laboratory, four hours; outside study, two hours. Requisite: course M51A or Electrical Engineering M116. Hands-on design, implementation, and debugging of digital logic circuits, use of computer-aided design tools for sequential and combinational logic synthesis and simulation, implementation of complex circuits using programmed array logic, design projects. Letter grading.

Mr. Sarratzadeh (F.W,Sp)

152B. Digital Design Project Laboratory. (4) Formerly numbered M152B.) Laboratory, four hours; discussion, two hours; outside study, six hours. Requisite: course M151B or Electrical Engineering M116C. Design and implementation of complex digital sub-systems using field-programmable gate arrays (e.g., processors, special-purpose processing, device controllers, and input/output interfaces). Students work in teams to develop and implement designs and to document and give oral presentations of their work. Letter grading.

Mr. Sarratzadeh (F.W,Sp)

161. Fundamentals of Artificial Intelligence. (4) Lecture, four hours; laboratory, two hours; outside study, six hours. Requisites: courses 32, 116. Introduction to fundamental problem solving and knowledge representation paradigms of artificial intelligence. Introduction to Lisp with regular programming assignments. Search-space and problem reduction methods, brute-force and heuristic search, planning techniques, two-player games. Knowledge structures including predicate logic, production systems, semantic nets and primitives, frames, scripts, and other formalisms in natural language processing, expert systems, vision, and parallel architectures. Letter grading.

Mr. Danilewicz, Mr. Korf (F,W,Sp)
180. Introduction to Algorithms and Complexity. (4) Lecture, four hours; discussion, two hours. Requisite: course 32, and Mathematics 61 or 180. Designed for junior/senior Computer Science majors. Introduction to design and analysis of algorithms. Design techniques: divide-and-conquer; greedy method; dynamic programming; selection of prototypical algorithms; choice of data structures and representations; complexity measures: time, space, upper, lower bounds, asymptotic complexity; NP-completeness. Letter grading. Mr. Galtni, Mr. Meyerson (F,W,Sp)

181. Introduction to Formal Languages and Automata Theory. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 32, and Mathematics 61 or 180. Designed for junior/senior Computer Science majors. Grammars, automata, and languages. Finite-state languages and finite-state automata. Context-free languages and pushdown store automata. Unrestricted rewriting systems, recursively enumerable and recursive languages, and Turing machines. Closure properties, pumping lemmas, and decision algorithms. Introduction to computability. Letter grading. Ms. Greibach, Mr. Ostrovsky, Mr. Sahai (F,W,Sp)

183. Introduction to Cryptography. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 180. Introduction to cryptography, computer security, and basic concepts and techniques. Topics include notions of hardness, one-way functions, pseudorandom functions, one-time pads, semantic security, public-key and private-key encryption, key agreement, homomorphic encryption, identification, digital signatures, message authentication, and zero-knowledge proofs. Letter grading.

CM186C. Biomodeling Research and Research Communication Workshop. (2 to 4) (Formerly numbered CM186L.) (Same as Biomedical Engineering CM186C and Computational and Systems Biology M186C.) Lecture, one hour; discussion, two hours; laboratory, one hour; outside study, eight hours. Requisite: course CM186B. Closely directed, interactive, and real research experience in active quantitative systems biology research laboratory. Direction on how to focus on topics of current interest in scientific community, appropriate to student interests and capabilities. Criteria of oral presentations and written progress reports explain how to proceed with search for research results. Major emphasis on effective research reporting, both oral and written. Concurrently scheduled with course CM186B. Letter grading. Mr. DiStefano (Sp)

188. Special Courses in Computer Science. (4) Lecture, four hours; outside study, eight hours. Special topics in computer science for undergraduate students that are taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated once for credit with topic or instructor change. Letter grading.

194. Research Group Seminars: Computer Science. (4) Seminar, four hours; outside study, eight hours. Designed for undergraduate students who are part of research group. Discussion of research methods and current literature in field or research of faculty members or students. May be repeated for credit. Letter grading.

199. Directed Research in Computer Science. (2 to 8) Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation under guidance of faculty mentor. Culminating paper or project required. May be repeated for credit with school approval. Individual contract required; enrollment petition available in Office of Academic and Student Affairs. Letter grading.

Graduate Courses

201. Computer Science Seminar. (2) Seminar, four hours; outside study, two hours. Designed for graduate computer science students. Seminars on current research topics in computer science. May be repeated for credit. S/U grading. Mr. Lu

202. Advanced Computer Science Seminar. (4) Seminar, four hours; outside study, eight hours. Preparation: completion of major field examination in computer science. Current computer science research issues of significance, analysis and presentation of research results, identification of open problems. Emphasis on effective research reporting, both oral and written. Letter grading.

211. Network Protocol and Systems Software Design for Wireless and Mobile Internet. (4) Lecture, four hours; outside study, eight hours. Requisite: course 118. Designed for graduate students. In-depth study of network protocol and systems software design in area of wireless and mobile Internet. Topics include (1) networking fundamentals: design philosophy of TCP/IP, end-to-end arguments, and protocol design principles, (2) networking protocols: 802.11 MAC standard, packet scheduling, mobile IP, ad hoc routing, and wireless TCP; (3) mobile computing systems software: middleware, file system, services, and applications, and (4) topical studies: energy-efficient design, security, location management, and quality of service. Letter grading. Mr. Lu

Mr. Geria (W)

212B. Queueing Applications: Scheduling Algorithms and Queueing Networks. (4) Lecture, four hours; outside study, eight hours. Requisite: course 212A. Priority queueing. Applications to time-sharing scheduling algorithms: FB, Round Robin, Conservation Law, Bounds. Queueing networks: definitions; job flow balance; product form solutions; local balance. M/M/1, M/G/1, M/G/k. Performance analysis; modem designs; physical in- termediate queueing theory: M/G/1, G/M/m. Collective marks. Advanced queueing theory: G/G/1, Lindley integral equation; spectral solution. Inequalities, bounds, approximations. Letter grading.

Mr. Pottman (F)

M213A. Tribune. (4) Formerly numbered 213B. (Same as Electrical Engineering M202A.) Lecture, four hours; outside study, eight hours. Requisite: course 111. Designed for graduate computer engineers. Material taken from literature. Methodologies and technologies for design of embedded systems. Topics include hardware and software platforms for embedded systems, techniques for formal verification of hardware behavior, software organization, real-time operating system scheduling, real-time communication and packet scheduling, low-power battery and energy-aware system design, timing synchronization, fault tolerance and debugging, and techniques for hard- ware and software architecture optimization. Theoret- ical foundations as well as practical design methods.

Letter grading.

Mr. Muntz (F)

213B. Distributed Embedded Systems. (4) (Same as Electrical Engineering M202B.) Lecture, four hours; outside study, eight hours. Requisites: courses 111, and 118 or Electrical Engineering 132B. Designed for graduate computer science and electri- cal engineering students. Interdisciplinary course with focus on study of distributed embedded systems concepts needed to realize systems such as wireless sensor and actuator networks for monitoring and control of physical world. Topics include network self- configuration with localization and timing synchroni- zation; energy-aware system design and operation; protocols for MAC, routing, transport, disruption toler- ance; programming issues and models with lan- guage, OS, database, and middleware; in-network collaborative processing; fundamental characteristics such as coverage, connectivity, capacity, latency; techniques for exploitation and management of actu- ation and mobility; data and system integrity issues with calibration, faults, debugging, and security; and usage issues such as human interfaces and safe- ty measures; asymptotic behavior and bounds; approximation techniques — diffusion — iterative algorithms; application. Letter grading.

Ms. Zhang (F)

217A. Internet Architecture and Protocols. (4) Lecture, four hours; outside study, eight hours. Requisite: course 111. Focus on mastering core set of Internet protocols, including IP, core transport protocols, routing protocols, DNS, NTP, and security protocols such as SSL, TLS. Understanding and principles behind these design of protocols, appreciate their de- sign tradeoffs, and learn lessons from their opera- tions. Letter grading.

Mr. Kleinrock

217B. Advanced Topics in Internet Research. (4) (Formerly numbered 217.) Lecture, four hours; outside study, eight hours. Requisite: course 217A. Advanced topics in Internet protocols. Understanding of Internet development history and fundamental principles de- pending TCP/IP protocol design. Discussion of cur- rent Internet research topics, including latest re- search results in routing protocols, transport protoco- ls, network protocols, network security, network management, protocols, and clean-slate approach to network archi- tecture design. Fundamental issues in network proto- col design and implementations. Letter grading.

Ms. Zhang

218. Advanced Computer Networks. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 112, 118. Review of seven-layer ISO-OSI model. High-speed networks: LANs, MANs, ATM, Fiber optics; implementation of variety of type systems, as well as readings from recent research literature on modern applications of type systems. Letter grading.

Mr. Eskin (Sp)

CM224. Computational Genetics. (4) (Same as Human Genetics CM224.) Lecture, three hours; dis- cussion, one hour; outside study, eight hours. Prepa- ration: calculus, statistics course in any programming language. Designed for undergraduate and graduate engineering students, as well as stu- dents from biological sciences and medical school. Introduction to current quantitative understanding of human genetics and computational interdisciplinary research in genetics. Topics include introduction to genetics, human population history, linkage analysis, association analysis, association study design, isolat- ed and admixed populations, population substruct- ture, human structural variation, model organisms, and genotyping technologies. Computational tech- niques include those from statistics and computer science. Concurrently scheduled with course CM124. Letter grading.

Mr. Eskin (Sp)

M229S. Seminar: Current Topics in Bioinformat- ics. (4) Lecture, four hours; outside study, eight hours. Designed for graduate engineering students, as well as stu- dents from biological sciences and medical school. Introduction to current topics in bioinformatics, ge- nomics, and computational genetics and preparation for computational interdisciplinary research in genet- ics and genomics. Topics include genome analysis, regulatory genomics, association analysis, association study design, isolated and admixed populations, population substructure, human structural variation, model organisms, and genomic technologies. Com- putational techniques include those from statistics and computer science. May be repeated for credit with topic change. Letter grading.

Mr. Eskin

230A. Models of Information and Computation. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 131, 131, Paradigms, models, frameworks, and problem solving; UML and meta- modeling; basic information and computation mod- els; axiomatic systems; domain theory; least fixed points, well-founded trees, operational models: sentences, axioms and rules, normal forms, deriva- tion and proof, models and semantics, propositional logic, first-order logic, logic programming. Functional models: expressions, equational, evaluation combi- nators; lambda calculus; functional programming. Program models: program derivation and verification using Hoare logic, object models, standard tem- plates, design patterns, frameworks. Letter grading.

Mr. Bagrodia, Mr. Parker, Mr. Zaniolo

231. Types and Programming Languages. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Requisite: course 131. Introduction to modern type systems and type-theoretic program- ming language design and software reliability. Opera- tional semantics, simply-typed lambda calculus, type soundness proofs, types for mutable references, type and value polymorphism. Lambda calculus, let- bound polymorphism, polytypic type inference. Types for objects, subtyping, combining parametric polymorphism and subtyping. Types for modules, parameters, algebra of types, implementation of type expressions. Forming and evaluation of type expressions. Letter grading.

Mr. Palsberg (F)
233A. Parallel Programming. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 111, 131. Mutual exclusion and resource allocation in distributed systems; primitives for parallel computation: specification of parallelism, interprocess communication, and synchronization; atomic actions, binary and multitype rendezvous; synchronous and asynchronous languages: CSP, Ada, Linda, Vassia, and UC; and others; introduction to parallel program verification. Letter grading. Mr. Bagrodia

233B. Verification of Concurrent Programs. (4) Lecture, four hours; outside study, eight hours. Requisite: course 233A. Formal techniques for verification of concurrent programs. Topics include safety, liveness, program and state assertion-based techniques, weak and strong fairness, Hoare logic, temporal logic, UNITY, and axiomatic semantics for selected parallel languages. Letter grading. Mr. Bagrodia

234. Computer-Aided Verification. (4) Lecture, four hours. Requisite: course 181. Introduction to theory and practice of formal methods for design and analysis of concurrent and embedded systems, with focus on algorithmic techniques for checking logical properties of hardware and software systems. Topics include automatic algorithms and systems, invariant verification, temporal logic model checking, theory of omega automata, state-space reduction techniques, compositional and hierarchical reasoning. Letter grading. Mr. Tarr

235. Advanced Operating Systems. (4) Lecture, four hours. Preparation: C or C++ programming experience. Requisite: course 111. In-depth investigation of operating systems issues through guided construction of research operating systems for PC machines and consideration of recent literature. Memory management and protection, interrupts and traps, process communication, preemptive multitasking, file systems. Virtualization, networking, profiling, research operating systems. Series of laboratory projects, including extra challenge work. Letter grading. Mr. Kuhlmann

236. Computer Security. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 111, 118. Basic and research material on computer security. Topics include basic principles and goals of computer security, common security tools, use of cryptographic protocols for security, security tools (firewalls, virtual private networks, honeypots), viruses and worm protection, security assurance and testing, design of secure software systems, security implications of real-world problems, and new and emerging threats and security tools. Letter grading. Mr. Palisberg, Mr. Reifer

239. Current Topics in Computer Science: Program Languages and Systems. (2 to 12) Lecture, four hours; outside study, eight hours. Review of current literature in an area of computer science programming languages and systems in which instructor has developed special proficiency as a consequence of research interests. May be repeated for credit with topic change. Letter grading.

240A. Databases and Knowledge Bases. (4) Lecture, four hours; outside study, eight hours. Requisite: course 143. Theoretical and technological foundation of Intelligent Database Systems, which merge database technology, knowledge-based systems, and advanced programming environments. Rule-based language knowledge representation, spatio-temporal reasoning, and logic-based declarative querying/programming are salient features of this technology. Other topics include object-relational systems and function mining techniques. Letter grading. Mr. Zaniolo (W)

240B. Advanced Data and Knowledge Bases. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 143, 240A. Logical models for data and knowledge representation, Rule-based languages and nonmonotonic reasoning. Temporal queries, spatial queries, and uncertainty in deductive databases and object relational databases (ORDBs). Abstract data types and user-defined column functions in ORDBs. Data mining algorithms. Semistructured data. Letter grading. Mr. Parker, Mr. Zaniolo

241B. Pictorial and Multimedia Database Management. (4) Lecture, three and one-half hours; discussion, three hours; laboratory, one hour; outside study, seven hours. Required: course 143. Multimedia database systems architecture and functional composition. Image and audio content. Querying, visual languages, and communication. Database design and organization, logical and physical. Indexing methods. Internet multimedia streaming. Other topics at discretion of instructor. Letter grading. Mr. Cardenas

244A. Distributed Database Systems. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 215 and/or 241A. File allocation, directory design, transaction management techniques, strong and weak concurrency control, commit protocols, semantic query answering, multibase database systems, fault-tolerance techniques, network partitioning, examples, trade-offs, and design experiences. Letter grading. Mr. Chu (W)

245A. Intelligent Information Systems. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 241A, 255A. Knowledge discovery in database, knowledge-base maintenance, knowledge-base and database integration architectures, and scale-up issues and applications to cooperative database systems. Examples, trade-offs, and design experiences. Letter grading. Mr. Chu (W)

246. Web Information Management. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 112, 143, 180, 181. Designed for graduate students. Scale of Web data requires novel algorithmic principles and their management and retrieval. Study of Web characteristics and new management techniques needed to build computer systems suitable for Web environment. Topics include Web measurement techniques, large-scale data mining algorithms, efficient page refresh techniques, Web search ranking algorithms, and query processing techniques on independent data sources. Letter grading. Mr. Cho (W)

249. Current Topics in Data Structures. (2 to 12) Lecture, four hours; outside study, eight hours. Review of current literature in an area of data structures in which instructor has developed special proficiency as a consequence of research interests. Students report on selected topics. May be repeated for credit with consent of instructor. Letter grading.

251A. Advanced Computer Architecture. (4) Lecture, four hours; outside study, eight hours. Requisite: course M151B. Recommended: course 111. Design and implementation of high-performance systems, advanced memory hierarchy techniques, static and dynamic pipelining, superscalar and VLIW processors, branch prediction, speculative execution, software support for instruction-level parallelism, simulation-based performance analysis and evaluation, state-of-the-art design challenges, introduction to parallel architectures. Letter grading. Mr. Ercegovac, Mr. Tamir

251B. Parallel Computer Architectures. (4) Lecture, four hours; outside study, eight hours. Requisite: course M151B. Recommended: course 251A. SIMD and MIMD systems, vector parallelism, distributed-shared-memory systems, messages-passing systems, multicores chips, clusters, interconnection networks, host-network interfaces, switching element design, communication primitives, cache coherence, memory consistency models, synchronization primitives, state-of-art design examples. Letter grading.

252C. Testing and Testable Design of VLSI Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course M51A. Detailed study of various problems in testing and testable designs of VLSI systems, including fault modeling, fault simulation, testing for single stuck faults and multiple stuck faults, functional testing, design for testability, compression techniques, and built-in self-test. Letter grading. Mr. Cong

254A. Computer Memories and Memory Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 251A. Generic types of memory systems; control, access modes, hierarchies, and location algorithms. Characteristics, system organization, and device considerations of ferro memory, thin film memories, and semiconductor memories. Letter grading. Mr. Chu

255A. Distributed Processing Systems. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 215 and/or 251A. Task partitioning and allocation, interprocess communications, task response time model, parallelism, message passing protocols, replicated file systems, interface, cache memory, actor model, fine grain multiprocessors, distributed operating system kernel, error recovery strategy, performance monitoring and measurement, scalability and maintainability, prototypes and commercial distributed systems. Letter grading. Mr. Chu

256A. Advanced Scalable Architectures. (4) Lecture, four hours; outside study, eight hours. Requisite: course M151B. Recommended: course 251A. State-of-art scalable multiprocessors. Interdependence among representation, compilation, parallel microarchitectures, and system architecture. High-performance building blocks, such as chip multiprocessors (CMPs). On-chip and off-chip communication. Mechanizations exploited by hardware and software. Current research areas. Examples of chips and systems. Letter grading. Mr. Tamir

259A. Design of VLSI Circuits and Systems. (4) (Same as Electrical Engineering M216A.) Lecture, four hours; discussion, one hour. Laboratory, four hours; outside study, three hours. Requisites: courses M51A or Electrical Engineering M16, and Electrical Engineering M115A. Recommended: Electrical Engineering M115C. LSI/VLSI design and application in computer systems. Fundamental design techniques that can be used to implement complex integrated systems on a chip. Letter grading.

262C. Causal Inference. (4) Same as Statistics M241. Lecture, four hours; outside study, eight hours. Requisite: course 161 or 263A. Examination of both symbolic and statistical approaches to language processing and acquisition. Letter grading. Mr. Dyer

263A. Language and Thought. (4) Lecture, four hours; outside study, eight hours. Requisite: course 130 or 131 or 161. Introduction to natural language processing (NLP), with emphasis on semantics. Presentation of process models for various tasks, including question answering, paraphrasing, machine translation, word-sense disambiguation, narrative and experiential understanding. Examination of both symbolic and statistical approaches to language processing and acquisition. Letter grading. Mr. Dyer

263B. Connectionist Natural Language Processing. (4) Lecture, four hours; outside study, eight hours. Requisite: course 161 or 263A. Examination of connectionist/ANN architectures designed for natural language processing. Issues include lexical versus distributed representations, variable binding, and examination of both symbolic and statistical approaches to language processing and acquisition. Letter grading. Mr. Dyer

263C. Animats-Based Modeling. (4) Lecture, four hours; outside study, eight hours. Requisite: course 130 or 161. Animats are mobile/sensing animal-inspired software agents embedded in simulated dynamic environments. Emphasis on modeling: goal-oriented behavior via neurocontrollers, adaptation via reinforcement learning, evolutionary programming. Animat-based tasks include foraging, mate finding, predation, navigation, predator avoidance, cooperation, nest construction, communication, and parent-offspring competition. Letter grading. Mr. Dyer (F)

264A. Automated Reasoning: Theory and Applications. (4) Lecture, four hours; laboratory, four hours; outside study, four hours. Requisite: course 161. Introduction to theory and practice of automated reasoning. Use of logical unifiers, explanations, planning, and decision making. Topics include syntax and semantics of formal logic: algorithms for logical reasoning, including satisfiability and entailment; syntactic and semantic restrictions on knowledge bases; effect of these restrictions on expressiveness, compactness, and computational tractability; applications of automated reasoning to diagnosis, planning, design, formal verification, and re-liability analysis. Letter grading. Mr. Dyer (F)

267A. Neural Models. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Review of major neurophysiological milestones in understanding brain function. Focus on brain theories that are important for modern computer science and, in particular, on models of sensory perception, sensory-motor coordination, cerebellar and cerebral structure and function. Students required to prepare a paper analyzing research in one area of interest. Letter grading.

267B. Artificial Neural Systems and Connectionist Computing. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Analysis of major connectionist computing paradigms and underlying models of biological and physical processes. Examination of past and present implementations of artificial neural networks along with their applications to associative knowledge processing, general multisensory pattern recognition including speed and vision, and adaptive robot control. Students required to prepare a paper analyzing research in one area of interest. Letter grading.

268. Machine Perception. (4) Lecture, four hours; outside study, six hours. Designed for students undertaking thesis research. Discussion of advanced topics and current research in computational neuroscience. Neural networks and connectionism as a paradigm for parallel and concurrent computation in application to problems of perception, vision, multisensory signal integration, and robotics. May be repeated for credit. S/U grading.

270. Computer Methodology: Advanced Numerical Methods. (4) Lecture, four hours; outside study, eight hours. Requisite: Electrical Engineering 130 or Mathematics 151B or comparable experience with numerical computing. Designed for graduate computer science and engineering students. Principles of computer treatment of selected numerical problems in algebraic and differential systems, transforms and spectra, data acquisition and reduction; emphasis on concepts pertinent to modeling and simulation and the applicability of contemporary developments in numerical software. Computer exercises. Letter grading.

271C. Seminar: Advanced Simulation Methods. (2) Seminar, two hours; outside study, six hours. Required: course 271A. Discussion of advanced topics in simulation of systems characterized by ordinary and partial differential equations. Topics include (among others) simulation languages, dataflow machines, array processors, and advanced mathematical modeling techniques. Topics vary each term. May be repeated for credit. S/U grading.

272. Advanced Discrete Event Simulation and Modeling Techniques. (4) Lecture, four hours; outside study, eight hours. Review of current literature in an area of computer science methodology in which an instructor has developed special proficiency as a consequence of research interests. Students report on selected topics. May be repeated for credit with topic change. Letter grading.

280A-280ZZ. Algorithms. (4 each) Lecture, four hours; outside study, eight hours. Required: course 180. Additional requisites for each offering announced in advance by department. Select systems design, analysis, optimization, and implementation of algorithms; computational complexity and general theory of algorithms; algorithms for particular applications. Subtitles of some current sections: Principles of Design and Analysis (280A); Distributed Algorithms (280D); Graphs and Networks (280G). May be repeated for credit with consent of instructor and with topic change. Letter grading.

280AP. Approximation Algorithms. (4) Lecture, four hours; outside study, eight hours. Required: course 180. Background in discrete mathematics helpful. Theoretically sound techniques for dealing with NP-Hard problems. Inability to solve these problems efficiently means algorithmic techniques are based on approximation — finding solutions that is near to best possible in efficient running time. Coverage of approximation techniques and operational problems, with algorithm design techniques that include primal-dual method, linear program rounding, greedy algorithms, and local search. Letter grading.

281A. Computability and Complexity. (4) Lecture, four hours; outside study, eight hours. Required: course 181 or compatible background. Concepts fundamental to modern computer science. Elements of theory of computing, with emphasis on regular sets of strings, Turing-recogizable (recursive enumera
table) sets, closure properties, machine charac
terizations, non-computable problems, and “hard” and “easy” problems. PTM/ NPTIME. Letter grading.

281D. Discrete State Systems. (4) Lecture, four hours; outside study, eight hours. Recommended requisite: course 181. Finite-state machines, transducers, and their generalizations; regular expres
sions, transduction expressions, realizability; decom
dition, synthesis, and design considerations; topics in state and system identification and fault diagnosis, linear machines, probabilistic machines, applications in coding, communication, computer, simulation, model
ing, and simulation. Letter grading.

Mr. Carlyle

M282A. Cryptography. (4) (Same as Mathematics M280A.) Lecture, four hours; outside study, eight hours. Introduction to theory of cryptography, stress
ing rigorous definitions and proofs of security. Topics include notions of hardness, one-way functions, hard
core bits, pseudorandom generators, pseudorandom functions and pseudorandom permutations, semantic security, public-key and private-key encryption, se
cret-sharing, message authentication, digital signa
tures, interactive proofs, zero knowledge proofs, com
trol mechanisms, protocol commitment, key-agreement, contract signing, and two-party se
curity computation with static security. Letter grading.

Mr. Ostrovsky (F)

**279. Current Topics in Computer Science: Method
odology.** (2 to 12) Lecture, four hours; outside study, eight hours. Review of current literature in an area of computer science methodology in which an instructor has developed special proficiency as a consequence of research interests. Students report on selected topics. May be repeated for credit with topic change. Letter grading.

280A-280ZZ. Algorithms. (4 each) Lecture, four hours; outside study, eight hours. Required: course 180. Additional requisites for each offering announced in advance by department. Select systems design, analysis, optimization, and implementation of algorithms; computational complexity and general theory of algorithms; algorithms for particular applications. Subtitles of some current sections: Principles of Design and Analysis (280A); Distributed Algorithms (280D); Graphs and Networks (280G). May be repeated for credit with consent of instructor and with topic change. Letter grading.

280AP. Approximation Algorithms. (4) Lecture, four hours; outside study, eight hours. Required: course 180. Background in discrete mathematics helpful. Theoretically sound techniques for dealing with NP-Hard problems. Inability to solve these problems efficiently means algorithmic techniques are based on approximation — finding solutions that is near to best possible in efficient running time. Coverage of approximation techniques and operational problems, with algorithm design techniques that include primal-dual method, linear program rounding, greedy algorithms, and local search. Letter grading.

Mr. Meyerson (F)

281A. Computability and Complexity. (4) Lecture, four hours; outside study, eight hours. Required: course 181 or compatible background. Concepts fundamental to modern computer science. Elements of theory of computing, with emphasis on regular sets of strings, Turing-recogizable (recursive enumera
table) sets, closure properties, machine charac
terizations, non-computable problems, and “hard” and “easy” problems. PTM/ NPTIME. Letter grading.

Ms. Greibach, Mr. Parker

281D. Discrete State Systems. (4) Lecture, four hours; outside study, eight hours. Recommended requisite: course 181. Finite-state machines, transducers, and their generalizations; regular expres
sions, transduction expressions, realizability; decom
dition, synthesis, and design considerations; topics in state and system identification and fault diagnosis, linear machines, probabilistic machines, applications in coding, communication, computer, simulation, model
ing, and simulation. Letter grading.

Mr. Carlyle

M282A. Cryptography. (4) (Same as Mathematics M280A.) Lecture, four hours; outside study, eight hours. Introduction to theory of cryptography, stress
ing rigorous definitions and proofs of security. Topics include notions of hardness, one-way functions, hard
core bits, pseudorandom generators, pseudorandom functions and pseudorandom permutations, semantic security, public-key and private-key encryption, se
cret-sharing, message authentication, digital signa
tures, interactive proofs, zero knowledge proofs, com
trol mechanisms, protocol commitment, key-agreement, contract signing, and two-party se
curity computation with static security. Letter grading.

Mr. Ostrovsky (F)

M282B. Cryptographic Protocols. (4) (Same as Mathematics M280B.) Lecture, four hours; outside study, eight hours. Required: course M282A. Consider
ded advanced computer cryptography and protocol design and analysis. Topics include noninteractive zero
knowledge proofs; zero-knowledge arguments; concurrent and non-black-box zero-knowledge; IP=PSpace proof, storable keys of security for
public-key encryption, including chosen-ciphertext security; secure multiparty computation; dealing with dynamic adversaries; nonpossessibility of secure protocols; software protection; threshold cryptography; identity-based cryptography; private in
formation retrieval; protection against man-in-middle attacks; voting protocols; identification protocols, digi
tal cash schemes; storer bounds on use of crypto
graphic primitives, software obfuscation. May be re
peated for credit with topic change. Letter grading.

Mr. Ostrovsky (W)

283A-M283B. Topics in Applied Number Theory. (4-4) (Same as Mathematics M206A-M206B.) Lecture, three hours. Basic number theory, including con
gruences and prime numbers. Cryptography: public
key and discrete log cryptosystems. Attacks on cryp
tosystems. Primality testing and factorization meth
ods. Elliptic curve methods. Topics from coding theo

284A-284ZZ. Topics in Automata and Languages. (4 each) Lecture, four hours; outside study, eight hours. Required: course 181. Additional requisites for each offering announced in advance by department. Selections from families of formal languages, gram
mars, machines, operators; pushdown automata, con
text-free languages and their generalizations, parsing; multidimensional grammars, developmental systems; machine-based cryptography. Subtitles of some current and planned sections: Context-Free Languages (284A), Parsing Algorithms (284P). May be repeated for credit with consent of instructor and with topic change.

Letter grading.

CM286B. Computational Systems Biology: Mod
ing and Simulation of Biological Systems. (5) (Same as Biomedical Engineering CM286B.) Lecture, four hours; laboratory, three hours. Corequisite: Electrical Engineering 102. Dynamic biosystems modeling and computer simulation methods for studying biological/biomedical processes and sys
tems at multiple levels of organization. Control sys
tem, multicompartamental, predator-prey pharmaco
netic (PK), pharmacodynamic (PD), and other struc
tural modeling methods applied to life sciences problems at molecular, anatomical (path
ways/networks), organ, and organismic levels. Both theory- and data-driven modeling, with focus on translating biomodeling goals and data into mathe
matical models and implementing them for simulation and analysis. Basics of numerical simulation algo
rithms, with modeling software exercises in class and PC laboratory assignments. Concurrently scheduled with course CM186B. Letter grading.

Mr. DiStefano (F)

CM286C. Biomodeling Research and Research Communication Workshop. (2 to 4) (Formerly numbered CM286L.) (Same as Biomedical Engineer
ing CM286L.) Lecture, discussion, two to four hours; laboratory, one hour; outside study, eight hours. Required: course CM286B. Closely directed, interactive, and real research experience in active quantitative systems biology S/U or laboratory. Di
tection on how to focus on topics of current interest in scientific community, appropriate to student interests and capabilities. Critiques of oral presentations and written progress reports on how to proceed with search for research results. Major emphasis on effect
ive research reporting, both oral and written. Concur
rently scheduled with course CM1186C. Letter grad
ing.

Mr. DiStefano (Sp)
Mr. DiStefano

497D-497E. Field Projects in Computer Science. (4-4) Fieldwork, to be arranged. Students are divided into teams led by instructor; each team is assigned an external company or organization which they investigate as a candidate for possible computerization, submitting a team report of their findings and recommendations. In Progress (497D) and S/U or letter (497E) grading.
Mr. Cardenas

596. Directed Individual or Tutorial Studies. (2 to 8) Tutorial, to be arranged. Limited to graduate computer science students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies. S/U grading.

597A. Preparation for M.S. Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate computer science students. Reading and preparation for M.S. comprehensive examination. S/U grading.

597B. Preparation for Ph.D. Preliminary Examinations. (2 to 16) Tutorial, to be arranged. Limited to graduate computer science students. S/U grading.

597C. Preparation for Ph.D. Oral Qualifying Examination. (2 to 16) Tutorial, to be arranged. Limited to graduate computer science students. Preparation for oral qualifying examination, including preliminary research on dissertation. S/U grading.
Electrical Engineering

UCLA
56-125B Engineering IV
Box 951594
Los Angeles, CA 90095-1594

(310) 206-4833
http://www.ee.ucla.edu

Ali H. Sayed, Ph.D., Chair
Mani B. Srivastava, Ph.D., Vice Chair, Graduate Affairs
Rajeev Jain, Ph.D., Vice Chair, Industry Relations
Lieven Vandenberghe, Ph.D., Vice Chair, Undergraduate Affairs

Professors
Asad A. Abidi, Ph.D.
Abeer A.H. Alwan, Ph.D.
A.V. Balakrishnan, Ph.D.
Frank M.C. Chang, Ph.D.
Panagiotes D. Christofides, Ph.D.
Babak Daneshzad, Ph.D.
Deborah L. Estrin, Ph.D. (Jonathan B. Postel Professor of Networking)
Harold R. Fetterman, Ph.D.
Warren S. Grundfest, M.D., FACS
Mark H. Hansen, Ph.D.
Tatsuo Itoh, Ph.D. (Northrop Grumman Professor of Electrical Engineering)
Rajeev Jain, Ph.D.
Bahrung Jalali, Ph.D.
Chandrashekar J. Joshi, Ph.D.
William J. Kaiser, Ph.D.
Alan J. Laub, Ph.D.
Jia-Ming Liu, Ph.D.
Warren B. Mori, Ph.D.
Stanley J. Osher, Ph.D.
Doo-Sun Pan, Ph.D.
C. Kumar N. Patel, Ph.D.
Gregory J. Pottie, Ph.D., Associate Dean
Yahya Rahmat-Samii, Ph.D. (Northrop Grumman Professor of Electrical Engineering/ Electromagnetics)

Adjunct Professors
Nicolaos G. Alexopoulos, Ph.D.
Ezio Biglieri, Ph.D.
Derek T. Cheung, Ph.D.
Mary Eshaghian-Wilner, Ph.D.
Michael P. Fitz, Ph.D.
Giorgio Franceschetti, Ph.D.
Joel R. Schullman, Ph.D.
Ming C. Wu, Ph.D.
Eli Yablonovitch, Ph.D. (Northrop Grumman Opto-Electronic Professor of Electrical Engineering)

Scope and Objectives

The Department of Electrical Engineering fosters a dynamic academic environment that is committed to a tradition of excellence in teaching, research, and service and has state-of-the-art research programs and facilities in a variety of fields. The department provides students with fundamental knowledge in mathematics, the physical sciences, and electrical engineering, and develops well-rounded and motivated students. The mission of the department is to (1) produce highly qualified, well-rounded, and motivated students with fundamental knowledge of electrical engineering who can provide leadership and service to California, the nation, and the world, (2) pursue creative research and new technologies in electrical engineering and across disciplines in order to serve the needs of industry and government, society, and the scientific community by expanding the body of knowledge in the field, (3) develop partnerships with industrial and government agencies, (4) achieve visibility by active participation in conferences and technical and community activities, and (5) publish enduring scientific articles and books.

Department Mission

The education and research activities in the Electrical Engineering Department are strongly aligned with its mission statement. In partnership with its constituents, consisting of students, alumni, industry, and faculty members, the mission of the department is to (1) produce highly qualified, well-rounded, and motivated students with fundamental knowledge of electrical engineering who can provide leadership and service to California, the nation, and the world, (2) pursue creative research and new technologies in electrical engineering and across disciplines in order to serve the needs of industry and government, society, and the scientific community by expanding the body of knowledge in the field, (3) develop partnerships with industrial and government agencies, (4) achieve visibility by active participation in conferences and technical and community activities, and (5) publish enduring scientific articles and books.

Undergraduate Program Objectives

The ABET-accredited electrical engineering curriculum provides an excellent background for either graduate study or employment. Undergraduate education in the department provides students with (1) fundamental knowledge in mathematics, physical sciences, and electrical engineering, (2) the opportunity to specialize in specific areas of interest or career aspiration, (3) intensive training in problem solving, laboratory skills, and design skills, and (4) a well-rounded education that includes communication skills, the ability to function and signals and systems. These areas cover a broad spectrum of specializations in, for example, communications and telecommunications, control systems, electromagnetics, embedded computing systems, engineering optimization, integrated circuits and systems, microelectromechanical systems (MEMS), nanotechnology, photonics and optoelectronics, plasma electronics, signal processing, and solid-state electronics.
well on a team, an appreciation for ethical behavior, and the ability to engage in lifelong learning. This education is meant to prepare students to thrive and to lead. It also prepares them to achieve the following two program educational objectives: (1) that graduates of the program have successful technical or professional careers and (2) that graduates of the program continue to learn and to adapt in a world of constantly evolving technology.

Undergraduate Study

Electrical Engineering Option

Preparation for the Major

Required: Electrical Engineering 101, 102, 103, 110, 110L, 113, 115A, 115AL, 121B, 131A, 132A, 141, 161, Mathematics 132, Statistics 105; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and three major field elective courses (12 units), one design course (4 units), and one laboratory course (2 to 4 units) selected from one of the following pathways:

- Antennas and Microwaves: Three major field elective courses from Electrical Engineering 162A, 163A, and 163B or 163C; one capstone design course from 164D or 184D; and one laboratory course from 164L (or by petition from 194 or 199)
- Integrated Circuits: Three major field elective courses from Electrical Engineering 115B, 115C, and 132B or 163A; one capstone design course from 115D or 184D; and one laboratory course from 115BL (or by petition from 194 or 199)

Microelectromechanical (MEMS) Systems: Three major field elective courses from Electrical Engineering 115B or 123A or 124, 128 or 163A or 173, and CM150; one capstone design course from 129D; and one laboratory course from 122L or CM150L (or by petition from 194 or 199)

Photonics and Plasma Electronics: Three major field elective courses from Electrical Engineering 172, 173, and 174 or 175 or M185; one capstone design course from 173D; and one laboratory course from 172L (or by petition from 194 or 199)

Signals and Systems: Three major field elective courses from Electrical Engineering 114, 115B, 131B, 132B, 136, 142, 162A; one capstone design course from 113D, 173D, 180D, 181D, or 184D; and one laboratory course from 115BL or M116L or M171L (or by petition from 194 or 199)

Solid State: Three major field elective courses from Electrical Engineering 123A, 123B, and 124 or 128; one capstone design course from 129D; and one laboratory course from 122L (or by petition from 194 or 199)

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

Biomedical Engineering Option

Preparation for the Major

Required: Chemistry and Biochemistry 20A; Computer Science 31, 32; Electrical Engineering 1, 2, 3, 10, M16 (or Computer Science M51A); Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 4AL, 4BL.

The Major

Required: Electrical Engineering 101, 102, 103, 110, 110L, 113, 115A, 115AL, 121B, 131A, 132A, 141, 161, Mathematics 132, Statistics 105; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and three major field elective courses (12 units), one design course (4 units), and one laboratory course (2 to 4 units) selected from one of the following pathways:

- Biomedical Engineering: Three major field elective courses from Electrical Engineering 114, 115B, 131B, 132B, 136, 142, 162A; one capstone design course from 113D, 173D, 180D, 181D, or 184D; and one laboratory course from 115BL or M116L or M171L (or by petition from 194 or 199)
- Physics and Plasma Electronics: Three major field elective courses from Electrical Engineering 172, 173, and 174 or 175 or M185; one capstone design course from 173D; and one laboratory course from 172L (or by petition from 194 or 199)
- Signals and Systems: Three major field elective courses from Electrical Engineering 114, 115B, 131B, 132B, 136, 142, 162A; one capstone design course from 113D, 173D, 180D, 181D, or 184D; and one laboratory course from 115BL or M116L or M171L (or by petition from 194 or 199)

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

Students assemble an apparatus to measure laser scattering in fog.
and one laboratory course from Biomedical Engineering CM186C or Electrical Engineering M171L (or by petition from 194 or 199).

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

Computer Engineering Option

Preparation for the Major
Required: Chemistry and Biochemistry 20A; Computer Science 31, 32, 33, 35L; Electrical Engineering 1, 2, 3, 10, M16 (or Computer Science M51A); Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 4AL, 4BL.

The Major
Required: Electrical Engineering 101, 102, 103, 110, 110L, 113, 115A, 115C, M116C (or Computer Science M151B), 131A, 132B or Computer Science 118, Mathematics 132, Statistics 105; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and three major field elective courses (12 units), one design course (4 units), and one laboratory course (2 to 4 units) selected from the computer engineering pathway as follows: three major field elective courses from Computer Science 111, M117 or Electrical Engineering 132A, and 131 or 132 or 180; one capstone design course from Electrical Engineering 113D, 180D, 181D, or 184D; and one laboratory course from Electrical Engineering M116L (or by petition from 194 or 199).

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

Graduate Study

For information on graduate admission see Graduate Programs, page 23.

The following introductory information is based on the 2008-09 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnet.ucla.edu/gasaa/library/pgmrqintro.htm. Students are subject to the degree requirements as published in Program Requirements for the year in which they matriculate.

The Department of Electrical Engineering offers Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Electrical Engineering.

Electrical Engineering M.S.

Areas of Study
Students may pursue specialization across three major areas of study: (1) circuits and embedded systems, (2) physical and wave electronics, and (3) signals and systems. These areas cover a broad spectrum of specializations in, for example, communications and telecommunications, control systems, electromagnetics, embedded computing systems, engineering optimization, integrated circuits and systems, microelectromechanical systems (MEMS), nanotechnology, photonics and optoelectronics, plasma electronics, signal processing, and solid-state electronics. Students must select a number of formal graduate courses to serve as their major and minor fields of study according to the requirements listed below for the thesis (seven courses) and non-thesis (eight courses) options. The selected courses must be approved by the faculty adviser.

Course Requirements
Students may select either the thesis plan or the non-thesis (comprehensive examination) plan. The selection of courses is tailored to the professional objectives of the students and must meet the requirements stated below. The courses should be selected and approved in consultation with the faculty adviser. Departures from the stated requirements are considered only in exceptional cases and must be approved by the departmental graduate adviser.

The minimum requirements for the M.S. degree are as follows:
1. Requisite: B.S. degree in Electrical Engineering or a related field
2. All M.S. program requirements should be completed within two academic years from admission into the M.S. graduate program in the Henry Samueli School of Engineering and Applied Science
3. Students must maintain a minimum cumulative grade-point average of 3.0 every term and 3.0 in all graduate courses
4. Thesis Option. Students selecting the thesis option must complete at least the following requirements: (a) five formal graduate courses to serve as the major field of study, (b) two formal graduate courses to serve as the minor field of study, (c) Electrical Engineering 297, (d) two Electrical Engineering 598 courses involving work on the M.S. thesis, (e) no other 500-level courses, other seminar courses, nor Electrical Engineering 296 or 375 may be applied toward the course requirements, and (f) an M.S. thesis completed under the direction of the faculty adviser to a standard that is approved by a committee comprised of three faculty members. The thesis research must be conducted concurrently with the coursework.
5. Non-Thesis Option. Students selecting the non-thesis option must complete at least the following requirements: (a) six formal graduate courses to serve as the major field of study, (b) two formal graduate courses to serve as the minor field of study, (c) Electrical Engineering 297, (d) Electrical Engineering 299 to serve as the M.S. comprehensive examination, which is evaluated by a committee of three faculty members appointed by the department. In case of failure, students may be reexamined only once with consent of the departmental graduate adviser, and (e) no 500-level courses, other seminar courses, nor Electrical Engineering 296 or 375 may be applied toward the course requirements.
6. Students must select a number of formal graduate courses to serve as their major and minor fields of study according to the requirements listed above for the thesis (seven courses) and non-thesis (eight courses) options. The selection of the major and minor sequences of courses must be from different established tracks, or approved ad hoc tracks, or combinations thereof. The selected courses must be approved by the faculty adviser.
7. For the thesis option at least four, and for the non-thesis option five, of the formal graduate courses used to satisfy the M.S. program requirements listed above must be in the Electrical Engineering Department.
8. A formal graduate course is defined as any 200-level course, excluding seminar or tutorial courses.
9. At most one upper division undergraduate course is allowed to replace one of the formal graduate courses covering the major and minor fields of study provided that (a) the undergraduate course is not required of undergraduate students in the Electrical Engineering
Department and (b) the undergraduate course is approved by the faculty adviser.

10. A track is a coherent set of courses in some general field of study. The department suggests lists of established tracks as a means to assist students in selecting their courses. Students are not required to adhere to the suggested courses in any specific track.

Circuits and Embedded Systems Area Tracks

1. **Embedded Computing Track.** Courses deal with the engineering of computer systems as may be applied to embedded devices used for communications, multimedia, or other such restricted purposes. Courses include Computer Science 251A, Electrical Engineering 201A, 201C, M202A, M202B, 213A, M216A.

2. **Integrated Circuits Track.** Courses deal with the analysis and design of analog and digital integrated circuits; architecture and integrated circuit implementations of large-scale digital processors for communications and signal processing; hardware-software co-design; and computer-aided design methodologies. Courses include Computer Science 251A, 252A, Electrical Engineering 213A, 215A through 215E, M216A, 221A, 221B.

Physical and Wave Electronics Area Tracks

1. **Electromagnetics Track.** Courses deal with electromagnetic theory; propagation and scattering; antenna theory and design; microwave and millimeter wave circuits; printed circuit antennas; integrated and fiber optics; microwave-optical interaction, antenna measurement, and diagnostics; numerical and asymptotic techniques; satellite and personal communication antennas; periodic structures; genetic algorithms; and optimization techniques. Courses include Electrical Engineering 221C, 260A, 260B, 261, 262, 263, 266, 270.

3. **Solid-State and Micromechanical Systems (MEMS) Devices Track.** Courses deal with solid-state physical electronics, semiconductor device physics and design, and microelectromechanical systems (MEMS) design and fabrication. Courses include Electrical Engineering 221A, 221B, 221C, 222, 223, 224, 225, CM250A, M250B, Mechanical and Aerospace Engineering 281, 284, C287L.

Signals and Systems Area Tracks

1. **Communications Systems Track.** Courses deal with communication and telecommunication principles and engineering applications; channel and source coding; spread spectrum communication; cryptography; estimation and detection; algorithms and processing in communication and radar; satellite communication systems; stochastic modeling in telecommunication engineering; mobile radio engineering; and telecommunication switching, queuing system, communication networks, local-area, metropolitan-area, and wide-area computer communication networks. Courses include Electrical Engineering 205A, 210A, 230A through 230D, 231A, 231E, 232A through 232E, 233, 238, 241A.

2. **Control Systems and Optimization Track.** Courses deal with state-space theory of linear systems; optimal control of deterministic linear and nonlinear systems; stochastic control; Kalman filtering; stability theory of linear and nonlinear feedback control systems; computer-aided design of control systems; optimization theory, including linear and nonlinear programming; convex optimization and engineering applications; numerical methods; non-convex programming; associated network flow and graph problems; renewal theory; Markov chains; stochastic dynamic programming; and queuing theory. Courses include Electrical Engineering 205A, 208A, M208B, M208C, 210B, 236A, 236B, 236C, M237, M240A, 240B, M240C, 241A, 241C, M242A, 243.

Ad Hoc Tracks

In consultation with their faculty advisers, students may petition for an ad hoc track tailored to their professional objectives. This may comprise graduate courses from established tracks, from across areas, and even from outside electrical engineering. The petition must justify how the selection of courses in the ad hoc track forms a coherent set of courses, and how the proposed ad hoc track serves the professional objectives. The petition must be approved by the faculty adviser and the departmental graduate adviser.

Comprehensive Examination

For M.S. students following the non-thesis option, the M.S. comprehensive examination is satisfied by completion of Electrical Engineering 299 (project seminar) under the direction of a faculty member. Students are assigned some topic of independent study by the faculty member. The study culminates with a written report and oral presentation. The M.S. project seminar program across the department is administered, for each student, by the faculty member directing the course, the director of the area to which the student belongs, and the departmental graduate adviser. In case of failure, students may be reexamined only once with consent of the departmental graduate adviser.

Electrical Engineering Ph.D.

Areas of Study

Students may pursue specialization across three major areas of study: (1) circuits and embedded systems, (2) physical and wave electronics, and (3) signals and systems. These areas cover a broad spectrum of specializations in, for example, communications and telecommunications, control systems, electromagnetics, embedded computing systems, engineering optimization, integrated circuits and systems, microelectromechanical systems (MEMS),
nanotechnology, photonics and optoelectronics, plasma electronics, signal processing, and solid-state electronics.

Course Requirements
The selection of courses for the Ph.D. program is tailored to the professional objectives of the students and must meet the requirements stated below. The courses should be selected and approved in consultation with the faculty adviser. Departures from the stated requirements are considered only in exceptional cases and must be approved by the departmental graduate adviser. Normally, students take additional courses to acquire deeper and broader knowledge in preparation for the dissertation research.

The minimum requirements for the Ph.D. degree are as follows:

1. **Requisite.** M.S. degree in Electrical Engineering or a related field granted by UCLA or by an institution recognized by the UCLA Graduate Division

2. All Ph.D. program requirements should be completed within five academic years from admission into the Ph.D. graduate program in the Henry Samueli School of Engineering and Applied Science

3. Students must maintain a minimum cumulative grade-point average of 3.5 in the Ph.D. program

4. Students must complete at least the following requirements: (a) four formal graduate courses selected in consultation with the faculty adviser, (b) Electrical Engineering 297, (c) one technical communications course such as Electrical Engineering 295, (d) no 500-level courses, other seminar courses, nor Electrical Engineering 296 or 375 may be applied toward the course requirements, (e) pass the Ph.D. preliminary examination which is administered by the department and takes place once every year. In case of failure, students may be reexamined only once with consent of the departmental graduate adviser, (f) pass the University Oral Qualifying Examination. A doctoral committee consists of a minimum of four members. Three members, including the chair, are "inside" members and must hold appointments in the Electrical Engineering Department at UCLA. The "outside" member must be a UCLA faculty member outside the Electrical Engineering Department. By petition, one of the four members may be a faculty member from another UC campus

5. A formal graduate course is defined as any 200-level course, excluding seminar or tutorial courses. Formal graduate courses taken to meet the M.S. degree requirements may not be applied toward the Ph.D. course requirements

6. At least two of the formal graduate courses must be in electrical engineering

7. Within two academic years from admission into the Ph.D. program, all courses should be completed and the Ph.D. preliminary examination should be passed. It is strongly recommended that students take the Ph.D. preliminary examination during their first academic year in the program

8. The University Oral Qualifying Examination must be taken when all required courses are complete, and within one year after passing the Ph.D. preliminary examination

9. Students admitted originally to the M.S. program in the Electrical Engineering Department must complete all M.S. program requirements with a grade-point average of at least 3.5 to be considered for admission into the Ph.D. program. Only after admission into the program can students take the Ph.D. preliminary examination

10. Students must nominate a doctoral committee prior to taking the University Oral Qualifying Examination. A doctoral committee consists of a minimum of four members. Three members, including the chair, are "inside" members and must hold appointments in the Electrical Engineering Department at UCLA. The "outside" member must be a UCLA faculty member outside the Electrical Engineering Department. By petition, one of the four members may be a faculty member from another UC campus

Written and Oral Qualifying Examinations
The written qualifying examination is known as the Ph.D. preliminary examination in the department. The purpose of the examination is to assess student competency in the discipline, knowledge of the fundamentals, and potential for independent research. Students admitted originally to the M.S. program in the Electrical Engineering Department must complete all M.S. program requirements with a grade-point average of at least 3.5 to be considered for admission into the Ph.D. program. Only after admission into the program can students take the Ph.D. preliminary examination, which is held once every year. Students are examined independently by a group of faculty members in their general area of study. The examination by each faculty member typically includes both oral and written components, and students pass the entire Ph.D. preliminary examination and not in parts. Students who fail the examination may repeat it once only with consent of the departmental graduate adviser. The preliminary examination, together with the course requirements for the Ph.D. program, should be completed within two years from admission into the program.

After passing the written qualifying examination described above, students are ready to take the University Oral Qualifying Examination.
Examination. The nature and content of the examination are at the discretion of the doctoral committee, but ordinarily include a broad inquiry into the preparation for research. The doctoral committee also reviews the prospectus of the dissertation at the oral qualifying examination.

Students must nominate a doctoral committee prior to taking the University Oral Qualifying Examination. A doctoral committee consists of a minimum of four members. Three members, including the chair, are "inside" members and must hold appointments in the Electrical Engineering Department at UCLA. The "outside" member must be a UCLA faculty member outside the Electrical Engineering Department. By petition, one of the four members may be a faculty member from another UC campus.

Facilities and Programs

Computing Resources
Students and faculty have access to a modern networked computing environment that interconnects UNIX workstations as well as Windows and Linux PCs. These machines are provided by the Electrical Engineering Department; most of them operate in a client-server mode, but stand-alone configurations are supported as well. Furthermore, this network connects to mainframes and supercomputers provided by the Henry Samueli School of Engineering and Applied Science and the Office of Academic Computing, as well as off-campus supercomputers according to need.

The rapidly growing department-wide network comprises about 500 computers. These include about 200 workstations from Sun, HP, and SGI, and about 300 PCs, all connected to a 100 Mbit/s network with multiple parallel T3 lines running to individual research laboratories and computer rooms. The server functions are performed by several high-speed, high-capacity RAID servers from Network Appliance and IBM which serve user directories and software applications in a unified transparent fashion. All this computing power is distributed in research laboratories, computer classrooms, and open-access computer rooms.

Research Centers and Laboratories

Center for High-Frequency Electronics
The Center for High-Frequency Electronics has been established with support from several governmental agencies and contributions from local industries, beginning with a $10 million grant from Hewlett-Packard.

The first major goal of the center is to combine, in a synergistic manner, five areas of research. These include (1) solid-state millimeter wave devices, (2) millimeter systems for imaging and communications, (3) millimeter wave high-power sources (gyrotrons), (4) GaAs gigabit logic systems, and (5) VLSI and LSI based on new materials and structures. The center supports work in these areas by providing the necessary advanced equipment and facilities and allows the University to play a major role in initiating and generating investigations into new electronic devices. Students, both graduate and undergraduate, receive training and instruction in a unique facility.

The second major goal of the center is to bring together the manpower and skills necessary to synthesise new areas of activity by stimulating interactions between different interdependent fields. The Electrical Engineering Department, other departments within UCLA, and local universities (such as Cal Tech and USC) have begun to combine and correlate certain research programs as a result of the formation of the center.

Circuits Laboratories
The Circuits Laboratories are equipped for measurements on high-speed analog and digital circuits and are used for the experimental study of communication, signal processing, and instrumentation systems. A hybrid integrated circuit facility is available for rapid mounting, testing, and revision of miniature circuits. These include both discrete components and integrated circuit chips. The laboratory is available to advanced undergraduate and graduate students through faculty sponsorship on thesis topics, research grants, or special studies.

Electromagnetics Laboratories
The Electromagnetics Laboratories involve the disciplines of microwaves, millimeter waves, wireless electronics, and electromechanics. Students enrolled in microwave laboratory courses, such as Electrical Engineering 164D and 164L, special projects classes such as Electrical Engineering 199, and/or research projects, have the opportunity to obtain experimental and design experience in the following technology areas: (1) integrated microwave circuits and antennas, (2) integrated millimeter wave circuits and antennas, (3) numerical visualization of electromagnetic waves, (4) electromagnetic scattering and radar cross-section measurements, and (5) antenna near field and diagnostics measurements.

Nanoelectronics Research Facility
The state-of-the-art Nanoelectronics Research Facility for graduate research and teaching as well as the undergraduate microelectronics teaching laboratory are housed in an 8,500-square-foot class 100/1000 clean room with a full complement of utilities, including high purity deionized water, high purity nitrogen, and exhaust scrubbers. The NRF supports research on nanometer-scale fabrication and on the study of fundamental quantum size effects, as well as exploration of innovative nanometer-scale device concepts. The laboratory also supports many other schoolwide programs in device fabrication, such as MEMS and optoelectronics. For more information, see http://www.nanolab.ucla.edu.

Photonics and Optoelectronics Laboratories
In the Laser Laboratory students study the properties of lasers and gain an understanding of the application of this modern technology to optics, communication, and holography.

The Photonics and Optoelectronics Laboratories include facilities for research in all of the basic areas of quantum electronics. Specific areas of experimental investigation include high-powered lasers, nonlinear optical processes, ultrashort lasers, parametric frequency conversion, electro-optics, infrared detection, and semiconductor lasers and detectors. Operating lasers include mode-locked and Q-switched Nd:YAG and Nd:YLF lasers, Ti:Al2O3 lasers, ultraviolet and visible wavelength argon lasers, wavelength-tunable dye lasers, as well as gallium arsenide, helium-neon, excimer, and high-powered continuous and pulsed carbon dioxide laser systems. Also available are equipment and facilities for research on semiconductor lasers, fiber optics, nonlinear optics, and ultrashort laser pulses. Facilities for mirror polishing and coating and high-vacuum gas handling systems are also available. These laboratories are open to undergraduate and graduate students who have faculty sponsorship for their thesis projects or special studies.

Plasma Electronics Facilities
Two laboratories are dedicated to the study of the effects of intense laser radiation on
matter in the plasma state. One, located in Engineering IV, houses a state-of-the-art table top terawatt (T3) 400fs laser system that can be operated in either a single or dual frequency mode for laser-plasma interaction studies. Diagnostic equipment includes a ruby laser scattering system, a streak camera, and optical spectrographs and multichannel analyzer. Parametric instabilities such as stimulated Raman scattering have been studied, as well as the resonant excitation of plasma waves by optical mixing. The second laboratory, located in Boelter Hall, houses the MARS laser, currently the largest on-campus university CO2 laser in the U.S. It can produce 200J, 170ps pulses of CO2 radiation, focussable to 1016 W/cm2. The laser is used for testing new ideas for laser-driven particle accelerators and free-electron lasers. Several high-pressure, short-pulse drivers can be used on the MARS, other equipment includes a theta-pinch plasma generator, an electron linac injector, and electron detectors and analyzers.

A second group of laboratories is dedicated to basic research in plasma sources for basic experiments, plasma processing, and plasma heating.

Solid-State Electronics Facilities

Solid-state electronics equipment and facilities include (1) a modern integrated semiconductor device processing laboratory, (2) complete new Si and III-V compound molecular beam epitaxy systems, (3) CAD and mask-making facilities, (4) lasers for beam crystallization study, (5) thin film and characterization equipment, (6) deep-level transient spectroscopy instruments, (7) computerized capacitance-voltage and other characterization equipment, including doping density profiling systems, (8) low-temperature facilities for material and device physics studies in cryogenic temperatures, (9) optical equipment, including many different types of lasers for optical characterization of superlattice and quantum well devices, (10) characterization equipment for high-speed devices, including (11) high magnetic field facilities for magnetotransport measurement of heterostructures. The laboratory facilities are available to faculty, staff, and graduate students for their research.

Multidisciplinary Research Facilities

The department is also associated with several multidisciplinary research centers including

- California NanoSystems Institute (CNSI)
- Center for Embedded Networked Sensing (CENS)
- Center for High-Frequency Electronics (CHFE)
- Center for Nanoscience Innovation for Defense (CNID)
- Functional Engineered Nano Architectonics Focus Center (FENA)
- Plasma Science and Technology Institute
- Western Institute for Nanoelectronics (WIN)
- Optoelectronics Circuits and Systems Laboratory (Jalali)
- Optoelectronics Group (Yablonovitch)
- Proactive Mediatan Laboratory (van der Schaar)
- Speech Processing and Auditory Perception Laboratory (Alwan)
- Wireless Integrated Systems Research Group (Daneshrad)

Faculty Areas of Thesis Guidance

Professors

Asad A. Abidi, Ph.D. (UC Berkeley, 1981) High-performance analog electronics, device modeling

Abeer A.H. Alwan, Ph.D. (MIT, 1992) Speech processing, acoustic properties of speech sounds with applications to speech synthesis, recognition by machine and coding, hearing-aid design, and digital signal processing

*A.V. Balakrishnan, Ph.D. (USC, 1954) Control and communications, flight systems applications

Frank C.M. Chang, Ph.D. (National Chiao-Tung, Taiwan, 1979) High-speed semiconductor (GaAs, InP, and Si) devices and integrated circuits for digital, analog, microwave, and optoelectronic integrated circuit applications

Panagiotis D. Christofides, Ph.D. (Minnesota, 1996) Process modeling, dynamics and control, computational and applied mathematics

Babak Daneshrad, Ph.D. (UCLA, 1993) Digital VLSI circuits: wireless communication systems, high-performance communications integrated circuits for wireless applications

Deborah L. Estrin, Ph.D. (MIT, 1985) Sensor networks, embedded network sensing, environmental monitoring, computer networks

Harold R. Fetterman, Ph.D. (Cornell, 1968) Optical millimeter wave interactions, high-frequency optical polymer modulators and applications, solid-state millimeter wave structures and systems, biomedical applications of lasers

Warren S. Grundfest, M.D., FACS (Columbia U., 1980) Development of lasers for medical applications, minimally invasive surgery; magnetic resonance-guided interventional procedures, laser lithotripsy, microendoscopy, spectroscopy, photodynamic therapy (PDT), optical technology, biologic feedback control mechanisms

Mark H. Hansen, Ph.D. (UC Berkeley, 1994) Estimation and inference, statistical learning, data analysis; model selection, nonparametric methods; visualization and information design

Tatsuo Itoh, Ph.D. (Illinois, Urbana, 1969) Microwave and millimeter wave electronics; guided wave structures; low-power wireless electronics; integrated passive components and antennas; photonic bandgap structures and meta materials applications; active integrated antennas, smart antennas; RF technologies for reconfigurable front-ends; sensors and transponders

Rajeev Jain, Ph.D. (Katholieke U., Leuven, Belgium, 1985) Design of digital communications and digital signal processing circuits and systems

* Also Professor of Mathematics
Bahram Jalali, Ph.D. (Columbia U., 1989)
RF photonics, integrated optics, fiber optic integrated circuits

Laser fusion, laser acceleration of particles, nonlinear optics, high-power lasers, plasma physics

William J. Kaiser, Ph.D. (Wayne State, 1983)
Research and development of new microsensor and microinstrument technology for industry, science, and biomedical applications; development and applications of new atomic-resolution scanning probe microscopy methods for the detection of device research

Alan Laub, Ph.D. (Minnesota, 1974)
Numerical linear algebra, numerical analysis, condition estimation, computer-aided control system design, high-speed computing

Jia-Ming Liu, Ph.D. (Harvard, 1982)
Nonlinear optics, ultrafast optics, laser chaos, semiconductor lasers, optoelectronics, photonics, nonlinear fast processes

Warren B. Mori, Ph.D. (UCLA, 1987)
Laser and charged particle beam-plasma interactions, advanced accelerator concepts, advanced processes, laser-fusion, high-energy density science, high-performance computing, plasma physics

Scientific computing and applied mathematics

Dee-Son Pan, Ph.D. (Cal Tech, 1977)
New semiconductor devices for millimeter and RF power generation and amplification, transport in small geometry semiconductor devices, generic device modeling

Henry Samueli, Ph.D. (UCLA, 1980)
VLSI implementation of signal processing and digital communication systems, high-speed digital signal processing, VLSI design for high-speed digital signal design

Majid Sarrafzadeh, Ph.D. (Illinois, 1987)
Computer engineering, embedded systems, VLSI/CAD algorithms

Ali H. Sayed, Ph.D. (Stanford, 1992)
Adaptive systems, statistical and digital signal processing, estimation theory, signal processing for communications, linear system theory, high data rates between signal processing and control methodologies, fast algorithms for large-scale problems

Jason L. Speyer, Ph.D. (Harvard, 1969)
Stochastic and deterministic optimal control and estimation with application to aerospace systems; guidance, flight control, and flight control design

Mani B. Srivastava, Ph.D. (UC Berkeley, 1992)
Wireless networking, embedded computing, networked embedded systems, sensor networks, mobile and ubiquitous computing, low-power and power-aware systems

VLSI implementation of signal processing and digital communication systems, high-speed digital signal processing, VLSI design for high-speed digital signal design

Shahrad Shirani, Ph.D. (Stanford, 1998)
Computer-aided design, optimization, computer-aided testing, VLSI circuit design, modeling of VLSI circuits and systems

C.-K. Ken Yang, Ph.D. (Stanford, 1998)
Communication theory, signal and array processing, design and application of communication systems, signal processing for communication systems, computational techniques for signal processing and digital communication systems, statistical signal processing, VLSI architecture for communication systems

Robert W. Newcomb, Ph.D. (UC Berkeley, 1997)
Wireless communications system design, communications theory and signal processing for digital communications, frequency hopping, spread spectrum, multiple access, digital receiver design, cryptographic techniques, security, and VLSI implementation of digital signal processing systems

C.-K. Ken Yang, Ph.D. (Stanford, 1998)
Communication theory, signal and array processing, design and application of communication systems, signal processing for communication systems, computational techniques for signal processing and digital communication systems, statistical signal processing, VLSI architecture for communication systems

Assistant Professors

Danijela Cabric, Ph.D. (UC Berkeley, 2007)
Wireless communications system design, communications theory and signal processing for digital communications, signal processing algorithms, optimization, and VLSI implementation of digital signal processing systems

C.-K. Ken Yang, Ph.D. (Stanford, 1998)
High-performance VLSI design, digital and mixed-signal circuit design

Chand R. Viswanathan, Ph.D. (UCLA, 1964)
Semiconductor electronics: VLSI devices and technology, thin oxides; reliability and failure physics of MOS devices; process-induced damage, low-frequency noise

Control systems, modeling and control of nonlinear distributed-parameter systems with applications to micro-opto-electromechanical systems, micro and nano manipulation systems, coordination and control of multiple micro/nano machines in formation

Donald M. Wilberg, Ph.D. (Cal Tech, 1965)
Identification and control, especially of aero-space, biomedical, mechanical, and nuclear processes, modeling and simulation of respiratory and cardiovascular systems

Jack Willis, B.Sc. (U. London, 1945)
Active circuits, electronic systems
Adjunct Assistants

Charles Chien, Ph.D. (UCLA, 1995)
End to end radio systems for high-speed adaptive wireless multimedia communications, multiband co-channel interference, transceiver front-end architecture, adaptive spectrum transceiver architectures, and digital baseband transceiver integrated circuits for low-power high-performance systems.
Hooman Darabi, Ph.D. (UCLA, 1999)
Analog and RF circuit design for wireless and mobile applications, integration of highly selective passive components for multimode applications, broadband and integrated circuit design, oversampled data converters.

Lower Division Courses

1. Electrical Engineering Physics I (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: Mathematics 32A, 32B, Physics 1A, 1B. Introduction to modern physical properties of semiconductors leading to operation of junction devices. Letter grading.
Mr. Fetterman, Mr. Ioth (F,WSp)

Ms. Cabric, Ms. van der Schaar (F,WSp)

3. Introduction to Electrical Engineering, (2) Lecture, two hours. Introduction to field of electrical engineering; research and applications across several areas; communications, control, electromagnetics, embedded computing, engineering optimization, integrated circuits, MEMS, nanotechnology, photonics and optoelectronics, electrical circuits; solid-state devices; digital and analog signal processing, and solid-state electronics. P/NP grading.
Mr. Judy, Mr. Rahmat-Samii (WSp)

10. Circuit Analysis I (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: course 1 or Physics 1C, Mathematics 33A, 33B. Introduction to linear circuit analysis. Resistive circuits, Kirchhoff's laws, operational amplifiers, node and loop analysis, Thevenin and Norton Theorem, capacitors and inductors, duality, first-order circuits, step response, second-order circuits, natural response, forced response. Letter grading.
Mr. Danesh dad, Mr. Pan (F,WSp)

Mr. Gupta, Mr. Srivastava (F,WSp)

19. Fiat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

99. Student Research Program. (1 to 2) Tutorial (supervised research, no credit, 20 hours per week).
Ingrid M. Verbauwhede, Ph.D. (Katholieke U., Leuven, Belgium, 1991)
Embedded systems: VLSI, architecture and circuit design and design methodologies for applications in security, wireless communications and signal processing.
113D. Digital Signal Processing Design. (4) (Formerly numbered 113L.) Laboratory, four hours; outside study, four hours. Requisite: course 113. Real-time implementation of digital signal processing algorithms on digital processor chips. Experiments involving A/D and D/A conversion, aliasing, digital filtering, sinuosoidal oscillators, Fourier transforms, and finite wordlength effects. Course project involving original design and implementation of signal processing systems for communications, speech, audio, or video using DSP chip. Mr. Jain (F,W)

114. Speech and Image Processing Systems Design. (4) (Formerly numbered 114D.) Lecture, three hours; discussion, one hour; laboratory, two hours; outside study, six hours. Requisite: course 113. Design principles of speech and image processing systems. Speech production, analysis, and modeling in first half of course; design techniques for image enhancement, filtering, and transformation in second half. Lectures supplemented by laboratory implementation of speech and image processing tasks. Letter grading. Ms. Alwan, Mr. Villasenor (W)

115B. Analog Electronic Circuits II. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Requisite: course 115A. Analysis and design of differential amplifiers in bipolar and CMOS technologies. Current mirrors and active loads. Frequency response of amplifiers. Feedback and its properties. Stability issues and frequency compensation. Letter grading. Mr. Abidi, Mr. Razavi (W)

115AL. Analog Electronics Laboratory I. (2) Laboratory, four hours; outside study, two hours. Requisites: courses 2, 115A. Experimental determination of device characteristics, resistive diode circuits, single-stage amplifiers, compound transistor stages, effect of feedback on single-stage amplifiers. Letter grading. Mr. C.K. Yang (F,W,Sp)

115BL. Analog Electronics Laboratory II. (4) Laboratory, four hours; outside study, eight hours. Requisites: courses 115AL, 115B. Experimental and computer studies of multistage, wideband, tuned, and power amplifiers, and some feedback amplifier design. Introduction to thick-film hybrid techniques. Construction of amplifier using hybrid thick film techniques. Letter grading. Mr. Abidi, Mr. Razavi (W)

115C. Digital Electronic Circuits. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 115A, Computer Science M51A. Recommended: course 115B. Transistor-level digital circuit analysis and design. Modern logic families (static CMOS, pass-transistor, dynamic logic), integrated circuit (IC) layout, digital circuits (logic gates, flipflops/latches, counters, etc.), computer-aided simulation of digital circuits. Letter grading. Mr. Gupta, Mr. Markovic (F,W,Sp)

116C. Computer Systems Architecture. (4) (Same as Computer Science M151B.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course M16 or Computer Science M51A. Computer Science 33. Recommended: course M116L or Computer Science M152A. Computer Science 111. Computer system organization and design, hardware and software simulation of CPU arithmetic and control, instruction set design, memory hierarchy (caches, main memory, virtual memory) organization and management, and networked computer systems (file structures, interrupts, DMA), performance evaluation, pipelined processors. Letter grading. Mr. Roychowdhury (F,W,Sp)

116L. Introductory Digital Design Laboratory. (2) Lecture, four hours; discussion, one hour; outside study, six hours. Requisite: course M16 or Computer Science M51A. Hands-on design, implementation, and debugging of digital logic circuits, use of computer-aided design tools for schematic capture and simulation, implementation of complex circuits using programmed array logic, design projects. Letter grading. Mr. Srivastava (F,W,Sp)

117. Computer Networks: Physical Layer. (6) (Same as Computer Science M117.) Lecture, four hours; discussion, four hours; outside study, ten hours. Not open to students with credit for course M171L. Introduction to fundamental data communication concepts underlying modern communication networks, with focus on physical and media access layers of network protocol stack. Systems include high-speed LANs (e.g., fast and giga Ethernet), optical DWDM (dense wavelength division multiplexing), time division SONET networks, wireless LANs (IEEE802.11), and ad hoc wireless and personal area networks (e.g., Bluetooth). Experimental laboratory sessions included. Letter grading. Mr. Gerla (W,Sp)

121B. Principles of Semiconductor Device Design. (4) Lecture, three hours; discussion, one hour; outside study, seven hours; laboratory, four hours. Introduction to principles of operation of bipolar and MOS transistors, equivalent circuits, high-frequency behavior, voltage limitations. Letter grading. Ms. Wei, Mr. Der, Woo (W,Sp)

122L. Semiconductor Devices Laboratory. (4) (Formerly numbered 122AL) Lecture, four hours; laboratory, four hours; outside study, four hours. Requisites: courses 2, 121B (may be taken concurrently). Design fabrication and characterization of p-n junction diodes and transistors. Students perform various processing tasks such as wafer preparation, oxidation, diffusion, metallization, and photolithography. Letter grading. Mr. Chang, Mr. Fettermann (W,Sp)

123A. Fundamentals of Solid-State I. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 2 or Physics 1C. Limitation to junior/senior engineering majors. Fundamentals of solid-state, introduction to quantum mechanics and quantum statistics applied to solid-state. Crystal structure, energy levels in solids, and band theory and semiconductor properties. Letter grading. Mr. Fettermann, Mr. Yablonovitch (F)

123B. Fundamentals of Solid-State II. (4) Lecture, three hours; outside study, nine hours. Requisite: course 123A. Discussion of solid-state properties, lattice vibrations, thermal properties, dielectric, magnetic, and superconducting properties. Letter grading. Mr. Stafsudd (W,Sp)

124. Semiconductor Physical Electronics. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 123A. Band structure of semiconductors, experimental probes of basic band structure parameters, statistics of carriers, carrier transport properties at low fields, excess carrier transport properties, recombination mechanisms, heterojunction properties. Letter grading. Ms. Hufkeler, Mr. Pan (W)

128. Principles of Nanoelectronics. (4) Lecture, four hours; discussion, four hours; outside study, four hours. Requisites: course 1, or Physics 1A and 1B. Introduction to fundamental concepts for electronic nanosystems. Principles of fundamental quantum electron charge, effective mass, Bohr magneton, and spin, as well as theoretical approaches. From these nanoscale properties, an introduction of basic behaviors of nanosystems such as analysis of dynamics, variability, and noise, contrasted with their conventional MOS counterparts. Integration of design projects in which students are challenged to design electronic nanosystems. Letter grading. Mr. K. Wang (F)

129D. Semiconductor Processing and Device Design. (4) Lecture, four hours; outside study, eight hours. Requisite: course 121B. Introduction to CAD tools used in integrated circuit processing and device design. Device structure optimization tool is based on PISCES; process integration tool is based on SUPREM. Course familiarizes students with the tools. Using CAD tools, a CMOS process integration to be designed. Letter grading. Mr. Chui, Mr. Woo (F)

131A. Probability. (4) Lecture, four hours; discussion, one hour; outside study, ten hours. Requisites: course 102, Mathematics 32B, 33B. Introduction to basic concepts of probability, including random variables and vectors, distributions and density functions, expectations, characteristic functions, and limit theorems. Applications to communication, control, and signal processing. Introduction to computer simulation and generation of random events. Letter grading. Mr. Roychowdhury (FW)

131B. Introduction to Stochastic Processes. (4) Lecture, four hours; outside study, eight hours. Requisite: course 131A. Introduction to concepts of stochastic processes, emphasizing continuous- and discrete-time stationary processes, correlation function and spectral density, linear transformation, and mean-square estimation. Applications to communication, control, and signal processing. Introduction to computer simulation and analysis of stochastic processes. Letter grading. Mr. Balakrishnan, Mr. Yao (Sp)

132B. Data Communications and Telecommunications Networks. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 131A. Layered communications architectures. Queueing system modeling and analysis. Error control, flow and congestion control. Packet switching, circuit switching, and routing. Network performance analysis and design. Multiple-access communications: TDMA, FDMA, polling, random access. Local, metropolitan, wide area, integrated services networks. Letter grading. Mr. Rubin (Sp)

Mr. Tabuada (F, W)

142. Linear Systems: State-Space Approach. (4) Lecture, two hours; laboratory, one hour; outside study, seven hours. Requisite: course 102. State-space methods of linear system analysis and synthesis, with application to problems in networks, control, and system modeling. Letter grading.

Mr. Tabuada (Not offered 2008-09)

CM150. Introduction to Micromachining and Microelectromechanical Systems (MEMS). (4) Formerly numbered M150L. (Same as Biomedical Engineering CM150 and Mechanical and Aerospace Engineering CM180.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Chemistry 20A, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Corequisite: course CM350L. Introduction to micromachining technologies and microelectromechanical systems (MEMS). Methods of micromachining and how these methods can be used to produce variety of MEMS including microfluidic sensors, microsensors, microactuators, and microelectromechanical systems. Students design microfabrication processes capable of achieving desired MEMS devices. Concurrently scheduled with course CM250A. Letter grading.

Mr. Itoh, Mr. Judy (F)

150DL. Photonic Sensor Design Laboratory. (4) Lecture, two hours; laboratory, four hours; outside study, eight hours. Limited to seniors. Multidisciplinary experiments and laboratory exposure on optical sensors. Fundamentals of intensity and interference-based transducers, polarimeters, multiplexing and sensor networks, physical and biomedical sensors. Design, implementation of optical gyroscope, computer interfacing, and signal processing. Letter grading.

Mr. Jialali (Not offered 2008-09)

CM150L. Introduction to Micromachining and Microelectromechanical Systems (MEMS) Laboratory. (2) Formerly numbered M150L. (Same as Biomedical Engineering CM150L and Mechanical and Aerospace Engineering CM180L.) Lecture, one hour; laboratory, four hours; outside study, one hour. Requisites: Chemistry 20A, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Corequisite: course CM150L. Hands-on introduction to micromachining technologies and microelectromechanical systems (MEMS) laboratory. Methods of micromachining and how these methods can be used to produce variety of MEMS, including microstructures, microsensors, and microactuators. Students go through process of fabricating MEMS devices. Concurrently scheduled with course CM250L. Letter grading.

Mr. Judy (F)

161. Electromagnetic Waves. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 101. Time-varying fields and Maxwell equations, plane wave propagation and interaction with media, energy flow and Poynting vector, guided waves in waveguides, phase and group velocity, radiation and antennas. Letter grading.

Mr. Rahmat-Samii (F, Sp)

Mr. Rahmat-Samii (Sp)

163A. Introductory Microwave Circuits. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 161. Transmission lines description of waveguides, impedance transformers, power dividers, directional couplers, filters, hybrid junctions, nonreciprocal devices. Letter grading.

Mr. Itoh, Mr. Y.E. Wang (W)

163B. Microwave and Millimeter Wave Active Devices. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 121B. MESSFT, HEMT, HBT, IMPATT, Gunn, small signal models, noise model, large signal model, loadpull, method parameter extraction technique. Letter grading.

Mr. Chang, Mr. Pan (W)

163C. Active Microwave Circuits. (4) Lecture, three hours; outside study, nine hours. Requisites: courses 115A, 161. Theory and design of microwave transistors and amplifiers; oscillators; stability, noise, distor- tion. Letter grading.

Mr. Itoh, Mr. Y.E. Wang (F)

164D. Microwave Wireless Design. (4) Formerly numbered 164DL. Lecture, one hour; laboratory, four hours; outside study, seven hours. Requisite: course 161. Microwave integrated circuit design from wireless system perspective, with focus on use of micro- wave circuit simulation tools, (2) design of wireless front-end circuit and amplifier; mixer, and power amplifier, (3) knowledge and skills required in wireless integrated circuit characterization and implementation. Letter grading.

Mr. Chang (Sp)

164L. Microwaves and Lasers. (3) Formerly numbered 164AL. Lecture, one hour; laboratory, three hours; outside study, three hours. Requisite: course 161. Measurement techniques and instrumenta- tion for active and passive microwave components; cavity resonators, waveguides, waveguides, slotted lines, directional couplers. Design, fabrication, and characterization of microwave circuits in microstrip and coaxial systems. Letter grading.

Mr. Itoh, Mr. Jialali (W)

M171L. Data Communication Systems Laboratory. (2 to 4) (Same as Computer Science M171L.) Laboratory, four to eight hours; outside study, two to four hours. Recommended preparation: course M116L. Limited to seniors. Introduction of analog- signaling aspects of digital systems and data communications through experience in using contemporary test instruments to generate and display signals in relevant laboratory setups. Use of oscilloscopes, pulse and function generators, baseband spectrum analyzers, desktop computers, terminals, modern PCs, and workstations in experimental design, transmission experiments, waveforms and their spectra, modern and terminal characteristics, and interfaces. Letter grading.

Mr. Fetteman (F, W, Sp)

172. Introduction to Laser and Quantum Electronics. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 101. Physical applications and principles of lasers, Gaussian optics, resonant cavities, atomic radiation, laser oscillation and amplification, cw and pulsed la- sers. Letter grading.

Mr. Stafsudd, Mr. Williams (F, Sp)

172L. Laser Laboratory. (4) Laboratory, four hours; outside study, eight hours. Requisite or corequisite: course 172. Properties of lasers, including saturation, gain, mode structure. Laser applications, including optics, modulation, communication, holography, and interferometry. Letter grading.

Mr. Joshi, Mr. Stafsudd (F, Sp)

173. Photonics Devices. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 101. Introduction to basic princi- ples of photonic devices. Topics include crystal op- toics, dielectric optical waveguides, waveguide cou- pers, electro-optic devices, magneto-optic devices, accousto-optic devices, second-harmonic generation, optical limiting, fiber, optical switches, etc. Letter grading.

Mr. Liu, Mr. Stafsudd (W)

173D. Photonics and Communication Design. (4) Formerly numbered 173DL. Lecture, four hours; outside study, eight hours. Requisite: course 102. Recommended: course 132A. Introduction to mea- surement of basic photonic devices, including LEDs, lasers, detectors, and amplifiers; fiber-optic funda- mentals and measurements of fiber systems. Modula- tion techniques, including A.D.M., FSK, phase and sup- pressed carrier methods. Letter grading.

Mr. Ozcan, Mr. Stafsudd (W)

174. Semiconductor Optoelectronics. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 172. Introduction to semiconductor optoelectronic devices for optical communications, interconnects, and signal processing. Basic optical properties of semiconductors, pin photodiodes, avalanche photodiode detectors (APD), light-emitting diodes (LED), semiconductor lasers, optical modulators and amplifiers, and typical photon- ic systems. Letter grading.

Mr. Fetteman, Mr. Ozcan (Sp)

175. Fourier Optics. (4) Lecture, three hours; dis- cussion, one hour; outside study, eight hours. Requisites: courses 102, 161. Two-dimensional linear sys- tems and Fourier transform properties. Letter grading.

Mr. Joshi, Mr. Mori (F, even years)

180D. Systems Design. (4) Lecture, two hours; lab- oratory, two hours; outside study, eight hours. Limited to senior Electrical Engineering majors. Advanced systems design integrating communications, control, and signal processing subsystems. Different project to be assigned yearly in which student teams create high-performance designs that manage trade-offs among subsystems. Letter grading.

Mr. Kaiser, Mr. Potte (F, Sp)

181D. Robotic Systems Design. (4) Lecture, two hours; laboratory, four hours; outside study, six hours. Requisites: courses M16, 110L, M116L (or Computer Science M150A), Computer Science 31, 33. Recommended preparation courses 15 and 35. Design of robots systems that combine embedded hardware, software, mechanical subsystems, and fundamental algorithms for sensing and control to ex- pand student's experiences in a comprehensive, self-contained curriculum that current state of art. Letter closely tied to design labora- tory where students work in teams to construct series of subsystems leading to final project. Letter grading.

Mr. Srivastava (W)

184D. Independent Group Project Design. (4) Lab- oratory, 10 hours; discussion, two hours. Requisites: courses M16, 110, 110L. Course centered on group project that runs year long to give students intensive experience on hardware design, microcontroller pro- gramming, and project coordination. Several projects based on autonomous robots that traverse small mazes and courses are offered yearly and target re- gional competitions. Students may submit proposals that are evaluated and approved by faculty members. Topics include sensing circuits and amplifier-based design, microcontroller programming, feedback control, actuation, and motor control. Letter grading.

Mr. Yang (Sp)

M185. Introduction to Plasma Electronics. (4) (Same as Physics M122.) Lecture, three hours. Requ- isite: course 101 or Physics 110A. Semester-level intro-ductory course on electrodynamics of ionized gases and applications to materials processing, generation of coherent radiation and particle beams, and renew- able energy sources. Letter grading.

Mr. Joshi, Mr. Mori (F, even years)
188. Special Courses in Electrical Engineering. (4) Seminar, four hours; outside study, eight hours. Special topics in electrical engineering for undergrad- uate students, who are accepted on an experimental or tem- porary basis, as those taught by resident and visiting faculty members. May be repeated once for credit with topic or instructor change. Letter grading.

194. Research Group Seminars: Electrical Engi- neering. (2 to 4) Seminar, four hours; outside study, eight hours. Designed for undergraduate students who are part of research group. Discussion of re- search methods and current literature in field. May be repeated for credit. Letter grading. (F, W, Sp)

199. Directed Research in Electrical Engineering. (2 to 8) Tutorial, to be arranged. Limited to juniors/se- niors. Supervised individual research or investigation under guidance of faculty mentor. Culminating paper or project required. May be repeated for credit with school approval. Individual contract required; enroll- ment petitions available in Office of Academic and Student Affairs. Letter grading. (F, W, Sp)

Graduate Courses

201A. VLSI Design Automation. (4) Lecture, four hours; outside study, eight hours. Requisite: course 115C. Fundamentals of design automation of VLSI circuits and systems, including introduction to circuit and system platforms such as field programmable gate arrays and multicore systems; high-level synthes- is, logic synthesis, and technology mapping; physi- cal design; and testing and verification. Letter grad- ing.

201C. Modeling of VLSI Circuits and Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 115C. Detailed study of VLSI circuit and system models considering performance, signal integrity, power and thermal ef- fects, reliability, and manufacturability. Discussion of principles of modeling and optimization codevelop- ment. Letter grading.

202A. Embedded Systems. (4) Formerly num- bered 202A.) (Same as Computer Science M213A.) Lecture, four hours; outside study, eight hours. Requisite: course 132B or Computer Science 118, and Computer Science 111. Designed for grad- uate computer science and electrical engineering students. Interdisciplinary course with focus on study of distributed embedded systems concepts needed to realize systems such as wireless sensor and actuator networks for monitoring and control of physical world. Topics include network self-configuration with localization and timing synchronization; energy- aware system design and operation; protocols for MAC, routing, transport, disruption tolerance; pro- gramming issues and models with language, OS, da- tabase, and middleware; in-network collaborative processing; fundamental characteristics such as cov- erage, connectivity, capacity, latency; techniques for exploitation and management of actuation and mobil- ity; data and system integrity issues with cache faults, debugging, and security; and usage issues such as human interfaces and safety. S/U or letter grading.

202B. Distributed Embedded Systems. (4) Formerly numbered 206A.) (Same as Computer Science M213B.) Lecture, four hours; outside study, eight hours. Requisite: course 132B or Computer Science 118, and Computer Science 111. Designed for grad- uate computer science and electrical engineering students. Interdisciplinary course with focus on study of distributed embedded systems concepts needed to realize systems such as wireless sensor and actuator networks for monitoring and control of physical world. Topics include network self-configuration with localization and timing synchronization; energy- aware system design and operation; protocols for MAC, routing, transport, disruption tolerance; pro- gramming issues and models with language, OS, da- tabase, and middleware; in-network collaborative processing; fundamental characteristics such as cov- erage, connectivity, capacity, latency; techniques for exploitation and management of actuation and mobil- ity; data and system integrity issues with cache faults, debugging, and security; and usage issues such as human interfaces and safety. S/U or letter grading.

202A. Matrix Analysis for Scientists and Engi- neers. (4) Lecture, four hours; outside study, eight hours. Preparation: one undergraduate linear algebra course. Designed for first-year graduate students in all branches of engineering, science, and related dis- ciplines. Introduction to matrix theory and linear alge- bra, language in which virtually all of modern science and engineering is conducted. Review of matrices taught in undergraduate courses and introduction to graduate-level topics. Letter grading. Mr. Laub (F)

208C. Special Topics in Circuits and Embedded Systems. (4) Lecture, four hours; outside study, eight hours. Special topics in one or more aspects of cir- cuits and embedded systems, such as digital, analog, mixed-signal, and radio frequency integrated circuits (RF ICs); electronic design automation; wireless communication circuits and systems; embedded pro- cessor architectures; embedded software; distributed sensor and actuator networks; robotics; and embed- ded security. May be repeated for credit with topic change. S/U or letter grading.

208BS. Seminar: Circuits and Embedded Sys- tems. (2 to 4) Seminar, two to four hours; outside study, eight hours. Seminars and discussions on current and advanced topics in one or more as- pects of circuits and embedded systems, such as digital, analog, mixed-signal, and radio frequency in- tegrated circuits (RF ICs); electronic design automa- tion; wireless communication circuits and systems; embedded processor architectures; embedded soft- ware; distributed sensor and actuator networks; ro- bots; and embedded systems. May be repeated for credit with topic change. S/U grading.

211B. Digital Image Processing II. (4) Lecture, three hours; laboratory, four hours; outside study, five hours. Requisite: course 211A. Advanced digital im- age processing theory and techniques. Topics in- clude modeling, restoration, still-frame and video im- age compression, tomographic imaging, and multi- resolution analysis using wavelet transforms. Letter grading. Mr. Villasenor (W)

212B. Multirate Systems and Filter Banks. (4) Lecture, five hours; outside study, nine hours. Req- uisite: course 212A. Fundamentals of multirate sys- tems; polyphase representation; multistage imple- mentations; applications of multirate systems; maxi- mally decimated filter banks; perfect reconstruction systems; paraunitary filter banks; wavelet transform and its relation to multirate filter banks. Letter grad- ing. Mr. Villasenor (W)

213A. Advanced Digital Signal Processing Circuit Design. (4) Lecture, three hours; outside study, nine hours. Requisite: course 212A. Digital filter design and optimization tools, architectures for digital signal processing circuits; integrated circuit modules for dig- ital signal processing; programmable signal process- ors; CAD tools and cell libraries for application-spe- cific integrated circuit design; case studies of speech and image processing circuits. Letter grading. Mr. Jain (Sp)

214A. Digital Speech Processing. (Same as Biomedical Engineering M214A.) Lecture, three hours; laboratory, two hours; outside study, seven hours. Requisite: course 113. Theory and applica- tions of digital processing of speech signals. Ma- thematical models of human speech production and per- ception mechanisms, speech analysis/synthesis. Techniques include linear prediction, filter bank mod- els, and homomorphic filtering. Applications to speech synthesis, automatic recognition, and hearing aids. Letter grading. Mr. Alwan (W)
214B. Advanced Topics in Speech Processing. (4) Lecture, four hours; computer assignments, two hours; outside study, seven hours. Requisite: course M214A. Advanced techniques used in various speech-processing applications, with focus on speech recognition by humans and machine. Physiology and psychoacoustics of human perception. Dynamical and Hidden Markov Models (HMM) for automatic speech recognition systems, pattern classification, and search algorithms. Aids for hearing impaired. Letter grading.

Ms. Awan (Sp, even years)

215A. Analog Integrated Circuit Design. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 115B. Analysis and design of analog circuits. Transistors, and integrated circuits. MOS and bipolar device structures and models, single-stage and differential amplifiers, noise, feedback, operational amplifiers, offset and distortion, sampling devices and discrete-time circuits, bandgap reference. Letter grading.

Mr. Razavi (F)

Mr. Markovic (W)

215C. Analysis and Design of RF Circuits and Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 215A. Principles of RF circuit and system design, with emphasis on monolithic implementation in VLSI technologies. Basic concepts, background, transmission line, digital circuits, semiconductor devices, low-noise amplifiers and mixers, oscillators, frequency synthesizers, power amplifiers. Letter grading.

Mr. Razavi (W)

Mr. Abidi (Sp)

215E. Signaling and Synchronization. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 215A, M216A. Analysis and design of circuits for synchronization and communication for VLSI systems. Use of both digital and analog design techniques for the implementation of electronic circuits, functional blocks, chips, and systems. Advanced clocking methodologies, phase-locked loop design for clock generation, and high-performance wire- and backplane-based transmitters, and timing recovery circuits. Letter grading.

Mr. C.K. Yang (F)

M216A. Design of VLSI Circuits and Systems. (4) (Same as Computer Science M258A.) Lecture, four hours; discussion, one hour; laboratory, four hours; outside study, three hours. Requisites: courses M16 or Computer Science M51A, and 115A. Recommended: course 115C. LSI/VLSI design and application in computer systems. Fundamental design techniques that can be used to implement complex integrated systems on a chip. Letter grading.

Mr. C.K. Yang (F)

216B. VLSI Signal Processing. (4) Lecture, four hours; outside study, eight hours. Advanced concepts in VLSI signal processing, with emphasis on architecture design and optimization within block-based description that can be mapped to hardware. Fundamental concepts from digital signal processing (DSP) theory, architecture, and circuit design applied to complex DSP algorithms in emerging applications for personal communications and healthcare. Letter grading.

Mr. Jain (Not offered 2008-09)

M216C. LSI in Computer System Design. (4) (Same as Computer Science M258C.) Lecture, four hours; laboratory, four hours. Requisite: course M216A. LSI/VLSI design and application in computer systems. Design of VLSI architectures and VLSI design tools. S/U or letter grading.

Mr. Jain (Not offered 2008-09)

217. Biomedical Imaging. (4) (Same as Biomedical Engineering M217.) Lecture, three hours; laboratory, four hours; outside study, four hours. Requisite: course 114 or 211A. Mathematical principles of medical imaging modalities: X-ray, computed tomography, positron-emission tomography, single photon emission computed tomography, magnetic resonance imaging. Topics include basic principles of each imaging system, image reconstruction algorithms, system configurations and their effects on reconstruction algorithms, special imaging techniques for specific applications such as flow imaging. Letter grading.

Mr. Grundfest (W)

221A. Physics of Semiconductor Devices I. (4) Lecture, four hours; outside study, eight hours. Physical principles and design considerations of junction devices. Letter grading.

Mr. K.L. Wang (F)

221B. Physics of Semiconductor Devices II. (4) Lecture, four hours; outside study, eight hours. Principles and design considerations of field-effect devices and charge-coupled devices. Letter grading.

Mr. Chui, Mr. Woo (F)

221C. Microwave Semiconductor Devices. (4) Lecture, four hours; outside study, eight hours. Physical principles and design considerations of microwave solid-state devices: barrier metal diodes, IMPATT diodes, transferred electron devices, tunnel diodes, microwave transistors. Letter grading.

Mr. Pottie, Mr. Pan (Sp)

222. Integrated Circuits Fabrication Processes. (4) Lecture, four hours; outside study, eight hours. Requisite: course 2. Principles of integrated circuits fabrication processes. Technological limitations of integrated circuits design. Topics include bulk crystal and epitaxial growth, thermal oxidation, diffusion, ion-implantation, chemical vapor deposition, dry etching, lithography, and metallization. Introduction of advanced process simulation tools. Letter grading.

Mr. Chang, Mr. Woo (Sp, odd years)

Mr. Fetterman, Mr. Pan (F)

224, Solid-State Electronics II. (4) Lecture, four hours; outside study, eight hours. Requisite: course 223. Techniques to solve Boltzmann transport equation, various scattering mechanisms in semiconductors, high field transport properties in semiconductor, Monte Carlo method in transport. Optical properties. Letter grading.

Mr. Pan, Mr. Stafuddi (Sp, alternate years)

225. Physics of Semiconductor Nanostructures and Devices. (4) Lecture, four hours; outside study, eight hours. Requisite: course 223. Theoretical methods for circulating electronics and optical properties of semiconductor structures. Quantum size effects and low-dimensional systems. Application to semiconductors and nanometer scale devices, including negative resistance diodes, transistors, and detectors. Letter grading.

Mr. K.L. Wang (Sp, alternate years)

229. Seminar; Advanced Topics in Solid-State Electronics. (4) Seminar, four hours; outside study, eight hours. Requisites: courses 223, 224. Current research areas, such as radiation effects in semiconductor devices, diffusion in semiconductors, optical and microwave semiconductor devices, nonlinear optics, and electron emission. Letter grading.

229S. Advanced Electrical Engineering Seminar. (2) Seminar, two hours; outside study, six hours. Preparation: successful completion of Ph.D. major field examination. Seminar on current research topics in solid-state and quantum electronics (Section 1) or in electronic circuit theory and applications (Section 2). Studies research in a tutorial topic and on a research topic in their dissertation area. May be repeated for credit. S/U grading. (Not offered 2008-09)

230A. Estimation and Detection in Communication and Radar Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 231A. Application of estimation and detection concepts in communication and radar engineering; random signal and noise characteristics by analytical and simulation methods; mean-square error (MSE) and minimum (ML) estimation and algorithms; detection under ML, Bayes, and Neyman/Pearson (NP) criteria; signal-to-noise ratio (SNR) and error probability evaluation. Letter grading.

Mr. Yao (F)

230B. Digital Communication Systems. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 132A, 230A. Basic concepts of digital communication systems; representation of bandpass waveforms; signal space analysis and optimum receivers in Gaussian noise; comparison of digital modulation methods; synchronization and adaptive equalization; applications to modern communication systems. Letter grading.

Mr. Pottie (W)

Mr. Yao (Sp)

230D. Signal Processing in Communications. (4) Lecture, four hours; outside study, eight hours. Requisite: course 230C. Basic digital signal processing techniques for estimation and detection of signals in communication and radar systems. Optimization of dynamic range, quantization, and state constraints; DFT, convolution, FFT, NTT, Winograd DFT, systolic array; spectral analysis-windowing, AR, and ARMA; system applications. Letter grading.

Mr. Yao (Sp)

231A. Information Theory: Channel and Source Coding. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 131A. Fundamental limits on compression and transmission of information. Topics include limits and algorithms for lossless data compression, channel capacity, rate versus distortion in lossy compression, and information theory for multiple users. Letter grading.

Mr. Pottie, Mr. Wesel (W)

231E. Channel Coding Theory. (4) Lecture, four hours; outside study, eight hours. Requisite: course 230C. Advanced topics in information theory, channel coding. Topics include block codes, convolutional codes, trellis codes, and turbo codes. Letter grading.

Mr. Wesel (Sp)

232A. Stochastic Modeling with Applications to Telecommunication Systems. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 131A. Introduction to stochastic processes as applied to study of telecommunication systems and traffic engineering. Renewal theory; discrete-time Markov chains; continuous-time Markov jump processes. Applications to traffic and queueing analysis of basic telecommunication systems. Letter grading.

Mr. Wesel (F)

232B. Telecommunication Switching and Queueing Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 232A. Queue modeling and analysis with applications to space-time digital switch systems and to integrated-service telecommunication systems. Fundamentals of traffic engineering and queueing theory. Queue size, waiting time, busy period, blocking, and stochastic process analysis for Markovian and non-Markovian models. Letter grading.

Mr. Rubin (W)
232C. Telecommunication Architecture and Networks. (4) Lecture, four hours; outside study, eight hours. Requisite: course 232B. Analysis and design of integrated service telecommunication networks and multiple-access procedures. Stochastic analysis of priority-based queueing system models. Queueing networks; network protocol architectures; error control; routing, flow, and access control. Applications to local-area, packet-radio, local-distribution, computer and satellite communication networks. Letter grading. Mr. Rubin (Not offered 2008-09)

232D. Telecommunication Networks and Multiple-Access Communications. (4) Lecture, four hours; outside study, eight hours. Requisite: course 232B. Performance analysis and design of telecommunication networks and multiple-access communication systems. Topics include architectures, multiplexing and multiple-access, message delays, error/flow control, switching, routing, protocols. Applications to local-area, packet-radio, local-distribution, computer and satellite communication networks. Letter grading. Mr. Rubin

232E. Graphs and Network Flows. (4) Lecture, four hours; outside study, eight hours. Requisite: course 136. Solution to analysis and synthesis problems which may be formulated as flow problems in capacity constrained (or cost constrained) networks. Development of tools of network flow theory using graph theoretic methods; application to communication, transportation, and transmission problems. Letter grading. Mr. Roychowdhury, Mr. Rubin (Sp)

233. Wireless Communications Systems. (4) (Formerly numbered 233B.) Lecture, four hours; outside study, eight hours. Requisite: course 232B. Various aspects of physical layer and medium access design for wireless communications systems. Topics include wireless signal propagation and channel modeling, single carrier and spread spectrum modulation for wireless systems, diversity techniques, multiple-access schemes, transceiver design and effects of non-ideal components. Involves hands-on projects, telecommunication, and VLSI signal processing. May be repeated for credit with topic change. S/U or letter grading.

M237. Dynamic Programming. (4) (Same as Mechanical and Aerospace Engineering M276.) Lecture, four hours; outside study, eight hours. Requisite: course 232A or 236A or 236B. Introduction to mathematical analysis of sequential decision processes. Finite horizon model in both deterministic and stochastic cases. Finite-state infinite horizon model. Dynamic programming, convex programming, equation theory, finance, optimal control and estimation, Markov decision processes, combinatorial optimization, communications. Letter grading. Mr. Vandenberghe (Not offered 2008-09)

238. Multimedia Communications and Processing. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 113, 131A. Recommended: courses 114, 231A. Key concepts, principles, and algorithms of real-time multimedia communications and processing across heterogeneous Internet and wireless channels. Due to flexible and low-cost infrastructure, new networks and communication channels enable variety of delay-sensitive multimedia transmission applications and provide varying resources with limited support for quality of service required by delay-sensitive, bandwidth-intensive, and loss-tolerant multimedia applications. Variability of resources does not significantly impact delay-insensitive applications (e.g., file transfers) but has consequences for multimedia services and leads to new challenges. Concepts, theories, and solutions that have dominated information theory, communications, and signal processing areas are not entirely suited for time-varying channel characteristics, adaptive and delay-sensitive multimedia applications, and multitermination environments. Letter grading. Mr. van der Schaar (F)

239A. Special Topics in Signals and Systems. (4) Lecture, four hours; outside study, eight hours. Special topics in one or more aspects of signals and systems, such as communications, control, image processing, information theory, multimedia, computer networking, optimization, speech processing, telecommunication, and VLSI signal processing. May be repeated for credit with topic change. S/U or letter grading. (W)

239BS. Seminar: Signals and Systems. (2 to 4) Seminar, two to four hours; outside study, four to eight hours. Seminars and discussions on current and advanced topics in one or more aspects of signals and systems, such as communications, control, image processing, information theory, multimedia, computer networking, optimization, speech processing, telecommunication, and VLSI signal processing. May be repeated for credit with topic change. S/U grading. (Not offered 2008-09)

M240A. Linear Dynamic Systems. (4) (Same as Chemical Engineering M280A and Mechanical and Aerospace Engineering M270A.) Lecture, four hours; outside study, eight hours. Requisite: course 141 or Mechanical and Aerospace Engineering 171A. State-space description of linear time-invariant (LTI) and time-varying (LTV) systems in continuous and discrete time. Linear algebra concepts such as eigenvalues and eigenvectors, singular values, Cayley-Hamilton theorem, Jordan form; solution of state equations; stability, controllability, observability, realizability, and minimum state. Stabilizability, detectability, feedback and observers; separation principle. Connections with transfer function techniques. Letter grading. Mr. Vandenberghe (W)

M240B. Linear Optimal Control. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 141, M240A. Introduction to optimal control, with emphasis on detailed study of LQR, or linear regulators with quadratic cost criteria. Relationships to classical control systems. Letter grading. Mr. Tabuada (F)

M240C. Optimal Control. (4) (Same as Chemical Engineering M280C and Mechanical and Aerospace Engineering M270C.) Lecture, four hours; outside study, eight hours. Requisite: course 240B. Applications of variational methods, Pontryagin maximum principle, Hamilton/Jacobi/Bellman equation (dynamical programming) to optimal control of dynamic systems modeled by nonlinear ordinary differential equations. Letter grading. Mr. Balakrishnan

241C. Stochastic Control. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 240B, 241B. Linear quadratic Gaussian theory of feedback control of stochastic systems; discrete-time state-space models; sigma algebra equivalence and separation principle; dynamic programming; compensator design for time-invariant systems; feedback control and servomechanisms, extensions to nonlinear systems; applications to intervention guidance, gust alleviation. Letter grading.

243. Robust and Optimal Control by Convex Methods. (4) Lecture, four hours; outside study, eight hours. Requisite: course M240A. Multivariable robust control, including H2 and H-infinity optimal control and robust performance analysis and synthesis against structured uncertainty. Emphasis on convex methods for analysis and design, in particular linear matrix inequality (LMI) approach to control. Letter grading. Mr. Tabuada (Subsidized Summer 2009)

M248S. Seminar: Systems, Dynamics, and Control Topics. (2) (Same as Chemical Engineering M297 and Mechanical and Aerospace Engineering M299S.) Seminar, two hours; outside study, six hours. Limited to graduate engineering students. Presentations of research topics by leading academic researchers from fields of systems, dynamics, and control. Students who work in these fields present their papers and results. S/U grading. Mr. Balakrishnan (F)
and inspire students to create new ideas in multidisciplinary areas, and nanobiodetection technology. Introduction to top-down and bottom-up (self-assembly) nanofabrication; basic physical principles, quantum mechanics, microsensors, and microactuators. Students go through process of fabricating MEMS device. Concurrently scheduled with course CM250L. Letter grading.

M252. Microelectromechanical Systems (MEMS) Device Physics and Design. (4) (Formerly numbered M250B.) (Same as Biomedical Engineering M252 and Mechanical and Aerospace Engineering M252.) Lecture, four hours; outside study, eight hours. Introduction to MEMS design. Design methods, design rules, sensing and actuation mechanisms, microsensors, and microactuators. Designing MEMS to be produced with both foundry and non-foundry processes. Computer-aided design for MEMS. Design project required. Letter grading.

M255. Neuroengineering. (4) (Same as Biomedical Engineering M250 and Neuroscience M206.) Lecture, four hours; laboratory, three hours; outside study, five hours. Requisites: Mathematics 32A, Physics 1B or 8B. Introduction to principles and technologies of bioelectricity and neural signal recording, processing, and stimulation. Topics include bioelectricity, electrophysiology (action potentials, local field potentials, EEG, ECOG), intracellular and extracellular recording, microelectrode technology, neural signal processing (neural signal frequency bands, filtering, spike detection, spike sorting, stimulation artifact removal), microfabrication, integrated circuits, deep-brain stimulation, and prosthetics. Letter grading.

M257. Nanoscience and Technology. (4) (Same as Mechanical and Aerospace Engineering M257.) Lecture, four hours; outside study, eight hours. Introduction to fundamentals of nanoscale science and technology. Basic physical principles, quantum mechanics, chemical bonding and nanostructures, top-down and bottom-up (self-assembly) nanofabrication; nanonanotechnology; nanomaterials, nanoelectronics, and nanobiotechnology. Introduction to new knowledge and techniques in nano areas to understand scientific principles behind nanotechnology and inspire students to create new ideas in multidisciplinary nano areas. Letter grading.

295. Technical Writing for Electrical Engineers. (2) Lecture, two hours. Designed for electrical engineering Ph.D. students. Opportunity for students to improve technical writing skills by revising conference, technical, and journal papers and practicing writing about their work for undergraduate audience (potential students), engineers outside their specific fields, and non-scientists (colleagues with less expertise in field and policymakers). Students write in variety of genres, all related to their professional development as electrical engineers. Emphasis on writing as vital way to communicate precise technical and professional information in distinct contexts, directly resulting in specific outcomes. S/U grading.

296. Seminar: Research Topics in Electrical Engineering. (2) Seminar, two hours; outside study, four hours. Advanced study and analysis of current topics in electrical engineering. Discussion of current research and literature in research specialty of faculty member teaching course. May be repeated for credit. S/U grading.

297. Seminar Series: Electrical Engineering. (1) Seminar, 90 minutes; outside study, 90 minutes. Limited to graduate electrical engineering students. Weekly seminars and discussion by invited speakers on research topics of heightened interest. S/U grading. (F,W,Sp)

298. Seminar: Engineering. (2 to 4) Seminar, to be arranged. Limited to graduate electrical engineering students. Seminars may be organized in advanced technical fields. If appropriate, field trips may be arranged. May be repeated with topic change. S/U or letter grading. (Not offered 2008-09)

299. M.S. Project Seminar. (4) Seminar, to be arranged. Required of all M.S. students not in thesis option. Supervised research in small groups or individually under guidance of faculty mentor. Regular meetings, culminating report, and presentation required. Individual contract required; enrollment petitions available in Office of Graduate Student Affairs. Letter grading.

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: apprentice personnel employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. (F,W,Sp)

596. Directed Individual or Tutorial Studies. (2 to 8) Tutorial, to be arranged. Limited to graduate electrical engineering students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies. Supervised investigation of advanced technical problems. S/U grading.

597A. Preparation for M.S. Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate electrical engineering students. Reading and preparation for M.S. comprehensive examination. S/U grading.

597B. Preparation for Ph.D. Preliminary Examinations. (2 to 16) Tutorial, to be arranged. Limited to graduate electrical engineering students. Preparation for preliminary examination, including preliminary research on dissertation. S/U grading.

597C. Preparation for Ph.D. Oral Qualifying Examination. (2 to 16) Tutorial, to be arranged. Limited to graduate electrical engineering students. Preparation for oral qualifying examination, including preliminary research on dissertation. S/U grading.

598. Research for and Preparation of M.S. Thesis. (2 to 12) Tutorial, to be arranged. Limited to graduate electrical engineering students. Supervised independent research for M.S. candidates, including thesis prospectus. S/U grading.

599. Research for and Preparation of Ph.D. Dissertation. (2 to 16) Tutorial, to be arranged. Limited to graduate electrical engineering students. Usually taken after students have been advanced to candidacy. S/U grading.

Materials Science and Engineering

UCLA
311 Engineering V
Box 951595
Los Angeles, CA 90095-1595
(310) 825-5534
fax: (310) 206-7353
http://www.seas.ucla.edu/ms/

Mark S. Goorsky, Ph.D., Chair
Vidvuds Ozolins, Ph.D., Vice Chair
Jenn-Ming Yang, Ph.D., Vice Chair

Professors
Russel E. Catfisch, Ph.D.
Yong Chen, Ph.D.
Bruce S. Dunn, Ph.D., NSG Chair (Nippon Sheet Glass Company Professor of Materials Science)
Nasr M. Ghoniem, Ph.D.
Mark S. Goorsky, Ph.D.
Vijay Gupta, Ph.D.
H. Thomas Hahn, Ph.D. (Raytheon Company Professor of Manufacturing Engineering)
Robert F. Hicks, Ph.D.
Richard B. Kaner, Ph.D.
Qibing Pei, Ph.D.
King-Ning Tu, Ph.D.
Ya-Hong Xie, Ph.D.
Jenn-Ming Yang, Ph.D.
Yang Yang, Ph.D.

Professors Emeriti
Alan J. Ardell, Ph.D.
David L. Douglass, Ph.D.
William Klement, Jr., Ph.D.
John D. Mackenzie, Ph.D. (Nippon Sheet Glass Company Professor Emeritus of Materials Science)
Kanj Ono, Ph.D.
Ali H. Shabaik, Ph.D.
George H. Sines, Ph.D.
Christian N.J. Wagner, Dr.rer.nat.
Fred Wudl, Ph.D.
Alfred S. Yue, Ph.D.

Associate Professors
Vidvuds Ozolins, Ph.D.
Benjamin M. Wu, D.D.S., Ph.D.

Assistant Professors
Yu Huang, Ph.D.
Ioanna Kakoulli, D.Phil.
Suneel Kodambaka, Ph.D.

Adjunct Professors
Eric P. Bescher, Ph.D.
Harry Patton Gillis, Ph.D.
John J. Gilman, Ph.D.
Marek A. Przystupa, Ph.D.

Scope and Objectives

At the heart of materials science is an understanding of the microstructure of solids. “Microstructure” is used broadly in reference to solids viewed at the subatomic (electronic) and atomic levels, and the nature of the defects at these levels. The microstructure of solids at various levels
profoundly influences the mechanical, electronic, chemical, and biological properties of solids. The phenomenological and mechanistic relationships between microstructure and the macroscopic properties of solids are, in essence, what materials science is all about.

Materials engineering builds on the foundation of materials science and is concerned with the design, fabrication, and optimal selection of engineering materials that must simultaneously fulfill dimensional, property, quality control, and economic requirements.

The department also has a program in electronic materials that provides a broad-based background in materials science, with opportunity to specialize in the study of those materials used for electronic and optoelectronic applications. The program incorporates several courses in electrical engineering in addition to those in the materials science curriculum.

The undergraduate program leads to the B.S. degree in Materials Engineering. Students are introduced to the basic principles of metallurgy and ceramic and polymer science as part of the department’s Materials Engineering major.

A joint major field, Chemistry/Materials Science, is offered to students enrolled in the Department of Chemistry and Biochemistry (College of Letters and Science).

The graduate program allows for specialization in one of the following fields: ceramics and ceramic processing, electronic and optical materials, and structural materials.

Department Mission

The Department of Materials Science and Engineering faculty members, students, and alumni foster a collegial atmosphere to produce (1) highly qualified students through an educational program that cultivates excellence, (2) novel and highly innovative research that advances basic and applied knowledge in materials, and (3) effective interactions with the external community through educational outreach, industrial collaborations, and service activities.

Undergraduate Program Objectives

The Materials Engineering major at UCLA prepares undergraduate students for employment or advanced studies with industry, the national laboratories, state and federal agencies, and academia. To meet the needs of these constituencies, the objectives of the undergraduate program are to produce graduates who (1) possess a solid foundation in materials science and engineering, with emphasis on the fundamental scientific and engineering principles that govern the microstructure, properties, processing, and performance of all classes of engineering materials, (2) understand materials processes and the application of general natural science and engineering principles to the analysis and design of materials systems of current and/or future importance to society, (3) have strong skills in independent learning, analysis, and problem solving, with special emphasis on design of engineering materials and processes, communication, and an ability to work in teams, and (4) understand and are aware of the broad issues relevant to materials, including professional and ethical responsibilities, impact of materials engineering on society and environment, contemporary issues, and need for lifelong learning.

Undergraduate Study

Materials Engineering B.S.

The ABET-accredited materials engineering program is designed for students who wish to pursue a professional career in the materials field and desire a broad understanding of the relationship between microstructure and properties of materials. Metals, ceramics, and polymers, as well as the design, fabrication, and testing of metallic and other materials such as oxides, glasses, and fiber-reinforced composites, are included in the course contents.

Materials Engineering Option

Preparation for the Major

Required: Chemistry and Biochemistry 20A, 20B, 20L; Computer Science 31 (or another programming course approved by the Faculty Executive Committee); Materials Science and Engineering 10, 90L; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C (or Electrical Engineering 1).

The Major

Required: Chemical Engineering 102A (or Mechanical and Aerospace Engineering 105A), Civil and Environmental Engineering 101 (or Mechanical and Aerospace Engineering 101), 108, Electrical Engineering 100, Materials Science and Engineering 104, 110, 110L, 120, 130, 131, 131L, 132, 140, 143A, 150, 160, Mechanical and Aerospace Engineering 181A or 182A; two laboratory courses (4 units) from Materials Science and Engineering 121L, 141L, 143L, 161L; three technical breadth courses (12 units) selected from an approved list available in the Office of Aca-

The X-ray Photoemission Spectrometer and UV Photoemission Spectrometer is equipped with a sample preparation chamber. The first of its kind at UCLA, it was awarded to Professor Yang Yang’s laboratory through an Air Force grant.
Electronic Materials Option

Preparation for the Major

Required: Chemistry and Biochemistry 20A, 20B, 20L; Computer Science 31 (or another programming course approved by the Faculty Executive Committee); Electrical Engineering 10; Materials Science and Engineering 10, 90L; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C (or Electrical Engineering 1).

The Major

Required: Chemical Engineering 102A (or Mechanical and Aerospace Engineering 105A), Electrical Engineering 101, 121B, Materials Science and Engineering 104, 110, 110L, 120 (or Electrical Engineering 2), 121, 121L, 122, 130, 131, 131L, 140, Mechanical and Aerospace Engineering 101, and 181A or 182A; four courses (16 units) from Electrical Engineering 123A, 123B, Materials Science and Engineering 132, 150, 160; 4 laboratory units from Electrical Engineering 172L, Materials Science and Engineering 141L, 161L, 199; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and one major field elective course (4 units) from Electrical Engineering 110, 124, 131A, 172, Materials Science and Engineering 111, 143A, 162.

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

Graduate Study

For information on graduate admission, see Graduate Programs, page 23.

The following introductory information is based on the 2008-09 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnet.ucla.edu/gasaa/library/pgmrqintro.htm. Students are subject to the degree requirements as published in Program Requirements for the year in which they matriculate.

The Department of Materials Science and Engineering offers Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Materials Science and Engineering.

Materials Science and Engineering M.S.

Areas of Study

There are three main areas in the M.S. program: ceramics and ceramic processing, electronic and optical materials, and structural materials. Students may specialize in any one of the three areas, although most students are more interested in a broader education and select a variety of courses. Basically, students select courses that serve their interests best in regard to thesis research and job prospects.

Course Requirements

Thesis Plan. Nine courses are required, of which six must be graduate courses. The courses are to be selected from the following lists, although suitable substitutions can be made from other engineering disciplines or from chemistry and physics with the approval of the departmental graduate adviser. Two of the six graduate courses may be Materials Science and Engineering 598 (thesis research).

Comprehensive Examination Plan. Nine courses are required, six of which must be graduate courses, selected from the following lists with the same provisions listed under the thesis plan. The remaining three courses in the total course requirement may be upper division courses.

Thesis Plan. As long as a majority of the courses taken are offered by the department, substitutions may be made with the consent of the departmental graduate adviser.

Undergraduate Courses. No lower division courses may be applied toward graduate degrees. In addition, the following upper division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199; Civil and Environmental Engineering 106A, 108, 199; Computer Science M152A, 152B, M171L, 199; Electrical Engineering 100, 101, 102, 103, 110L, M116L, M171L, 199; Materials Science and Engineering 110, 120, 130, 131L, 132, 140, 141L, 150, 160, 161L, 199; Mechanical and Aerospace Engineering 102, 103, 105A, 105D, 199.

Thesis Plan

In addition to fulfilling the course requirements, under the thesis plan students are required to write a thesis on a research topic in materials science and engineering supervised by the thesis adviser. An M.S. thesis committee composed of three departmental faculty members, including the thesis chair, reviews and approves the thesis.

Comprehensive Examination Plan

Consult the graduate adviser for details. If the comprehensive examination is failed, students may be reexamined once with the consent of the graduate adviser.

Materials Science and Engineering Ph.D.

Major Fields or Subdisciplines

Ceramics and ceramic processing, electronic and optical materials, and structural materials.

Course Requirements

There is no formal course requirement for the Ph.D. degree, and students may substitute coursework by examinations. Normally, however, students take courses to acquire the knowledge needed to satisfy the written preliminary examination requirement. In this case, a grade-point average of at least 3.33 in all courses is required, with a grade of B– or better in each course. The basic program of study for the Ph.D. degree is built around one major field and one minor field. The major field has a scope corresponding to a body of knowledge contained in nine courses, at least six of which must be graduate courses, plus the current literature in the area of special-
ization. Materials Science and Engineering 599 may not be applied toward the nine-course total. The major fields named above are described in a Ph.D. major field syllabus, each of which can be obtained in the department office.

The minor field normally embraces a body of knowledge equivalent to three courses, at least two of which are graduate courses. If students fail to satisfy the minor field requirements through coursework, a minor field examination may be taken (once only). The minor field is selected to support the major field and is usually a subset of the major field.

For information on completing the Engineer degree, see Schoolwide Programs, Courses, and Faculty.

Written and Oral Qualifying Examinations
During the first year of full-time enrollment in the Ph.D. program, students take the oral preliminary examination that encompasses the body of knowledge in materials science equivalent to that expected of a bachelor's degree. If students opt not to take courses, a written preliminary examination in the major field is required. Students may not take an examination more than twice.

After passing both preliminary examinations, students take the University Oral Qualifying Examination. The nature and content of the examination are at the discretion of the doctoral committee but ordinarily include a broad inquiry into the student's preparation for research. The doctoral committee also reviews the prospectus of the dissertation at the oral qualifying examination.

Note: Doctoral Committees. A doctoral committee consists of a minimum of four members. Three members, including the chair, are "inside" members and must hold appointments in the Materials Science and Engineering Department at UCLA. The "outside" member must be a UCLA faculty member outside the Materials Science and Engineering Department. Faculty members holding joint appointments with the department are considered "inside" members.

Fields of Study
Ceramics and Ceramic Processing
The ceramics and ceramic processing field is designed for students interested in ceramics and glasses, including electronic materials. As in the case of metalurgy, primary and secondary fabrication processes such as vapor deposition, sintering, melt forming, or extrusion strongly influence the microstructure and properties of ceramic components used in structural, electronic, or biological applications. Formal course and research programs emphasize the coupling of processing treatments, microstructure, and properties.

Electronic and Optical Materials
The electronic and optical materials field provides an area of study in the science and technology of electronic materials that includes semiconductors, optical ceramics, and thin films (metal, dielectric, and multilayer) for electronic and optoelectronic applications. Course offerings emphasize fundamental issues such as solid-state electronic and optical phenomena, bulk and interface thermodynamics and kinetics, and applications that include growth, processing, and characterization techniques. Active research programs address the relationship between microstructure and nanostructure and electronic/optical properties in these materials systems.

Structural Materials
The structural materials field is designed primarily to provide broad understanding of the relationships between processing, microstructure, and performance of various structural materials, including metals, intermetallics, ceramics, and composite materials. Research programs include material synthesis and processing, ion implantation-induced strengthening and toughening, mechanisms and mechanics of fatigue, fracture and creep, structure/property characterization, nondestructive evaluation, high-temperature stability, and aging of materials.

Facilities
Facilities in the Materials Science and Engineering Department include:
- Ceramic Processing Laboratory
- Electron Microscopy Laboratories with a scanning transmission electron microscope (100 keV), a field emission transmission electron microscope (200 keV), and a scanning electron microscope, all equipped with a full quantitative analyzer, a stereo microscope, micro-cameras, and metallurgical microscopes
- Glass and Ceramics Research Laboratories
- Mechanical Testing Laboratory
- Metallographic Sample Preparation Laboratory
- Nano-Materials Laboratory
- Nondestructive Testing Laboratory
- Organic Electronic Materials Processing Laboratory
- Semiconductor and Optical Characterization Laboratory
- Thin Film Deposition Laboratory, including molecular beam epitaxy and wafer bonder
- X-Ray Diffraction Laboratory
- X-Ray Photoelectron Spectroscopy and Atomic Force Microscopy Facility

Faculty Areas of Thesis Guidance
Professors
Theory and numerical simulation for materials physics, epitaxial growth, nanoscale systems, semiconductor device properties and design in applications to quantum well devices, quantum dots, nanocrystals and quantum computing

Yong Chen, Ph.D. (UC Berkeley, 1996)
Nanoscale science and engineering, micro- and nano-fabrication, self-assembly phenomena, microscale and nanoscale electronic, mechanical, optical, and biological, and sensing devices, circuits and systems

Bruce S. Dunn, Ph.D. (UCLA, 1974)
Solid electrolytes, electrical properties of ceramics and glasses, ceramic-metal bonding, optical materials

Nasr M. Ghoniem, Ph.D. (Wisconsin, 1977)
Mechanical behavior of high-temperature materials, radiation interaction with material (e.g., laser, ions, plasma, electrons, and neutrons), material processing by plasma and beam sources, physics and mechanics of material defects, fusion energy

Mark S. Goorsky, Ph.D. (MIT, 1989)
Electronic materials processing, strain relaxation in epitaxial semiconductors and device structures, high-resolution X-ray diffraction of semiconductors, ceramics, and high-strength alloys

Vijay Gupta, Ph.D. (MIT, 1989)
Experimental mechanics, fracture of engineering solids, mechanics of thin film and interfaces, failure mechanisms and characterization of composite materials, ice mechanics

H. Thomas Hahn, Ph.D. (Pennsylvania State, 1971)
Nanocomposites, multifunctional composites, nanomechanics, rapid prototyping, information systems

Robert F. Hicks, Ph.D. (UC Berkeley, 1984)
Chemical vapor deposition and atmospheric plasma processing

Richard B. Kaner, Ph.D. (Pennsylvania, 1984)
Rapid synthesis of high-temperature materials, conducting polymers as separation membranes for enantiomers, synthesis of carbon nanotubes and composites

Qibing Pei, Ph.D. (Chinese Academy of Sciences, 1990)
Electroactive polymers through molecular design and nano-engineering for electronic devices and artificial muscles
King-Ning Tu, Ph.D. (Harvard, 1968)
Kinetic processes in thin films, metal-silicon interfaces, electrification, Pb-free interconnects

Ya-Hong Xie, Ph.D. (UCLA, 1986)
Hetero-epitaxial growth of semiconductor thin films, strained Si, self-assembled quantum dots, amorphous nanostructures, Si substrate impedance engineering for mixed-signal integrated circuit technologies

Jenn-Ming Yang, Ph.D. (Delaware, 1986)
Mechanical behavior of polymer, metal, and ceramic matrix composites, electronics packaging

Yang Yang, Ph.D. (Massachusetts-Lowell, 1992)
Conjugated polymers and applications in optoelectronic devices such as light-emitting diodes, photodiodes, and field-effect transistors

Professors Emeriti
Alan J. Ardell, Ph.D. (Stanford, 1964)
Irradiation-induced precipitation, high-temperature deformation of solids, electron microscopy, physical metallurgy of aluminum/lithium alloys, precipitation hardening

David L. Douglass, Ph.D. (Ohio State, 1958)
Oxidation and reaction kinetics and mechanisms, materials compatibility, defect structures, diffusion

William Klement, Jr., Ph.D. (Cal Tech, 1962)
Phase transformations in solids, high-pressure effects on solids

Glass science, ceramics, electrical properties of amorphous materials, materials recycling

Kanji Ono, Ph.D. (Northwestern, 1964)
Mechanical behavior and nondestructive testing of structural materials, acoustic emission, dislocations and strengthening mechanisms, microstructural effects, and ultrasonics

Aly H. Shabaik, Ph.D. (Columbia U., 1952)
Metal forming, metal cutting, mechanical properties, friction and wear, biomaterials, manufacturing processes

George H. Sines, Ph.D. (UCLA, 1953)
Fracture of ceramics, fatigue of metals, carbon-carbon composites, failure analysis

Christian N. Wagner, Dr. rer.nat. (U. des Saarlandes, 1925)
X-ray and neutron diffraction; structure of liquid and amorphous alloys, and plastically deformed metals; biomaterials; thin films; residual stresses

Fred Wudl, Ph.D. (UCLA, 1967)
Organic materials synthesis, organic electronic devices, including field-effect transistors, light-emitting devices, organic metals and superconductors, Fallierean chemistry applied to these areas

Alfred S. Yue, Ph.D. (Purdue, 1957)
Semiconductor eutectics; electronic materials for solar cell and detector applications, solidification and crystal growth

Ioanna Kakoulli, D.Phil. (University of Oxford, 1999)
Chemical and physical properties of non-metallic archaeological materials, alteration processes in archaeological vitreous materials and pigments

Suneel Kodambaka, Ph.D. (Illinois, Urbana-Champaign, 2002)
In situ microscopy, surface thermodynamics, kinetics of crystal growth, phase transformations and chemical reactions, thin film physics

Adjunct Professors
Eric P. Bescher, Ph.D. (UCLA, 1987)
Advanced cementitious materials, sol-gel processing, biodegradable glasses, composites

Harry Patton Gillis, Ph.D. (Chicago, 1974)
Application of surface science and chemical dynamics techniques to elucidate fundamental molecular mechanisms and optimize practical processes

John J. Gillman, Ph.D. (Columbia U., 1952)
Mechanochemistry, dislocation mobility, metallic glasses, fracture phenomena, shock and detonation fronts, research management theory

Marek A. Przystupa, Ph.D. (Michigan Tech, 1985)
Mechanical behavior of solids

Lower Division Courses
10. Freshman Seminar: New Materials. (1) Seminar, one hour; outside study, two hours. Preparation: high school chemistry and physics. Not open to students with credit for course 104 or former course 14.
Introduction to basic concepts of materials science and new materials vital to advanced technology. Microstructural analysis and various material properties discussed in conjunction with such applications as biomaterials, near-net-shape forming, and microelectronics.

Mr. Ono (F)
19. Fiat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

Mr. Dunn (Sp)
90L. Physical Measurement in Materials Engineering. (2) Laboratory, four hours; outside study, two hours. Various physical measurement methods used in materials science and engineering, such as X-ray and neutron diffraction, stereographic projection, direct observation of defects in crystals, replicas, scanning electron microscopy, emissive and reflective modes, chemical analysis; electron optics of both instruments. Letter grading.

Mr. Goosnys (F)

Mr. Ardlle (W)
C112. Introduction to Archaeological Materials Science: Scientific Methodologies, Technologies, and Interpretation. (4) Lecture, three hours; laboratory, two hours; outside study, seven hours. Required requisites: courses 104, 110. Application of micro- and macroscopic microchemistry of materials; transmission electron microscopy; reciprocal lattice, electron diffraction, stereographic projection, direct observation of defects in crystals, replicas, scanning electron microscopy; emissive and reflective modes, chemical analysis; electron optics of both instruments. Letter grading.

Mr. Ardlle (W)

Mr. Dunn (W)

Mr. Dunn (Sp)
121. Materials Science of Semiconductors. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Required requisites: course 120. Structure, properties of elemental and compound semiconductors. Electrical and optical properties, defect chemistry, and doping. Electronic materials analysis and characterization, including electrical, optical, and ion-beam techniques. Heterostructures, band-gap engineering, development of new materials for optoelectronic applications. Letter grading.

Mr. Dunn (Sp)
121L. Materials Science of Semiconductors Laboratory. (2) Lecture, 30 minutes; discussion, 30 minutes; laboratory, two hours; outside study, three hours. Corequisite: course 121. Experiments conducted on materials characterization, including measurements of contact resistance, dielectric constant, and thin film x-ray analysis. Grade letter grading. Mr. Goorsky (W)

122. Principles of Electronic Materials Processing. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 104. Description of semiconductor materials for processing; preparation and characterization of silicon, III-V compounds, and films. Discussion of principles of CVD, MOCVD, LPE, and MBE; metals and dielectrics. Letter grading. Mr. Goorsky (W)

130. Phase Relations in Solids. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 104, and Chemical Engineering 102A or Mechanical and Aerospace Engineering 105A. Summary of thermodynamic laws, equilibrium criteria, solution thermodynamics, mass action law, binary and ternary phase diagrams, glass transitions. Letter grading. Mr. Goorsky (W)

131. Diffusion and Diffusion-Controlled Reactions. (4) Lecture, four hours; outside study, eight hours. Requisite: course 130. Diffusion in metals and ionic solids, nucleation and growth theory; precipitation from solid solutions; eutectoid decomposition. Design of heat treatment processes of alloys, growth of intermediate phases, gas-solid reactions, design of oxidation-resistant alloys, recrystallization, and grain growth. Letter grading. Mr. Wu (W)

131L. Diffusion-Controlled Reactions Laboratory. (2) Laboratory, two hours; outside study, four hours. Corequisite: course 130. Design of heat-treating cycles and performing experiments to study interdiffusion, growth of intermediate phases, recrystallization, and grain growth in metals. Analysis of data. Comparison of results with theory. Letter grading. Mr. Wu (W)

132. Structure and Properties of Metallic Alloys. (4) Lecture, four hours; outside study, eight hours. Requisite: course 131. Physical metallurgy of steels, lightweight alloys (Al and Ti), and superalloys. Strengthening mechanisms, microstructural control methods for strength and toughness improvement. Grain boundary segregation. Letter grading. Mr. Ono (Sp)

C133. Ancient and Historic Metals: Technology, Microscopy, History. (4) Lecture, two hours; laboratory, 90 minutes. Processes of extraction, alloying, surface patination, metallic coatings, corrosion, and microstructure of ancient and historic metals. Extensive laboratory work in preparation and examination of metallic samples under the microscope, as well as lectures on technology of metallic works of art. Practical instruction in metallographic microscopy. Exploration of phase and stability diagrams of common alloying systems and environments and analytical techniques appropriate for examination and characterization of metallic artifacts. Concurrently scheduled with course CM233. Letter grading. Mr. Dunn (W)

140. Materials Selection and Engineering Design. (4) (Formerly numbered 190.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 132, 150, 160. Explicit guidance among interested firms available for design in engineering. Properties and applications of steels, nonferrous alloys, polymeric, ceramic, and composite materials, coatings. Materials selection, treatment, and surface stability emphasized as part of successful design. Project grading. Letter grading. Mr. Przystupa (Sp)

141L. Computer Methods and Instrumentation in Materials Science. (2) (Formerly numbered 191L.) Laboratory, four hours; preparation: knowledge of BASIC or C or assembly language. Limited to junior/senior Materials Science and Engineering majors. Interface and control techniques, real-time data acquisition and processing, computer-aided testing. Letter grading. Mr. Goorsky (W)

143A. Mechanical Behavior of Materials. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 145, 146. Methods, stress-strain analysis, and characterization of mechanical behavior of various materials. Theory of plastic deformation. Letter grading. Mr. Przystupa (W)

143L. Mechanical Behavior Laboratory. (2) Laboratory, four hours. Requisites: courses 90L, 143A (may be repeated). Projects, tests. Mechanical and Aerospace Engineering 101. Plastic flow of metals and materials, stress analysis, strain rate and temperature effects, dislocations, friction, microstructural effects, mechanical and thermal treatment of steel for engineering applications. Letter grading. Mr. Dunn (W)

150. Introduction to Polymers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Polymerization mechanisms, molecular weight and dynamics, chemical structure and bonding, structure crystallinity, and morphology and their effects on physical properties. Glassy polymers, springy polymers, elastomers, adhesives. Fiber forming, polymer processing technology, plastication. Letter grading. Mr. J.-M. Yang (W)

160. Introduction to Ceramics and Glasses. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 104, 130. Introduction to ceramics and glasses being used as important materials of engineering, processing techniques, and unique properties. Examples of design and control of properties for certain specific applications in engineering. Letter grading. Mr. Dunn (F)

161. Processing of Ceramics and Glasses. (4) Lecture, four hours; discussion, one hour. Requisite: course 160. Study of processes used in fabrication of ceramics and glasses for structural applications, optics, and electronics. Processing operations, including modern techniques of powder synthesis, greenware forming, sintering, glass melting. Microstructure properties relations in ceramics. Fracture analysis and design with ceramics. Letter grading. Mr. Dunn (W, even years)

161L. Laboratory in Ceramics. (2) Laboratory, four hours. Requisite: course 160. Recommended corequisite: course 161. Processing of common ceramics and glasses. Attainment of specific properties through processing control or other means. Determination of microstructural characterization and selection of raw materials. Slip casting and extrusion of clay bodies. Sintering of powders. Glass melting and fabrication. Determination of chemical and physical properties. Letter grading. Mr. Dunn (Sp)

162. Electronic Ceramics. (4) Lecture, four hours; outside study, eight hours. Requisites: course 104, Electrical Engineering 1 (or Physics 1C). Utilization of ceramics in microelectronics; thick film and thin film resistors, capacitors, and substrates; design and processing of electronic ceramics and packaging; magnetic devices; design and processing of ferrite, ferrite ribbons, and other specialized ceramic devices; optical wave guide applications and design. Letter grading. Mr. Dunn (W, odd years)

170. Engaging Elements of Communication: Oral Communication. (2) Lecture, one hour; discussion, one hour; outside study emphasis. Requisite: course 104. Comprehensive oral presentation and communication skills provided by building on strengths of individual personal styles in creation of positive interpersonal relations. Skill set preparation for different types of academic and professional presentations for wide range of audiences. Learning environment is highly supportive and interactive as it helps students creatively develop and present work. Letter grading. Mr. Wu (W)

171. Engaging Elements of Communication: Writing for Technical Community. (2) Lecture, one hour; discussion, one hour; outside study, four hours. Requisite: course 104. Comprehensive technical writing skills on subjects specific to field of materials science and engineering. Students write review term paper in selected subject field of materials science and engineering from given set of journal publications. Instruction leads students through several crucial steps, including brainstorming, choosing title, coming up with outline, concise writing of abstract, conclusion, and final polishing. Other subjects include writing style, word choice, and grammar. Letter grading. Mr. Xie

CM180. Introduction to Biometrics. (4) (Same as Biomedical Engineering CM180.) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: course 104, or Chemistry 20A, 20B, and 20L. Engineering materials used in medicine and dentistry for repair and/or restoration of damaged natural tissues. Topics include relationships between material properties, suitability to task, surface chemistry, processing and treatment methods, and biocompatibility. Concurrently scheduled with course CM280. Letter grading.

188. Special Courses in Materials Science and Engineering. (4) Seminar, four hours; outside study, eight hours. Special topics in materials science and engineering for undergraduate students that are taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated once for credit with topic or instructor change. Letter grading. Mr. Dunn (F)

194. Research Groups: Seminars: Materials Science and Engineering. (4) Seminar, four hours; outside study, eight hours. Designed for undergraduate students who are part of research group. Discussion of research methods and current literature in field or of research of faculty members or students. May be repeated for credit. Letter grading.

199. Directed Research in Materials Science and Engineering. (2 to 8) Tutorial, to be arranged. Limited to juniors/senior. Supervised individual research or investigation under guidance of faculty mentor. Culumination paper or project required. Occasional field trips may be arranged. May be repeated for credit with school approval. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading. (F,W,Sp)

Graduate Courses

200. Principles of Materials Science I. (4) Lecture, four hours; outside study, eight hours. Requisite: course 120. Lattice dynamics and thermal properties of solids, classical and quantized free electron theory, electrons in a periodic potential, transfer in semiconductors, dielectric and magnetic properties of solids. Letter grading. Mr. Dunn (F)

210. Diffraction Methods in Science of Materials. (4) (Formerly numbered 245C.) Lecture, four hours; outside study, eight hours. Requisite: course 110. Theory of diffraction of electrons, neutrons, and X-rays in perfect and imperfect lattices in crystalline and noncrystalline materials. Long- and short-range order in crystals, structural effects of plastic deformation, solid-state transformation of materials, precipitation in liquids and amorphous solids. Letter grading. Mr. Goorsky (Sp, odd years)
222. Growth and Processing of Electronic Materials. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 120, 131. Fabrication, structure, and properties of thin films used in microelectronics for data and information processing. Topics include film deposition, interfacial properties, stress and strain, electromigration, phase changes and kinetics, reliability and failure mechanisms. Letter grading. Mr. Goorsky (W).

223. Materials Science of Thin Films. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 120, 131. Fabrication, structure, and properties of thin films used in microelectronics for data and information processing. Topics include film deposition, interfacial properties, stress and strain, electromigration, phase changes and kinetics, reliability and failure mechanisms. Letter grading. Mr. Goorsky (W).

224. Deposition Technologies and Their Applications. (4) Lecture, three hours; outside study, nine hours. Designed for graduate engineering students. Deposition methods used in high-technology applications. Theory and experimental details of physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma-assisted vapor deposition processes, plasma spray, electrodeposition. Applications in semiconductors, chemical, optical, mechanical, and metallurgical industries. Letter grading. Mr. Tu.

230. CMOS Devices and Circuits. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Preparation: Electrical Engineering 221B. Designed for graduate materials science students. Processes of extraction, alloying, surface passivation, metallic coatings, corrosion, and microstructure of ancient and historic metals. Extensive laboratory work in preparation and examination of metallic samples under microscope, as well as lectures on technology of metallic works of art. Practical instruction in metallographic microscopy. Exploration of phase and stability diagrams of common alloying systems and environments and analytical techniques for microstructural characterization of metallic artifacts. Concurrently scheduled with course C133. Letter grading. Mr. Xie.

243A. Fracture of Structural Materials. (4) Lecture, four hours; laboratory, two hours; outside study, eight hours. Requisite: course 143A. Engineering and scientific aspects of crack nucleation, slow crack growth, and unstable fracture. Fracture mechanics, displacement and strain fields, fatigue and fracture with environments, alloy development, fracture-safe design. Letter grading. Mr. Ono (W, even years)

243C. Dislocations and Strengthening Mechanisms in Solids. (4) Lecture, four hours; outside study, eight hours. Requisite: course 143A. Elastic and plastic behavior of crystals, geometry, mechanics, and interaction of dislocations, mechanisms of yielding, work hardening, and other strengthening. Letter grading. Mr. Ardel (F, odd years)

246B. Structure and Properties of Glass. (4) Lecture, four hours; outside study, eight hours. Requisite: course 160. Structure of amorphous solids and glasses. Conditions of glass formation and theories of glass structure. Mechanical, electrical, and optical properties of glass and relationship to structure. Letter grading. Mr. Dunn (W, even years)

249A. Electronic and Optical Properties of Ceramics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 160. Principles governing electronic properties of ceramic single crystals and glasses and effects of processing and microstructure on these properties. Electronic conduction, ferroelectricity, and photochromism. Magnetic ceramics. Infrared, visible, and ultraviolet transmission. Unique application of ceramics. Letter grading. Mr. Dunn (Sp, even years)

251. Chemistry of Soft Materials. (4) Lecture, four hours. Introduction to organic soft materials, including polymer and biological chemistry. Topics include synthetic and natural materials: organic molecules, synthetic polymers, and biomolecules and biomaterials. Extensive description and discussion of structure-property relationship, spectroscopic and experimental techniques, and preparation methods for various soft materials. Letter grading. Mr. Pei (F)

252. Organic Polymer Electronic Materials. (4) Lecture, four hours; outside study, eight hours. Preparation: knowledge of introductory organic chemistry and polymer science. Introduction to organic electronic materials with emphasis on materials chemistry and processing. Topics include conjugated polymers; heavily doped, highly conducting polymers; applications as processable metals and in various electrical, optical, and electrochemical devices. Synthesis and processing of organic light-emitting diodes, solar cells, thin-film transistors. Introduction to emerging field of organic electronics. Letter grading. Mr. Pei (F)

270. Computer Simulations of Materials. (4) Lecture, four hours; outside study, eight hours. Preparation: modern first-principles electronic structure calculations for various types of materials: metals, semiconductors, and magnetic materials. Use of modern first-principles electronic structure calculations for understanding and controlling the properties of magnetic materials. Letter grading. Mr. Ozolins (F)

272. Theory of Nanomaterials. (4) Lecture, four hours; discussion, two hours; outside study, seven hours. Strongly recommended requisite: course 200. Introduction to properties and applications of nanomaterials, with emphasis on understanding of basic principles that distinguish nanostructures (with feature size below 100 nm) from more common microstructured materials. Explanation of new phenomena that emerge only in very small systems, using simple concepts from quantum mechanics and thermodynamics. Topics include structure and electronic properties of quantum dots, wires, nanotubes, and multilayers, self-assembly on surfaces and in liquid solutions, mechanical properties of nanostructured metamaterials, molecular electronics, spin-based electronics, and proposed realizations of quantum computing. Discussion of current and future directions of this rapidly growing field using examples from modern scientific literature. Letter grading. Mr. Ozolins (F)

CM280. Introduction to Biomaterials. (4) Same as Biomedical Engineering CM280.) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: course 104, or Chemistry 20A, 20B, and 20L. Engineering materials used in medicine and dentistry for repair and/or restoration of damaged natural tissues. Topics include relationships between material properties, suitability to task, surface chemistry, processing and treatment methods, and biocompatibility. Concurrently scheduled with course CM180. Letter grading. Mr. Wu (W)

296. Seminar: Advanced Topics in Materials Science and Engineering. (2) Seminar, two hours; outside study, four hours. Advanced study and analysis of current topics in materials science and engineering. Discussion of current research and literature in research specialty of faculty members teaching course. May be repeated for credit. S/U grading.

298. Seminar: Engineering. (2 to 4) Seminar, to be arranged. Limited to graduate materials science and engineering students. Seminars may be organized in advanced technical fields. If appropriate, field trips may be arranged. May be repeated with topic change. Letter grading.

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: apprentice personnel employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. (F,W,Sp)

596. Directed Individual or Tutorial Studies. (2 to 8) Tutorial, to be arranged. Limited to graduate materials science and engineering students. Petition forms may be obtained from assistant chairpersons. Petition forms are quite diverse, including aircraft, spacecraft, automobiles, energy and propulsion systems, robotics, machinery, manufacturing and materials processing, microelectronics, biological systems, and more. At the undergraduate level, the department offers accredited programs leading to B.S. degrees in Aerospace Engineering and in Mechanical Engineering. At the graduate level, the department offers programs leading to M.S. and Ph.D. degrees in Mechanical Engineering and in Aerospace Engineering. An M.S. in Manufacturing Engineering is also offered.

Department Mission

The mission of the Mechanical and Aerospace Engineering Department is to educate the nation’s future leaders in the science and art of mechanical and aerospace engineering. Further, the department seeks to expand the frontiers of engineering science and to encourage technological innovation while fostering academic excellence and scholarly learning in a collegial environment.
Undergraduate Program Objectives

In consultation with its constituents, the Mechanical and Aerospace Engineering Department has set its educational objectives as follows: (1) to teach students how to apply their rigorous undergraduate education to creatively solve technical problems facing society and (2) to prepare them for successful and productive careers or graduate studies in mechanical or aerospace or other engineering fields and/or further studies in other fields such as medicine, business, and law.

Undergraduate Study

Aerospace Engineering B.S.

The ABET-accredited aerospace engineering program is concerned with the design and construction of various types of fixed-wing and rotary-wing (helicopters) aircraft used for air transportation and national defense. It is also concerned with the design and construction of spacecraft, the exploration and utilization of space, and related technological fields.

Aerospace engineering is characterized by a very high level of technology. The aerospace engineer is likely to operate at the forefront of scientific discoveries, often stimulating these discoveries and providing the inspiration for the creation of new scientific concepts. Meeting these demands requires the imaginative use of many disciplines, including fluid mechanics and aerodynamics, structural mechanics, materials and aeroelasticity, dynamics, control and guidance, propulsion, and energy conversion.

Preparation for the Major

Required: Chemistry and Biochemistry 20A, 20B, 20L; Computer Science 31; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL, 4BL.

The Major

Required: Mechanical and Aerospace Engineering 101, 102, 103, 105A, 107, 150A, 150B, 150P, 154A, 154B, 154S, 155 or 161A or 169A, 157A, 157S, 166A, 171A, 182A; two departmental breadth courses (Electrical Engineering 100 and Materials Science and Engineering 104 — if one or both of these courses are taken as part of the technical breadth requirement, students must select a replacement upper division course or courses that may be any technical course from within the school — except for Mechanical and Aerospace Engineering 156A — or, by petition, from outside the school); three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and two major field elective courses (8 units) from Mechanical and Aerospace Engineering 105D, 131A, 131AL, C132A, 133A, 133AL, 150C, C150G, 150R, 153A, 155 (unless taken as a required course), 161A (unless taken as a required course), 161B, 161C, 161D, 162A, 163A, 166C, M168, 169A (unless taken as a required course), 171B, 172, 181A, 182B, 182C, 183.

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

Mechanical Engineering B.S.

The ABET-accredited mechanical engineering program is designed to provide basic knowledge in thermodynamics, fluid mechanics, heat transfer, solid mechanics, mechanical design, dynamics, control, mechanical systems, manufacturing, and materials. The program includes fundamental subjects important to all mechanical engineers.

Preparation for the Major

Required: Chemistry and Biochemistry 20A, 20B, 20L; Computer Science 31; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Mechanical and Aerospace Engineering 94; Physics 1A, 1B, 1C, 4AL, 4BL.

The Major

Required: Electrical Engineering 110L, Mechanical and Aerospace Engineering 101, 102, 103, 105A, 105D, 107, 131A or 133A, 156A, 157, 162A, 162B, 162M, 171A, 182A, 183; two departmental breadth courses (Electrical Engineering 100 and Materials Science and Engineering 104 — if one or both of these courses are taken as part of the technical breadth requirement, students must select a replacement upper division course or courses that may be any technical course from within the school — except for Mechanical and Aerospace Engineering 166A — or, by petition, from outside the school); three technical breadth courses (12 units) selected from an approved list.
Graduate Study
For information on graduate admission, see Graduate Programs, page 23.
The following introductory information is based on the 2008-09 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnet.ucla.edu/gasaa/library/pgmrqintro.htm. Students are subject to the degree requirements as published in Program Requirements for the year in which they matriculate.
The Department of Mechanical and Aerospace Engineering offers the Master of Science (M.S.) degree in Manufacturing Engineering, Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Aerospace Engineering, and Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Mechanical Engineering.

Aerospace Engineering M.S. and Mechanical Engineering M.S.

Course Requirements
Students may select either the thesis plan or comprehensive examination plan. At least nine courses are required, of which at least five must be graduate courses. In the thesis plan, seven of the nine must be formal courses, including at least four from the 200 series. The remaining two may be 500-series courses involving work on the thesis. In the comprehensive examination plan, no units of 500-series courses may be applied toward the minimum course requirement. Courses taken before the award of the bachelor’s degree may not be applied toward a graduate degree at UCLA. The courses should be selected so that the breadth requirements and the requirements at the graduate level are met. The breadth requirements are only applicable to students who do not have a B.S. degree from an ABET-accredited aerospace or mechanical engineering program.

Undergraduate Courses. No lower division courses may be applied toward graduate degrees. In addition, the following upper division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199, Civil and Environmental Engineering 106A, 108, 199, Computer Science M152A, 152B, M171L, 199, Electrical Engineering 100, 101, 102, 103, 110L, M116L, M171L, 199, Materials Science and Engineering 101, 102, 103, 105A, 105D, 107, 188, 194, 199.

Aerospace Engineering

Breadth Requirements. Students are required to take at least three courses from the following four categories: (1) Mechanical and Aerospace Engineering 154A or 154B or 154S, (2) 150B or 150P, (3) 155 or 166A or 169A, (4) 161A or 171A.

Graduate-Level Requirement. Students are required to take at least one course from the following: Mechanical and Aerospace Engineering 250C, 250D, 250F, 253B, 254A, 255B, 256F, 263B, 269D, or 271B. The remaining courses can be taken to gain depth in one or more of the several specialty areas covering the existing major fields in the department.

Mechanical Engineering

Breadth Requirements. Students are required to take at least three courses from the following five categories: (1) Mechanical and Aerospace Engineering 162A or 169A or 171A, (2) 150A or 150B, (3) 131A or 133A, (4) 156A, (5) 162B or 183.

Graduate-Level Requirement. Students are required to take at least one course from the following: Mechanical and Aerospace Engineering 231A, 231B, 231C, 250A, 255A, M256A, M256B, M269A, or 271A. The remaining courses can be taken to gain depth in one or more of the several specialty areas covering the existing major fields in the department.

Comprehensive Examination Plan
The comprehensive examination is required in either written or oral form. A committee of at least three faculty members, with at least two members from within the department, and chaired by the academic adviser, is established to administer the examination. Students may, in consultation with their adviser and the M.S. committee, select one of the following options for the comprehensive examination: (1) take and pass the first part of the Ph.D. written qualifying examination (formerly referred to as the preliminary examination) as the comprehensive examination, (2) conduct a research or design project and submit a final report to the M.S. committee, or (3) take and pass three comprehensive examination questions offered in association with three graduate courses. Contact the department Student Affairs Office for more information.

Thesis Plan
The thesis must describe some original piece of research that has been done under the supervision of the thesis committee. Students should normally start to plan the thesis at least one year before the award of the M.S. degree is expected. There is no examination under the thesis plan.

Manufacturing Engineering M.S.

Areas of Study
Consult the department.

Course Requirements
Students may select either the thesis plan or comprehensive examination plan. At least nine courses are required, of which at least five must be graduate courses. In the thesis plan, seven of the nine must be formal courses, including at least four from the 200 series. The remaining two may be 500-series courses involving work on the thesis. In the comprehensive examination plan, no units of 500-series courses may be applied toward the minimum course requirement. Courses taken before the award of the bachelor’s degree may not be applied toward a graduate degree at UCLA. Choices may be made from the following major areas:

Undergraduate Courses. No lower division courses may be applied toward graduate degrees. In addition, the following upper division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199, Civil and Environmental Engineering 106A, 108, 199, Computer Science M152A, 152B, M171L, 199, Electrical Engineering 100, 101, 102, 103, 110L, M116L, M171L, 199, Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 140, 141L, 150, 160, 161L, 199, Mechanical and Aerospace Engineering 101, 102, 103, 105A, 105D, 107, 188, 194, 199.
There is no examination under the thesis award of the M.S. degree. Students would normally start to plan the thesis at least one year before the M.S. degree. Contact the department Student Affairs Office for more information.

Aerospace Engineering Ph.D. and Mechanical Engineering Ph.D.

Major Fields or Subdisciplines

Dynamics; fluid mechanics; heat and mass transfer; manufacturing and design (mechanical engineering only); nanoelectromechanical/microelectromechanical systems (NEMS/MEMS); structural and solid mechanics; systems and control.

Ph.D. students may propose ad hoc major fields, which must differ substantially from established major fields and satisfy one of the following two conditions: (1) the field is interdisciplinary in nature or (2) the field represents an important research area for which there is no established major field in the department (condition 2 most often applies to recently evolving research areas or to areas for which there are too few faculty members to maintain an established major field).

Students in an ad hoc major field must be sponsored by at least three faculty members, at least two of whom must be from the department.

Course Requirements

The basic program of study for the Ph.D. degree is built around major and minor fields. The established major fields are listed above, and a detailed syllabus describing each Ph.D. major field can be obtained from the Student Affairs Office. The program of study for the Ph.D. requires students to perform original research leading to a doctoral dissertation and to master a body of knowledge that encompasses material from their major field and breadth material from outside the major field. The body of knowledge should include (1) six major field courses, at least four of which must be graduate courses, (2) one minor field, (3) any three additional courses, at least two of which must be graduate courses, that enhance the study of the major or minor field.

The major field syllabus advises students as to which courses contain the required knowledge, and students usually prepare for the written qualifying examination (formerly referred to as the preliminary examination) by taking these courses. However, students can acquire such knowledge by taking similar courses at other universities or by self-study.

The minor field embraces a body of knowledge equivalent to three courses, at least two of which must be graduate courses.

Graduates of B– or better, with a grade-point average of at least 3.33 in all courses included in the minor field, and the three additional courses mentioned above are required. If students fail to satisfy the minor field requirements through coursework, a minor field examination may be taken (once only).

Minor fields are often subsets of major fields, and minor field requirements are then described in the syllabus of the appropriate major field. Established minor fields with no corresponding major field can also be used, such as applied mathematics and applied plasma physics and fusion engineering. Also, an ad hoc field can be used in exceptional circumstances, such as when certain knowledge is desirable for a program of study that is not available in established minor fields.

Written and Oral Qualifying Examinations

After mastering the body of knowledge defined in the major field, students take a written qualifying (preliminary) examination covering this knowledge. Students must have been formally admitted to the Ph.D. program or admitted subject to completion of the M.S. degree by the end of the term following the term in which the examination is given. The examination must be taken within the first two calendar years from the time of admission into the Ph.D. program. Students must be registered during the term in which the examination is given and be in good academic standing (minimum GPA of 3.25). The student's major field proposal must be completed prior to taking the examination. Students may not take an examination more than twice. Students in an ad hoc major field must pass a written qualifying examination that is approximately equivalent in scope, length, and level to the written qualifying examination for an established major field.

After passing the written qualifying examination, students take the University Oral Qualifying Examination within four calendar years from the time of admission into the Ph.D. program. The nature and content of the examination are at the discretion of the doctoral committee but include a review of the dissertation prospectus and may include a broad inquiry into the student's preparation for research.

Note: Doctoral Committees. A doctoral committee consists of a minimum of four members. Three members, including the chair, are “inside” members and must hold appointments in the Mechanical and Aereo-
space Engineering Department at UCLA. The “outside” member must be a UCLA faculty member outside the Mechanical and Aerospace Engineering Department.

Fields of Study

Dynamics
Features of the dynamics field include dynamics and control of physical systems, including spacecraft, aircraft, helicopters, industrial manipulators; analytical studies of control of large space structures; experimental studies of electromechanical systems; and robotics.

Fluid Mechanics
The graduate program in fluid mechanics includes experimental, numerical, and theoretical studies related to a range of topics in fluid mechanics, such as turbulent flows, hypersonic flows, microscale and nanoscale flow phenomena, aeroacoustics, bio fluid mechanics, chemically reactive flows, chemical reaction kinetics, numerical methods for computational fluid dynamics (CFD), and experimental methods. The educational program for graduate students provides a strong foundational background in classical incompressible and compressible flows, while providing elective breadth courses in advanced specialty topics such as computational fluid dynamics, microfluidics, bio fluid mechanics, hypersonics, reactive flow, fluid stability, turbulence, and experimental methods.

Heat and Mass Transfer
The heat and mass transfer field includes studies of convection, radiation, conduction, evaporation, condensation, boiling and two-phase flow, chemically reacting and radiating flow, instability and turbulent flow, reactive flows in porous media, as well as transport phenomena in support of microscale and nanoscale thermosciences, energy, bioMEMS/NEMS, and microfabrication/nanofabrication.

Manufacturing and Design
The program is developed around an integrated approach to manufacturing and design. It includes study of manufacturing and design aspects of mechanical systems, material behavior and processing, robotics and manufacturing systems, CAD/CAM theory and applications, computational geometry and geometrical modeling, composite materials and structures, automation and digital control systems, microdevices and nanodevices, radio frequency identification (RFID), and wireless systems.

Nanoelectromechanical/ Microelectromechanical Systems
The nanoelectromechanical/microelectromechanical systems (NEMS/MEMS) field focuses on science and engineering issues ranging in size from nanometers to millimeters and includes both experimental and theoretical studies covering fundamentals to applications. The study topics include microscience, top-down and bottom-up nanofabrication/microfabrication technologies, molecular fluidic phenomena, nanoscale/microscale material processing, biomolecular signatures, heat transfer at the nanoscale, and system integration. The program is highly interdisciplinary in nature.

Structural and Solid Mechanics
The solid mechanics program features theoretical, numerical, and experimental studies, including fracture mechanics and damage tolerance, micromechanics with emphasis on technical applications, wave propagation and nondestructive evaluation, mechanics of composite materials, mechanics of thin films and interfaces, analysis of coupled electro-magneto-thermomechanical material systems, and ferroelectric materials. The structural mechanics program includes structural dynamics with applications to aircraft and spacecraft, fixed-wing and rotary-wing aeroelasticity, fluid structure interaction, computational transonic aeroelasticity, structural optimization, finite element methods and related computational techniques, structural mechanics of composite material components, structural health monitoring, and analysis of adaptive structures.

Systems and Control
The program features systems engineering principles and applied mathematical methods of modeling, analysis, and design of continuous- and discrete-time control systems. Emphasis is on modern applications in engineering, systems concepts, feedback and control principles, stability concepts, applied optimal control, differential games, computational methods, simulation, and computer process control. Systems and control research and education in the department cover a broad spectrum of topics primarily based in aerospace and mechanical engineering applications. However, the Chemical and Biomolecular Engineering and Electrical Engineering Departments also have active programs in control systems, and collaboration across departments among faculty members and students in both teaching and research is common.

Ad Hoc Major Fields
The ad hoc major fields program has sufficient flexibility that students can form academic major fields in their area of interest if the proposals are supported by several faculty members. Previous fields of study included acoustics, system risk and reliability, and engineering thermodynamics. Nuclear science and engineering, a former active major field, is available on an ad hoc basis only.

Facilities
The Mechanical and Aerospace Engineering Department has a number of experimental facilities at which both fundamental and applied research is being conducted. More information is at http://www.mae.ucla.edu.

Active Materials Laboratory
The Active Materials Laboratory contains equipment to evaluate the coupled response of materials such as piezoelectric, magnetostrictive, shape memory alloys, and fiber optic sensors. The laboratory has manufacturing facilities to fabricate magnetostrictive composites and thin film shape memory alloys. Testing active material systems is performed on one of four servo-hydraulic load frames. All of the load frames are equipped with thermal chambers, solenoids, and electrical power supplies.

Autonomous Vehicle Systems Instrumentation Laboratory
The Autonomous Vehicle Systems Instrumentation Laboratory (AVSIL) is a testbed at UCLA for design, building, evaluation, and testing of hardware instrumentation and coordination algorithms for multiple vehicle autonomous systems. The AVSIL contains a hardware-in-the-loop (HIL) simulator designed and built at UCLA that allows for real-time, systems-level tests of two formation control computer systems in a laboratory environment, using the Interstate Electronics Corporation GPS Satellite Constellation Simulator. The UCLA flight control software can be modified to accommodate satellite-system experiments using real-time software, GPS receivers, and inter-vehicle modem communication.
Computational Fluid Dynamics Laboratory
The Computational Fluid Dynamics Laboratory has several medium-size Beowulf linux clusters for numerical simulation of transitional, turbulent, and high-speed compressible flows, with and without reaction, as well as the sound that they produce. The laboratory has access to supercomputers (large clusters of parallel processors on various platforms) at NSF PACI Centers and DoD High-Performance Computing Centers.

Energy and Propulsion Research Laboratory
The Energy and Propulsion Research Laboratory is engaged in research and education pertaining to the application of modern diagnostic methods and computational tools to the development of improved combustion, propulsion, and fluid flow systems. Research is directed toward the development of fundamental engineering knowledge as well as tools for solving critical national problems, with current applications to improved engine efficiency, reduced emissions, alternative fuels, and advanced high-speed air breathing and rocket propulsion systems.

Fluid Mechanics Research Laboratory
The Fluid Mechanics Research Laboratory includes a full line of water tunnels equipped with various advanced transducers (MEMS-based sensors and actuators, particle image anemometer, laser Doppler anemometer, hot-wire anemometers) and data acquisition systems.

Fusion Technology Center
The Fusion Technology Center includes a number of state-of-the-art experimental facilities for conducting research in fusion engineering. The center includes experimental facilities for (1) liquid metal magnetohydrodynamic fluid flow, (2) thick and thin liquid metal systems exposed to intense particle and heat flux loads, and (3) metallic and ceramic material thermomechanics.

Heat Transfer Laboratories
The Heat Transfer Laboratories are used for experimental research on heat transfer and thermal hydraulics. The laboratories are equipped with several flow loops, high-current power supplies, high-frequency induction power supplies, holography and hot-wire anemometry setups, and state-of-the-art data acquisition systems.

Materials Degradation Characterization Laboratory
The Materials Degradation Characterization Laboratory is used for the characterization of the degradation of high-strength metallic alloys and advanced composites due to corrosion and fatigue, determination of adverse effects of materials degradation on the strength of structural components, and for research on fracture mechanics and ultrasonic nondestructive evaluation.

Micro-Manufacturing Laboratory
The Micro-Manufacturing Laboratory is equipped with a fume hood, a clean air bench, an optical table, a DI water generator, dicing saw, plating setup with Dynatronix power supply, Wentworth probe stations, various microscopes such as Endo View and Hirox 3-D High-Scope System, full video imaging capability such as a Sony Digital Camera system, as well as L-Edit mask layout software. It is used for MEMS research and complements the HSSEAS Nanoelectronics Research Facility, the 8,500-square-foot class 100/1000 clean room where most micromachining steps are carried out.

Microsciences Laboratory
The Microsciences Laboratory is equipped with advanced sensors and imaging processors for exploring fundamental physical mechanisms in MEMS-based sciences.

Multifunctional Composites Laboratory
The Multifunctional Composites Laboratory provides equipment necessary to develop multifunctional nanocomposites and explore their applications by integrating technologies involving composites, nanomaterials, information, functional materials, biomimetics, and concurrent engineering. Some of the equipment in the laboratory includes an autoclave, a filament winder, a resin transfer molding machine, a waterjet cutting machine, a stereo lithography machine, a laminated object manufacturing machine, a coordinate measuring machine, a field emission scanning electron microscope, a scanning probe microscope, an FTIR, a rheometer, a thermal analysis system, an RCL analyzer, a microwave dielectric analyzer, an X-ray radiography machine, and a variety of mechanical testing machines.

Multiscale Thermosciences Laboratory
The Multiscale Thermosciences Laboratory (MTSL) is equipped with a state-of-the-art atomic force microscope, an inverted optical microscope with fluorescence attachment, an ultra-long depth-of-field digital microscope, an infrared camera, a cryostat, an RF frequency lock-in amplifier, semiconductor lasers, a wide variety of electronic instruments/DAQ systems, and a quad-core workstation with 32GB RAM.

Plasma and Beam Assisted Manufacturing Laboratory
The Plasma and Beam Assisted Manufacturing Laboratory is an experimental facility for the purpose of processing and manufacturing advanced materials by high-energy means (plasma and beam sources). It is equipped with plasma diagnostics, two vortex gas tunnel plasma guns, powder feeder and exhaust systems, vacuum and cooling equipment, high-power D.C. supplies (400kw), vacuum chambers, and large electromagnets. Current research is focused on ceramic coatings and nano-phase clusters for applications in thermal insulation, wear resistance, and high-temperature oxidation resistance.

Subsonic Wind Tunnel
The 3 x 3-foot Subsonic Wind Tunnel is used for research on unsteady aerodynamics on oscillating airfoils.

Thin Films, Interfaces, Composites, Characterization Laboratory
The Thin Films, Interfaces, Composites, Characterization Laboratory consists of a Nd:YAG laser of 1 Joule capacity with three ns pulse widths, a state-of-the-art optical interferometer including an ultra high-speed digitizer, sputter deposition chamber, 56 Kip-capacity servohydraulic biaxial test frame, walk-in freezer, polishing and imaging equipment for microstructural characterization for measurement and control study of thin film interface strength, NDE using laser ultrasound, die-icing of structural surfaces, and characterization of composites under multiaxial stress states.

Faculty Areas of Thesis Guidance
Professors
Mohamed A. Abdou, Ph.D. (Wisconsin, 1973)
Fusion, nuclear, and mechanical engineering design, testing, and system analysis, thermomechanics, thermal hydraulics, neutronics, plasma-material interactions, blankets and high heat flux components, experiments, modeling and analysis.
Nasr M. Ghoniem, Ph.D. (Wisconsin, 1977)
Yong Chen, Ph.D. (UC Berkeley, 1996)
Jiun-Shyan (J-S) Chen, Ph.D. (Northwestern, 1966)
Ivan Catton, Ph.D. (UCLA, 1966)
Oddvar O. Bendiksen, Ph.D. (UCLA, 1980)
Chang-Jin (C-J) Kim, Ph.D. (UC Berkeley, 1991)

Mechanical and Aerospace Engineering / 101

J. John Kim, Ph.D. (Stanford, 1978)
Turbulence, numerical simulation of turbulent and transitional flows, application of control theories to flows

Adrienne Lavine, Ph.D. (UC Berkeley, 1984)
Heat transfer: thermomechanical behavior of shape memory alloys, thermal aspects of manufacturing processes, natural and mixed convection

Radiative transfer and satellite remote sensing with application to clouds and aerosols in the earth’s atmosphere

Christopher S. Lynch, Ph.D. (UC Santa Barbara, 1996)
Field coupled materials, constitutive behavior, thermo-electro-mechanical properties, sensor and actuator applications, fracture mechanics and failure analysis

Ajit K. Mal, Ph.D. (Calculta U., 1964)
Mechanics of solids, fractures and failure, wave propagation, nondestructive evaluation, composite materials

Robert T. M’Closkey, Ph.D. (Cal Tech, 1995)
Nonlinear control theory and design with application to mechanical and aerospace systems, control system applications

Anthony F. Mills, Ph.D. (UC Berkeley, 1965)
Convective heat and mass transfer, conduction heat transfer, turbulent flows, ablation and transpiration cooling, perforated plate heat exchanger design

Owen I. Smith, Ph.D. (UC Berkeley, 1977)
Combustion and combustion-generated air pollutants, hydrodynamics and chemical kinetics of combustion systems, semiconduc-
tor chemical vapor deposition

Jason Speyer, Ph.D. (Harvard, 1968)
Stochastic and deterministic control of estimation and application to aerospace systems; guidance, flight control, and flight mechanics

Tiu-Chin Tsao, Ph.D. (UC Berkeley, 1989)
Modeling and control of dynamic systems with applications in mechanical systems, manufacturing processes, automotive systems, and energy systems, digital control, repetitive and learning control, adaptive and optimal control, mechatronics

Daniel C.H. Yang, Ph.D. (Rutgers, 1982)
Robotics and mechatronics, CAD/CAM systems, computer-controlled machines

Xiaolin Zhong, Ph.D. (Stanford, 1991)
Computational fluid dynamics, hypersonic flows, rarefied gas flow, numerical simulation of transient hypersonic flow with nonequilibrium real gas effects, instability of hypersonic boundary layers

Michel A. Melkanoff, Ph.D. (UCLA, 1955)
Programming languages, data structures, database design, relational models, simulation systems, robotics, computer-aided design and manufacturing, numerical-control-
trolled machinery

D. Lewis Mingori, Ph.D. (Stanford, 1966)
Dynamics and control, stability theory, nonlinear methods, applications to space and ground vehicles

Peter A. Monkewitz, Ph.D. (E.T.H., Federal Institute of Technology, Zurich, 1977)
Fluid mechanics, internal acoustics and noise produced by turbulent jets

Phillip F. O’Brien, M.S. (UCLA, 1949)
Industrial engineering, environmental design, thermal and luminous engineering systems

David Okrent, Ph.D. (Harvard, 1961)
Fast reactor nuclear physics, nuclear reactor safety, nuclear fuel element behavior, risk-benefit studies, nuclear environmental safety, fusion reactor technology

Lucien A. Schmitt, Jr., M.S. (MIT, 1950)
Structural mechanics, optimization, automated design methods for structural systems and components, application of finite element analysis techniques, and computer-aided programming algorithms in structural design, analysis and synthesis methods for fiber com-
posite structural components

Richard Stern, Ph.D. (UCLA, 1964)
Experimentation in noise control, physical acoustics, engineering acoustics, medical acoustics

Russell A. Volland, Ph.D. (UC Berkeley, 1962)
Mechanics of solid bodies, fracture mechanics, adhesive mechanics, composite materials, theoretical soil mechanics, mixed boundary value problems

Associate Professor

Yongho Sungtaek Ju, Ph.D. (Stanford, 1999)
Heat transfer, thermodynamics, microelectro-
mechanical and nanoscale devices, MEMS/NEMS, magnetism, nano-bio technology

Assistant Professors

BioMEMS, biophotonics, electrokinetics, optical manipulation, optoelectronic devices

Jeff D. Eldredge, Ph.D. (Cal Tech, 2002)
Aeroacoustics, particle-based numerical methods for fluids, control of acoustically driven instabilities, vortex dynamics

Philippe Kavehpour, Ph.D. (MIT, 2003)
Microscale fluid mechanics, transport phe-
nomena in biological systems, physics of contact line phenomena, complex fluids, non-isothermal flows, micro- and nano-heat

mechanics, micro- and nano-heat

guides, microtechnology

Computational structural and solid mechanics, finite element methods, computational biomechanics, nanomechanics of biological systems

Laurent Fiol, Ph.D. (Purdue, 2002)
Interfacial and transport phenomena, radia-
tion transfer, materials synthesis, multi-phase flow, heterogeneous media

Lecturers

Ravesh Amar, Ph.D. (UCLA, 1974)
Heat transfer and thermal science

C.H. Chang, M.S. (UCLA, 1985), Emeritus
Computer-aided manufacturing and numeri-
cal control

Amiya K. Chatterjee, Ph.D. (UCLA, 1976)
Elastic wave propagation and penetration mechanics

Carl F. Ruoff, Ph.D. (Cal Tech, 1993)
Robotics, computing, mechanical design, instrument technology, technology manage-
ment
Upper Division Courses

102. Dynamics of Particles and Rigid Bodies. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 101, Mathematics 33A, Physics 1A. Fundamental concepts of Newtonian mechanics. Kinematics and kinetics of particles and rigid bodies in two and three dimensions. Impulse-momentum and work-energy relationships. Applications. Letter grading.

103. Elementary Fluid Mechanics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: Mathematics 32B, 33A, Physics 1B. Introductory course dealing with application of principles of mechanics to flow of compressible and incompressible fluids. Letter grading.

105A. Introduction to Engineering Thermodynamics. (4) Formerly numbered M105A.Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: Chemistry 20B, Mathematics 32B. Phenomenological thermodynamics. Concepts of equilibrium, temperature, and reversibility. First law and concept of energy; second law and concept of entropy. Equations of state and thermodynamic properties. Engineering applications of these principles in analysis and design of closed and open systems. Letter grading.

107. Introduction to Modeling and Analysis of Dynamic Systems. (4) Lecture, two hours; laboratory, two hours; discussion, two hours; outside study, four hours. Requisites: Computer Science 31, Electrical Engineering 100. Introduction to modeling of physical systems, with examples of mechanical, fluid, thermal, and electrical systems. Description of these systems with coverage of impulse response, convolution, frequency response, first- and second-order system transient response analysis, and numerical solution. Nonlinear differential equation descriptions with discussion of equilibrium solutions, small signal linearization, large signal response. Block diagram representation and response of interconnected systems. Hands-on experiments reinforce lecture material. Letter grading.

131AL. Thermodynamics and Heat Transfer Laboratory. (4) Laboratory, eight hours; outside study, four hours. Requisites: courses 105D, 131A, and 157 or 157S. Experimental study of physical phenomena and engineering systems using modern data acquisition and processing techniques. Experiments include studies of heat transfer phenomena and testing of cooling tower, heat exchanger, and internal combustion engine. Students take and analyze data and discuss physical phenomena. Letter grading.

133A. Engineering Thermodynamics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 103, 105A. Applications of thermodynamic principles to engineering processes. Basic conversion cycles and other cycles, refrigeration, psychrometry, reactive and nonreactive fluid flow systems. Letter grading.

133AL. Power Conversion Thermodynamics Laboratory. (4) Laboratory, eight hours; outside study, four hours. Requisites: courses 133A, and 157 or 157S. Experimental study of power conversion and heat transfer systems using state-of-art plant process instrumentation and equipment. Experiments include studies of thermodynamic operating characteristics of actual Brayton cycle, Rankine cycle, compressor refrigeration unit, and absorption refrigeration unit. Letter grading.

134. Design and Operation of Thermal Hydraulic Power Systems. (4) Lecture, three hours; laboratory, three hours; outside study, six hours. Requisites: courses 133A, 133AL. Thermal hydraulic design, maintenance and operation of power systems, gas turbines, steam turbines, centrifugal refrigeration units, absorption refrigeration units, compressors, valves and piping systems, and instrumentation and control systems. Letter grading.

135. Fundamentals of Nuclear Science and Engineering. (4) Lecture, four hours; outside study, eight hours. Requisites: Chemistry 20A, Mathematics 32B. Review of nuclear physics, radioactivity and decay, and radiation interaction with matter. Nuclear fission and fusion processes and mass defect, chain reactions, criticality, neutron diffusion and multiplication, heat transfer issues, and applications. Introduction to nuclear power plants for commercial electricity production, space power, spacecraft propulsion, nuclear fusion, and nuclear science for medical uses. Letter grading.

136. Energy and Environment. (4) Lecture, four hours; outside study, eight hours. Requisite: course 105D. Recommended: courses 131A, 133A. Global energy use and supply, electrical power generation, fossil fuel and nuclear power plants, renewable energy such as hydropower, biomass, geothermal, solar, wind, and ocean, fuel cells, transportation, energy conservation, air and water pollution, global warming. Letter grading.

Lower Division Courses

19. Fiat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

94. Introduction to Computer-Aided Design and Drafting. (4) Lecture, two hours; laboratory, four hours. Fundamentals of computer graphics and two- and three-dimensional modeling on computer-aided design and drafting systems. Students use one or more online computer systems to design and display various objects. Letter grading.

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.
154A. Preliminary Design of Aircraft. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 154A, 156A. Design of aircraft, helicopter, spacecraft, and related structures. External loads, internal stresses. Applied theory of thin-walled structures. Material selection, design using composite materials. Design for fatigue prevention and structural integrity. Field trips to aerospace companies. Letter grading. Mr. Bendiksen (Sp)

155. Intermediate Dynamics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 102. Axioms of Newtonian mechanics, generalized coordinates, Lagrange equation, variational principles; central force motion; kinematics and dynamics of rigid bodies. Euler equations, motion of rotating bodies, oscillatory motion, normal coordinates, orthogonality relations. Letter grading. Mr. Gibson (F)

156A. Advanced Strength of Materials. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 101, 182A. Not open to students with credit for course 166A. Concepts of stress, strain, and material behavior. Stresses in loaded beams with symmetric and asymmetric cross sections. Torsion of cylinders and thin-walled structures, shear flow. Stresses in pressure vessels, press-fit and shrink-fit problems, rotating shafts. Curved beams. Contact stresses. Strength and failure. Fatigue, deformation, fatigue, structural failure. Letter grading. Mr. Mal (F,Sp)

157. Basic Mechanical Engineering Laboratory. (4) Laboratory, four hours; outside study, eight hours. Requisites: courses 101, 103, 105A, 105D, Electrical Engineering 100. Methods of measurement of basic quantities and performance of basic experiments in heat transfer, fluid mechanics, structures, and thermodynamics. Primary sensors, transducers, recording equipment, signal processing, and data analysis. Letter grading. Mr. Ghoniem, Mr. Mills (F,W,Sp)

157A. Fluid Mechanics and Aerodynamics Laboratory. (4) Laboratory, eight hours; outside study, eight hours. Requisites: courses 150A, 150B, and 157 or 162A. Investigating the fluid physical phenomena in area of fluid mechanics/aerodynamics, as well as hands-on experience with design of experimental programs and use of modern experimental tools and techniques in field. Letter grading. Mr. Kaveh, Mr. Smith (Sp)

157S. Basic Aerospace Engineering Laboratory. (4) Laboratory, eight hours; outside study, four hours. Requisites: courses 101, 102, 103, 105A, Electrical Engineering 100. Recommended: course 15. Measurements of basic physical quantities in fluid mechanics, thermodynamics, and structures. Operation of primary transducers, computer-aided data acquisition, signal processing, and data analysis. Performance of experiments to enhance understanding of basic physical principles and characteristics of structures/systems of relevance to aerospace engineers. Letter grading. Mr. Fu (F, W)

161A. Introduction to Astronautics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 131A or 133A, 162B, 171A. Must be taken in last two academic terms of students’ programs. Analytical course of large engineering system. Design features include functionality, efficiency, economy, safety, reliability, aesthetics, and social impact. Final report of engineering specifications and drawings to be presented by design teams. Letter grading. Ms. Lavine (W)

161B. Introduction to Space Technology. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Recommended preparation: courses 102, 150P, 161A. Propulsion requirements for typical space missions, thermochromy of propellants, internal ballistics, regenerative cooling, liquid propel- lant feed systems, POGO instability. Electric propulsion. Sub-scale rockets, propellant dynamics. Satellite structures and materials, loads and vibrations. Thermal control of spacecraft. Letter grading. Mr. Tsao (Sp)

162A. Introduction to Mechanics and Mechanical Systems. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 102, Computer Science 31. Analysis and synthesis of mechanisms and mechanical systems. Kinematics, dynamics, and mechanical advantages of mechanisms. Design criteria are then built by HSSEAS professional machine shop and tested by students. New project carried out each year. Letter grading. Ms. Lavine (W)

162B. Mechanical Product Design. (4) Lecture, two hours; laboratory, four hours; outside study, six hours. Requisites: courses 94, 156A, 162A, 183. Electrical Engineering 110L. Lecture and laboratory (design) course involving modern design theory and methodology of design for production of mechanical products. Economics, marketing, manufacturability, quality, and patentability. Design considerations taught and applied to hands-on design project. Letter grading. Mr. Yang (F, Sp)

162C. Electromechanical System Design Laboratory. (4) Lecture, one hour; laboratory, eight hours; outside study, three hours. Requisites: courses 126, 162B. Electromechanical Engineering 110L. Laboratory and design course consisting of design, development, construction, and testing of complex mechanical and electromechanical systems. Assembled machine is instrumented and monitored for operational characteristics. Letter grading. Mr. Tsao (Sp)

162M. Senior Mechanical Engineering Design. (4) Lecture, one hour; laboratory, six hours; outside study, five hours. Requisites: courses 131A or 133A, 162B, 171A. Must be taken in last two academic terms of students’ programs. Analytical course of large engineering system. Design features include functionality, efficiency, economy, safety, reliability, aesthetics, and social impact. Final report of engineering specifications and drawings to be presented by design teams. Letter grading. Mr. Tsao (F)
166A. Analysis of Flight Structures. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 101, 182A. Not open to students with credit for course 166A. Introduction to dynamics of two-dimensional elasticity, stress-strain laws, yield and fatigue; bending of beams; torsion of beams; warping; torsion of thin-walled cross sections; slender columns; symmetry; thin-walled, stiffened structures used in aircraft vehicles; elements of plate theory; buckling of columns. Letter grading. Mr. M'Closkey (W)

166C. Design of Composite Structures. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 156A or 166A. History of composites, stress-strain relations for composite materials, bending and extension of symmetric laminates, failure analysis, design examples and design studies, buckling of composite components, nonsymmetric laminates, micromechanics of composites. Letter grading. Mr. Carman (W)

M168. Introduction to Finite Element Methods. (4) (Formerly numbered 168.) (Same as Civil Engineering M135C.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 156A or 166A or Civil Engineering 130. Introduction to basic concepts of finite element methods (FEM) and applications to structural and solid mechanics and heat transfer. Direct matrix structural analysis; weight functions, shape functions, and finite element approximation methods; shape functions; convergence properties; isoparametric formulation of multidimensional heat flow and elasticity; numerical integration. Practical use of FE software; geometric and analytical modeling; preprocessing and postprocessing techniques; term projects with computers. Letter grading. Mr. Chen, Mr. C-J. Kim (F,Sp)

169A. Introduction to Mechanical Vibrations. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 101, 102, 107. Fundamentals of vibration theory and applications. Free and forced vibrations of single and multiple degree of freedom systems, including damping. Normal modes, coupling, and normal coordinates. Vibration isolation devices, vibrations of continuous systems. Lecture grading. Mr. M'Closkey (W)

171A. Introduction to Feedback and Control Systems: Dynamic Systems Control I. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 107, and 181A or 182A. Introduction to feedback control principles, control system design, and system stability. Modeling of physical systems in engineering and other fields; transform methods; controller design using Nyquist, Bode, and root locus methods; compensation; computer-aided design analysis and design. Letter grading. Mr. M'Closkey (F,Sp)

172. Control System Design Laboratory. (4) Laboratory, eight hours; outside study, four hours. Requisite: course 171A. Application of frequency domain design techniques for control of mechanical systems. Successful controller design requires students to formulate performance measures for control systems to experimentally identify mechanical systems, and develop uncertainty descriptions for design models. Exploration of issues concerning model uncertainty and sensor/actuator limitations. Students implement controller design on flexible structures, rate gyroscopes, and inverted pendulum. Detailed reports required. Letter grading. Mr. M'Closkey (W)

174. Probability and Its Applications to Risk, Reliability, and Quality Control. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: Mathematics 33B. Introduction to probability theory; random variables, distributions, functions of random variables, models of failure components, reliability, redundancy, complex systems, stress-strength models, fault trees, 1-1, 1-1-1, 1-2-1, statistical quality control by variables and by attributes, acceptance sampling. Letter grading. Ms. Lavine (W)

CM180. Introduction to Micromachining and Microelectromechanical Systems (MEMS). (4) (Formerly numbered M180.) (Same as Biomedical Engineering CM150 and Electrical Engineering CM150.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Chemistry 29A, 20L, Physics 1A, 1B, 1C, 4AL, 4BLK. Corequisite: course CM180L. Introduction to micromachining technologies and microelectromechanical systems (MEMS). Methods of micromachining and how these methods can be used to produce variety of MEMS, including microstructures, microsensors, and micro actuators. Students design microfabrication processes capable of achieving desired MEMS device. Concurrently scheduled with course CM280A. Letter grading. Mr. C-J. Kim (F)

CM180L. Introduction to Micromachining and Microelectromechanical Systems (MEMS) Laboratory. (4) (Formerly numbered M180L. Same as Biomedical Engineering CM150L and Electrical Engineering CM150L.) Lecture, one hour; laboratory, four hours; outside study, one hour; Requisites: Chemistry 29A, 20L, Physics 1A, 1B, 1C, 4AL, 4BLK. Corequisite: course CM180L. Hands-on introduction to micro-machining technologies and microelectromechanical systems (MEMS) laboratory. Methods of micromachining and how these methods can be used to produce variety of MEMS, including microstructures, microsensors, and micro actuators. Students go through process of fabricating MEMS device. Concurrently scheduled with course CM280L. Letter grading. Mr. C-J. Kim (F)

181A. Complex Analysis and Integral Transforms. (4) Lecture, four hours; outside study, eight hours. Requisites: course 182A. Complex variables; analytic functions; conformal mapping, contour integrals, singularities, residues, Cauchy integrals; Laplace transform; properties, convolution, inversion; Fourier transform: properties, convolution, FFT, applications in dynamics, vibrations, structures, and heat conduction. Letter grading. Mr. Ghoniem (W)

182B. Mathematics of Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 182A. Analytical methods for solving partial differential equations arising in engineering sciences. Formulation of variational problems, Sturm-Liouville theory. Development and use of special functions. Representation by means of orthogonal functions; Gamma function; Method of Green's function and transform methods. Letter grading. Mr. Eldredge, Mr. J. Kim (Sp)

184. Introduction to Geometry Modeling. (4) Lecture, four hours; laboratory, four hours; outside study, four hours. Requisites: course 94, Electrical Engineering 141. Fundamentals in geometric and analytic modeling; preprocessing and postprocessing techniques; term projects with computers. Letter grading. Mr. C-J. Kim (F)

185. Computer Numerical Control and Applications. (4) Laboratory, eight hours; outside study, four hours. Designed for juniors/seniors. Fundamentals of numerical control (NC) technology. Programming of contours, numerical control (MNC) machines, and CAD/CAM systems. NC postprocessors and distributed numerical control. Operation of CNC lathes and milling machines. Programming and understanding of computer-aided engineering parts. Letter grading. Mr. Yang (Sp)

C187L. Nanoscale Fabrication, Characterization, and Biodetection Laboratory. (4) Lecture, two hours; laboratory, two hours; outside study, eight hours. Multidisciplinary course that introduces laborsatory techniques of nanoscale fabrication, characterization, and biodetection. Basic physical, chemical, and biological principles relate to these techniques, top-down and bottom-up (self-assembled) nanofabrication processes; nanoindentation and AES, XPS, and optical and electrochemical biosensors. Students encouraged to create their own ideas in self-designed experiments. Concurrently scheduled with course C187L. Letter grading. Mr. Shi (F,Sp)

188. Special Courses in Mechanical and Aerospace Engineering. (2 to 4) Lecture, two to four hours; outside study, four to eight hours. Special topics in mechanical and aerospace engineering. Undergraduate students that are taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated once for credit with topic or instructor change. P/NP or letter grading.
194. Research Group Seminars: Mechanical and Aerospace Engineering. (2 to 4) Seminar, two hours. Designed for undergraduate students who are part of research group. Discussion of research methods and current literature in field. Student presentation of projects in research specialty. May be repeated for credit. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading.

199. Directed Research in Mechanical and Aerospace Engineering. (2 to 8) Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation under guidance of faculty mentor. Culminating paper or project required. May be repeated for credit with school approval. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading. (F,W,Sp)

Graduate Courses

231B. Radiation Heat Transfer. (4) Lecture, four hours; outside study, eight hours. Requisite: course 105D. Radiative properties of materials and radiative energy transfer. Emphasis on fundamental concepts, including energy levels and electromagnetic waves, as well as analytical methods for calculating radiative properties and radiation transfer in absorbing, emitting, and scattering media. Applications cover laser-material interactions in addition to traditional areas such as combustion and thermal radiation. Letter grading. Mr. Lavine (W)

231C. Phase Change Heat Transfer and Two-Phase Flow. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 131A, 150A. Two-phase flow, boiling, and condensation. Generalized constitutive equations for two-phase flow. Phenomenological theories of boiling and condensation, including forced flow effects. Letter grading. Mr. Catton (F)

231G. Microscopic Energy Transport. (4) Lecture, four hours; outside study, eight hours. Requisite: course 105D. Heat carriers (photons, electronics, phonons); thermal energy transport; energy exchange. Statistical properties of heat carriers, scattering and propagation of heat carriers, Boltzmann transport equations, derivation of classical laws from Boltzmann transport equations, deviation from classical laws at small scale. Letter grading. Mr. Ju (Sp)

235A. Nuclear Reactor Theory. (4) Lecture, four hours; outside study, eight hours. Requisite: course 182A. Underlying physics and mathematics of nuclear reactor design. Fundamentals of nuclear reactor design: fuel kinetics, slowing down and thermalization, multigroup methods, introduction to transport theory. Letter grading. Mr. Abdou

239B. Seminars. Current Topics in Transport Phenomena. (2 to 4) Seminar, two to four hours; outside study, four to eight hours. Designed for graduate me- chanical and aerospace engineering students. Lecture, discussions, student presentations, and proj- ects in areas of current interest in the transport phenom- ena. May be repeated for credit. S/U grading.

239F. Special Topics in Transport Phenomena. (2 to 4) Lecture, two to four hours; outside study, four to eight hours. Designed for graduate mechanical and aerospace engineering students. Advanced and cur- rent study of one or more aspects of heat and mass transfer, such as turbulence, stability and transition, buoyancy effects, variational methods, and measure- ment techniques. May be repeated for credit with top- ic change. S/U grading.

239G. Special Topics in Nuclear Engineering. (2 to 4) Lecture, two to four hours; outside study, four to eight hours. Designed for graduate mechanical and aerospace engineering students. Advanced study in areas of current interest in nuclear engineering, such as reactor safety, risk-benefit trade-offs, nuclear ma- terials, and reactor design. May be repeated for credit with topic change. S/U grading.

239H. Special Topics in Fusion Physics, Engi- neering, and Technology. (2 to 4) Seminar, two to four hours; outside study, four to eight hours. De- signed for graduate engineering students. Advanced treatment of subjects selected from research areas in fusion science and engi- neering, such as instabilities in burning plasmas, alternate fusion confinement concepts, inertial con- finement fusion, fission-fusion hybrid systems, and fusion reactor safety. May be repeated for credit with topic change. S/U grading.

250A. Foundations of Fluid Dynamics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 101, 102, 150A. Introduc- tion to mechanical functions of human body; skeletal adaptations to optimize load transfer, mobility, and function. Dynamics and kinematics. Fluid mechanics applications. Heat and mass transfer. Power genera- tion. Laboratory simulation and data acquisition. Concurrently scheduled with course CM140. Letter grading. Mr. Gupta (W)

250A. Foundations of Fluid Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 150A. Fundamental principles of fluid dynam- ics applied to study of fluid resistance, states of fluid motion discussed in order of advancing Reynolds number; wakes, boundary layers, instability, transi- tion, and turbulent flows. Letter grading. Ms. Karagopian, Mr. J. Kim (W)

250C. Compressible Flows. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 150A, 150B. Effects of compressibility in viscous and invisc- ids flows. Steady and unsteady inviscid and supersonic flows; method of characteristics; small disturbance theories (linearized and hypersonic); shock dynamics. Letter grading.

250E. Spectral Methods in Fluid Dynamics. (4) Lecture, four hours; outside study, eight hours. Requis- ites: courses 182A, 182B. Introduction to basic concepts and techniques of various spectral methods applied to solving partial differential equations. Particular emphasis on techniques of solving steady and time-dependent equations. Topics include spectral representation of functions, discrete Fourier transform, etc. Letter grading.

250F. Hypersonic and Nonequilibrium Gas Dy- namics. (4) Lecture, four hours; outside study, eight hours. Recommended requisite: course 250C. Mo- lecular and chemical description of equilibrium and nonequilibrium hypersonic and high-temperature gas flows, chemical thermodynamics and statistical ther- modynamics for calculation gas properties, equilibri- um flows of real gases, vibrational and chemical rate processes, nonequilibrium flows of real gases, and computational fluid dynamics methods for nonequilib- rium hypersonic flows. Letter grading. Mr. Zhong (W)

250G. Fluid Dynamics of Biological Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 103. Mechanics of aquatic locomotion; insect and bird flight aerodynamics; pulsatile flow in circulatory system; rheology of blood; trans- port in microcirculation; role of fluid dynamics in arte- rial disease. Concurrently scheduled with course CM150G. Letter grading. Mr. Eldredge (W)

252A. Stability of Fluid Motion. (4) Lecture, four hours; outside study, eight hours. Requisite: course 150A. Mechanisms by which laminar flows can be- come unstable and lead to turbulence of secondary motions. Linear stability theory; thermal, centrifugal, and shear instabilities; boundary layer instability. Nonlinear aspects: sufficient criteria for stability, sub- critical instabilities, supercritical states, transition to turbulence. Letter grading. Mr. Zhong (W, alternate years)

252B. Turbulence. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 250A, 250B. Characteristics of turbulent flows, conservation and transport equations, statistical description of turbulent flows, scientific basis of turbulent flows, turbulence flows, free-shear flows, wall-bounded flows, turbulence modeling, numerical simulations of turbulent flows, and turbulence control. Letter grading. Mr. J. Kim (Sp)
252C. Fluid Mechanics of Combustion Systems. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 150A, 150B. Recommended: course 252C. Basic concepts of chemical and chemical thermodynamics applied to reactive systems, laminar diffusion flames, premixed laminar flames, stability, ignition, turbulent combustion, supersonic combustion. Letter grading.

Ms. Karagozian (F, odd years)

252D. Combustion Rate Processes. (4) Lecture, four hours; outside study, eight hours. Requisite: course 252C. Basic concepts in chemical kinetics and chemical-molecular collisions, distribution functions and averaging, semiempirical and ab initio potential surfaces, trajectory calculations, statistical reaction rate theories. Practical examples of large-scale chain mechanisms and applications from combustion chemistry of several elements, etc. Letter grading.

Mr. Smith (Sp, even years)

253A. Advanced Engineering Acoustics. (4) Lecture, four hours; outside study, eight hours. Advanced studies in engineering acoustics, including three-dimensional wave propagation; propagation in bounded media. Ray acoustics; attenuation mechanisms in fluids. Letter grading.

Mr. Ferguson

Mr. Eldredge

254A. Special Topics in Aerodynamics. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 150A, 150B, 182A, 182B, 182C. Special topics of current interest in advanced aerodynamics. Examples include transonic flow, hypersonic flow, sonic booms, and unsteady aerodynamics. Letter grading.

Mr. Zhong

255A. Advanced Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 155, 169A. Variational principles and Lagrange equations. Kinematics and dynamics of rigid bodies; procession and nutation of spinning bodies. Letter grading.

Mr. Gibson (W)

255B. Mathematical Methods in Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 255A. Concepts of stability; state-space representation, determination by eigenvalues, first and second Lyapunov direct method; the Hamiltonian as a Lyapunov function; nonautonomous systems; averaging and perturbation methods of nonlinear analysis; parametric excitation and nonlinear resonance. Application to mechanical systems. Letter grading.

Mr. M'Closkey (Sp, odd years)

M256A. Linear Elasticity. (4) (Same as Civil Engineering M230A.) Lecture, four hours; outside study, eight hours. Requisite: course 156A or 166A. Linear elastostatics. Cartesian tensors; infinitesimal strain tensor; Cauchy stress tensor; strain energy; equilibrium equations; linear constitutive relations; plane elastostatic problems, holes, corners, inclusions, cracks; three-dimensional problems of Kelvin, Boussinesq, and Cerrutti. Introduction to boundary integral equation method. Letter grading.

Mr. Dong, Mr. Mai (W)

Mr. Gupta (Sp)

256F. Analytical Fracture Mechanics. (4) Lecture, four hours; outside study, eight hours. Requisite: course M256A. Review of modern fracture mechanics, elementary stress analyses; analytical and numerical methods for calculation of crack tip stress intensity factors; finite element applications in different structures, pressure vessels, plates, and shells. Letter grading.

Mr. Gupta (Sp)

M257A. Elastodynamics. (4) (Same as Earth and Space Sciences M224A.) Lecture, four hours; outside study, eight hours. Requisites: courses M256A, M256B. Equations of linear elasticity. Cauchy equation of motion, constitutive relations, boundary and initial conditions, principle of energy. Sources and wave-packets in unbounded media, fundamental solutions, and dissipative solids. Half-space problems. Guided waves in layered media. Applications to dynamic fracture, non-destructive evaluation (NDE), and mechanics of earthquakes. Letter grading.

Mr. Spence (Sp, even years)

258A. Nanomechanics and Micromechanics. (4) Lecture, four hours; outside study, eight hours. Requisite: course M256A. Analytical and computational modeling methods to describe mechanics of materials at scales ranging from atomic through microstructure or transitional and up to continuum. Discussion of atomistic simulation methods (e.g., molecular dynamics, Langevin dynamics, and kinetic Monte Carlo) and their applications at nanoscale. Development and applications of dislocation dynamics and statistical mechanics methods in areas of nanostructural and microstructural material deformation, heterogeneous plastic deformation, material instabilities, and failure phenomena. Presentation of technical applications of these emerging modeling techniques to surfaces and interfaces, grain boundaries, dislocations and defects, surface growth, quantum dots, nanotubes, nanoclusters, thin films (e.g., optical thermal barrier coatings and ultrastrong nanolayer materials), nano-identification, smart (active) materials, nano- bending and microbending, and torsion. Letter grading.

Mr. Ghorbani (W, alternate years)

259A. Seminar: Advanced Topics in Fluid Mechanics. (4) Seminar, four hours; outside study, eight hours. Requisite: courses M256A, M258A, 260A. Advanced fluid mechanics, with intensive student participation involving assignments in research problems leading to term paper or oral presentation (possible help from guest lecturers). Letter grading.

Mr. Smith (Sp, alternate years)

260A. Current Topics in Mechanical Engineering. (2 to 4) Seminar, two to four hours; outside study, four to eight hours. Designed for graduate mechanical and aerospace engineering students. Lectures, discussions, and student presentations and projects in areas of current interest in mechanical engineering. May be repeated for credit.

Mr. Mal (F)

Mr. Dong, Mr. Mai (W)

Mr. Krug (W)

262. Mechanics of Intelligent Material Systems. (4) Lecture, four hours; outside study, eight hours. Recommended requisite: course 166C. Constitutive relations for electro-magneto-mechanical materials. Fiber-optic sensor technology. Micro/macro analysis, including classical lamination theory, shear lag theory, concentric cylinder analysis, hexagonal models, and homogenization techniques as they apply to active materials. Active systems design, inch-worm, and bimorph. Letter grading.

Mr. Carman (W)

263A. Analytical Foundations of Motion Controllers. (4) Lecture, four hours; outside study, eight hours. Recommended requisites: courses 163A, 294. Analysis and synthesis of motion control for position and velocity controlled machines: multiaxial computer-controlled machines; machine kinematics and dynamics; multiaxis motion coordination; coordinated motion with desired speed and acceleration; joint analysis, motion planning, command generation; theory and design of controller interpolators; motion trajectory design and analysis; geometry-speed-sampling time relationships. Letter grading.

Mr. Yang (W)

263B. Spacecraft Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 255A. Recommended: course 255B. Modeling, dynamics, and stability of spacecraft; spinning and dual-spin spacecraft dynamics; spin up through resonance, spinning rocket dynamics; environmental torques in space, modeling and model reduction of flexible space structures. Letter grading.

Mr. Frazzoli (Sp, alternate years)

Mr. Yang (W)

263D. Advanced Robotics. (4) Lecture, four hours; outside study, eight hours. Recommended preparation: courses 155, 171A, 263C. Motion planning and control of articulated dynamic systems; nonlinear joint control, experiments in joint control and inverse kinematics coordination, robot dynamics, trajectory planning, motion optimization, dynamic performance and manipulator design, kinematic redundancies, motion planning of manipulators in space, obstacle avoidance. Letter grading.

Mr. Hahn (Sp)

Mr. Bendiksen (W)

Mr. Bendiksen (Sp, alternate years)
269D. Aeroelastic Effects in Structures. (4) Lecture, four hours; outside study, eight hours. Requisite: course M269A. Presentation of field of aeroelasticity from a micromechanics approach applicable to flight structures and suspension bridges, buildings, and other structures. Derivation of aeroelastic operators and unsteady airloads from governing variational principles. Flow-induced damping and response of structures. Letter grading. Mr. Bendiksken (F, alternate years)

M270A. Linear Dynamic Systems. (4) (Same as Chemical Engineering M280A and Electrical Engineering M240A.) Lecture, four hours; outside study, eight hours. Requisite: course 171A or Electrical Engineering 141. State-space description of linear time-invariant (LTI) and time-variant (LTV) systems in continuous and discrete time. Linear algebra concepts such as eigenvalues and eigenvectors, singular values, Cayley/Hamilton theorem, Jordan form; solution of state equations; stability, controllability, observability, realizability, and minimality. Stabilization design via state feedback and observers. Selection of transients with function techniques. Letter grading. Mr. Gibson (F)

M270B. Linear Optimal Control. (4) Lecture, four hours; outside study, eight hours. Requisite: course M270A or Electrical Engineering M240A. Existence and uniqueness of solutions to linear quadratic (LQ) and linear quadratic Gaussian (LQG) optimal control problems for continuous-time and discrete-time deterministic and stochastic systems. Linear algebra concepts such as eigenvalues and eigenvectors, singular values, Cayley/Hamilton theorem, Jordan form; solution of state equations; stability, controllability, observability, realizability, and minimality. Stabilization design via state feedback and observers. Selection of transients with function techniques. Lecture grading. Mr. Gibson (W)

M270C. Optimal Control. (4) (Same as Chemical Engineering M280C and Electrical Engineering M240C.) Lecture, four hours; outside study, eight hours. Requisite: course 270B. Applications of variational methods, Pontryagin maximum principle, Hamiltonian systems and optimal control; algebraic and differential Riccati equations; implications of controllability, stabilizability, observability, and detectability solutions. Letter grading. Mr. Gibson (W)

M273A. Robust Control System Analysis and Design. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 171A, M270A. Graduate-level introduction to analysis and design of multivariable control systems. Multivariable loop-shaping, performance requirements, model uncertainty representations, and robustness covered in detail from frequency-domain perspective. Structured singular value and its application to controller synthesis. Letter grading. Mr. M’Closkey (Sp)

M275A. System Identification. (4) Lecture, four hours; outside study, eight hours. Methods for identification of dynamical systems from input/output data, with emphasis on identification of discrete-time (digital) models of sampled-data systems. Coverage of conventional and advanced identification methods including transfer functions and state-space models. Discussion of applications in mechanical and aerospace engineering, including identification of flexible structures, microelectromechanical systems (MEMS) devices, and acoustic ducts. Letter grading. Mr. Gibson (Sp)

M276. Dynamic Programming. (4) (Same as Electrical Engineering M227.) Lecture, four hours; outside study, eight hours. Recommended requisite: Electrical Engineering 232A or 236A or 236B. Introduction to mathematical analysis of sequential decision processes. Finite horizon model in both deterministic and stochastic environments; infinite horizon model. Methods of solution. Examples from inventory theory, finance, optimal control and estimation, Markov decision processes, combinatorial optimization, computer vision, and control. Letter grading. Mr. Speyer (Sp)

277. Advanced Digital Control for Mechatronic Systems. (4) Lecture, four hours; laboratory, two hours; outside study, six hours. Requisites: courses 271A, 271B. Digital control and analysis of mechatronic systems. System inversion-based digital control algorithms and robustness properties. Youla parameterization of stabilizing controllers, reconfigurable and learning control, and adaptive control. Real-time control implementation of topics to selected mechatronic systems. Letter grading. Mr. Tsao (W)

CM280A. Introduction to Micromachining and Microelectromechanical Systems (MEMS). (4) Formerly numbered M280B.) (Same as Biomedical Engineering CM250A and Chemical Engineering CM250A.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Chemistry 20A, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Corequisite: course CM280L. Introduction to micromachining technologies and microelectromechanical systems (MEMS). Methods of micromachining and how these methods can be used to produce variety of MEMS, including microstructures, microsensors, and microactuators. Designing MEMS to be produced with both foundry and non-foundry processes. Computer-aided design for MEMS. Design project required. Letter grading. Mr. Ho, Mr. C-J. Kim (F)

M282. Microelectromechanical Systems (MEMS) Device Physics and Design. (4) (Same as Biomedical Engineering M252 and Electrical Engineering M252.) Lecture, four hours; outside study, eight hours. Introduction to MEMS design. Design methods and principles of operation of microstructures, microsensors, and microactuators. Designing MEMS to be produced with both foundry and non-foundry processes. Letter grading. Mr. Chiou (Sp)

283. Experimental Mechanics for Microelectromechanical Systems (MEMS). (4) Lecture, four hours; outside study, eight hours. Methods, techniques, and philosophies being used to characterize microelectromechanical systems for engineering applications. Material characterization, mechanical/ material property measurement, mechanical characterization. Includes fundamentals of crystallography, anisotropic material properties, and mechanical behavior (e.g., strength/ fracture/fatigue) as they relate to microscale. Considerable emphasis on emerging experimental approaches to assess design-relevant mechanical properties. Letter grading. Mr. Carman (Sp, alternate years)

284. Sensors, Actuators, and Signal Processing. (4) Lecture, four hours; laboratory, two hours; outside study, eight hours. Methods, techniques, and principles of performance of micro transducers. Applications of using unique properties of micro transducers for distributed and real-time control of engineering problems. Associated signal processing requirements for these applications. Letter grading. Mr. Ho (W, alternate years)

285. Interfacial Phenomena. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 103, 105A, 105D, 182A. Introduction to fundamental physical phenomena occurring at interfaces and application of their knowledge to engineering problems. Fundamental concepts of interfacial phenomena, including surface tension, surfactants, interfacial thermodynamics, interfacial forces, interfacial hydrodynamics, and dynamics of triple line. Presentation of various applications, including wetting, change of phase (boiling and condensation), foams and emulsions, microelectromechanical systems, and biological systems. Letter grading.

286. Molecular Dynamics Simulation. (4) Lecture, four hours; outside study, eight hours. Preparation: computer programming experience. Requisites: courses 182A, 182C. Introduction to basic concepts and methodologies of molecular dynamics simulation. Advantages and disadvantages of this approach for various situations. Emphasis on systems of engineering interest, especially microscale fluid mechanics, heat transfer, and solid mechanics problems. Letter grading. Mr. Kavehpoor (W)
M287. Nanoscience and Technology. (4) (Same as Electrical Engineering M257.) Lecture, four hours; outside study, eight hours. Introduction to funda-mentals of nanoscience and technology. Basic physical principles, quantum mechanics, chemical bonding and nanostructures, top-down and bottom-up (self-assembly) nanofabrication; nanoelectron-ics and nanoelectromechanical systems, and nano-biotechnology. Introduction to new knowl-edge and techniques in nano areas to understand scientif-ic and technological principles behind nanotechnology and in-spire students to create new ideas in multidisciplinary nano areas. Letter grading. Mr. Y. Chen (W)

C287L. Nanoscale Fabrication, Characterization, and Biodetection Laboratory. (4) Lecture, four hours; laboratory, two hours; outside study, eight hours. Multidisciplinary course that introduces labo-ratory techniques of nanoscale fabrication, character-ization, and biodetection. Basic physical, chemical, and biological principles related to these techniques, top-down and bottom-up (self-assembly) nanofabri-cation, nanocharacterization (AEM, SEM, etc.), and optical and electrochemical biosensors. Students en-couraged to create their own ideas in self-designed experiments. Concurrently scheduled with course C187L. Letter grading. Mr. Y. Chen (Sp)

288. Laser Microfabrication. (4) Lecture, four hours; outside study, eight hours. Requisites: Materials Science 104, Physics 17. Science and engineer-ing of laser microscopic fabrication of advanced ma-terials, including semiconductors, metals, and insula-tors. Topics include fundamentals in laser interaction with advanced materials, transport is-sues (therma, mass, chemical, carrier, etc.) in laser microfabrication, state-of-art optics and instrumenta-tion for laser microfabrication, applications such as rapid prototyping, surface modifications (physical/chemical), micromachines for three-dimensional MEMS (microelectromechanical systems) and data storage, up-to-date research activities. Student term projects. Letter grading. Mr. Yang (W)

294. Computational Geometry for Design and Manufactur-ing. (4) Lecture, four hours; outside study, eight hours. Requisite: course 184. Computational geometry for design and manufacturing, with special emphasis on curve and surface theory, geo-metric modeling of curves and surfaces, B-splines and NURBS, composite curves and surfaces, com-puting methods for surface design and manufacture, and current research topics in computational geome-try for CAD/CAM systems. Letter grading. Mr. Yang (W)

295B. Internet-Based Collaborative Design. (4) Lecture, four hours; outside study, eight hours. Requ-uisites: course 94, 184. Exploration of advanced state-of-the-art concepts in Internet-based collabora-tive design, including software environments to con-nect designers over Internet, networked variable me-dia graphics environments such as high-end virtual reality systems, mid-range graphics, and low-end mobile device-based systems, and multifunctional design collaboration and software tools to support it. Letter grading. Mr. Gadh (W)

295C. Radio Frequency Identification Systems: Analysis, Design, and Applications. (4) Lecture, four hours; outside study, eight hours. Designed for graduate engineering students. Examination of emerging discipline of radio frequency identification (RFID), including basics of RFID, how RFID systems function, design and analysis of RFID systems, and applications to fields such as supply chain, manufac-turing, retail, and homeland security. Letter grading. Mr. Gadh (F)

296A. Damage and Failure of Materials in Me-chanical Design. (4) Lecture, four hours; outside study, eight hours. Requisites: course 156A, Material-Science 143A. Role of failure prevention in me-chanical design and case studies. Mechanics and physics of material imperfections: voids, dislocations, cracks, and inclusions. Statistical and deterministic design methods. Plastic, fatigue, and creep damage. Letter grading. Mr. Ghoniem (Sp, alternate years)

296B. Thermochemical Processing of Materials. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 131A, 183. Thermodynamics, heat and mass transfer, principles of material pro-cessing; phase equilibria and transitions, transport mechanisms of heat and mass, moving interfaces and heat sources, natural convection, nucleation and growth of microstructure, etc. Applications with chemical vapor deposition, infiltration, etc. Letter grading. Mr. Ghoniem, Ms. Lavine (Sp, alternate years)

297. Composites Manufacturing. (4) Lecture, four hours; outside study, eight hours. Requisites: course 166C, Materials Science 151. Matrix materials, fi-bers, fiber preforms, elements of processing, auto-clave/compression molding, filament winding, pultru-sion, resin transfer molding, automation, material re-moval and assembly, metal and ceramic matrix composites, quality assurance. Letter grading. Mr. Hahn (Sp)

298. Seminar: Engineering. (2 to 4) Seminar, to be arranged. Limited to graduate mechanical and aero-space engineering students. Seminars may be orga-nized in advanced technical fields. If appropriate, field trips may be arranged. May be repeated with topic change. Letter grading.

M299A. Seminar: Systems, Dynamics, and Control Topics. (2) (Same as Chemical Engineering M297 and Electrical Engineering M248S.) Seminar, two hours; outside study, six hours. Limited to gradu-ate engineering students. Presentations of research topics by leading academic researchers from fields of systems, dynamics, and control. Students who work in these fields present their papers and results. S/U grading. Letter grading. Mr. Hahn (Sp)

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: apprentice personnel employment as teaching assistant, associ-ate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. Ms. Lavine (F/W/Sp)

495. Teaching Assistant Training Seminar. (2) Seminar, two hours; outside study, four hours. Prep-aration: appointment as teaching assistant in depart-ment. Seminar on communication of mechanical and aerospace engineering principles, concepts, and methods, teaching assistant preparation, organiza-tion, and presentation of material, including use of vi-sual aids; grading, advising, and rapport with stu-dents. S/U grading.

Master of Science in Engineering Online Program

UCLA
7440 Boelter Hall
Box 951594
Los Angeles, CA 90095-1594

(310) 206-4523
fax: (310) 206-3081
http://msengrol.seas.ucla.edu

Christopher S. Lynch, Ph.D., Director

Scope and Objectives

The primary purpose of the Master of Science in Engineering online degree program is to enable employed engineers and computer scientists to augment their technical education beyond the Bachelor of Science degree and to enhance their value to the technical organizations in which they are employed. The training and education that the program offers are of significant importance and usefulness to engineers, their employers, California, and the nation. It is at the M.S. level that engineers have the opportunity to learn a specialization in depth, and those engineers with advanced degrees may also renew and update their knowledge of the technology advances that continue to occur at an accelerating rate.

The M.S. program is addressed to those highly qualified employed engineers who, for various reasons, do not attend the on-campus M.S. programs and who are keenly interested in developing up-to-date knowledge of cutting-edge engineering and technology.

Graduate Study

For information on graduate admission, see Graduate Programs, page 23.

The following introductory information is based on the 2008-09 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnet.ucla.edu/gasasa/library/pgmrqintro.htm. Students are subject to the degree requirements as published in Program Requirements for the year in which they matriculate.

M.S. in Engineering Online Program

Course Requirements

The program consists of nine courses that make up a program of study. At least five courses must be at the 200 level, and one must be a 596 directed study course. The latter course satisfies the University of California requirement for a capstone event (in the on-campus program the requirement is covered by a comprehensive examination or a thesis); the directed study 596 course consists of an engineering design project that is far better suited for the working engineer/computer scientist.

The program is structured in a manner that allows employed engineers/computer scientists to complete the requirements at a part-time pace (e.g., one 100/200-level course per term). Courses are scheduled so that the program can be completed within two academic years plus one additional term.

Advanced Structural Materials

Jenn-Ming Yang, Ph.D. (Materials Science and Engineering), Director: jyang@seas.ucla.edu

The program provides students with a broad knowledge of advanced structural materials. Courses cover fundamental concepts of science and engineering of lightweight metallic and composite materials, advanced metallic and composite materials, fracture mechanics, damage tolerance and durability, failure analysis and prevention, nondestructive evaluation, structural integrity and life prediction, and design of aerospace structures. Students are required to complete a project on a topic related to structural materials.

Required: Materials Science and Engineering 143A, 151, 243A, 243C, 250B, 298, Mechanical And Aerospace Engineering 154B, 297; one design project course (Materials Science and Engineering 596).

Computer Networking

Mario Gerla, Ph.D. (Computer Science), Director: gerla@cs.ucla.edu

Three undergraduate elective courses complement the basic background of the undergraduate electrical engineering or computer science degree with concepts in security, sensors, and wireless communications. The graduate courses expose students to key applications and research areas in the network and distributed systems field. Two required graduate courses cover the Internet and emerging sensor embedded systems. The electives probe different applications domains, including wireless mobile networks, security, network management, distributed P2P systems, and multimedia applications.

Electronic Materials

Ya-Hong Xie, Ph.D. (Materials Science and Engineering), Director: yhx@ucla.edu

The program provides students with a knowledge set that is highly relevant to the semiconductor industry. The program has four essential attributes: theoretical background, applied knowledge, exposure to theoretical approaches, and introduction to the emerging field of microelectronics, namely organic electronics. All faculty members have industrial experience and are currently conducting active research in these subject areas.

Required: Materials Science and Engineering 122, 200, 221, 223, 224, 252, 271, 298; one design project course (Materials Science and Engineering 596).

Integrated Circuits

Dejan Markovic, Ph.D. (Electrical Engineering), Director: dejan@ee.ucla.edu

The program includes analog integrated circuit (IC) design, design and modeling of VLSI circuits and systems, RF circuit and system design, signaling and synchronization, VLSI signal processing, and communication system design. Summer courses are not yet offered in this program; therefore it cannot currently be completed in two calendar years.

Required: Eight courses selected from Electrical Engineering 201C, 209AS, 215A through 215E, M216A, 216B; one design project course (Electrical Engineering 596).

Manufacturing and Design

Daniel C.H. Yang, Ph.D. (Mechanical and Aerospace Engineering), Director: dyang@seas.ucla.edu

The program covers a broad spectrum of fundamental and advanced topics, including mechanical systems, digital control systems, microdevices and nanodevices, wireless systems, failure of materials, composites, and computational geometry. The program prepares students with the higher educational background that is necessary for today’s rapidly changing technology needs.
Schoolwide Programs, Courses, and Faculty

UCLA
6426 Boelter Hall
Box 951601
Los Angeles, CA 90095-1601
(310) 825-2826
http://www.engineer.ucla.edu

Graduate Study
For information on graduate admission to the schoolwide engineering programs and requirements for the Engineer degree and certificate of specialization, see Graduate Programs, page 23.

Faculty Areas of Thesis Guidance

Lower Division Courses

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower division students under faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.

Upper Division Courses

M101. Principles of Nanoscience and Nanotechnology. (4) (Same as Materials Science M105.) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: Chemistry 20, and Electrical Engineering 1 or Physics 1C. Introduction to underlying science encompassing structure, properties, and fabrication of technologically important nanoscale systems. New phenomena that emerge in very small systems (typically with feature sizes below few hundred nanometers) explained using basic concepts from physics, chemical, optical, and electronic properties, electron transport, structural stability, self-assembly, templated assembly and applications of various nanostructures such as quantum dots, nanoparticles, quantum wires, quantum wells and multilayers, carbon nanotubes. Letter grading.

Mr. Ozolins (F)

102. Synthetic Biosystems and Nanosystems Design. (4) Lecture, four hours; discussion, eight hours. Requisites: course M101, Life Sciences 3. Introduction to current progress in engineering to integrate biosciences and nanosciences into synthetic systems, where biological components are reengineered and rewired to perform desirable functions in both intracellular and cell-free environments. Discussion of basic technologies and systems analysis that deal with dynamic behavior, noise, and uncertainties. Design project in which students are challenged to design novel biosystems and nanosystems for non-trivial task required. Letter grading.

Mr. Liao (W)

103. Environmental Nanotechnology: Implications and Applications. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Recommended requisite: course M101. Introduction to potential implications of nanotechnology to environmental systems as well as potential application of nanotechnology to environmental protection. Technical contents include three multidisciplinary areas: (1) physical, chemical, and biological properties of nanomaterials, (2) transport, reactivity, and toxicity of nanoscale materials in natural environmental systems, and (3) use of nanotechnology for energy and water production, plus environmental protection, monitoring, and remediation. Letter grading.

Mr. Hoek (Sp)

110. Introduction to Technology Management and Economics for Engineers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Fundamental principles of micro-level (individual, firm, and industry) and macro-level (government, international) economics as they relate to technology management. How individuals, firms, and governments impact successful commercialization of high technology products and services. Letter grading.

Mr. Monbouquette (F)

111. Introduction to Finance and Marketing for Engineers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Critical components of finance and marketing research and practice as they impact management of technology commercialization. Internal (within firm) and external (in marketplace) marketing and financing of high-technology innovation. Concepts include present value, future value, discounted cash flow, internal rate of return, return on assets, return on equity, return on investment, interest rates, cost of capital, and product, price, positioning, and promotion. Use of market research, segmentation, and forecasting in management of technological innovation. Letter grading.

Mr. Monbouquette (W)
112. Laboratory to Market, Entrepreneurship for Engineers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Critical components in finance, marketing, personnel employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active mentorship. Team building, market forecasting, and entrepreneurial finance. Students work in small teams studying technology management plans to bring new technologies to market. Students select from set of available technology concepts, many generated at UCLA, that are in need of plans for movement from laboratory to market. Letter grading.

Mr. Monbouquette (Sp)

113. Product Strategy. (4) Lecture, four hours; outside study, eight hours. Designed for juniors/seniors. Introduction to current management concept of product development. Topics include product strategy, product platform, and product lines; competitive strategy, vectors of differentiation, product pricing, first-to-market versus fast-follower; growth strategy, growth through acquisition, and new ventures; product portfolio management. Case studies, class projects, group discussions, and guest lectures by speakers from industry. Letter grading. Mr. Pao (F)

180. Engineering of Complex Systems. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Designed for seniors/engineering students. Holistic view of engineering discipline, covering lifecycle of engineering, processes, and techniques used in industry today. Multidisciplinary systems engineering perspective in which aspects of electrical, mechanical, material, and software engineering are incorporated. Three specific case studies in communication, sensor, and processing systems included to help students understand these concepts. Special attention paid to link material covered to engineering curriculum offered by UCLA to help students integrate and enhance their understanding of knowledge already acquired. Motivation of students to continue their learning and reinforce lifelong learning habits. Letter grading. Mr. Wesel (F)

183. Engineering and Society. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Limited to junior/senior engineering students. Professional and ethical considerations in practice of engineering. Impact of technology on society and on development of moral and ethical values. Contemporary environmental, biological, legal, and other issues created by new technologies. Letter grading. Mr. Wesel (F, W, Sp)

185. Art of Engineering Endeavors. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Designed for seniors. Importance of group dynamics in engineering practice. Teamwork and effective group skills in engineering environments. Organization and control of multidisciplinary complex engineering projects. Forms of leadership and qualities and characteristics of effective leaders. How engineering, computer sciences, and technology relate to major ethical and social issues. Societal demands on practice of engineering. Letter grading. Mr. Wesel (F, W, Sp)

188. Special Courses in Engineering. (4) Seminar, four hours; outside study, eight hours. Special topics in engineering for undergraduate students that are taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated for credit with topic or instructor change. Letter grading.

195. Internship Studies in Engineering. (2 to 4) Tutorial, two to four hours. Limited to juniors/seniors. Internship studies course supervised by associate dean or designated faculty members. Further supervision to be provided by organization for which students are doing internship. Students may be required to meet on regular basis with instructor and provide periodic reports of their experience. May not be applied toward major requirements. Normally, only 4 units of internship are allowed. Individual contract with associate dean required. P/NP grading. Mr. Wesel (F, W, Sp)

199. Directed Research in Engineering. (2 to 8) Tutorial, to be arranged. Limited to juniors/seniors. Supervision of individual investigation under the guidance of faculty mentor. Culpminating paper or project required. May be repeated for credit with school approval. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading. (F, W, Sp)

Graduate Courses

200. Program Management Principles for Engineers and Professionals. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Practical review of major elements of system engineering process. Coverage of key elements: system requirements and flow down, product development cycle, functional analysis, system synthesis and trade studies, budget allocations, risk management metrics, review and audit activities and documentation. Letter grading.

Mr. Wesel

201. Systems Engineering. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Practical review of major elements of system engineering process. Topics in starting and developing high-tech enterprises and intended for students who wish to complement their technical education with introduction to entrepreneurship. Letter grading.

Mr. Ab, Mr. Cong, Mr. Wesel (W)

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: apprentice personal employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. (F, W, Sp)

471A-471B-471C. The Engineer in the General Environment. (3-3-1.5) Lecture, three hours (courses 471A, 471B) and 90 minutes (course 471C). Limited to Engineering Executive Program students. Influences of human relations, laws, social sciences, humanities, and fine arts on development and utilization of natural and human resources. Interaction of technology and society past, present, and future. Change agents and resistance to change. S/U or letter (471A) grading; In Progress (471B) and S/U or letter (471C) grading.

472A-472D. The Engineer in the Business Environment. (3-3-1.5) Lecture, three hours (courses 472A, 472B, 472C) and 90 minutes (course 472D). Limited to Engineering Executive Program students. Language of business for the engineering executive. Accounting, finance, business economics, business law, and marketing. Laboratory in organization and management problem solving. Analysis of actual business problems of firm, community, and nation, provided through cooperation and participation with California business corporations and government agencies. In Progress (472A, 472C) and S/U or letter grading (credit to be given on completion of courses 472B and 472D).

473A-473B. Analysis and Synthesis of a Large-Scale System. (3-3) Lecture, two and one-half hours. Limited to Engineering Executive Program students. Problem area of modern industry or government is selected as class project, and its solution is synthesized using quantitative tools and methods. Project also serves as laboratory in organization for a goal-oriented technical group. In Progress (473A) and S/U (473B) grading.

495A. Teaching Assistant Training Seminar. (4) Formerly numbered 495S. Seminar, four hours; outside study, eight hours. Specialized writing problems that may occur in engineering writing contexts. Practical concerns of preparing students to write course assignments, marking and grading essays, and conducting peer reviews and conferences. S/U grading. (F, W, Sp)

501. Cooperative Program. (2 to 8) Tutorial, to be arranged. Preparation: consent of UCLA graduate adviser and graduate dean, and host campus instructor, department chair, and graduate dean. Used to record enrollment of UCLA students in courses taken under cooperative arrangements with USC, S/U grading.
Center for Cell Control
Chih-Ming Ho, Ph.D. (Mechanical and Aerospace Engineering), Director; http://www.centerforcellcontrol.org

A cell consists of millions of intracellular molecules, which serve as building blocks for its structure and functions. Interactions among these building blocks display the property of self-organization, which serves as the foundation of signaling networks and regulatory pathways. Through these interconnected networks, a cell—the basic unit of life—senses, responds, and adapts to its environment. These three characteristics are commonly observed in all complex systems. The goal of the Center for Cell Control (CCC) at UCLA is to apply an unprecedented approach toward efficiently searching for a potent drug cocktail for guiding biological systems to a directed phenotype. Nanoscale modalities and molecular sensors are used to understand the signal pathway responses under the influence of the drugs. This introduces engineering systems that can be applied toward regulation of a spectrum of cellular functions, such as cancer eradication, viral infection onset control, and stem cell differentiation.

This highly interdisciplinary approach demands strong synergetic collaboration between engineers, biologists, and clinical doctors at UCLA and UC Berkeley. Projects important to the goals of the NIH nanomedicine program are development of a smart petri dish platform with advanced nanoscale modalities, capable of studying signal pathways at the network interaction level; and demonstration of the unique capability to determine optimal multiple drug combinations and apply the resulting drug cocktail as potential therapeutics in pathogenic diseases and cancer.

Three biological systems—stem cell, cancer, and viral infection—have been proposed. Because stem cells have interesting features closely mirroring circuit reprogramming, they are used as the first system for monitoring and interrogating reactions in the network of pathways. Viral infection and cancer cells will be used in drug combinatory studies. As the program becomes more mature, networks of all three systems will be interrogated by nano tools under the potent drug cocktails.

Center for Embedded Networked Sensing
National Science Foundation Science and Technology Center
Deborah Estrin, Ph.D. (Computer Science), Director; http://www.cens.ucla.edu

The Center for Embedded Networked Sensing (CENS) is a major research enterprise focused on developing wireless sensing systems and applying this revolutionary technology to critical scientific and societal pursuits. In the same way that development of the Internet transformed our ability to communicate, the ever-decreasing size and cost of computing components sets the stage for detection, processing, and communication technology to be embedded throughout the physical world and, thereby, fostering a deeper understanding of the natural and built environment and, ultimately, enhancing our ability to design and control these complex systems.

By investigating fundamental properties of embedded networked sensing systems, developing new technologies, and exploring novel scientific and educational applications, CENS is a world leader in unleashing the tremendous potential these systems hold.

The center is a multidisciplinary collaboration among faculty, staff, and students from a wide spectrum of fields, including computer science, electrical engineering, civil and environmental engineering, biology, statistics, education and information sciences, urban planning, and theater, film, and television. CENS was established in 2002 as a National Science Foundation Science and Technology Center and is a partnership of UCLA, UC Riverside, UC Merced, USC, and Cal Tech.

The center’s current research portfolio encompasses projects across nine technology and applications areas, examples of which include:

- Development and deployment of new measurement tools and techniques to identify the sources and fates of chemical and biological pollutants in natural, urban, and agricultural watersheds and coastal zones
- Development of cameras and image analysis approaches that assist scientists in making biological observations.
- Together, the camera and analysis systems comprise a new type of biosensor that takes measurements otherwise unobservable to humans
- Harnessing the technological power of mobile phones and the ubiquitous wireless infrastructure for applications in areas as diverse as public health, environmental protection, urban planning, and cultural expression, each of which is influenced by independent personal behaviors adding up in space and time

Center for Energy Science and Technology Advanced Research
Mohamed A. Abdou, Ph.D. (Mechanical and Aerospace Engineering), Director; Neil B. Morley, Ph.D. (Mechanical and Aerospace Engineering), Associate Director; http://cestar.seas.ucla.edu

The Center for Energy Science and Technology Advanced Research (CESTAR) is an interdepartmental research center whose mission is to provide a common focal point for collaboration and synergism among researchers at UCLA involved in energy-related research. CESTAR helps enable energy research to become larger than the sum of its parts, promoting researcher teaming, expertise and equipment sharing, information exchange, and invited energy research seminars. CESTAR also provides a point of contact for those outside UCLA who are interested in learning about energy-related research conducted here.

CESTAR is organized around four specific energy thrust areas: fusion energy, hydrogen, materials for energy applications, and energy conversion and conservation.

Fusion Energy Science and technology for future fusion energy producing reactors. Current research includes:

- Liquid metal and molten salt blanket cooling and magnetohydrodynamic behavior
- Free surface liquid metal flows for divertor protection and particle pumping
- Solid breeder and neutron multiplier materials thermomechanical behavior
- Neutron and photon transport modeling
- Shield and test blanket development for ITER
- Multiphysics modeling of fusion technology systems
- Fusion plasma diagnostics
Hydrogen

Hydrogen-based transportation can yield significant reductions in emissions of toxic substances and accord significant health benefits to residents of Southern California, the U.S., and the world. The Hydrogen Engineering Research Consortium (HERC) brings together the expertise of academic and industrial resources to help bring about the onset of the hydrogen economy. Consumers are starting to reduce their driving and are looking for alternative transportation solutions. Major energy providers also view the use of hydrogen-powered fuel cells as the most sustainable mobility solution. The strongest argument for hydrogen as fuel, however, is the inability of current transportation systems to prevent the emission of large amounts of toxic substances.

Materials for Energy Applications

Broad range of advanced materials with current focus on power generation by polymer solar cells. These plastic cells potentially cost little to fabricate and are convenient to install and maintain. A second focus is on new materials for energy storage, such as advanced batteries and hydrides. Current research spans from new materials to device architectures, including:

- synthesis of new polymer semiconductors with small band gap and high carrier mobility
- polymer blends to form bulk heterojunctions for efficient charge separation
- polymer-inorganic hybrids to complement polymer’s hole mobility with the high electron mobility of nanostructured inorganic semiconductors
- nanostructured polymer solar cells
- novel transparent electrode material
- tandem cells to boost overall power conversion efficiency
- nanostructured energy storage materials
- computational design of new materials for hydrogen storage
- theory of fundamental processes in energy storage materials

Center on Functional Engineered Nano Architectonics

Microelectronic Advanced Research Corporation Focus Center

Kang L. Wang, Ph.D. (Electrical Engineering), Director; Bruce S. Dunn, Ph.D. (Materials Science and Engineering), Co-Director; http://fsrc.ee.ucla.edu

Dramatic advances in nanotechnology, molecular electronics, and quantum computing are creating the potential for significant expansion of current semiconductor technologies. Researchers at UCLA make pioneering contributions to these fields through the Functional Engineered Nano Architectonics Focus Center (FENA) funded by the Semiconductor Research Association and the Department of Defense.

The term “architectonics” is derived from a Greek word meaning master builder—an apt description of the center’s researchers as they build a new generation of nanoscale materials, structures, and devices for the electronics industry.

The FENA team explores the challenges facing the semiconductor industry as the electronic devices and circuits that power today’s computers grow ever smaller. With more and more transistors and other components squeezed onto a single chip, manufacturers are rapidly approaching the physical limits posed by current chip-making processes. Researchers seek to resolve a number of issues related to post-CMOS technologies that allow them to extend semiconductor technology further into the realm of the nanoscale.

Flight Systems Research Center

A.V. Balakrishnan, Ph.D. (Electrical Engineering), Director; http://fsrc.ee.ucla.edu

The Flight Systems Research Center, established in 1985 under a Memorandum-of-Agreement with the NASA Ames/Dryden Flight Research Facility, is devoted to interdisciplinary research in flight systems and related technologies. Faculty from the Computer Science, Electrical Engineering, Mathematics, and Mechanical and Aerospace Engineering Departments are currently associated with the center. Current research projects include:

- viscous flow simulation of boundary layer instability and transition in supersonic swept wing flows
- embedded optical sensor research with applications to flight
- research studies for flight systems of the future
- aircraft finite element model validation based on ground vibration test data
- development of a compact ultrasonic piezohydraulic actuator for control surface articulation
- support of the development of a neural net flight air data system

Western Institute of Nanoelectronics

A Nanoelectronics Research Initiative National Institute of Excellence

Kang L. Wang, Ph.D. (Electrical Engineering), Director; http://win-nano.org

The Western Institute of Nanoelectronics (WIN), one of the world’s largest joint research programs focusing on spintronics, brings together nearly 30 eminent researchers to explore critically-needed innovations in semiconductor technology.

A National Institute of Excellence, WIN leverages what are considered the best interdisciplinary nanoelectronics talents in the world to explore and develop advanced research devices, circuits, and nanosystems with performance beyond conventional CMOS devices. The pioneering new technology of spintronics relies on the spin of an electron to carry information, and holds promise in minimizing power consumption for next-generation electronics.

As rapid progress in the miniaturization of semiconductor electronic devices leads toward chip features smaller than 100 nanometers in size, researchers have had to begin exploring new ways to make electronics more efficient. Today’s devices, based on CMOS standards, cannot get much smaller and still function effectively.

Information-processing technology has so far relied on charge-based devices, ranging from vacuum tubes to million-transistor microchips. Conventional electronic devices simply move these electric charges around, ignoring the spin on each electron. Spintronics aims to put that extra spin action to work—effectively corralling electrons into one smooth chain of motion.
B.S. in Aerospace Engineering Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B — Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Division</td>
<td>Mechanical and Aerospace Engineering 101 — Statics and Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 103 — Elementary Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>Upper Division</td>
<td>Mechanical and Aerospace Engineering 104 — Science of Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 105A — Introduction to Engineering Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 101 — Statics and Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 103 — Elementary Fluid Mechanics</td>
<td>4</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1C — Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Physics 48L — Electricity and Magnetism Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Materials Science and Engineering 104 — Science of Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 105A — Introduction to Engineering Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mechanical and Aerospace Engineering 182A — Mathematics of Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 107 — Introduction to Modeling and Analysis of Dynamic Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 150A — Intermediate Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 157S — Basic Aerospace Engineering Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Mechanical and Aerospace Engineering 150B — Aerodynamics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 171A — Introduction to Feedback and Control Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Aerospace Engineering Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering 100 — Electrical and Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 102 — Dynamics of Particles and Rigid Bodies</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 182A — Mathematics of Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Mechanical and Aerospace Engineering 107 — Introduction to Modeling and Analysis of Dynamic Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 150A — Intermediate Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 157S — Basic Aerospace Engineering Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mechanical and Aerospace Engineering 150B — Aerodynamics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 171A — Introduction to Feedback and Control Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Aerospace Engineering Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Mechanical and Aerospace Engineering 150P — Aircraft Propulsion Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 154S — Flight Mechanics, Stability, and Control of Aircraft</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 155 (Intermediate Dynamics) or 161A (Introduction to Astronautics) or 169A (Introduction to Mechanical Vibrations)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 166A — Analysis of Flight Structures</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 154A — Preliminary Design of Aircraft</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Aerospace Engineering Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mechanical and Aerospace Engineering 154B — Design of Aerospace Structures</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 157A — Fluid Mechanics and Aerodynamics Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

TOTAL

187

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
†A total of 8 units of aerospace engineering electives (two courses) is required.
B.S. in Bioengineering Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Bioengineering 10 (Introduction to Bioengineering) or HSSEAS GE Elective*</td>
<td>2 or 5</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 20B — Chemical Energetics and Change</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A or 1AH — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Bioengineering 10 (Introduction to Bioengineering) or HSSEAS GE Elective*</td>
<td>2 or 5</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 20L — General Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B or 1BH — Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemistry and Biochemistry 30A — Chemical Dynamics and Reactivity: Introduction to Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1C or 1CH — Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Physics 4AL — Mechanics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>2nd</td>
<td>Bioengineering 100 — Bioengineering Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Life Sciences 2 — Cells, Tissues, and Organs</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 4BL — Electricity and Magnetism Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>3rd</td>
<td>Chemistry and Biochemistry 30AL — General Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30B — Organic Chemistry: Reactivity and Synthesis, Part I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Bioengineering 120 — Biomedical Transducers</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 153A — Biochemistry: Introduction to Structure, Enzymes, and Metabolism</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Life Sciences 3 — Introduction to Molecular Biology</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Bioengineering 165** — Bioethics and Regulatory Policies in Bioengineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30BL — Organic Chemistry Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Bioengineering 110 — Biotransport and Bioreaction Processes</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Life Sciences 4 — Genetics</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Biomedical Engineering Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Bioengineering 176 — Principles of Biocompatibility</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Bioengineering 180/180L — System Integration in Biology, Engineering, and Medicine I/Laboratory</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Bioengineering 182A — Bioengineering Capstone Design I</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Bioengineering 181/181L — System Integration in Biology, Engineering, and Medicine II/Laboratory</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Bioengineering 182B — Bioengineering Capstone Design II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Bioengineering 182C — Bioengineering Capstone Design III</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Biomedical Engineering Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

TOTAL

185

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).

**Satisfies the HSSEAS ethics requirement.

†Electives include Biomedical Engineering C101, CM102, CM103, CM145, CM150, CM150L, C170, C171, CM180, C181, C185, C187.
B.S. in Chemical Engineering Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 10 — Introduction to Chemical and Biomolecular Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

2nd Quarter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry and Biochemistry 20B — Chemical Energetics and Change</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science 31 — Introduction to Computer Science I.</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
</tbody>
</table>

3rd Quarter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry and Biochemistry 20L — General Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30A — Chemical Dynamics and Reactivity: Introduction to Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B/4AL — Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory</td>
<td>7</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 100 — Fundamentals of Chemical and Biomolecular Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30AL — General Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C/4BL — Electrodynamics, Optics, and Special Relativity/Electricity and Magnetism Laboratory</td>
<td>7</td>
</tr>
</tbody>
</table>

2nd Quarter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 102A — Thermodynamics I</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30B — Organic Chemistry: Reactivity and Synthesis, Part I</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

3rd Quarter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 102B — Thermodynamics II</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 101A — Transport Phenomena I</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 109 — Numerical and Mathematical Methods in Chemical and Biological Engineering</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

2nd Quarter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 101B — Transport Phenomena II; Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 113A — Physical Chemistry: Introduction to Quantum Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

3rd Quarter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 101C — Mass Transfer.</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 103 — Separation Processes.</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 104AL — Chemical and Biomolecular Engineering Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 153A — Biochemistry: Introduction to Structure, Enzymes, and Metabolism</td>
<td>4</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 104B — Chemical and Biomolecular Engineering Laboratory II</td>
<td>6</td>
</tr>
<tr>
<td>Chemical Engineering 106 — Chemical Reaction Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

2nd Quarter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 107 — Process Dynamics and Control</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 108A — Process Economics and Analysis.</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

3rd Quarter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 108B — Chemical Process Computer-Aided Design and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL

185

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
B.S. in Chemical Engineering
Biomedical Engineering Option Curriculum

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 10 — Introduction to Chemical and Biomolecular Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B — Chemical Energetics and Change</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20L — General Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30A — Chemical Dynamics and Reactivity: Introduction to Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B/4AL — Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>SOPHOMORE YEAR</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 100 — Fundamentals of Chemical and Biomolecular Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30AL — General Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C — Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 102A — Thermodynamics I</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30B — Organic Chemistry: Reactivity and Synthesis, Part I</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 102B — Thermodynamics II</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101A — Transport Phenomena I</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 109 — Numerical and Mathematical Methods in Chemical and Biological Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Life Sciences 2 — Cells, Tissues, and Organs</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101B — Transport Phenomena II: Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 113A — Physical Chemistry: Introduction to Quantum Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>Life Sciences 3 — Introduction to Molecular Biology</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101C — Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 103 — Separation Processes</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 104AL — Chemical and Biomolecular Engineering Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 153A — Biochemistry: Introduction to Structure, Enzymes, and Metabolism</td>
<td>4</td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 104B — Chemical and Biomolecular Engineering Laboratory II</td>
<td>6</td>
</tr>
<tr>
<td>Chemical Engineering 106 — Chemical Reaction Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 107 — Process Dynamics and Control</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 108A — Process Economics and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 108B — Chemical Process Computer-Aided Design and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Electives (2)*</td>
<td>9</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>189</td>
</tr>
</tbody>
</table>

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
B.S. in Chemical Engineering

Biomolecular Engineering Option Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemical Engineering 10 — Introduction to Chemical and Biomolecular Engineering</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>5</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemistry and Biochemistry 20B — Chemical Energetics and Change</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Chemistry and Biochemistry 20L — General Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30A — Chemical Dynamics and Reactivity</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B/4AL — Oscillations, Waves, Electric and Magnetic Fields</td>
<td>7</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemical Engineering 100 — Fundamentals of Chemical and Biomolecular Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 30A — General Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1C — Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemical Engineering 102A — Thermodynamics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30B — Organic Chemistry; Reactivity and Synthesis, Part I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Chemical Engineering 102B — Thermodynamics II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemical Engineering 101A — Transport Phenomena I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 109 — Numerical and Mathematical Methods in Chemical and Biological Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Life Sciences 2 — Cells, Tissues, and Organs</td>
<td>5</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemical Engineering 101B — Transport Phenomena II; Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 113A — Physical Chemistry: Introduction to Quantum Mechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Life Sciences 3 — Introduction to Molecular Biology</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Chemical Engineering 101C — Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 104AL — Chemical and Biomolecular Engineering Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering C125 — Bioseparations and Bioprocess Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 153A — Biochemistry: Introduction to Structure, Enzymes, and Metabolism</td>
<td>4</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemical Engineering 104D/104DL — Molecular Biotechnology Lecture/Laboratory: From Gene to Product</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering C115 — Biochemical Reaction Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering CM145 — Molecular Biotechnology for Engineers</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemical Engineering 107 — Process Dynamics and Control</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 108A — Process Economics and Analysis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Chemical Engineering 108B — Chemical Process Computer-Aided Design and Analysis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Electives (2)*</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL 189

Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
B.S. in Chemical Engineering

Environmental Engineering Option Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>1st Quarter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 10 — Introduction to Chemical and Biomolecular Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2nd Quarter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry and Biochemistry 20B — Chemical Energetics and Change</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd Quarter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry and Biochemistry 20L — General Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30A — Chemical Dynamics and Reactivity: Introduction to Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B/4AL — Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory</td>
<td>7</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>1st Quarter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 100 — Fundamentals of Chemical and Biomolecular Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30AL — General Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C/4BL — Electrodynamics, Optics, and Special Relativity/Electricity and Magnetism Laboratory</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2nd Quarter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 102A — Thermodynamics I</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30B — Organic Chemistry: Reactivity and Synthesis, Part I</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd Quarter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 102B — Thermodynamics II</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>1st Quarter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric and Oceanic Sciences 104 — Fundamentals of Air and Water Pollution</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 101A — Transport Phenomena I</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 109 — Numerical and Mathematical Methods in Chemical and Biological Engineering</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2nd Quarter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 101B — Transport Phenomena II: Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 113A — Physical Chemistry: Introduction to Quantum Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd Quarter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 101C — Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 103 — Separation Processes</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 104AL — Chemical and Biomolecular Engineering Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 153A — Biochemistry: Introduction to Structure, Enzymes, and Metabolism</td>
<td>4</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>1st Quarter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 104B — Chemical and Biomolecular Engineering Laboratory II</td>
<td>6</td>
</tr>
<tr>
<td>Chemical Engineering 106 — Chemical Reaction Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2nd Quarter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 107 — Process Dynamics and Control</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 108A — Process Economics and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd Quarter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 108B — Chemical Process Computer-Aided Design and Analysis.</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL

189

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
B.S. in Chemical Engineering

Semiconductor Manufacturing Engineering Option Curriculum

Freshman Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemical Engineering 10 — Introduction to Chemical and Biomolecular Engineering</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 20A — Introduction to Chemical and Biomolecular Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>5</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemical Engineering 100 — Fundamentals of Chemical and Biomolecular Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30AL — General Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1C/4BL — Electrodynamics, Optics, and Special Relativity/Electricity and Magnetism Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemical Engineering 102A — Thermodynamics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30B — Organic Chemistry: Reactivity, Introduction to Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemical Engineering 101A — Transport Phenomena I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 109 — Numerical and Mathematical Methods in Chemical and Biological Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemical Engineering 101B — Transport Phenomena II; Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 113A — Physical Chemistry: Introduction to Quantum Mechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemical Engineering 106 — Chemical Reaction Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering C116 — Surface and Interface Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering or Materials Science and Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemical Engineering 107 — Process Dynamics and Control</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 108A — Process Economics and Analysis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>189</td>
</tr>
</tbody>
</table>

Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
B.S. in Civil Engineering Curriculum

Freshman Year

1st Quarter
- Chemistry and Biochemistry 20A — Chemical Structure ... 4
- Civil and Environmental Engineering 1 — Introduction to Civil Engineering 2
- English Composition 3 — English Composition, Rhetoric, and Language 5
- Mathematics 31A — Differential and Integral Calculus ... 4

2nd Quarter
- Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory ... 7
- Mathematics 31B — Integration and Infinite Series ... 4
- Physics 1A — Mechanics ... 5
- HSSEAS GE Elective* .. 2

3rd Quarter
- Mathematics 32A — Calculus of Several Variables ... 4
- Physics 1B — Oscillations, Waves, Electric and Magnetic Fields ... 5
- Physics 4AL — Mechanics Laboratory .. 5
- HSSEAS GE Elective* .. 5

Sophomore Year

1st Quarter
- Civil and Environmental Engineering 101 — Statics and Dynamics .. 4
- Mathematics 32B — Calculus of Several Variables ... 4
- Physics 1C (Electrodynamics, Optics, and Special Relativity) or Electrical Engineering 1 (Electrical Engineering Physics I) .. 5 or 4
- HSSEAS GE Elective* .. 4 or 5

3rd Quarter
- Civil and Environmental Engineering 15 — Introduction to Computing for Civil Engineers 2
- Civil and Environmental Engineering 108 — Introduction to Mechanics of Deformable Solids ... 4
- Computer Science 31 — Introduction to Computer Science I .. 4
- Mathematics 33A — Linear Algebra and Applications .. 4

Junior Year

1st Quarter
- Civil and Environmental Engineering 120 — Principles of Soil Mechanics 4
- Civil and Environmental Engineering 135A — Elementary Structural Analysis 4
- Civil and Environmental Engineering 153 — Introduction to Environmental Engineering Science 4
- Mechanical and Aerospace Engineering 103 — Elementary Fluid Mechanics 4

2nd Quarter
- Chemical Engineering 102A (Thermodynamics I) or Mechanical and Aerospace Engineering 105A (Introduction to Engineering Thermodynamics) ... 4
- Civil and Environmental Engineering 151 — Introduction to Water Resources Engineering ... 4
- HSSEAS GE Elective* .. 4
- Major Field Elective† .. 4

3rd Quarter
- Civil and Environmental Engineering 110 — Introduction to Probability and Statistics for Engineers ... 4
- Major Field Electives (2)* ... 8
- Technical Breadth Course* ... 8

Senior Year

1st Quarter
- HSSEAS GE Elective* .. 5
- Major Field Electives (2)* ... 8
- Technical Breadth Course* ... 4

2nd Quarter
- HSSEAS GE Elective* .. 4
- Major Field Electives (2)* ... 8
- Technical Breadth Course* ... 4

3rd Quarter
- HSSEAS GE Elective* .. 5
- Major Field Electives (2)* ... 8

TOTAL
188, 189, or 190

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
†Must include required courses for two of the major field areas listed on page 46.
B.S. in Computer Science Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 1 — Freshman Computer Science Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science 32 — Introduction to Computer Science II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Computer Science 33 — Introduction to Computer Organization</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B — Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Physics 4AL — Mechanics Laboratory</td>
<td>2</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Computer Science 35L — Software Construction Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 1 — Electrical Engineering Physics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 4BL — Electricity and Magnetism Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science M51A or Electrical Engineering M16 — Logic Design of Digital Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 61 — Introduction to Discrete Structures</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Computer Science 101 — Upper Division Computer Science Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Computer Science 131 — Programming Languages</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science M152A or Electrical Engineering M116L — Introductory Digital Design Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Computer Science M151B or Electrical Engineering M116C — Computer Systems Architecture</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 180 — Introduction to Algorithms and Complexity</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science 130 (Software Engineering) or 152B (Digital Design Project Laboratory)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Science and Technology Elective</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Computer Science 111 — Operating Systems Principles</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Statistics 110A — Applied Statistics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Computer Science 11B — Computer Network Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 181 — Introduction to Formal Languages and Automata Theory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Science and Technology Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Computer Science Electives (2)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Science and Technology Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL: 186

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
B.S. in Computer Science and Engineering Curriculum

FRESHMAN YEAR

1st Quarter
- Chemistry and Biochemistry 20A — Chemical Structure .. 4
- Computer Science 1 — Freshman Computer Science Seminar .. 1
- Computer Science 31 — Introduction to Computer Science I 4
- Mathematics 31A — Differential and Integral Calculus .. 4

2nd Quarter
- Computer Science 32 — Introduction to Computer Science II 4
- English Composition 3 — English Composition, Rhetoric, and Language 5
- Mathematics 31B — Integration and Infinite Series ... 4
- Physics 1A — Mechanics ... 5

3rd Quarter
- Computer Science 33 — Introduction to Computer Organization 5
- Mathematics 32A — Calculus of Several Variables ... 4
- Physics 1B — Oscillations, Waves, Electric and Magnetic Fields 5
- Physics 4AL — Mechanics Laboratory .. 2

SOPHOMORE YEAR

1st Quarter
- Computer Science 35L — Software Construction Laboratory ... 2
- Electrical Engineering 1 — Electrical Engineering Physics I .. 4
- Mathematics 32B — Calculus of Several Variables ... 4
- HSSEAS GE Elective* .. 2

2nd Quarter
- Computer Science 51A or Electrical Engineering M16 — Logic Design of Digital Systems 4
- Mathematics 33A — Linear Algebra and Applications .. 4
- Mathematics 61 — Introduction to Discrete Structures ... 4
- HSSEAS GE Elective* .. 5

3rd Quarter
- Computer Science 101 — Upper Division Computer Science Seminar 1
- Computer Science M12A or Electrical Engineering M116L — Introductory Digital Design Laboratory 2
- Electrical Engineering 2 — Physics for Electrical Engineers .. 4
- Mathematics 33B — Differential Equations .. 4
- Statistics 110A — Applied Statistics .. 4

JUNIOR YEAR

1st Quarter
- Computer Science 131 — Programming Languages .. 4
- Computer Science M151B or Electrical Engineering M116C — Computer Systems Architecture 4
- Electrical Engineering 10 — Circuit Analysis I .. 4
- HSSEAS GE Elective* .. 4

2nd Quarter
- Computer Science 111 — Operating Systems Principles .. 4
- Computer Science 180 — Introduction to Algorithms and Complexity 4
- Electrical Engineering 102 — Systems and Signals ... 4
- Electrical Engineering 110 — Circuit Analysis II ... 4

3rd Quarter
- Computer Science 181 — Introduction to Formal Languages and Automata Theory 4
- Electrical Engineering 110L — Circuit Measurements Laboratory 2
- Electrical Engineering 115A — Analog Electronic Circuits I .. 4
- Technical Breadth Course* ... 4

SENIOR YEAR

1st Quarter
- Computer Science 118 — Computer Network Fundamentals .. 4
- Computer Science 152B — Digital Design Project Laboratory 4
- Electrical Engineering 115C — Digital Electronic Circuits ... 4
- Computer Science Elective .. 4

2nd Quarter
- Computer Science Electives (2) .. 8
- HSSEAS GE Elective* .. 5
- Technical Breadth Course* ... 5

3rd Quarter
- HSSEAS GE Elective* .. 4
- HSSEAS GE Elective* .. 5
- Technical Breadth Course* ... 4

TOTAL

188

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
B.S. in Electrical Engineering Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemistry and Biochemistry 20A — Chemical Structure.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 31 — Introduction to Computer Science I.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science 32 — Introduction to Computer Science II.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3 — English Composition, Rhetoric, and Language.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electrical Engineering 3 — Introduction to Electrical Engineering.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B — Oscillations, Waves, Electric and Magnetic Fields.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Physics 4AL — Mechanics Laboratory</td>
<td>2</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering M16 or Computer Science M51A — Logic Design of Digital Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electrical Engineering 1 — Electrical Engineering Physics I.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 103 — Applied Numerical Computing.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 4BL — Electricity and Magnetism Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electrical Engineering 2 — Physics for Electrical Engineers.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 10 — Circuit Analysis I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 102 — Systems and Signals.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering 110 — Circuit Analysis II.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 113 — Digital Signal Processing.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 131A — Probability.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electrical Engineering 101 — Engineering Electromagnetics.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 110L — Circuit Measurements Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 115A — Analog Electronic Circuits I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 132 — Complex Analysis for Applications</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electrical Engineering 115AL — Analog Electronics Laboratory I.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 121B — Principles of Semiconductor Device Design.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 132A — Introduction to Communication Systems.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 161 — Electromagnetic Waves</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering 141 — Principles of Feedback Control.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pathway Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course†</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course†</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Statistics 105 — Statistics for Engineers.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Pathway Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course†</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Pathway Design Course†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pathway Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course†</td>
<td>8</td>
</tr>
</tbody>
</table>

TOTAL 187

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
†See page 74 for a list of approved pathways.
B.S. in Electrical Engineering
Biomedical Engineering Option Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Chemistry and Biochemistry 30A — Chemical Dynamics and Reactivity: Introduction to Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>TOTAL 188</td>
<td></td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Electrical Engineering M16 or Computer Science M51A — Logic Design of Digital Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B/4AL — Oscillations, Waves, Electric and Magnetic Fields/ Mechanics Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>2nd</td>
<td>Electrical Engineering 1 — Electrical Engineering Physics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 3 — Introduction to Electrical Engineering</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Life Sciences 2 — Cells, Tissues, and Organs</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 4BL — Electricity and Magnetism Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>3rd</td>
<td>Electrical Engineering 2 — Physics for Electrical Engineers</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 102 — Systems and Signals</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Life Sciences 3 — Introduction to Molecular Biology</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>TOTAL 18</td>
<td></td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Electrical Engineering 10 — Circuit Analysis I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 103 — Applied Numerical Computing</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 113 — Digital Signal Processing</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 131A — Probability</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Electrical Engineering 110 — Circuit Analysis II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Pathway Course (Electrical Engineering 132A — Introduction to Communication Systems)</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Electrical Engineering 110L — Circuit Measurements Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 115A — Analog Electronic Circuits I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 132 — Complex Analysis for Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>TOTAL 18</td>
<td></td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Electrical Engineering 101 — Engineering Electromagnetics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 115AL — Analog Electronics Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Pathway Course (Electrical Engineering 141 — Principles of Feedback Control)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pathway Laboratory Course†</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Statistics 105 — Statistics for Engineers</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Pathway Course (Electrical Engineering 176 — Lasers in Biomedical Applications or Mechanical and Aerospace Engineering 105A — Introduction to Engineering Thermodynamics)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Pathway Design Course†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>TOTAL 188</td>
<td></td>
</tr>
</tbody>
</table>

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).†See page 74 for the biomedical engineering pathway.
B.S. in Electrical Engineering

Computer Engineering Option Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science 32 — Introduction to Computer Science II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Computer Science 33 — Introduction to Computer Organization</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 3 — Introduction to Electrical Engineering</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B — Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering M16 or Computer Science M51A — Logic Design of Digital Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 4A — Mechanics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electrical Engineering 1 — Electrical Engineering Physics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 4BL — Electricity and Magnetism Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electrical Engineering 2 — Physics for Electrical Engineers</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 10 — Circuit Analysis I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 102 — Systems and Signals</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Computer Science 35L — Software Construction Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 101 — Engineering Electromagnetics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 110 — Circuit Analysis II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 131A — Probability</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electrical Engineering 103 — Applied Numerical Computing</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 110L — Circuit Measurements Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 115A — Analog Electronic Circuits I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Statistics 105 — Statistics for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electrical Engineering 113 — Digital Signal Processing</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 115C — Digital Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pathway Course (Electrical Engineering 132A — Introduction to Communication Systems or Computer Science M117 — Computer Networks: Physical Layer)*</td>
<td>5</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering M116C or Computer Science M151B — Computer Systems Architecture</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pathway Course (Computer Science 111 — Operating Systems Principles)*</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>6</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Mathematics 132 — Complex Analysis for Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pathway Course (Computer Science 131 — Programming Languages or 132 — Compiler Construction or 180 — Introduction to Algorithms and Complexity)*</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>9</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electrical Engineering 132B (Data Communications and Telecommunication Networks) or Computer Science 118 (Computer Network Fundamentals)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pathway Design Course†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>8</td>
</tr>
</tbody>
</table>

TOTAL 188

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).†See page 75 for the computer engineering pathway.
B.S. in Materials Engineering Curriculum

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A — Chemical Structure.</td>
<td>4</td>
</tr>
<tr>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Materials Science and Engineering 10 — Freshman Seminar: New Materials</td>
<td>1</td>
</tr>
<tr>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B — Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 104 — Science of Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C (Electrodynamics, Optics, and Special Relativity) or Electrical Engineering 1 (Electrical Engineering Physics I)</td>
<td>5 or 4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 102A (Thermodynamics I) or Mechanical and Aerospace Engineering 105A (Introduction to Engineering Thermodynamics)</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering 101 (Statics and Dynamics) or Mechanical and Aerospace Engineering 101 (Statics and Strength of Materials)</td>
<td>4</td>
</tr>
<tr>
<td>Materials Science and Engineering 90L — Physical Measurement in Materials Engineering</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering 108 — Introduction to Mechanics of Deformable Solids</td>
<td>4</td>
</tr>
<tr>
<td>Electrical Engineering 100 — Electrical and Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td>Materials Science and Engineering 110/110L — Introduction to Materials Characterization A/Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>Materials Science and Engineering 130 — Phase Relations in Solids</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 120 — Physics of Materials</td>
<td>4</td>
</tr>
<tr>
<td>Materials Science and Engineering 131/131L — Diffusion and Diffusion-Controlled Reactions/Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>Materials Science and Engineering 143A — Mechanical Behavior of Materials</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 132 — Structure and Properties of Metallic Alloys</td>
<td>4</td>
</tr>
<tr>
<td>Elective†</td>
<td>4</td>
</tr>
<tr>
<td>Materials Engineering Elective†</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 160 — Introduction to Ceramics and Glasses</td>
<td>4</td>
</tr>
<tr>
<td>Materials Engineering Elective†</td>
<td>4</td>
</tr>
<tr>
<td>Upper Division Mathematics Elective†</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 150 — Introduction to Polymers</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>Materials Engineering Elective†</td>
<td>4</td>
</tr>
<tr>
<td>Materials Engineering Laboratory Course†</td>
<td>2</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 140 — Materials Selection and Engineering Design</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>Materials Engineering Laboratory Course†</td>
<td>2</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL 185 or 186

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
†See counselor in 6426 Boelter Hall for details.
B.S. in Materials Engineering

Electronic Materials Option Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Materials Science and Engineering 10 — Freshman Seminar: New Materials</td>
<td>1</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Physics 1B — Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Materials Science and Engineering 104 — Science of Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemical Engineering 102A (Thermodynamics I) or Mechanical and Aerospace Engineering 105A (Introduction to Engineering Thermodynamics)</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Physics 1C (Electrodynamics, Optics, and Special Relativity) or Electrical Engineering 1 (Electrical Engineering Physics I)</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Materials Science and Engineering 90L — Physical Measurement in Materials Engineering</td>
<td>2</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mechanical and Aerospace Engineering 101 — Statics and Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering 10 — Circuit Analysis I</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Materials Science and Engineering 110/110L — Introduction to Materials Characterization Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Materials Science and Engineering 130 — Phase Relations in Solids</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electrical Engineering 101 — Engineering Electromagnetics</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Materials Science and Engineering 120 (Physics of Materials) or Electrical Engineering 2 (Physics for Electrical Engineers)</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Materials Science and Engineering 122 — Principles of Electronic Materials Processing</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electrical Engineering 121B — Principles of Semiconductor Device Design</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Materials Science and Engineering 121/121L — Materials Science of Semiconductors/Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electronic Materials Elective†</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Electronic Materials Elective†</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Upper Division Mathematics Elective†</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Materials Science and Engineering 131/131L — Diffusion and Diffusion-Controlled Reactions/Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electronic Materials Elective†</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electronic Materials Laboratory Course†</td>
<td>2</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Materials Science and Engineering 140 — Materials Selection and Engineering Design</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electronic Materials Elective†</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electronic Materials Laboratory Course†</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL 187 or 188

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
†See counselor in 6426 Boelter Hall for details.
B.S. in Mechanical Engineering Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B — Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Physics 4AL — Mechanics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 94 — Introduction to Computer-Aided Design and Drafting</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1C — Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Physics 4BL — Electricity and Magnetism Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Materials Science and Engineering 104 — Science of Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 105A — Introduction to Engineering Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 101 — Statics and Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 103 — Elementary Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering 100 — Electrical and Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 102 — Dynamics of Particles and Rigid Bodies</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 105D — Transport Phenomena</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 182A — Mathematics of Engineering</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electrical Engineering 110L — Circuit Measurements Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 131A (Intermediate Heat Transfer) or 133A (Engineering Thermodynamics)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 157 — Basic Mechanical Engineering Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mechanical and Aerospace Engineering 107 — Introduction to Modeling and Analysis of Dynamic Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 156A — Advanced Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 183 — Introduction to Manufacturing Processes</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Mechanical and Aerospace Engineering 162A — Introduction to Mechanisms and Mechanical Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 171A — Introduction to Feedback and Control Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Mechanical and Aerospace Engineering 162B — Mechanical Product Design</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Courses (2)*</td>
<td>8</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mechanical and Aerospace Engineering 162M — Senior Mechanical Engineering Design</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL 185

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
Academic Calendar

<table>
<thead>
<tr>
<th>Event</th>
<th>Fall 2008</th>
<th>Winter 2009</th>
<th>Spring 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First day for continuing students to check URSA at</td>
<td>June 11</td>
<td>October 29, 2008</td>
<td>February 4, 2009</td>
</tr>
<tr>
<td>http://www.ursa.ucla.edu for assigned enrollment appointments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>URSA enrollment appointments begin</td>
<td>June 23</td>
<td>November 12</td>
<td>February 17</td>
</tr>
<tr>
<td>Registration fee payment deadline</td>
<td>September 19</td>
<td>December 19</td>
<td>March 20</td>
</tr>
<tr>
<td>QUARTER BEGINS</td>
<td>September 22</td>
<td>January 5, 2009</td>
<td>March 30</td>
</tr>
<tr>
<td>Instruction begins</td>
<td>September 25</td>
<td>January 5</td>
<td>March 30</td>
</tr>
<tr>
<td>Last day for undergraduates to ADD courses with per-course</td>
<td>October 17</td>
<td>January 23</td>
<td>April 17</td>
</tr>
<tr>
<td>fee through URSA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last day for undergraduates to DROP nonimpacted courses</td>
<td>October 24</td>
<td>January 30</td>
<td>April 24</td>
</tr>
<tr>
<td>without a transcript notation (with per-transaction fee through URSA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last day for undergraduates to change grading basis (optional P/NP)</td>
<td>November 7</td>
<td>February 13</td>
<td>May 8</td>
</tr>
<tr>
<td>with per-transaction fee through URSA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instruction ends</td>
<td>December 5</td>
<td>March 13</td>
<td>June 5</td>
</tr>
<tr>
<td>Final examinations</td>
<td>December 8-12</td>
<td>March 16-20</td>
<td>June 8-12</td>
</tr>
<tr>
<td>QUARTER ENDS</td>
<td>December 12</td>
<td>March 20</td>
<td>June 12</td>
</tr>
<tr>
<td>HSSEAS Commencement</td>
<td>—</td>
<td>—</td>
<td>June 13</td>
</tr>
<tr>
<td>Academic and administrative holidays</td>
<td>November 11</td>
<td>January 19</td>
<td>March 27</td>
</tr>
<tr>
<td></td>
<td>November 27-28</td>
<td>February 16</td>
<td>May 25</td>
</tr>
<tr>
<td></td>
<td>December 24-25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>January 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Admission Calendar

<table>
<thead>
<tr>
<th>Event</th>
<th>Fall 2008</th>
<th>Winter 2009</th>
<th>Spring 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filing period for undergraduate applications (file with UC</td>
<td>November 1-30,</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Undergraduate Application Processing Service, P.O. Box 23460,</td>
<td>2007</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Oakland, CA 94623-0460)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last day to file application for graduate admission or</td>
<td>Consult</td>
<td>Consult</td>
<td>Consult</td>
</tr>
<tr>
<td>readmission with complete credentials and application fee,</td>
<td>department</td>
<td>department</td>
<td>department</td>
</tr>
<tr>
<td>with Graduate Admissions/Student and Academic Affairs,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1255 Murphy Hall, UCLA, Los Angeles, CA 90024-1428</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reentering students eligible to enroll begin to receive URSA</td>
<td>June 16, 2008</td>
<td>November 5</td>
<td>February 6</td>
</tr>
<tr>
<td>notification letter at their mailing address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last day to file Undergraduate Application for Readmission</td>
<td>August 15</td>
<td>November 25</td>
<td>February 25</td>
</tr>
<tr>
<td>form at 1113 Murphy Hall (late applicants pay a late fee)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>