A Message from the Dean

Since it welcomed its first engineering students more than 60 years ago, the UCLA Henry Samueli School of Engineering and Applied Science has been at the forefront of advanced interdisciplinary research. Among other notable achievements, the school is well-known as the birthplace of the Internet, for developing the first reverse-osmosis membrane for the desalination of water, and for other collaborative activities that have changed the way we interact with the world around us.

Our faculty and students are leaders in new frontiers of applied science and engineering research, in areas such as information technology, embedded systems and sensor networks, bioengineering, nanomanufacturing, and micro- and nanoelectromechanical systems.

UCLA Engineering is ideally situated to engage in interdisciplinary research and educational initiatives with others on campus and across Southern California. It benefits from proximity to the world-renowned David Geffen School of Medicine and the John E. Anderson Graduate School of Management, as well as the Los Angeles entertainment and media industries, Silicon Valley, the defense and aerospace industries, and a growing biotechnology sector.

Our newly-revised curriculum—with its emphasis on breadth of knowledge as well as depth—will prepare our students for success in meeting the ever-changing demands of the engineering profession. In addition, undergraduate student research opportunities are widely available and we encourage our students to take advantage of them.

Students may choose to work with individual faculty or to participate in any of the school’s world-class interdisciplinary research centers. These include the NSF Center for Embedded Networked Sensing, the NIH Center for Cell Control, the Center on Functional Engineered Nano Architectonics, the NRI Western Institute of Nanoelectronics, and a new DOE-funded Energy Frontier Research Center. Our faculty and students are also active partners in the California NanoSystems Institute located at UCLA. In addition, the school is developing its research breakthroughs into the commercial sector through the off-campus Institute for Technology Advancement.

Our distinguished faculty is composed of recognized experts in their fields, including 22 members of the National Academy of Engineering, and many junior faculty who are widely acclaimed for their work. Many faculty members are award-winning educators, and every faculty member, no matter how senior, teaches at least one undergraduate course each year.

We are seeking exceptional and dedicated students who share our desire to positively contribute to the engineering profession and society. I invite you to consider becoming a UCLA engineer.

Vijay K. Dhir
Dean
UCLA Henry Samueli School of Engineering and Applied Science
A Message from the Dean .......................... Inside front cover
Henry Samueli School of Engineering and Applied Science .................. 3
Officers of Administration .......................... 3
The Campus ........................................... 3
The School ............................................. 3
Endowed Chairs ................................. 4
The Engineering Profession ....................... 4
Correspondence Directory ........................... 6
General Information ................................. 7
Facilities and Services ............................. 7
Library Facilities .................................... 7
Services ............................................. 7
Continuing Education .............................. 7
Career Services ..................................... 8
Arthur Ashe Student Health and Wellness Center .......................... 8
Services for Students with Disabilities .................. 8
Fees and Financial Support ........................ 8
Fees and Expenses .................................. 8
Living Accommodations ............................ 8
Financial Aid ....................................... 9
Special Programs, Activities, and Awards ............... 11
Center for Excellence in Engineering and Diversity ............ 11
Student Organizations .............................. 12
Women in Engineering ............................. 12
Student and Honorary Societies .................... 12
Student Representation ............................ 13
Prizes and Awards ................................ 13
Departmental Scholar Program .......................... 13
Official Publications .............................. 13
Grading Policy ..................................... 13
Grade Disputes ..................................... 13
Nondiscrimination .................................. 14
Harassment ........................................ 14
Undergraduate Programs ............................ 16
Admission .......................................... 16
Requirements for B.S. Degrees ...................... 19
Honors ............................................ 21
Graduate Programs ................................. 23
Admission .......................................... 24
Departments and Programs of the School .............. 25
Bioengineering .................................... 25
Biomedical Engineering ........................... 27
Chemical and Biomolecular Engineering ............. 36
Civil and Environmental Engineering ............... 45
Computer Science .................................. 55
Electrical Engineering ............................... 72
Materials Science and Engineering .................. 88
Mechanical and Aerospace Engineering ............. 95
Master of Science in Engineering Online Degree .... 108
Schoolwide Programs, Courses, and Faculty ........ 110
Externally Funded Research Centers and Institutes ..... 112
Curricula Charts .................................... 114
Index ............................................. 130
Campus Map ....................................... 132
Academic and Admission Calendars .................. inside back cover

DISCLOSURE OF STUDENT RECORDS

TO ALL STUDENTS:

Pursuant to the Federal Family Educational Rights and Privacy Act (FERPA), the California Information Practices Act, and the University of California Policies Applying to the Disclosure of Information from Student Records, students at UCLA have the right to (1) inspect and review records pertaining to themselves in their capacity as students, except as the right may be waived or qualified under Federal and State Laws and University Policies, (2) have withheld from disclosure, absent their prior written consent for release, personally identifiable information from their student records, except as provided by Federal and State Laws and University Policies, (3) inspect records maintained by UCLA in disclosures of personally identifiable information from their student records, (4) seek correction of their student records through a request to amend the records or, if such request is denied, through a hearing, and (5) file complaints with the U.S. Department of Education regarding alleged violations of the rights accorded them by FERPA.

UCLA, in accordance with Federal and State Laws and University Policies, has designated the following categories of personally identifiable information as "directory information" which UCLA may release and publish without the student’s prior consent: name, address (local/mailing, permanent, and/or e-mail), telephone numbers, major field of study, dates of attendance, enrollment status, grade level, number of course units in which enrolled, degrees and honors received, the most recent previous educational institution attended, participation in officially recognized activities (including intercollegiate athletics), and the name, weight, and height of participants on intercollegiate athletic teams.

Students who do not wish certain items (i.e., name, local/mailing, permanent, and/or e-mail address, telephone numbers, major field of study, dates of attendance, number of course units in which enrolled, and degrees and honors received) of this "directory information" released and published may so indicate through URSA (http://www.ursa.ucla.edu). To restrict the release and publication of the additional items in the category of "directory information," complete the UCLA FERPA Restriction Request form available from Enrollment and Degree Services, 1113 Murphy Hall.

Student records which are the subject of Federal and State Laws and University Policies may be maintained in a variety of offices, including the Registrar’s Office, Office of the Dean of Students, UCLA Career Center, Graduate Division, UCLA External Affairs Department, and the offices of a student’s College or school and major department. Students are referred to the UCLA Telephone Directory (http://www.directory.ucla.edu) which lists all the offices that may maintain student records, together with their campus address and telephone number. Students have the right to inspect their student records in any such office subject to the terms of Federal and State Laws and University Policies. Inspection of student records maintained by the Registrar’s Office is by appointment only and must be arranged three working days in advance. Call (310) 825-1091, option 6, or inquire at Enrollment and Degree Services, 1113 Murphy Hall.

A copy of the Federal and State Laws, University Policies, and the UCLA Telephone Directory may be inspected in the office of the Information Practices Coordinator, 600 UCLA Wilshire Center. Information concerning students’ hearing rights may be obtained from that office and from the Office of the Dean of Students, 1206 Murphy Hall.

All announcements herein are subject to revision. Every effort has been made to ensure the accuracy of the information presented in the Announcement of the UCLA Henry Samueli School of Engineering and Applied Science. However, all courses, course descriptions, instructor designations, curricular degree requirements, and fees described herein are subject to change or deletion without notice. Further details on graduate programs are available in various Graduate Division publications which are available online at http://www.grad.ucla.edu.
Henry Samueli School of Engineering and Applied Science

Officers of Administration
Vijay K. Dhir, Ph.D., Professor and Dean of the Henry Samueli School of Engineering and Applied Science
Jane P. Chang, Ph.D., Professor and Associate Dean, Research and Physical Resources
Richard D. Wesel, Ph.D., Professor and Associate Dean, Academic and Student Affairs
Mary Okino, Ed.D., Assistant Dean, Chief Financial Officer
Jiun-Shyan (J-S) Chen, Ph.D., Professor and Chair, Civil and Environmental Engineering Department
Adnan Darwiche, Ph.D., Professor and Chair, Computer Science Department
Timothy J. Deming, Ph.D., Professor and Chair, Bioengineering Department
Jenn-Ming Yang, Ph.D., Professor and Chair, Materials Science and Engineering Department
Adrienne Lavine, Ph.D., Professor and Chair, Mechanical and Aerospace Engineering Department
Harold G. Monbouquette, Ph.D., Professor and Chair, Chemical and Biomolecular Engineering Department
Ali H. Sayed, Ph.D., Professor and Chair, Electrical Engineering Department

The Campus
UCLA is a large urban university situated between the city and the sea at the foot of the Santa Monica Mountains. Less than six miles from the Pacific, it is bordered by Sunset and Wilshire boulevards. As the city has grown physically and culturally, so has the campus, whose students and faculty mirror the cultural and racial diversity of today's Los Angeles. UCLA is one of the most widely respected and recognized universities in the world, and its impact on society can be felt into the far reaches of the globe. Students come from around the world to receive a UCLA education, and our alumni go on to become leaders in their fields, from elected officials to heads of international corporations.

UCLA is recognized as the West's leading center for the arts, culture, and medical research. Each year, more than half a million people attend visual and performing arts programs on campus, while more than 300,000 patients from around the world come to the Ronald Reagan UCLA Medical Center for treatment. The university's 419-acre campus houses the College of Letters and Science and 11 professional schools. There are more than 39,650 students enrolled in 126 undergraduate and 200 graduate degree programs. Nearly one in every 140 Californians holds a UCLA degree.

UCLA is rated one of the best public research universities in the U.S. and among a handful of top U.S. research universities, public and private. The chief executive of the University is Chancellor Gene D. Block. He oversees all aspects of the University's three-part mission of education, research, and service.

Southern California has grown to become one of the nation's dominant industrial centers, and the UCLA Henry Samuel School of Engineering and Applied Science (HSSEAS) is uniquely situated as a hub of engineering research and professional training for this region.

The School
The UCLA College of Engineering (as it was known then) was established in 1943 when California Governor Earl Warren signed a bill to provide instruction in engineering at the UCLA campus. It welcomed its first students in 1945 and was dedicated as the Henry Samuel School of Engineering and Applied Science in 2000. The school ranks among the top 10 engineering schools in public universities nationwide.

UCLA engineering faculty members are active participants in many interdisciplinary research centers. The Center for Embedded Networked Sensing (CENS) develops embedded networked sensing systems and applies this revolutionary technology to critical scientific and social applications. The Center for Cell Control (CCC) applies advanced engineering techniques and life sciences knowledge to control and understand how the cell works at the most basic level, with the goal of improving human health. The Center on Functional Nanointerface Research Center (FENA) leverages the latest advances in nanotechnology, molecular electronics, and quantum computing to extend semiconductor technology further into the realm of the nanoscale. The newly created Energy Frontier Research Center (EFRC) focuses on the creation and production of nanoscale materials for use in converting solar energy into electricity, electrical energy storage, and capturing and separating greenhouse gases. The Western Institute of Nanoelectronics (WIN), among the world's largest joint research programs focusing on spintronics, brings together nearly 30 eminent researchers to explore critically needed innovations in semiconductor technology. Finally, the California NanoSystems Institute (CNSI)—a joint endeavor with UC Santa Barbara—develops the information, biomedical, and manufacturing technologies of the twenty-first century.

In addition, the school has identified critical areas for collaborative research that will have a major impact on the future of California and the world. Among these are biomedical informatics; alternative energy solutions; secure electronic transfer of information; new tools for the entertainment industry; systems, dynamics, and controls; advanced technologies for water reclamation; and new approaches and technologies for aerospace engineering.

And the school recently established the Institute for Technology Advancement (ITA), an off-campus institute dedicated to the effective transition of high-impact innovative research from UCLA to product development and commercialization. ITA nurtures and incubates breakthrough ideas to create new industrial products, as well as provides a learning platform for faculty members and students to engage in transitional technology research.

The school offers 29 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering. The Bachelor of Science degree is offered in Aerospace Engineering, Bioengineering, Chemical Engineering, Civil Engineering, Computer Science, Computer Science and Engineering, Electrical Engineering, Materials Engineering, and Mechanical Engineering. The undergraduate curricula leading to these degrees provide students with a solid foundation in engineering and applied science and prepare graduates for immediate practice of the profession as well as advanced studies. In addition to engineering courses, students complete about one year of study in the humanities, social sciences, and/or fine arts.

Master of Science and Ph.D. degrees are offered in Aerospace Engineering, Bio-
medical Engineering, Chemical Engineering, Civil Engineering, Computer Science, Electrical Engineering, Manufacturing Engineering (M.S. only), Materials Science and Engineering, and Mechanical Engineering. A schoolwide online Master of Science in Engineering degree program was approved in June 2006. The Engineer degree is a more advanced degree than the M.S. but does not require the research effort and orientation involved in a Ph.D. dissertation. For information on the Engineer degree, see Graduate Programs on page 23. A one-year program leading to a Certificate of Specialization is offered in various fields of engineering and applied science.

Endowed Chairs

Endowed professorships or chairs, funded by gifts from individuals or corporations, support the research and educational activities of distinguished members of the faculty. The following endowed chairs have been established in the Henry Samueli School of Engineering and Applied Science.

- L.M.K. Boelter Chair in Engineering
- Roy and Carol Doumani Chair in Biomedical Engineering
- Norman E. Friedmann Chair in Knowledge Sciences
- Evalyn Knight Chair in Engineering
- Levi James Knight, Jr., Chair in Engineering
- Nippon Sheet Glass Company Chair in Materials Science
- Northrop Grumman Chair in Electrical Engineering
- Northrop Grumman Chair in Electrical Engineering/Electromagnetics
- Northrop Grumman Opto-Electronic Chair in Electrical Engineering
- Ralph M. Parsons Foundation Chair in Chemical Engineering
- Jonathan B. Postel Chair in Computer Systems
- Jonathan B. Postel Chair in Networking
- Raytheon Company Chair in Electrical Engineering
- Raytheon Company Chair in Manufacturing Engineering
- Charles P. Reames Endowed Chair in Electrical Engineering
- Edward K. and Linda L. Rice Endowed Chair in Materials Science
- Ben Rich Lockheed Martin Chair in Aeronautics
- Rockwell Collins Chair in Engineering

William Frederick Seyer Chair in Materials Science

Symantec Term Chair in Computer Science

Winterk Endowed Chair in Electrical Engineering

The Engineering Profession

The following describes the challenging types of work HSSEAS graduates might perform based on their program of study.

Aerospace Engineering

Aerospace engineers conceive, design, develop, test, and supervise the construction of aerospace vehicle systems such as commercial and military aircraft, helicopters and other types of rotorcraft, and space vehicles and satellites, including launch systems. They are employed by aerospace companies, airframe and engine manufacturers, government agencies such as NASA and the military services, and research and development organizations.

Working in a high-technology industry, aerospace engineers are generally well versed in applied mathematics and the fundamental engineering sciences, particularly fluid mechanics and thermodynamics, dynamics and control, and structural and solid mechanics. Aerospace vehicles are complex systems. Proper design and construction involves the coordinated application of technical disciplines, including aerodynamics, structural analysis and design, stability and control, aeroelasticity, performance analysis, and propulsion systems technology.

Aerospace engineers use computer systems and programs extensively and should have at least an elementary understanding of modern electronics. They work in a challenging and highly technical atmosphere and are likely to operate at the forefront of scientific discoveries, often stimulating these discoveries and providing the inspiration for the creation of new scientific concepts.

The B.S. program in Aerospace Engineering emphasizes fundamental disciplines and therefore provides a solid base for professional career development in industry and graduate study in aerospace engineering. Graduate education prepares students for careers at the forefront of aerospace technology. The Ph.D. degree provides a strong background for employment by government laboratories, such as NASA, and industrial research laboratories supported by the major aerospace companies. It also provides the appropriate background for academic careers.

Bioengineering

At the interface of medical sciences, basic sciences, and engineering, bioengineering has emerged internationally as an established engineering discipline. As these disciplines converge in the twenty-first century, bioengineers solve problems in biology and medicine by applying principles of physical sciences and engineering while applying biological principles to create new engineering paradigms, such as biomimetic materials, DNA computing, and neural networking. The genomic and proteomic revolution will drive a new era in the bioengineering industry, and future bioengineers must combine proficiency in traditional engineering, basic sciences, and molecular sciences to function as effective leaders of multidisciplinary teams.

UCLA has a long history of fostering interdisciplinary training and is a superb environment for bioengineers. UCLA boasts the top hospital in the western U.S., nationally ranked medical and engineering schools, and numerous nationally recognized programs in basic sciences. Rigorously trained bioengineers are needed in research institutions, academia, and industry. Their careers may follow their bioengineering concentration (e.g., tissue engineering, bioMEMs, bioinformatics, image and signal processing, neuroengineering, cellular engineering, molecular engineering, biomechanics, nanofabrication, bioacoustics, biomaterials, etc.), but the ability of bioengineers to cut across traditional field boundaries will facilitate their innovation in new areas. For example, a bioengineer with an emphasis in tissue engineering may begin a career by leading a team to engineer an anterior cruciate ligament for a large orthopedic company, and later join a research institute to investigate the effects of zero gravity on mechanical signal transduction pathways of bone cells.

Chemical Engineering

Chemical engineers use their knowledge of mathematics, physics, chemistry, and biology to meet the needs of our technological society. They design, research, develop, operate, and manage the biochemical and petroleum industries and are leaders in the fields of energy and the environment, nanotechnology, systems engineering, biotechnology and biomedical engineering, and advanced materials processing. They are in charge of
the chemical processes used by virtually all industries, including the pharmaceutical, biotechnology, food, paper, aerospace, automotive, water production and treatment, and semiconductor industries. Architectural, engineering, and construction firms employ chemical engineers for equipment and process design. It is also their mission to develop the clean and environmentally friendly technologies of the future.

Major areas of fundamental interest within chemical engineering are

1. Applied chemical kinetics, which involves the design of chemical processes and reactors, including combustion systems,
2. Transport phenomena, which involves the exchange of momentum, heat, and mass across interfaces and has applications to the separation of valuable materials from mixtures, or of pollutants from gas and liquid streams,
3. Thermodynamics, which is fundamental to both separation processes and chemical reactor design, and
4. Plant and process design, synthesis, optimization, simulation, and control, which provide the overall framework for integrating chemical engineering knowledge into industrial application and practice.

Civil and Environmental Engineering

Civil engineers plan, design, construct, and manage a range of physical systems, such as buildings, bridges, dams and tunnels, transportation systems, water and wastewater treatment systems, coastal and ocean engineering facilities, and environmental engineering projects, related to public works and private enterprises. Thus, civil and environmental engineering embraces activities in traditional areas and in emerging problem areas associated with modern industrial and social development.

The civil engineering profession demands rigorous scientific training and a capacity for creativity and growth into developing fields. In Southern California, besides employment in civil engineering firms and governmental agencies for public works, civil engineering graduates often choose the aerospace industry for assignments based on their structural engineering background. Graduates are also qualified for positions outside engineering where their broad engineering education is a valuable asset.

The curriculum leading to a B.S. in Civil Engineering provides an excellent foundation for entry into professional practice, as well as for graduate study in civil engineering and other related fields.

Computer Science and Engineering

Students specializing in the computer science and engineering undergraduate program are educated in a range of computer system concepts. As a result, students at the B.S. level are qualified for employment as applications programmers, systems programmers, digital system designers, digital system marketing engineers, and project engineers.

Undergraduates can major either in the computer science and engineering program or in the computer science program. Graduate degree programs in computer science prepare students for leadership positions in the computer field. In addition, they prepare graduates to deal with the most difficult problems facing the computer science field. University or college teaching generally requires the graduate degree.

Electrical Engineering

The electrical engineering discipline deals primarily with the sensing, analysis, and processing of information. It develops circuits, devices, algorithms, and theories that can be used to sense data, analyze data, extrapolate data, communicate data, and take action in response to the data collected. The Electrical Engineering Department is a recognized leader in education and research related to these subjects.

Manufacturing Engineering

Manufacturing engineering is an interdisciplinary field that integrates the basic knowledge of materials, design, processes, computers, and system analysis. The manufacturing engineering program is part of the Mechanical and Aerospace Engineering Department.

Specialized areas are generally classified as manufacturing processes, manufacturing planning and control, and computer-aided manufacturing.

Manufacturing engineering as an engineering specialty requires the education and experience necessary to understand, apply, and control engineering procedures in manufacturing processes and production methods of industrial commodities and products. It involves the generation of manufacturing systems, the development of novel and specialized equipment, research into the phenomena of fabricating technologies, and manufacturing feasibility of new products.

Coursework, independent studies, and research are offered in the manufacturing processes area, leading to an M.S. degree. This includes computer-aided design and computer-aided manufacturing, robotics, metal forming and metal cutting analysis, nondestructive evaluation, and design and optimization of manufacturing processes.

Materials Engineering

Materials engineering is concerned with the structure and properties of materials used in modern technology. Advances in technology are often limited by available materials. Solutions to energy problems depend largely on new materials, such as solar cells or materials for batteries for electric cars.

Two programs within materials engineering are available at UCLA:

1. In the materials engineering program, students become acquainted with metals, ceramics, polymers, and composites. Such expertise is highly sought by the aerospace and manufacturing industries. Materials engineers are responsible for the selection and testing of materials for specific applications. Traditional fields of metallurgy and ceramics have been merged in industry, and this program reflects the change.

2. In the electronic materials option of the materials engineering program, students learn the basics of materials engineering with a concentration in electronic materials and processing. The optional program requires additional coursework which includes five to eight electrical engineering courses.

In order to enter a career in research and development of new materials (such as new energy devices), an M.S. or Ph.D. degree is desirable.

Mechanical Engineering

Mechanical engineering is a broad discipline finding application in virtually all industries and manufactured products. The mechanical engineer applies principles of mechanics, dynamics, and energy transfer to the design, analysis, testing, and manufacture of consumer and industrial prod-
Mechanical engineers are employed throughout the engineering community as individual consultants in small firms providing specialized products or services, as designers and managers in large corporations, and as public officials in government agencies.

Mechanical engineers apply their knowledge to a wealth of systems, products, and processes, including energy generation, utilization and conservation, power and propulsion systems (power plants, engines), and commercial products found in the automotive, aerospace, chemical, or electronics industries.

The B.S. program in Mechanical Engineering at UCLA provides excellent preparation for a career in mechanical engineering and a foundation for advanced graduate studies. Graduate studies in one of the specialized fields of mechanical engineering prepare students for a career at the forefront of technology. The Ph.D. degree provides a strong background for employment by government laboratories, industrial research laboratories, and academia.
General Information

Facilities and Services

Teaching and research facilities at HSSEAS are in Boelter Hall, Engineering I, Engineering IV, and Engineering V, located in the southern part of the UCLA campus. Boelter Hall houses classrooms and laboratories for undergraduate and graduate instruction, the Office of Academic and Student Affairs (http://www.seasasa.ucla.edu), the SEASnet computer facility (http://www.seas .ucla.edu/seasnet/), and offices of faculty and administration. The SEL/Engineering and Mathematical Sciences Library is also in Boelter Hall. The Shop Services Center and the Student and Faculty Shop are in the Engineering I building. The California NanoSystems Institute (CNSI) building hosts additional HSSEAS collaborative research activities.

Library Facilities

University Library System

The UCLA Library, a campuswide network of libraries serving programs of study and research in many fields, is among the top 10 ranked research libraries in the U.S. Total collections number more than 8 million volumes, and nearly 80,000 serial titles are received regularly. Some 15,000 serials and databases are electronically available, and the UCLA Library Catalog is linked to the library’s homepage at http://www .library.ucla.edu.

Science and Engineering Library

Collections and services of the Science and Engineering Library (SEL) support research and programs in all departments and related institutes of HSSEAS and the Physical Sciences Division, College of Letters and Science.

The SEL/Engineering and Mathematical Sciences Collection in Boelter Hall houses the engineering, mathematics, statistics, astronomy, and atmospheric and oceanic sciences collections, as well as most librarian and staff offices; and the administrative, collection development, and public services divisions. SEL collections in Young Hall and the Geology Building contain complementary materials in chemistry, physics, and geology-geophysics.

The SEL collection contains over 585,000 print volumes, subscribes to almost 4,900 current serials in print and/or electronic formats, and includes over 4 million technical reports. In addition to e-journals, the library provides Web access to article databases covering each discipline and several thousand e-books.

Faculty, students, and staff can e-mail questions to the library at sel-ref@library .ucla.edu. In addition to online live chat, in-person reference assistance is provided Monday through Friday. To contact a librarian, use one of the “? Questions” links on any library webpage. The SEL website, located at http://www.library.ucla.edu/ libraries/sel/, highlights other library services including course reserves, interlibrary loan, document delivery and other services, and useful engineering Web resources. Librarians are available for consultations and to provide course-related instruction.

Services

Instructional Computer Facility

HSSEAS maintains a network of over 120 Sun Fire and Enterprise servers, Dell Pow erEdge Windows servers, Network Appli ance RAID NFS servers, and Linux RAID NFS servers connected to a high-speed backbone network. The machines function as cycle, file, and application servers to approximately 630 Unix and Microsoft Windows workstations for administrative and instructional support. Four open computer laboratories and one classroom for computerized instruction house 210 PC workstations and a smaller Linux laboratory. Remote access to HSSEAS coursework applications is provided via Microsoft Terminal Server.

Student and faculty access to retail Micro soft software through the Microsoft Developer Network Academic Alliance (MSDNAA) program and MathType soft ware through an HSSEAS download service are available at no charge. Faculty and staff have access to Microsoft Office software at no charge through the HSSEAS download service and the Microsoft Consolidated Campus Agreement (MCCA). Autodesk and Dreamspark programs offer additional software at no charge to all UCLA students.

UCLA Academic Technology Services (ATS) operates high-performance computer clusters that provide cluster hosting services to campus researchers in a way that effectively manages the limited high-end data center space on campus. They offer help to researchers who need assistance in numerically intensive computing by speeding up long-running serial or parallel programs or by parallelizing existing serial code. A UCLA Grid Portal and other high-performance computing resources are also available.

The school’s manufacturing engineering program operates a group of workstations dedicated to CAD/CAM instruction, and the Computer Science Department operates a network of SUN, PC, and Macintosh computers. The school is connected via high-speed networks to the Internet, and computing resources at the national supercomputer centers are available.

Shop Services Center

The Shop Services Center is available to faculty, staff, and students for projects.

Continuing Education

UCLA Extension

Department of Engineering, Information Systems, and Technical Management

Frank E. Burris, Ph.D., Director
William R. Goodin, Ph.D., Associate Director

The UCLA Extension (UNEX) Department of Engineering, Information Systems, and Technical Management (540 UNEX, 10995 Le Conte Avenue) provides one of the nation’s largest selections of continuing engineering education programs. A short course program of 132 annual offerings draws participants from around the world for two- to five-day intensive programs. Many of these short courses are also offered on-site at companies and government agencies. The acclaimed Technical Management Program holds its seventyeighth offering in September 2009 and seventy-ninth in March 2010.

The Information Systems program—offering 120 classes annually, including six certificate programs and one sequential program in evening, day, weekend, and online formats—covers a broad range of information technologies.

Each year, the department offers 102 classes in engineering disciplines that include manufacturing engineering, electrical engineering, astronautical engineering, construction management, mechanical engineering, environmental management,
and PE review classes. In addition, 100 technical management offerings complement the engineering offerings. Most engineering and technical management classes are in a quarter-length, evening format. In addition, most of the technical management classes are now available online. Call (310) 825-3344 for short course programs, (310) 825-3858 for the Technical Management Program, (310) 825-4100 for information systems and engineering classes, and (310) 206-1548 for technical management classes, or fax (310) 206-2815. See http://www.uclaextension.edu.

Career Services
The UCLA Career Center assists HSSEAS undergraduate and graduate students and alumni in exploring career possibilities, preparing for graduate and professional school, obtaining employment and internship leads, and developing skills for conducting a successful job search.

Services include career consulting and counseling, skills assessments, workshops, employer information sessions, and a multimedia collection of career planning and job search resources. Bruinview™ provides undergraduate and graduate students with opportunities to meet one-on-one with employers seeking entry-level job candidates and offers 24-hour access to thousands of current full-time, part-time, seasonal, and internship positions. Annual career fairs for HSSEAS students are held in Fall and Winter quarters, and HSSEAS students are also welcomed at all Career Center-sponsored job fairs.

The Career Center staff also provides consultation services to HSSEAS student organizations. Career services are available at the UCLA Career Center, 501 Westwood Plaza, Strathmore Building, from 9 a.m. to 5 p.m. Monday through Friday, by appointment and for drop-in counseling sessions. For more information call (310) 206-1915 or see http://career.ucla.edu.

Arthur Ashe Student Health and Wellness Center
The Arthur Ashe Student Health and Wellness Center is a full-service medical clinic available to all registered UCLA students. Many services are subsidized by registration fees, but there are minimal fees for all services. Visit, core laboratory test, and X-ray fees are all no-charge for students with the UCLA Student Health Insurance Plan (SHIP). There are co-pays for pharmaceuticals. All fees incurred at the Ashe Center are billed directly to students' BAR accounts.

If a student withdraws, is dismissed, has registration fees cancelled, or takes a leave of absence during a term, he or she continues to be eligible for health services for the remainder of the term at full cost. If a student with SHIP withdraws with less than 100% refund, SHIP continues through the remainder of the term.

The cost of services received outside the Ashe Center is each student’s financial responsibility. Students who waive SHIP need to ensure that they are enrolled in a plan qualified to cover expenses incurred outside of the Ashe Center, and are responsible for knowing the benefits of and local providers for their medical plan.

For emergency care when the Ashe Center is closed, students may call nurse line telephone triage services at (866) 704-9660, or obtain treatment at the UCLA Medical Center Emergency Room or the nearest emergency room on a fee-for-service basis. It is the student’s responsibility to have insurance billed. A student with SHIP must have follow-up visits, after emergencies, in the Ashe Center. If care cannot be provided in the Ashe Center, the Ashe Center clinician will give the student a written referral to a network provider.

Office hours during the academic year are weekdays 8 a.m. to 6:30 p.m. except Friday, when service begins at 9 a.m. Located at 221 Westwood Plaza (next to John Wooden Center), (310) 825-4073; see http://www.studenthealth.ucla.edu.

Services for Students with Disabilities
The Office for Students with Disabilities (OSD) provides a wide range of academic support services to regularly enrolled students with documented permanent or temporary disabilities in compliance with Section 504 of the Rehabilitation Act of 1973, the Americans with Disabilities Act (ADA) of 1990, and University policies. Academic support services are determined for each student based on specific disability-based requirements. Services include campus orientation and accessibility, note takers, readers, sign language interpreters, Learning Disability Program, registration assistance, test-taking facilitation, special parking assistance, real-time captioning, assistive listening devices, on-campus transportation, adaptive equipment, support groups and workshops, tutorial referral, special materials, housing assistance, referral to UCLA’s Disabilities and Computing Program, and processing of California Department of Rehabilitation authorizations. There is no fee for any of these services. All contacts and assistance are handled confidentially. Located at A255 Murphy Hall, voice (310) 825-1501, TDD (310) 206-6083; see http://www.osd.ucla.edu.

Dashew Center for International Students and Scholars
The Dashew Center for International Students and Scholars assists international students with questions about immigration, employment, government regulations, financial aid, academic and administrative procedures, cultural adjustment, and personal matters. The center provides visa assistance for faculty, researchers, and postdoctoral scholars. It also offers programming to meet the needs of the campus multicultural population. Located at 106 Bradley International Hall; see http://www.internationalcenter.ucla.edu.

Fees and Financial Support

Fees and Expenses
The 2009-10 annual UCLA student fees listed below are current as of publication. See the quarterly Schedule of Classes for breakdown by term or see http://www.registrar.ucla.edu/fees/ for updates.

Students who are not legal residents of California (out-of-state and international students) pay a nonresident tuition fee. See the UCLA General Catalog appendix or the frequent questions residence section at http://www.registrar.ucla.edu for information on how to determine residence for tuition purposes; further inquiries may be directed to the Residence Deputy, 1113 Murphy Hall, UCLA, Los Angeles, CA 90024-1429.

In addition to the fees listed, students should be prepared to pay living expenses for the academic period.

Living Accommodations
Housing in Los Angeles, both on and off campus, is in great demand. Students should make arrangements early.

The Community Housing Office, 360 De Neve Drive, Box 951495, Los Angeles, CA 90095-1495, (310) 825-4491, http://www
**2009-10 ANNUAL UCLA GRADUATE AND UNDERGRADUATE FEES**

Fees are subject to revision without notice.

<table>
<thead>
<tr>
<th></th>
<th>Graduate Students</th>
<th>Undergraduate Students</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resident</td>
<td>Nonresident</td>
</tr>
<tr>
<td></td>
<td>$ 900.00</td>
<td>$ 900.00</td>
</tr>
<tr>
<td>University Registration Fee</td>
<td>$ 7,836.00</td>
<td>$ 8,178.00</td>
</tr>
<tr>
<td>Educational Fee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Students Assoc.</td>
<td>121.38</td>
<td>121.38</td>
</tr>
<tr>
<td>Green Initiative Fee</td>
<td>12.00</td>
<td>12.00</td>
</tr>
<tr>
<td>PLEDGE Fee</td>
<td>38.25</td>
<td>38.25</td>
</tr>
<tr>
<td>Graduate Students Association Fee</td>
<td>39.00</td>
<td>39.00</td>
</tr>
<tr>
<td>Graduate Center Writing Fee</td>
<td>12.00</td>
<td>12.00</td>
</tr>
<tr>
<td>Ackerman Student Union Fee</td>
<td>55.50</td>
<td>55.50</td>
</tr>
<tr>
<td>Ackerman/Kerckhoff Seismic Fee</td>
<td>113.00</td>
<td>113.00</td>
</tr>
<tr>
<td>Wooden Center Fee</td>
<td>45.00</td>
<td>45.00</td>
</tr>
<tr>
<td>Student Programs, Activities, and Resources Complex Fee</td>
<td>93.00</td>
<td>93.00</td>
</tr>
<tr>
<td>Student Health Insurance Plan</td>
<td>1,563.00</td>
<td>1,563.00</td>
</tr>
<tr>
<td>Nonresident Tuition</td>
<td>14,694.00</td>
<td>20,021.00</td>
</tr>
<tr>
<td><strong>Total mandatory fees</strong></td>
<td><strong>$ 10,656.50</strong></td>
<td><strong>$ 25,692.50</strong></td>
</tr>
<tr>
<td></td>
<td><strong>$ 9,151.13</strong></td>
<td><strong>$ 10,656.50</strong></td>
</tr>
<tr>
<td></td>
<td><strong>$ 31,820.13</strong></td>
<td><strong>$ 31,820.13</strong></td>
</tr>
</tbody>
</table>

.cho.ucla.edu, provides information and current listings for University-owned apartments, cooperatives, private apartments, roommates, rooms in private homes, room and board in exchange for work, and short-term housing. A current BruinCard or a letter of acceptance and valid photo identification card are required for service.

For information on residence halls and suites, contact UCLA Housing Services, 360 De Neve Drive, Box 961381, Los Angeles, CA 90095-1381, (310) 206-7011; see http://www.housing.ucla.edu. Newly admitted students are sent UCLA Housing, which describes costs, locations, and eligibility for both private and UCLA-sponsored housing.

**Financial Aid**

**Undergraduate Students**

Financial aid at UCLA includes scholarships, grants, loans, and work-study programs. Applications for each academic year are available in January. The priority application deadline for financial aid for the 2010-11 academic year is March 2, 2010. With the exception of certain scholarships, awards are based on need as determined by national financial aid criteria. California residents must file the Free Application for Federal Student Aid (FAFSA). International students in their first year are ineligible for aid. Continuing undergraduate international students are asked to submit a separate Financial Aid Application for International Students.

Information on UCLA financial aid programs is available at the Financial Aid Office, A129J Murphy Hall, (310) 206-0400; see http://www.fao.ucla.edu.

**Scholarships**

All UCLA undergraduate scholarship awards are made on a competitive basis, with consideration given to academic excellence, achievement, scholastic promise, and financial need. Scholarships are awarded to entering and continuing undergraduates. The term and amount of the award vary; students are expected to maintain academic excellence in their coursework.

**Regents Scholarships** are awarded to students with an outstanding academic record and a high degree of promise. Regents Scholars receive a yearly honorarium if they have no financial need. If financial need is established, other scholarships and/or grants are awarded to cover that need. Need is determined according to financial aid criteria legislated by Congress.

**HSSEAS Scholarships** are awarded to entering and continuing undergraduate students based on criteria including financial need, academic excellence, community service, extracurricular activities, and research achievement. The school works with alumni, industry, and individual donors to establish scholarships to benefit engineering students. In 2008-09, HSSEAS awarded more than 70 undergraduate scholarship awards totaling more than $170,000. The majority of these scholarships are publicized in the Fall, with additional scholarships promoted throughout the academic year as applicable. For more information on all available scholarships, see http://seasoasa.ea.ucla.edu/scholarships/.

**Grants**

Cal Grants A and B are awarded by the California Student Aid Commission to entering and continuing undergraduate students who are U.S. citizens or eligible noncitizens and California residents. Based on financial need and academic achievement, these awards are applied toward educational and registration fees.

**Federal Pell Grants** are federal aid awards designed to provide financial assistance to those who need funds to attend post-high school educational institutions. Undergraduate students who are U.S. citizens or eligible noncitizens are required by the University to apply.


**Federal Family Education Loan Program**

**Federal loans** are available to undergraduate or graduate students who are U.S. citizens or eligible noncitizens and who are carrying at least a half-time academic workload. Information on loan programs is available from the Financial Aid Office, A129J Murphy Hall, or on the web at http://www.fao.ucla.edu.

When graduating, transferring, withdrawing, or taking a leave of absence, UCLA students who have received campus-based loans must complete an exit interview with Student Loan Services. The exit interview is provided to help students better understand and plan for loan repayment. Failure to complete an exit interview results in a hold being placed on all university services and records. In addition, if the campus-based loans become delinquent following separation from UCLA, all university services and records will be withheld. For further information concerning loan repayment, visit the Student Loan Services Office, A227 Murphy Hall, (310) 825-9864; see http://www.loans.ucla.edu.

**Work-Study Programs**

Under Federal Work-Study, the federal government pays a portion of the hourly wage and the employer contributes the balance. When possible, work is related to student educational objectives. Hourly pay rates comply with minimum wage laws and vary with the nature of the work, experi-
ence, and capabilities. Employment may be on or off campus. To be eligible, undergraduate and graduate students must demonstrate financial need and be a U.S. citizen or eligible noncitizen. Submission of the financial aid application is required.

Community Service is a component of the Federal Work-Study program. Students who secure a community service position are eligible to petition for an increase in work-study funds of up to $5,000 while at the same time reducing their Perkins and/or Stafford loan by the amount of the increase. Most community service positions are located off campus.

Students must be enrolled at least half-time (6 units for undergraduates, 4 for graduate students) and not be appointed at more than 50 percent time while employed at UCLA. Students not carrying the required units or who exceed 50 percent time employment are subject to Social Security or Medicare taxation.

Graduate Students
A high percentage of HSSEAS graduate students receive departmental financial support.

Merit-Based Support
Three major types of merit-based support are available in the school:
1. Fellowships from University, private, or corporate funds.
2. Employment as a teaching assistant.
3. Employment as a graduate student researcher.

Fellowships usually provide stipends competitive with those of other major universities, plus registration and nonresident tuition fees (where applicable). These stipends may be supplemented by a teaching assistantship or graduate student researcher appointment. The awards are generally reserved for new students.

Teaching Assistantships are awarded to students on the basis of scholarship and promise as teachers. Appointees serve under the supervision of regular faculty members.

Graduate student researcher (GSR) appointments are awarded to students on the basis of scholastic achievement and promise as creative scholars. Appointees perform research under the supervision of a faculty member in research work. Full-time employment in summer and interterm breaks is possible, depending on the availability of research funds from contracts or grants.

Since a graduate student researcher appointment constitutes employment in the service of a particular faculty member who has a grant, students must take the initiative in obtaining desired positions.

GSR appointments are generally awarded after one year of study at UCLA.

Applicants for departmental financial support must be accepted for admission to HSSEAS in order to be considered in the 2008-09 competition. Applicants should check the deadline for submitting the UCLA Application for Graduate Admission and the Fellowship Application for Entering Graduate Students with their preferred department.

Need-Based Aid
Unlike the awards above, which are based solely on merit and administered by HSSEAS, the University also provides work-study and low-interest loans based on financial need exclusively.

Need-based awards are administered by the Financial Aid Office in A129J Murphy Hall. Financial aid applicants must file the Free Application for Federal Student Aid. Continuing graduate students should contact the Financial Aid Office in December 2008 for information on 2009-10 application procedures.

International graduate students are not eligible for need-based University financial aid nor for long-term student loans.

School of Engineering Fellowships
Fellowship packages offered by HSSEAS may include fellowship contributions from the following sources:

- AT&T Fellowships. Supports doctoral study in electrical engineering; must be U.S. citizen or permanent resident; optional summer research at AT&T
- Atlantic Richfield Company (ARCO) Fellowship. Department of Chemical and Biomolecular Engineering; supports study in chemical engineering
- William and Mary Beedle Fellowship. Department of Chemical Biomolecular Engineering; supports study in chemical engineering
- John J. and Clara C. Boelte Fellowship. Supports study in engineering
- Leon and Alyne Camp Fellowship. Department of Mechanical and Aerospace Engineering; supports study in engineering; must be U.S. citizen
- Eugene V. Cota-Robles Fellowship. Department of Mechanical and Aerospace Engineering; supports doctoral students
- Deutsch Company Fellowship. Supports engineering research on problems that aid “small business” in Southern California
- IBM Doctoral Fellowship. Supports doctoral study in computer science
- Intel Fellowship. Department of Computer Science; supports doctoral study in selected areas of computer science
- Intel Fellowship. Department of Mechanical and Aerospace Engineering; supports doctoral students
- Les Knesel Scholarship Fund. Department of Materials Science and Engineering; supports master’s or doctoral students in ceramic engineering
- T.H. Lin Graduate Fellowship. Department of Civil and Environmental Engineering; supports study in the area of structures
- Microsoft Fellowship. Supports doctoral study in computer science
- National Consortium for Graduate Degrees for Minorities in Engineering and Science (GEM) Fellowships. Supports study in engineering and science to highly qualified individuals from communities where human capital is virtually untapped
- NCR Fellowship. Department of Computer Science; supports doctoral study in computer science
- Martin Rubin Scholarship. Supports two undergraduate or graduate students pursuing a degree in civil engineering with an emphasis in structural engineering
- Henry Samueli Fellowship. Department of Electrical Engineering; supports master’s and doctoral students
- Henry Samueli Fellowship. Department of Mechanical and Aerospace Engineering; supports master’s and doctoral students
- Sun Microsystems Fellowship. Department of Computer Science; supports incoming graduate students in computer science
- Texaco Scholarship. Department of Civil and Environmental Engineering; supports research in the area of environmental engineering
- Many other companies in the area also make arrangements for their employees to work part-time and to study at UCLA for advanced degrees in engineering or computer science. In addition, the Graduate Division offers other fellowship packages including the Dissertation Year and Graduate Opportunity Fellowships.
Special Programs, Activities, and Awards

Center for Excellence in Engineering and Diversity

The HSSEAS Center for Excellence in Engineering and Diversity (CEED) seeks to create a community of collaborative and sustainable partnerships that increase academic opportunities for urban, disadvantaged, and underrepresented students. CEED supports precollege students in science, engineering, mathematics, and technology curricula, and focuses on engineering and computer science at the undergraduate and graduate levels.

Precollege Outreach Programs

Science and Mathematics Achievement and Research Training for Students (SMARTS). A six-week commuter and residential summer program, SMARTS provides a diverse group of up to 50 10th and 11th graders with rigorous inquiry-based engineering, mathematics, and science enrichment. Students receive an introduction to the scientific process and to laboratory-based investigation through the Research Apprentice Program, sponsored by faculty and graduate research mentors in engineering.

MESA Schools Program (MSP). Through CEED, HSSEAS partners with middle and high school principals to implement MSP services, which focus on outreach and student development in engineering, mathematics, science, and technology. At individual school sites, four mathematics and science teachers serve as MSP advisors and coordinate the activities and instruction for 818 students. Advisers work as a team to deliver services that include SAT preparation, MSP prepares students for regional engineering and science competitions and provides an individual academic planning program, academic excellence workshops, CEED undergraduate mentors, field trips, and exposure to high-tech careers. The MSP goal is to increase the numbers of urban and educationally underserved students who are competitively eligible for UC admission, particularly in engineering and computer science.

Students are provided academic planning, SAT preparation, career exploration, and other services starting at the elementary school level through college. HSSEAS/CEED currently serves 19 schools in the Los Angeles Unified School District and four schools in the Inglewood Unified School District.

Undergraduate Programs

CEED currently supports some 260 underrepresented and educationally disadvantaged engineering students. Components of the undergraduate program include:

CEED Summer Bridge. A two-week intensive residential summer program, CEED Summer Bridge provides advanced preparation and exposure for Fall Quarter classes in mathematics, chemistry, and computer science.

Freshman Orientation Course. Designed to give CEED freshmen exposure to the engineering profession. “Engineering 87—Engineering Disciplines” also teaches the principles of effective study and team/community-building skills, and research experiences.

Academic Excellence Workshops (AEW). Providing an intensive mathematics/science approach to achieving mastery through collaborative learning and facilitated study groups, workshops meet twice a week for two hours and are facilitated by a Ph.D. student.

Bridge Review for Enhancing Engineering Students (BREES). Sponsored by the National Science Foundation (NSF). A 14-day intensive summer program designed to provide CEED students with the skills and knowledge to gain sufficient mastery, understanding, and problem solving skills in the core engineering courses. Current CEED students and incoming CEED transfer students take part in lectures and collaborative, problem-solving workshops facilitated by UCLA graduate students.

Research Intensive Series in Engineering for Underrepresented Populations (RISE-UP). During the summer of 2005, UCLA CEED began its Research Intensive Series in Engineering for Underrepresented Populations (RISE-UP). The purpose of this program is to keep engineering and computing students, particularly from underrepresented groups, interested in the fun of learning through a process in which faculty participate. The ultimate goal of this program is to encourage these young scholars to go on to graduate school and perhaps the professoriate.

Academic Advising and Counseling. CEED counselors assist in the selection of course combinations, professors, and course loads and meet regularly with students to assess progress and discuss individual concerns.

Tutoring. Review sessions and tutoring are provided for several upper division engineering courses.

Career Development. Presentations by corporate representatives and field trips to major company locations are offered. Other services include summer and full-time job placement and assistance.

Cluster Systems. Common class sections that team students. Cluster Systems facilitate group study and successful academic excellence workshops.

Student Study Center: A two-room complex with a study area open 24 hours a day,
the Student Study Center also houses academic workshop rooms and a computer room and is used for tutoring, presentations, and engineering student organizations.

STEP-UP: Funded by the National Science Foundation, STEP for Underutilized Populations (STEP-UP) is a regional initiative designed to increase the number of students from Los Angeles urban core populations obtaining baccalaureate degrees in science, technology, engineering, and mathematics (STEM). Awarded in Fall 2004, this five-year, $1.8 million inter-institutional and multi-disciplinary initiative is led by the UCLA Center for Excellence in Engineering and Diversity in the Henry Samueli School of Engineering and Applied Science. Regional partners include California State University, Los Angeles (CSULA) and a number of community colleges in the Los Angeles metropolitan area. The U.S. production of domestic engineers and physical scientists has declined since the high point of the mid-1980s, while that of other countries has increased dramatically. The fastest-growing segments of the U.S. population need to be prepared to enter these vital fields.

Nearly 82 percent of the 740,000 K-12 students in the Los Angeles Unified School District are African-American and Latino, yet a miniscule number of these students attempt post-secondary STEM fields, and fewer enroll in and complete degrees in these areas. The UCLA STEP-UP project provides academic learning communities and career-oriented intervention programs to improve access, counseling, and preparation for students with high interest in these subjects. The NSF has funded over 30 STEP projects across the country to address the growing imbalance between the need for technical talent and the U.S. production of engineers and computer and physical scientists. The NSF goal is to strengthen national and economic security by increasing the number of engineers from populations that under-participate in these fields.

Scholarships/Financial Aid
The Henry Samueli School of Engineering and Applied Science also participates in the NACME and GEM scholarships. The CEED Industry Advisory Board and support network provide significant contributions to program services and scholarships. Information may be obtained from the CEED director.

Student Organizations
UCLA CEED supports student chapters of three engineering organizations: the American Indian Science and Engineering Society (AISES), the National Society of Black Engineers (NSBE), and the Society of Latino Engineers and Scientists (SOLES), the UCLA chapter of the Society of Hispanic Professional Engineers (SHPE). These organizations are vital elements of the program.

American Indian Science and Engineering Society
Entering its 20th year on campus, AISES encourages American Indians to pursue careers as scientists and engineers while preserving their cultural heritage. The goal of AISES is to promote unity and cooperation to provide a basis for the advancement of American Indians while providing financial assistance and educational opportunities. AISES devotes most of its energy to its outreach program where members conduct monthly science academies with elementary and precollege students from Indian Reservations. Serving as mentors and role models for younger students enables UCLA AISES students to further develop professionalism and responsibility while maintaining a high level of academics and increasing cultural awareness.

National Society of Black Engineers
Chartered in 1980 to respond to the shortage of blacks in science and engineering fields and to promote academic excellence among black students in these disciplines, NSBE provides academic assistance, tutoring, and study groups while sponsoring ongoing activities such as guest speakers, company tours, and participation in UCLA events such as Career Day and Engineers Week. NSBE also assists students with employment. Through the various activities sponsored by NSBE, students develop leadership and interpersonal skills while enjoying the college experience. UCLA NSBE was recently named national chapter of the year for small chapters by the national organization. See http://www.seas.ucla.edu/nsbe/

Society of Latino Engineers and Scientists
Recognized as the national chapter of the year five times over the past ten years years by the Society of Hispanic Professional Engineers (SHPE), SOLES promotes engineering as a viable career option for Latino students. SOLES is committed to the advancement of Latinos in engineering and science through endeavors to stimulate intellectual pursuit through group studying, tutoring, and peer counseling for all members. This spirit is carried into the community with active recruitment of high school students into the field of engineering. SOLES also strives to familiarize the UCLA community with the richness and diversity of the Latino culture and the scientific accomplishments of Latinos. SOLES organizes cultural events such as Latinos in Science, Cinco de Mayo, and cosponsors the Women in Science and Engineering (WISE) Day with AISES, NSBE, and SWE. By participating in campus events such as Career Day and Engineers Week, the organization’s growing membership strives to fulfill the needs of the individual and the community. See http://www.seas.ucla.edu/soles/

Women in Engineering
Women make up about 19 percent of the undergraduate and 20 percent of HSSEAS graduate enrollment. Today’s opportunities for women in engineering are excellent, as both employers and educators try to change the image of engineering as a “males only” field. Women engineers are in great demand in all fields of engineering.

Society of Women Engineers
The Society of Women Engineers (SWE), recognizing that women in engineering are still a minority, has established a UCLA student chapter that sponsors field trips and engineering-related speakers (often professional women) to introduce the various options available to women engineers. The UCLA chapter of SWE, in conjunction with other Los Angeles schools, also publishes an annual résumé book to help women students find jobs and presents a career day for women high school students. See http://www.engineering.ucla.edu/swe/

Student and Honorary Societies
Professionally related societies and activities at UCLA provide valuable experience in leadership, service, recreation, and personal satisfaction. The faculty of the school encourages students to participate in such societies and activities where they can learn more about the engineering profession in a more informal setting than the classroom. For more information, see http://www.engineer.ucla.edu/academics/organization.html.
EGSA  Engineering Graduate Students Association
ESUC  Engineering Society, University of California. Umbrella organization for all the engineering and technical societies at UCLA
ACM  Association for Computing Machinery
AIAA  American Institute of Aeronautics and Astronautics
AIChe  American Institute of Chemical Engineers
AIChE  American Institute of Chemical Engineers
AISES  American Indian Science and Engineering Society
AMR  Amateur Radio Club
ASCE  American Society of Civil Engineers
ASME  American Society of Mechanical Engineers
BMES  Biomedical Engineering Society
Chi Epsilon  Civil Engineering Honor Society
ENGINEuty  Engineering project group
Eta Kappa Nu  Electrical engineering honor society
EWB  Engineers Without Borders
FEED  Forum for Energy Economics and Development
IEEE  Institute of Electrical and Electronic Engineers
LUG  Linux Users Group
MRS  Materials Research Society
NSBE  National Society of Black Engineers
Phi Sigma Rho  Engineering social sorority
PIE  Pilipinos in Engineering Robotics Club
SAE  Society of Automotive Engineers
SAMPE  Society for the Advancement of Materials and Process Engineering
SOLES  Society of Latino Engineers and Scientists
SWE  Society of Women Engineers
Tau Beta Pi  Engineering honor society
Triangle  Social fraternity of engineers, architects, and scientists
Upsilon Pi Epsilon  International honor society for the computing and information disciplines

Student Representation
The student body takes an active part in shaping policies of the school through elected student representatives on the school's Executive Committee.

Prizes and Awards
Each year, certificates and award monies are presented at the HSSEAS annual commencement ceremony to recognize outstanding students who have contributed to the school.

The Russell R. O'Neill Distinguished Service Award is presented annually to an upper division student in good academic standing who has made outstanding contributions through service to the undergraduate student body, student organizations, the school, and to the advancement of the undergraduate engineering program, through service and participation in extracurricular activities.

The Harry M. Showman Engineering Prize is awarded to a UCLA engineering student or students who most effectively communicate the achievements, research results, or social significance of any aspect of engineering to a student audience, the engineering professions, or the general public.

The Engineering Achievement Award for Student Welfare is given to undergraduate and graduate engineering students who have made outstanding contributions to student welfare through participation in extracurricular activities and who have given outstanding service to the campus community.

Additional awards may be given to those degree candidates who have achieved academic excellence. Criteria may include such items as grade-point average, creativity, research, and community service.

Departmental Scholar Program
The school may nominate exceptionally promising juniors and seniors as Departmental Scholars to pursue bachelor's and master's degree programs simultaneously. Minimum qualifications include the completion of 24 courses (96 quarter units) at UCLA, or the equivalent at a similar institution, the current minimum grade-point average required for honors at graduation, and the requirements in preparation for the major. To obtain both the bachelor's and master's degrees, Departmental Scholars fulfill the requirements for each program.

Students may not use any one course to fulfill requirements for both degrees.

For details, consult the Office of Academic and Student Affairs in 6426 Boelter Hall well in advance of application dates for admission to graduate standing.

Official Publications
This Announcement of the Henry Samueli School of Engineering and Applied Science contains detailed information about the school, areas of study, degree programs, and course listings. The UCLA General Catalog (http://www.registrar.ucla.edu/catalog/), however, is the official and binding document for the guidance of students. UCLA students are responsible for complying with all University rules, regulations, policies, and procedures described in the catalog. Engineering students are advised to purchase it from the UCLA Store.

For rules and regulations on graduate study, see http://www.gdnet.ucla.edu.

Grading Policy
Instructors should announce their complete grading policy in writing at the beginning of the term, along with the syllabus and other course information, and make that policy available on the course website. Once the policy is announced, it should be applied consistently for the entire term.

Grade Disputes
If students believe that they have been graded unfairly, they should first discuss the issue with the instructor of the course. If the dispute cannot be resolved between the student and the instructor, the student may refer the issue to the Associate Dean for Academic and Student Affairs, 6426 Boelter Hall.

The associate dean may form an ad hoc committee to review the complaint. The ad hoc committee members are recommended by the appropriate department chair and the associate dean. The student receives a copy of the ad hoc committee's report as well as a copy of the associate dean's recommendation. The student's file will contain no reference to the dispute.

The associate dean informs the students of their rights with respect to complaints and appeals at UCLA.
Nondiscrimination

The University of California, in accordance with applicable Federal and State Laws and University Policies, does not discriminate on the basis of race, color, national origin, religion, sex, gender identity, pregnancy (including pregnancy, childbirth, and medical conditions related to pregnancy and childbirth), physical or mental disability, medical condition (cancer-related or genetic characteristics), ancestry, marital status, age, sexual orientation, citizenship, or service in the uniformed services (including membership, application for membership, performance of service, application for service, or obligation for service in the uniformed services). The University also prohibits sexual harassment. This nondiscrimination policy covers admission, access, and treatment in University programs and activities.

Inquiries regarding the University's student-related nondiscrimination policies may be directed to the UCLA Campus Counsel, 3119 Murphy Hall, Box 951405, Los Angeles, CA 90095-1405, (310) 825-4042.

Inquiries regarding nondiscrimination on the basis of disability covered by the Americans with Disabilities Act (ADA) of 1990 or Section 504 of the Rehabilitation Act of 1973 may be directed to Monroe Gordon, ADA and 504 Compliance, A239 Murphy Hall, UCLA, Box 951405, Los Angeles, CA 90095-1405, voice (310) 825-2242, TTY (310) 206-3349; http://www.ada.ucla.edu.

Students may complain of any action which they believe discriminates against them on the ground of race, color, national origin, marital status, sex, sexual orientation, disability, or age and may contact the Office of the Dean of Students, 1206 Murphy Hall, and/or refer to Section 111.00 of the University of California Policies Applying to Campus Activities, Organizations, and Students (Section 160.00), reads in part: Sexual harassment is unwelcome sexual advances, requests for sexual favors, and other verbal or physical conduct of a sexual nature, when submission to or rejection of this conduct explicitly or implicitly affects a person's employment or education, unreasonably interferes with a person's work or educational performance, or creates an intimidating, hostile, or offensive working or learning environment. In the interest of preventing sexual harassment, the University will respond to reports of any such conduct.

Refer to the Policy on Sexual Harassment and Complaint Resolution Procedures (section 160.00) for the entire definition. The Policy on Sexual Harassment and Complaint Resolution Procedures (http://www.ucop.edu/ucophome/coodrev/ucpolicies/aos/toc.160.html) is incorporated into the Policy on Student Conduct and Discipline.

Complaint Resolution

Experience has demonstrated that many complaints of sexual harassment can be effectively resolved through informal intervention. Individuals who experience what they consider to be sexual harassment are advised to confront the alleged offender immediately and firmly.

Additionally, an individual who believes that she or he has been sexually harassed may contact the Sexual Harassment Coordinator in 2241 Murphy Hall or a Sexual Harassment Information Center counselor for help and information regarding sexual harassment complaint resolution or grievance procedures at one of the locations listed below as determined by the complainant's status at the University at the time of the alleged incident:

1. Campus Human Resources/Employee and Labor Relations, Manager, 200 UCLA Wilshire Center, (310) 794-0860

Or contact the Office of the Dean of Students, Assistant Dean of Students, 1206 Murphy Hall, (310) 825-3269.

Other Forms of Harassment

The University strives to create an environment that fosters the values of mutual respect and tolerance and is free from discrimination based on race, ethnicity, sex, religion, sexual orientation, disability, age, and other personal characteristics.

Harassment

Sexual Harassment

The University of California is committed to creating and maintaining a community where all persons who participate in University programs and activities can work and learn together in an atmosphere free from all forms of harassment, exploitation, or intimidation. Every member of the University community should be aware that the University is strongly opposed to sexual harassment and that such behavior is prohibited both by law and by University policy. The University will respond promptly and effectively to reports of sexual harassment and will take appropriate action to prevent, correct and, if necessary, discipline behavior that violates this policy. See http://wwwsexualharassment.ucla.edu.

Definitions

Sexual harassment, as defined in the University of California Policies Applying to Campus Activities, Organizations, and Students (Section 160.00), reads in part: Sexual harassment is unwelcome sexual advances, requests for sexual favors, and other verbal or physical conduct of a sexual nature, when submission to or rejection of this conduct explicitly or implicitly affects a person's employment or education, unreasonably interferes with a person's work or educational performance, or creates an intimidating, hostile, or offensive working or learning environment. In the interest of preventing sexual harassment, the University will respond to reports of any such conduct.

Refer to the Policy on Sexual Harassment and Complaint Resolution Procedures (section 160.00) for the entire definition. The Policy on Sexual Harassment and Complaint Resolution Procedures (http://www.ucop.edu/ucophome/coodrev/ucpolicies/aos/toc.160.html) is incorporated into the Policy on Student Conduct and Discipline.

Complaint Resolution

Experience has demonstrated that many complaints of sexual harassment can be effectively resolved through informal intervention. Individuals who experience what they consider to be sexual harassment are advised to confront the alleged offender immediately and firmly.

Additionally, an individual who believes that she or he has been sexually harassed may contact the Sexual Harassment Coordinator in 2241 Murphy Hall or a Sexual Harassment Information Center counselor for help and information regarding sexual harassment complaint resolution or grievance procedures at one of the locations listed below as determined by the complainant's status at the University at the time of the alleged incident:

1. Campus Human Resources/Employee and Labor Relations, Manager, 200 UCLA Wilshire Center, (310) 794-0860

The University strives to create an environment that fosters the values of mutual respect and tolerance and is free from discrimination based on race, ethnicity, sex, religion, sexual orientation, disability, age, and other personal characteristics.

Other Forms of Harassment

The University strives to create an environment that fosters the values of mutual respect and tolerance and is free from discrimination based on race, ethnicity, sex, religion, sexual orientation, disability, age, and other personal characteristics.
Certainly harassment, in its many forms, works against those values and often corrodes a person’s sense of worth and interferes with one’s ability to participate in University programs or activities. While the University is committed to the free exchange of ideas and the full protection of free expression, the University also recognizes that words can be used in such a way that they no longer express an idea, but rather injure and intimidate, thus undermining the ability of individuals to participate in the University community. The University of California Policies Applying to Campus Activities, Organizations, and Students (hereafter referred to as Policies; http://www.ucop.edu/ucophome/coordrev/ucpolicies/aos/toc.html) presently prohibit a variety of conduct by students which, in certain contexts, may be regarded as harassment or intimidation.

For example, harassing expression which is accompanied by physical abuse, threats of violence, or conduct that threatens the health or safety of any person on University property or in connection with official University functions may subject an offending student to University discipline under the provisions of Section 102.08 of the Policies.

Similarly, harassing conduct, including symbolic expression, which also involves conduct resulting in damage to or destruction of any property of the University or property of others while on University premises may subject a student violator to University discipline under the provisions of Section 102.04 of the Policies.

Further, under specific circumstances described in the Universitywide Student Conduct Harassment Policy (http://www.deanofstudents.ucla.edu), students may be subject to University discipline for misconduct which may consist solely of expression. Copies of this Policy are available in the Office of the Dean of Students, 1206 Murphy Hall, or in any of the Harassment Information Centers listed below:

1. Counseling and Psychological Services, 221 Wooden Center West, (310) 825-0768, http://www.counseling.ucla.edu
2. Dashew Center for International Students and Scholars, 106 Bradley Hall, (310) 825-1681, http://www.internationalcenter.ucla.edu

Complaint Resolution

One of the necessary measures in our efforts to assure an atmosphere of civility and mutual respect is the establishment of procedures which provide effective informal and formal mechanisms for those who believe that they have been victims of any of the above misconduct.

Many incidents of harassment and intimidation can be effectively resolved through informal means. For example, an individual may wish to confront the alleged offender immediately and firmly. An individual who chooses not to confront the alleged offender and who wishes help, advice, or information is urged to contact any of the Harassment Information Centers listed immediately above.

In addition to providing support for those who believe they have been victims of harassment, Harassment Information Centers offer persons the opportunity to learn about the phenomena of harassment and intimidation; to understand the formal and informal mechanisms by which misunderstandings may be corrected and, when appropriate, student perpetrators may be disciplined; and to consider which of the available options is the most useful for the particular circumstances.

With regard to the Universitywide Student Conduct Harassment Policy, complainants should be aware that not all conduct which is offensive may be regarded as a violation of this Policy and may, in fact, be protected expression. Thus, the application of formal institutional discipline to such protected expression may not be legally permissible. Nevertheless, the University is committed to reviewing any complaint of harassing or intimidating conduct by a student and intervening on behalf of the complainant to the extent possible.
Undergraduate Programs

The Henry Samueli School of Engineering and Applied Science (HSSEAS) offers nine four-year curricula listed below (see the departmental listings for complete descriptions of the programs), in addition to an undergraduate minor in Environmental Engineering.

1. Bachelor of Science in Aerospace Engineering, B.S. A.E.
2. Bachelor of Science in Bioengineering, B.S. B.E.
3. Bachelor of Science in Chemical Engineering, B.S. Ch.E.
4. Bachelor of Science in Civil Engineering, B.S. C.E.
5. Bachelor of Science in Computer Science, B.S. C.S.
6. Bachelor of Science in Computer Science and Engineering, B.S. C.S.&E.
7. Bachelor of Science in Electrical Engineering, B.S. E.E.
8. Bachelor of Science in Materials Engineering, B.S. Mat.E.
9. Bachelor of Science in Mechanical Engineering, B.S. M.E.

The following curricula are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET), the nationally recognized accrediting body for engineering programs: aerospace engineering, chemical engineering, civil engineering, computer science and engineering, electrical engineering, materials engineering, and mechanical engineering. The computer science and computer science and engineering curricula are accredited by the Computing Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, (410) 347-7700.

Admission

Applicants to HSSEAS must satisfy the general admission requirements of the University. See the Office of Admissions and Relations with Schools (UARS) website at http://www.admissions.ucla.edu for details. Applicants must select a major within the school when applying for admission. In the selection process many elements are considered, including grades, test scores, and academic preparation.

Students applying as freshmen or transfers must submit their applications during the November 1 through 30 filing period. In addition, it is essential that official test scores be received no later than the date in January when the December test scores are normally reported.

Applicants must submit scores from an approved core test of mathematics, language arts, and writing. This requirement may be satisfied by taking either (1) the ACT Assessment plus Writing Tests or (2) the SAT Reasoning Test. In addition, all applicants must complete two SAT Subject Tests in two different subject areas selected from history/social studies, mathematics (Mathematics Level 2 only), laboratory science, and a language other than English.

Applicants to the school are strongly encouraged to take the following SAT Subject Tests: Mathematics Level 2 and a laboratory science test (Biology E/M, Chemistry, or Physics) that is closely related to the intended major.

Fulfilling the admission requirements, however, does not assure admission to the school. Limits have had to be set for the enrollment of new undergraduate students. Thus, not every applicant who meets the minimum requirements can be admitted.

Although applicants may qualify for admission to HSSEAS in freshman standing, many students take their first two years in engineering at a community college and apply to the school at the junior level. Students who begin their college work at a California community college are expected to remain at the community college to complete the lower division requirements in chemistry, computer programming, English composition, mathematics, physics, and the recommended engineering courses before transferring to UCLA.

Admission as a Freshman

University requirements specify a minimum of three years of mathematics, including the topics covered in elementary and advanced algebra and two- and three-dimensional geometry. Additional study in mathematics, concluding with calculus or precalculus in the senior year, is strongly recommended and typical for applicants to HSSEAS.

Freshman applicants must meet the University subject, scholarship, and examination requirements described at http://www.admissions.ucla.edu.

Credit for Advanced Placement Tests

Students may fulfill part of the school requirements with credit allowed at the time of admission for College Board Advanced Placement (AP) Tests with scores of 3, 4, or 5. Students with AP Test credit may exceed the 213-unit maximum by the amount of this credit. AP Test credit for freshmen entering Fall Quarter 2009 fulfills HSSEAS requirements as indicated on the AP chart. Students who have completed 36 quarter units after high school graduation at the time of the examination receive no AP Test credit.

Admission as a Transfer Student

Admission as a junior-level transfer student is competitive. The University requires applicants to have completed a minimum of 60 transferable semester units (90 quarter units) and two transferable English courses prior to enrolling at UCLA. In addition, to be considered all applicants to HSSEAS majors must have at least a 3.2 grade-point average in their college work. Many of the majors in the school are impacted. Excellent grades, especially for courses in preparation for the major, are expected.

Completion of the required courses in preparation for the major is critical for admission. Articulation agreements between California community colleges and HSSEAS include college-specific course numbers for these requirements and can be found at http://www.assist.org. Applicants who are lacking two or more of the courses are unlikely to be admitted. Required preparation for HSSEAS majors:

1. Mathematics, including calculus I and II, calculus III (multivariable), differential equations, and linear algebra
2. Calculus-based physics courses in mechanics, electricity and magnetism, and waves, sound, heat, optics, and modern physics
3. Chemistry, including two terms of general chemistry. The Computer Science and Computer Science and Engineering majors and the electrical engineering and computer engineering options
All units and course equivalents to AP Tests are lower division. If an AP Test has been given UCLA course equivalency (e.g., Economics 2), it may not be repeated at UCLA for units or grade points.

<table>
<thead>
<tr>
<th>AP Test</th>
<th>Score</th>
<th>UCLA Lower Division Units and Course Equivalents</th>
<th>Credit Allowed for University and GE Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art History</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Art, Studio</td>
<td></td>
<td>8 units maximum for all tests</td>
<td></td>
</tr>
<tr>
<td>Drawing Portfolio</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Two-Dimensional Design Portfolio</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Three-Dimensional Design Portfolio</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Biology</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Chemistry</td>
<td>3</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>4 units (may petition for Chemistry 20A) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Computer Science</td>
<td></td>
<td>4 units maximum for both tests</td>
<td></td>
</tr>
<tr>
<td>Computer Science (A Test)</td>
<td>3, 4, or 5</td>
<td>2 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Computer Science (AB Test)</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Economics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroeconomics</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Economics 2 (4 excess units)</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Economics 2 (4 units)</td>
<td>4 units toward social analysis GE</td>
</tr>
<tr>
<td>Microeconomics</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Economics 1 (4 excess units)</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Economics 1 (4 units)</td>
<td>4 units toward social analysis GE</td>
</tr>
<tr>
<td>English</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language and Composition</td>
<td>3</td>
<td>8 excess units</td>
<td>Satisfies Entry-Level Writing Requirement</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>English Composition 3 (5 units) plus 3 excess units</td>
<td>Satisfies Entry-Level Writing Requirement</td>
</tr>
<tr>
<td>Literature and Composition</td>
<td>3</td>
<td>8 excess units</td>
<td>Satisfies Entry-Level Writing Requirement</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>English Composition 3 (5 units) plus 3 excess units</td>
<td>Satisfies Entry-Level Writing Requirement</td>
</tr>
<tr>
<td>Environmental Science</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Geography, Human</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Government and Politics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparative</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>United States</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>Satisfies American History and Institutions Requirement</td>
</tr>
<tr>
<td>History</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>United States</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>Satisfies American History and Institutions Requirement</td>
</tr>
<tr>
<td>World</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Languages and Literatures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese Language and Culture</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Course</td>
<td>Units</td>
<td>Requirements</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------</td>
<td>------------------------------------------------------------------------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>French Language</td>
<td>3</td>
<td>French 4 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>French 5 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>French 6 (4 units) plus 4 excess units</td>
<td>4 units toward philosophical and linguistic analysis GE</td>
</tr>
<tr>
<td>French Literature</td>
<td>3 or 4</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5 GE units plus 3 excess units</td>
<td>5 units toward literary and cultural analysis GE</td>
</tr>
<tr>
<td>German Language</td>
<td>3</td>
<td>German 3 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>German 4 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>German 5 (4 units) plus 4 excess units</td>
<td>4 units toward philosophical and linguistic analysis GE</td>
</tr>
<tr>
<td>Japanese Language and Culture</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Latin</td>
<td></td>
<td>8 units maximum for both tests</td>
<td></td>
</tr>
<tr>
<td>Latin Literature</td>
<td>3</td>
<td>Latin 1 (4 units)</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Latin 3 (4 units)</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Latin 3 (4 units)</td>
<td>4 units toward literary and cultural analysis GE</td>
</tr>
<tr>
<td>Vergil</td>
<td>3</td>
<td>Latin 1 (4 units)</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Latin 3 (4 units)</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Latin 3 (4 units)</td>
<td>4 units toward literary and cultural analysis GE</td>
</tr>
<tr>
<td>Spanish Language</td>
<td>3</td>
<td>Spanish 4 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Spanish 5 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Spanish 6 (4 units) plus 4 excess units</td>
<td>4 units toward philosophical and linguistic analysis GE</td>
</tr>
<tr>
<td>Spanish Literature</td>
<td>3 or 4</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5 GE units plus 3 excess units</td>
<td>5 units toward literary and cultural analysis GE</td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
<td>8 units maximum for both tests</td>
<td></td>
</tr>
<tr>
<td>Mathematics (AB Test: Calculus)</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4 units</td>
<td>May be applied toward Mathematics 31A</td>
</tr>
<tr>
<td>Mathematics (BC Test: Calculus)</td>
<td>3</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4 excess units plus 4 units</td>
<td>4 units may be applied toward Mathematics 31A</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8 units</td>
<td>Mathematics 31A plus 4 units that may be applied toward Mathematics 31B</td>
</tr>
<tr>
<td>Music Theory</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Physics</td>
<td></td>
<td>8 units maximum for all tests</td>
<td></td>
</tr>
<tr>
<td>Physics (B Test)</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Physics (C Test: Mechanics)</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>4 units (may petition for Physics 1A)</td>
<td>No application</td>
</tr>
<tr>
<td>Physics (C Test: Electricity and Magnetism)</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Psychology</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Psychology 10 (4 excess units)</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Psychology 10 (4 units)</td>
<td>4 units toward social analysis GE</td>
</tr>
<tr>
<td>Statistics</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
</tbody>
</table>
of the Electrical Engineering major require only one term of chemistry.

4. Computer programming, including either Java, C, or C++. Applicants to the Computer Science, Computer Science and Engineering, and Electrical Engineering majors should take C++.

5. Biology, including one year of biology only for applicants to the Bioengineering major.

6. English composition courses, including one course equivalent to UCLA’s English Composition 3 and a second UC-transferable English composition course.

Transfer applicants may complete courses in addition to those above that satisfy degree requirements. Engineering and computer science courses appropriate for each major may be found at http://www .assist.org.

Lower Division Courses in Other Departments

Chemistry and Biochemistry 20A. Chemical Structure (4 units)
Chemistry and Biochemistry 20B. Chemical Energetics and Change (4 units)
Chemistry and Biochemistry 20L. General Chemistry Laboratory (3 units)
English Composition 3. English Composition, Rhetoric, and Language (5 units)
Mathematics 31A. Differential and Integral Calculus (4 units)
Mathematics 31B. Integration and Infinite Series (4 units)
Mathematics 32A, 32B. Calculus of Several Variables (4 units each)
Mathematics 33A. Linear Algebra and Applications (4 units)
Mathematics 33B. Differential Equations (4 units)
Physics 1A. Physics for Scientists and Engineers: Mechanics (5 units)
Physics 1B. Physics for Scientists and Engineers: Oscillations, Waves, Electric and Magnetic Fields (5 units)
Physics 1C. Physics for Scientists and Engineers: Electrodynamics, Optics, and Special Relativity (5 units)
Physics 4AL. Physics Laboratory for Scientists and Engineers: Mechanics (2 units)
Physics 4BL. Physics Laboratory for Scientists and Engineers: Electricity and Magnetism (2 units)

The courses in chemistry, mathematics, and physics are those required as preparation for majors in these subjects. Transfer students should select equivalent courses required for engineering or physical sciences majors.

Requirements for B.S. Degrees

The Henry Samueli School of Engineering and Applied Science awards B.S. degrees to students who have satisfactorily completed four-year programs in engineering studies. Students must meet three types of requirements for the Bachelor of Science degree:

1. University requirements
2. School requirements
3. Department requirements

University Requirements

The University of California has two requirements that undergraduate students must satisfy in order to graduate: (1) Entry-Level Writing or English as a Second Language and (2) American History and Institutions. These requirements are discussed in detail in the Undergraduate Study section of the UCLA General Catalog.

School Requirements

The Henry Samueli School of Engineering and Applied Science has seven requirements that must be satisfied for the award of the degree: unit, scholarship, academic residence, writing, technical breadth, ethics, and general education.

Unit Requirement

The minimum units allowed for HSSEAS students is between 185 and 190, depending on the program. The maximum allowed is 213 units.

After 213 quarter units, enrollment may not normally be continued in the school without special permission from the associate dean. This regulation does not apply to Departmental Scholars.

Scholarship Requirement

In addition to the University requirement of at least a C (2.0) grade-point average in all courses taken at any University of California campus, students must achieve at least a 2.0 grade-point average in all upper division University courses offered in satisfaction of the subject and elective requirements of the curriculum. A 2.0 minimum grade-point average in upper division mathematics, upper division core courses, and the major field is also required for graduation.

Academic Residence Requirement

Of the last 48 units completed for the B.S. degree, 36 must be earned in residence in HSSEAS on this campus. No more than 16 of the 36 units may be completed in Summer Sessions at UCLA.

Writing Requirement

Students must complete the University’s Entry-Level Writing or English as a Second Language (ESL) requirement prior to completing the school writing requirement.

Students admitted to the school are required to complete a two-term writing requirement—Writing I and engineering writing. Both courses must be taken for letter grades, and students must receive grades of C or better (C– grades are not acceptable).

Writing I

The Writing I requirement must be satisfied by completing English Composition 3 or 3H with a grade of C or better (C– or a Passed grade is not acceptable) by the end of the second year of enrollment.

The Writing I requirement may also be satisfied by scoring 4 or 5 on one of the College Board Advanced Placement Tests in English or a combination of a score of 720 or higher on the SAT Reasoning Test Writing Section and superior performance on the English Composition 3 Proficiency Examination.

Students whose native language is not English may satisfy the Writing I requirement by completing English Composition 3 or 3H with a grade of C or better (C– or a Passed grade is not acceptable). Admission into the course is determined by completion of English as a Second Language 35 with a passing grade or proficiency demonstrated on the English as a Second Language Placement Examination (ESLPE).

Engineering Writing

The engineering writing requirement is satisfied by selecting one approved engineering writing (EW) course from the HSSEAS writing course list or by selecting one approved Writing II (W) course. The course must be completed with a grade of C or better (C– or a Passed grade is not acceptable). Writing courses are listed in the Schedule of Classes at http://www .registrar.ucla.edu/soc/writing.htm.
Writing courses also approved for general education credit may be applied toward the relevant general education foundational area.

Technical Breadth Requirement
The technical breadth requirement consists of a set of three courses providing sufficient breadth outside the student's core program. A list of HSSEAS Faculty Executive Committee-approved technical breadth requirement courses is available in the Office of Academic and Student Affairs, and deviations from that list are subject to approval by the associate dean for Academic and Student Affairs. None of the technical breadth requirement courses selected by students can be used to satisfy other major course requirements.

Ethics Requirement
The ethics and professionalism requirement is satisfied by completing one course from Engineering 183EW or 185EW with a grade of C or better (C– or a Passed grade is not acceptable). The course may be applied toward the engineering writing requirement.

General Education Requirements
General education (GE) is more than a checklist of required courses. It is a program of study that (1) reveals to students the ways that research scholars in the arts, humanities, social sciences, and natural sciences create and evaluate new knowledge, (2) introduces students to the important ideas and themes of human cultures, (3) fosters appreciation for the many perspectives and the diverse voices that may be heard in a democratic society, and (4) develops the intellectual skills that give students the dexterity they need to function in a rapidly changing world.

This entails the ability to make critical and logical assessments of information, both traditional and digital; deliver reasoned and persuasive arguments; and identify, acquire, and use the knowledge necessary to solve problems.

Students may take one GE course per term on a Passed/Not Passed basis if they are in good academic standing and are enrolled in at least three and one-half courses (14 units) for the term. For details on P/NP grading, see Grading in the Academic Policies section of the UCLA General Catalog or consult the Office of Academic and Student Affairs.

GE courses used to satisfy the engineering writing and/or ethics requirements must be taken for a letter grade.

Requirements for Students Who Entered Fall Quarter 2005 and Thereafter

FOUNDATIONS OF KNOWLEDGE
General education courses are grouped into three foundational areas: Foundations of the Arts and Humanities, Foundations of Society and Culture, and Foundations of Scientific Inquiry.

Five courses (24 units minimum) are required. Engineering writing and ethics requirement courses also approved for GE credit may be applied toward the relevant GE foundational areas. Students must meet with a counselor in the Office of Academic and Student Affairs to determine the applicability of GE Cluster courses toward the engineering writing or GE requirements.

Courses listed in more than one category can fulfill GE requirements in only one of the cross-listed categories.

Foundations of the Arts and Humanities
Two 5-unit courses selected from two different subgroups:
- Literary and Cultural Analysis
- Philosophical and Linguistic Analysis
- Visual and Performance Arts Analysis and Practice

The aim of courses in this area is to provide perspectives and intellectual skills necessary to comprehend and think critically about our situation in the world as human beings. In particular, the courses provide the basic means to appreciate and evaluate the ongoing efforts of humans to explain, translate, and transform their diverse experiences of the world through such media as language, literature, philosophical systems, images, sounds, and performances. The courses introduce students to the historical development and fundamental intellectual and ethical issues associated with the arts and humanities and may also investigate the complex relations between artistic and humanistic expression and other facets of society and culture.

Foundations of Society and Culture
Two 5-unit courses, one from each subgroup:
- Historical Analysis
- Social Analysis

The aim of courses in this area is to introduce students to the ways in which humans organize, structure, rationalize, and govern their diverse societies and cultures over time. The courses focus on a particular historical question, societal problem, or topic of political and economic concern in an effort to demonstrate how issues are objectified for study, how data is collected and analyzed, and how new understandings of social phenomena are achieved and evaluated.

Foundations of Scientific Inquiry
One course (4 units minimum) from the Life Sciences subgroup or one course from Biomedical Engineering CM145/Chemical Engineering CM145, Chemistry and Biochemistry 153A, or Civil and Environmental Engineering M166/Environmental Health Sciences M166:
- Life Sciences

This requirement is automatically satisfied for Bioengineering majors, Chemical Engineering majors, and the biomedical engineering option of the Electrical Engineering major. The requirement may be satisfied for Civil Engineering majors if students select an approved major field elective that is also a course approved under Foundations of Scientific Inquiry.

The aim of courses in this area is to ensure that students gain a fundamental understanding of how scientists formulate and answer questions about the operation of both the physical and biological world. The courses also deal with some of the most important issues, developments, and methodologies in contemporary science, addressing such topics as the origin of the universe, environmental degradation, and the decoding of the human genome.

Through lectures, laboratory experiences, writing, and intensive discussions, students consider the important roles played by the laws of physics and chemistry in society, biology, Earth and environmental sciences, and astrophysics and cosmology.

Foundations Course Lists
Creating and maintaining a general education curriculum is a dynamic process; consequently, courses are frequently added to the list. For the most current list of approved courses that satisfy the Foundations of Knowledge GE plan, consult an academic counselor or see http://www.registrar.ucla.edu/ge/.

Requirements for Students Who Entered Prior to Fall Quarter 2005
For the approved list of courses, see http://www.seasoasa.ucla.edu/ge.html.
Department Requirements

Henry Samueli School of Engineering and Applied Science departments generally set two types of requirements that must be satisfied for the award of the degree: (1) Preparation for the Major (lower division courses) and (2) the Major (upper division courses). Preparation for the Major courses should be completed before beginning upper division work.

Preparation for the Major

A major requires completion of a set of courses known as Preparation for the Major. Each department sets its own Preparation for the Major requirements; see the Departments and Programs section of this announcement.

The Major

Students must complete their major with a scholarship average of at least a 2.0 (C) in all courses in order to remain in the major. Each course in the major department must be taken for a letter grade. See the Departments and Programs section of this announcement for details on each major.

Policies and Regulations

Degree requirements are subject to policies and regulations, including the following:

Student Responsibility

Students should take advantage of academic support resources, but they are ultimately responsible for keeping informed of and complying with the rules, regulations, and policies affecting their academic standing.

Study List

Study Lists require approval of the dean of the school or a designated representative. It is the student's responsibility to present a Study List that reflects satisfactory progress toward the Bachelor of Science degree, according to standards set by the faculty. Study Lists or programs of study that do not comply with these standards may result in enforced withdrawal from the University or other academic action.

Undergraduate students in the school are expected to enroll in at least 12 units each term. Students enrolling in less than 12 units must obtain approval by petition to the dean prior to enrollment in courses. The normal program is 16 units per term. Students may not enroll in more than 21 units per term unless an Excess Unit Petition is approved in advance by the dean.

Minimum Progress

Full-time HSSEAS undergraduate students must complete a minimum of 36 units in three consecutive terms in which they are registered.

Credit Limitations

Some portions of Advanced Placement (AP) Test credits are evaluated by corresponding UCLA course number. If students take the equivalent UCLA course, a deduction of UCLA unit credit is made prior to graduation. See the AP chart.

Credit earned through the College Level Examination Program (CLEP) may not be applied toward the bachelor's degree.

After students have completed 105 quarter units (regardless of where the units are completed), they do not receive unit credit or subject credit for courses completed at a community college.

No credit is granted toward the bachelor's degree for college foreign language courses equivalent to quarter levels one and two if the equivalent of level two of the same language was completed with satisfactory grades in high school.

Double Majors

Students in good academic standing may be permitted to have a double major consisting of a major within HSSEAS and a major outside the school (e.g., Electrical Engineering and Economics). Students are not permitted to have a double major within the school (e.g., Chemical Engineering and Civil Engineering). Contact the Office of Academic and Student Affairs for details.

Advising

It is mandatory for all students entering undergraduate programs to have their course of study approved by an academic counselor. After the first term, curricular and career advising is accomplished on a formal basis. Students are assigned a faculty adviser in their particular specialization in their sophomore year or earlier.

In addition, all undergraduate students are assigned, by major, to an academic counselor in the Office of Academic and Student Affairs who provides them with advice regarding general requirements for the degrees and University and school regulations and procedures. It is the students' responsibility to periodically meet with their academic counselor in the Office of Academic and Student Affairs, as well as with their faculty adviser, to discuss curriculum requirements, programs of study, and any other academic matters of concern.

Curricula Planning Procedure

Students normally follow the curriculum in effect when they enter the school. California community college transfers may also select the curriculum in the catalog in effect at the time they began their community college work in an engineering program, providing attendance has been continuous since that time.

HSSEAS undergraduate students following a catalog year prior to 2005-06 should schedule an appointment with their academic counselor in 6426 Boelter Hall or by calling (310) 825-9580 to review course credit and degree requirements and for program planning. Students following the 2005-06 catalog year and thereafter will be notified by the Office of Academic and Student Affairs of a new program called Degree Audit Reporting System (DARS). The student's regular faculty adviser is available to assist in planning electives and for discussions regarding career objectives. Students should discuss their elective plan with the adviser and obtain the adviser's approval.

Students should also see any member or members of the faculty specially qualified in their major for advice in working out a program of major courses.

Students are assigned to advisers by majors and major fields of interest. A specific adviser or an adviser in a particular engineering department may be requested by submitting a Request for Assignment to Faculty Adviser form available in the Office of Academic and Student Affairs.

Academic counselors in the Office of Academic and Student Affairs assist students with University procedures and answer questions related to general requirements.

Honors

Dean's Honors List

Students following the engineering curriculum are eligible to be named to the Dean's Honors List each term. Minimum requirements are a course load of at least 15 units (12 units of letter grade) with a grade-point average equal to or greater than 3.7. Students are not eligible for the Dean's Honors List if they receive an Incomplete (I) or Not
Passed (NP) grade or repeat a course. Only courses applicable to an undergraduate degree are considered toward eligibility for Dean’s Honors.

**Latin Honors**

Students who have achieved scholastic distinction may be awarded the bachelor’s degree with honors. Students eligible for 2009-10 University honors at graduation must have completed 90 or more units for a letter grade at the University of California and must have attained a cumulative grade-point average at graduation which places them in the top five percent of the school (GPA of 3.844 or better) for *summa cum laude*, the next five percent (GPA of 3.754 or better) for *magna cum laude*, and the next 10 percent (GPA of 3.630 or better) for *cum laude*. The minimum GPAs required are subject to change on an annual basis. Required GPAs in effect in the graduating year determine student eligibility.

Based on grades achieved in upper division courses, engineering students must have a 3.844 grade-point average for *summa cum laude*, a 3.754 for *magna cum laude*, and a 3.630 for *cum laude*. For all designations of honors, students must have a minimum 3.25 GPA in their major field courses. To be eligible for an award, students should have completed at least 80 upper division units at the University of California.
Graduate Programs

The Henry Samueli School of Engineering and Applied Science (HSSEAS) offers courses leading to the Master of Science and Doctor of Philosophy degrees, to the Master of Science in Engineering online degree, to the Master of Engineering degree, and to the Engineer degree. The school is divided into seven departments that encompass the major engineering disciplines: aerospace engineering, bioengineering, chemical engineering, civil engineering, computer science, electrical engineering, manufacturing engineering, materials science and engineering, and mechanical engineering. It also offers a graduate interdepartmental degree program in biomedical engineering. Graduate students are not required to limit their studies to a particular department and are encouraged to consider related offerings in several departments.

Also, a one-year program leading to a Certificate of Specialization is offered in various fields of engineering and applied science.

Master of Science Degrees

The Henry Samueli School of Engineering and Applied Science offers the M.S. degree in Aerospace Engineering, Bioengineering, Chemical Engineering, Civil Engineering, Computer Science, Electrical Engineering, Manufacturing Engineering, Materials Science and Engineering, and Mechanical Engineering. The thesis plan requires seven formal courses and a thesis, which may be written while the student is enrolled in two individual study courses. The comprehensive examination plan requires nine formal courses and a comprehensive examination. In some fields students may be allowed to use the Ph.D. major field examination to satisfy the M.S. comprehensive examination requirement. Full-time students complete M.S. programs in an average of five terms of study (about a year and a half). To remain in good academic standing, an M.S. student must obtain a 3.0 grade-point average overall and a 3.0 GPA in graduate courses.

Master of Science in Engineering Online Degree

The primary purpose of the Master of Science in Engineering online degree program is to enable employed engineers and computer scientists to augment their technical education beyond the Bachelor of Science degree and to enhance their value to the technical organizations in which they are employed. For further information, see http://msengrol.seas.ucla.edu.

Master of Engineering Degree

The Master of Engineering (M.Engr.) degree is granted to graduates of the Engineering Executive Program, a two-year work-study program consisting of graduate-level professional courses in the management of technological enterprises. For details, write to the HSSEAS Office of Academic and Student Affairs, 6426 Boelter Hall, UCLA, Box 951601, Los Angeles, CA 90095-1601, (310) 825-2514.

Engineer Degree

The Engineer (Engr.) degree is similar to the Ph.D. degree in that the program of study is built around a major and two minor fields, and the preliminary written and oral examinations are the same. However, a dissertation is not required. Unlike the Ph.D. degree, the Engineer degree does have a formal course requirement of a minimum of 15 (at least nine graduate) courses beyond the bachelor’s degree, with at least six courses in the major field (minimum of four graduate courses) and at least three in each minor field (minimum of two graduate courses in each).

Ph.D. Degrees

The Ph.D. programs prepare students for advanced study and research in the major areas of engineering and computer science. To complete the Ph.D. all candidates must fulfill the minimum requirements of the Graduate Division. Major and minor fields may have additional course and examination requirements. For further information, contact the individual departments. To remain in good academic standing, a Ph.D. student must obtain an overall grade-point average of 3.25.

Established Fields of Study for the Ph.D.

Students may propose other fields of study when the established fields do not meet their educational objectives.

Biomedical Engineering Interdepartmental Program

Biomechanics
Biomechanics, biomaterials, and tissue engineering
Biomedical instrumentation
Biomedical signal and image processing and bioinformatics
Medical imaging informatics
Molecular and cellular bioengineering
Neuroengineering

Chemical and Biomolecular Engineering Department

Chemical engineering

Civil and Environmental Engineering Department

Environmental engineering
Geotechnical engineering
Hydrology and water resources engineering

Computer Science Department

Artificial intelligence
Computational systems biology
Computer network systems
Computer science theory
Computer system architecture
Graphics and vision
Information and data management
Software systems

Electrical Engineering Department

Circuits and embedded systems
Physical and wave electronics
Signals and systems

Materials Science and Engineering Department

Ceramics and ceramic processing
Electronic and optical materials
Structural materials

Mechanical and Aerospace Engineering Department

Applied mathematics (established minor field only)
Applied plasma physics (minor field only)
Dynamics
Fluid mechanics
Heat and mass transfer

Interdepartmental Program

Biophysical and bioinformatics
Biomedical signal and image processing and bioinformatics
Neuroengineering

Chemical Engineering Department

Physical and wave electronics

Civil Engineering Department

Geotechnical engineering

Computer Science Department

Artificial intelligence
Computational systems biology

Computer Science Theory

Computer System Architecture

Graphics and Vision

Information and Data Management

Software Systems

Electrical Engineering Department

Circuits and Embedded Systems
Physical and Wave Electronics
Signals and Systems

Materials Science and Engineering Department

Ceramics and Ceramic Processing
Electronic and Optical Materials
Structural Materials

Mechanical and Aerospace Engineering Department

Applied Mathematics (Established Minor Field Only)
Applied Plasma Physics (Minor Field Only)
Dynamics
Fluid Mechanics
Heat and Mass Transfer

Established Fields of Study for the Ph.D.

Students may propose other fields of study when the established fields do not meet their educational objectives.
Manufacturing and design
Nanoelectromechanical/microelectromechanical systems (NEMS/MEMS)
Structural and solid mechanics
Systems and control
For more information on specific research areas, contact the individual faculty member in the field that most closely matches the area of interest.

Admission
Applications for admission are invited from graduates of recognized colleges and universities. Selection is based on promise of success in the work proposed, which is judged largely on the previous college record.

Candidates whose engineering background is judged to be deficient may be required to take additional coursework that may not be applied toward the degree. The adviser helps plan a program to remedy any such deficiencies, after students arrive at UCLA.

Entering students normally are expected to have completed the B.S. degree requirements with at least a 3.0 grade-point average in all coursework taken in the junior and senior years.

Students entering the Engineer/Ph.D. program normally are expected to have completed the requirements for the master’s degree with at least a 3.25 grade-point average and to have demonstrated creative ability. Normally the M.S. degree is required for admission to the Ph.D. program. Exceptional students, however, can be admitted to the Ph.D. program without having an M.S. degree.

For information on the proficiency in English requirements for international graduate students, see Graduate Admission in the Graduate Study section of the UCLA General Catalog or refer to http://www.gdnet.ucla.edu/gasaa/admissions/INTLREQT.HTM.

To submit a graduate application, see http://www.seasoasa.ucla.edu/prospective/graduate.html. From there connect to the site of the preferred department or program and go to the online graduate application.

Graduate Record Examination
Applicants to the HSSEAS graduate programs are required to take the General Test of the Graduate Record Examination (GRE). Specific information about the GRE may be obtained from the department of interest.

Obtain applications for the GRE by contacting the Educational Testing Service, P.O. Box 6000, Princeton, NJ 08541-6000; http://www.gre.org.
Bioengineering

UCLA
5121 Engineering V
Box 951600
Los Angeles, CA 90095-1600

(310) 267-4985
fax: (310) 794-5956
e-mail: bioeng@ea.ucla.edu
http://www.bioeng.ucla.edu

Timothy J. Deming, Ph.D., Chair
Benjamin M. Wu, D.D.S., Ph.D., Vice Chair

Professors
Denise Aberle, M.D.
Timothy J. Deming, Ph.D.
Warren S. Grundfest, M.D., FACS
Chih-Ming Ho, Ph.D. (Ben Rich Lockheed Martin Professor of Aeronautics)
Edward R.B. McCabe, M.D., Ph.D. (Mattel Executive Endowed Professor of Pediatrics)

Associate Professors
James Dunn, M.D., Ph.D.
Daniel T. Kamei, Ph.D.
Jacob J. Schmidt, Ph.D.
Benjamin M. Wu, D.D.S., Ph.D.

Professor Emeritus
Hooshang Kangarloo, Ph.D.

Assistant Professors
Dino Di Carlo, Ph.D.
Andrea M. Kasko, Ph.D.

Adjunct Professor
Alfred Mann, M.S.

Adjunct Assistant Professor
Bil J. Tawil, M.B.A., Ph.D.

Scope and Objectives

Faculty members in the Department of Bioengineering believe that the interface between biology and the physical sciences represents an exciting area for science in the twenty-first century. Bioengineering has established itself as an independent field and engineering discipline, resulting in the formation of many new bioengineering departments and the redefinition of established programs. Faculty members have embraced this unique opportunity by developing an innovative curriculum, creating state-of-the-art facilities, and performing cutting-edge research.

Instead of treating bioengineering as an application of traditional engineering, it is taught as an applied science discipline in its own right. The bioengineering program is a structured compilation of unique forward-looking courses dedicated to producing graduates who are well-grounded in the fundamental sciences and highly proficient in rigorous analytical engineering tools necessary for lifelong success in the wide range of possible bioengineering careers. The program provides a unique engineering educational experience that responds to the growing needs and demands of bioengineering.

Department Mission
Bioengineering is a diverse multidisciplinary field that has established itself as an independent engineering discipline. The school is developing a small yet innovative Bioengineering Department that is dedicated to producing graduates who are well-grounded in fundamental sciences and the rigorous analytical engineering tools necessary for lifelong success in the many possible bioengineering careers.

Undergraduate Program Objectives

The goal of the bioengineering curriculum is to provide students with the fundamental scientific knowledge and engineering tools necessary for graduate study in engineering or scientific disciplines, continued education in health professional schools, or employment in industry. There are three main objectives: (1) to provide students with rigorous training in engineering and fundamental sciences, (2) to provide knowledge and experience in state-of-the-art research in bioengineering, and (3) to provide problem-solving and team-building skills to succeed in a career in bioengineering.

Undergraduate Study
Bioengineering B.S.

Preparation for the Major

Required: Bioengineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B, 30BL; Computer Science 31; Life Sciences 2 (satisfies HSSEAS GE life sciences requirement), 3, 4; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL, 4BL.

The Major

Required: Bioengineering 100, M106, 110, 120, 165 (or Engineering 183EW or 185EW), 176, 180, 182A, 182B, 182C, Chemistry and Biochemistry 153A, Electrical Engineering 100; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and three major field elective courses (12 units) from Bioengineering M104, M105, M131, 180L, 181, 181L, 199 (8 units maximum), Biomedical Engineering C101, CM102, CM103, CM140, CM145, CM150, CM150L, C170, C171, CM180, C181, CM183, C185, CM186B, CM186C, C187.

The three technical breadth and three major field elective courses may also be selected from one of the following tracks. Bioengineering majors cannot take

Apatite-coated poly(D,L-lactic-co-glycolic) acid (PLGA) scaffolds for bone tissue engineering.
bioengineering technical breadth courses to fulfill the technical breadth requirement. 

**Biomaterials and Regenerative Medicine:** Bioengineering M104, M105, 199 (8 units maximum), Biological Chemistry CM153G, Biomedical Engineering CM140, CM163, C165, C167, Chemistry and Biochemistry C140, C181, Materials Science and Engineering 104, 110, 111, 120, 130, 132, 140, 143A, 150, 151, 160, 161, Molecular, Cell, and Developmental Biology 168. The above materials science and engineering courses may be used to satisfy the technical breadth requirement.

**Biomedical Devices:** Bioengineering M131, 199 (8 units maximum), Biomedical Engineering CM172, Electrical Engineering 102, CM150 (or Mechanical and Aerospace Engineering CM180), CM150L (or Mechanical and Aerospace Engineering CM180L), Mechanical and Aerospace Engineering C187L. The electrical engineering or mechanical and aerospace engineering courses listed above may be used to satisfy the technical breadth requirement.

For Bioengineering 199 to fulfill a track requirement, the research project must fit within the scope of the track field, and the research report must be approved by the supervisor and vice chair.

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/

**Graduate Study**

Although the graduate program in bioengineering is currently being developed, individuals who would like to conduct research in the laboratories of the professors in the Bioengineering Department should apply to the graduate program in the Biomedical Engineering Interdepartmental Program (http://www.bme.ucla.edu).

**Faculty Areas of Thesis Guidance**

**Professors**

Denise Aberle, M.D. (Kansas, 1979)  
Medical imaging informatics: imaging-based clinical trials, medical data visualization  
Timothy J. Deming, Ph.D. (UC Berkeley, 1993)  
Polymer synthesis, polymer processing, supramolecular materials, organometallic catalysis, biomimetic materials, polypeptides  
Warren S. Grundfest, M.D., FACS (Columbia, 1980)  
Excimer laser, minimally invasive surgery, biological spectroscopy  
Chih-Ming Ho, Ph.D. (Johns Hopkins, 1974)  
Molecular mechanics, nanofluidics, and bio-nano research  
Stem cell identification, regenerative medicine, systems biology  

**Professor Emeritus**

Hooshang Kangarloo, M.D. (Tehran, 1970)  
Telemedicine, healthcare process modeling and evaluation, and imaging informatics  

**Associate Professors**

James Dunn, M.D., Ph.D. (Harvard, MIT, 1992)  
Tissue engineering, stem cell therapy, regenerative medicine  
Daniel T. Kamei, Ph.D. (MIT, 2001)  
Molecular cell biology, rational design of molecular therapeutics, systems-level analyses of cellular processes, molecular modeling, quantitative cell biology  
Jacob J. Schmidt, Ph.D. (Minnesota, 1999)  
Bioengineering and biophysics at micro and nanoscales, membrane protein engineering, biological-inorganic hybrid devices  
Biomaterials, cell-material interactions, materials processing, tissue engineering, prosthetic and regenerative dentistry  

**Assistant Professors**

Dino Di Carlo, Ph.D. (UC Berkeley, 2006)  
Microfluidics, biomedical microdevices, celluar diagnostics, cell analysis and engineering  
Andrea M. Kasko, Ph.D. (U. Akron, 2004)  
Polymer synthesis, biomaterials, tissue engineering, cell-material interactions  

**Adjunct Assistant Professor**

Skin tissue engineering, bone tissue engineering, vascular tissue engineering, wound healing  

**Lower Division Courses**

10. **Introduction to Bioengineering.** (2) Lecture, two hours; discussion, one hour; outside study, three hours. Preparation: high school biology, chemistry, mathematics, physics. Introduction to scientific and technological bases for established and emerging subfields of bioengineering, including biosensors, bioinstrumentation, and biosignal processing, biomechanics, biomaterials, tissue engineering, biotechnology, biological imaging, biomedical optics and lasers, neuroengineering, and biomolecular machines. Letter grading.  

Mr. Deming (F)  
19. **Flavi Lu Freshman Seminars.** (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.  

Mr. Schmidt (F)  
110. **Biotransport and Bioreaction Processes.** (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Chemistry 20A, 20B, 30A, Life Sciences 2, 3. To understand biological materials and design synthetic replacements, it is imperative to understand their physical chemistry. Biomacromolecules such as protein or DNA can be analyzed and characterized by applying fundamentals of polymer physical chemistry. Investigation of polymer structure and conformation, bulk and solution thermodynamics and phase behavior, polymer networks, and viscoelasticity. Application of engineering principles to problems involving biomacromolecules such as protein conformation, solution of charged species, and separation at or characterization of biomacromolecules. Letter grading.  

Ms. Kasko (F)  

**M104. Physical Chemistry of Biomacromolecules.** (4) (Same as Biomedical Engineering CM104.) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 20A, 20B, 30A, Life Sciences 2, 3. To understand biological materials and design synthetic replacements, it is imperative to understand their physical chemistry. Biomacromolecules such as protein or DNA can be analyzed and characterized by applying fundamentals of polymer physical chemistry. Investigation of polymer structure and conformation, bulk and solution thermodynamics and phase behavior, polymer networks, and viscoelasticity. Application of engineering principles to problems involving biomacromolecules such as protein conformation, solution of charged species, and separation at or characterization of biomacromolecules. Letter grading.  

**M105. Biopolymer Chemistry and Biocogjugates.** (4) (Same as Biomedical Engineering CM105.) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: Chemistry 20A, 20B, 30A, Life Sciences 2, 3. Materials Science and Engineering 33B, Physics 1C, 4AL, 4BL. Coverage in depth of physical processes associated with biological membranes and channel proteins, with specific emphasis on electrophysiology. Basic physical principles governing electrophysiology in dielectric media, building on complexity to ultimately address action potentials and signal propagation in nerves. Topics include Nernst/Planck and Poisson/Boltzmann equations, Nernst potential, Donnan equilibrium, GHK equations, energy barriers in ion channels, cable equation, action potentials, Hodgkin/Huxley equations, impulse propagation, axon geometry and conduction, dendritic integration. Letter grading.  

Mr. Schmidt (F)  

110. **Biotransport and Bioreaction Processes.** (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Chemistry 20A, 20B, Life Sciences 2, 3, Mathematics 33B, Physics 1C, 4AL, 4BL. Coverage in depth of physical processes associated with biological membranes and channel proteins, with specific emphasis on electrophysiology. Basic physical principles governing electrophysiology in dielectric media, building on complexity to ultimately address action potentials and signal propagation in nerves. Topics include Nernst/Planck and Poisson/Boltzmann equations, Nernst potential, Donnan equilibrium, GHK equations, energy barriers in ion channels, cable equation, action potentials, Hodgkin/Huxley equations, impulse propagation, axon geometry and conduction, dendritic integration. Letter grading.  

Mr. Schmidt (F)  

**M106. Topics in Biophysics, Channels, and Membranes.** (4) (Same as Biomedical Engineering CM106.) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: Chemistry 20A, 20B, Life Sciences 2, 3, Mathematics 33B, Physics 1C, 4AL, 4BL. Coverage in depth of physical processes associated with biological membranes and channel proteins, with specific emphasis on electrophysiology. Basic physical principles governing electrophysiology in dielectric media, building on complexity to ultimately address action potentials and signal propagation in nerves. Topics include Nernst/Planck and Poisson/Boltzmann equations, Nernst potential, Donnan equilibrium, GHK equations, energy barriers in ion channels, cable equation, action potentials, Hodgkin/Huxley equations, impulse propagation, axon geometry and conduction, dendritic integration. Letter grading.  

Mr. Schmidt (F)  

**110. Biotransport and Bioreaction Processes.** (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Chemistry 20A, 20B, Life Sciences 2, 3, Mathematics 33B, Physics 1C, 4AL, 4BL. Coverage in depth of physical processes associated with biological membranes and channel proteins, with specific emphasis on electrophysiology. Basic physical principles governing electrophysiology in dielectric media, building on complexity to ultimately address action potentials and signal propagation in nerves. Topics include Nernst/Planck and Poisson/Boltzmann equations, Nernst potential, Donnan equilibrium, GHK equations, energy barriers in ion channels, cable equation, action potentials, Hodgkin/Huxley equations, impulse propagation, axon geometry and conduction, dendritic integration. Letter grading.  

Mr. Schmidt (F)  

**120. Biomedical Transducers.** (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Chemistry 30A, Electrical Engineering 1 or Physics 1C, Mathematics 32B. Principles of transduction, design characteristics for different measurements, reliability and performance characteristics, and data processing and recording. Emphasis on silicon-based microfabricated and nanofabricated sensors. Novel materials, biomimetic bioconjugates for some sample applications. Letter grading.  

Mr. Grundfest, Mr. Schmidt (W)
181. System Integration in Biology, Engineering, and Medicine II. (Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: course 181L. Corequisite: course 181L. Part II of two-part series. Molecular basis of normal physiology and pathophysiology of selected organ systems; engineering design principles of digestive and urinary systems. Letter grading.)

Mr. Dunn, Mr. Wu (W)

181L. System Integration in Biology, Engineering, and Medicine II Laboratory. (3) Lecture, one hour; laboratory, four hours; three hours; outside study, seven hours. Requisites: course 181L. Part I of two-part series. Part I of two-part series. Molecular basis of normal physiology and pathophysiology of selected organ systems; engineering design principles of digestive and urinary systems. Letter grading.)

Mr. Dunn, Mr. Wu (W)

182A-182B-182C. Bioengineering Capstone Design I, II, III (4-4-4) Lecture, two hours; laboratory, four hours; outside study, four hours. Lectures, design seminars, and discussions with faculty advisory panel. Exploration of different experimental and computational methods. Ordering of specific materials and software that are relevant to student projects. 182C. Requisite: course 182B. Construction of student designs, project updates, presentation of final projects in written and oral format, and team competition.

Mr. Deming, F(Sp), 182A, F 182B, W 182C

183. Targeted Drug Delivery and Controlled Drug Release. (4) Same as Biomedical Engineering CM183.) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 20A, 20B, 20L. New therapeutics require comprehensive understanding of modern biology, physiology, biomaterials, and engineering. Targeted delivery of genes and drugs and their controlled release are important in treatment of challenging diseases and relevant to tissue engineering and regenerative medicine. Drug pharmacodynamics and clinical pharmacokinetics. Application of engineering principles (diffusion, transport, kinetics) to problems in drug formulation and delivery to establish rationale for design and testing of novel drug delivery systems that can provide spatial and temporal control of drug release. Introduction to biomaterials with specialized structural and interfacial properties. Exploration of both bottom-up and top-down materials and physical presentation of devices and compounds used in delivery and response. Letter grading. Ms. Kasko (F)

188. Special Courses in Bioengineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Special topics in bioengineering for undergraduate students that are taught on experimental and temporary basis, such as those taught by resident and visiting faculty members. May be repeated once for credit with topic or instructor change. Letter grading.

194. Research Group Seminars: Bioengineering. (Seminar, three hours. Limited to bioengineering undergraduate students who are part of research group. Study and analysis of current topics in bioengineering. Discussion of current research literature in research specialty of faculty member teaching course. Student presentation of projects in research specialty. May be repeated for credit. Letter grading.

199. Directed Research in Bioengineering. (2 to 4) Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation under guidance of a faculty mentor. Composing, paper or project required. May be repeated for credit with school approval. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading.

Mr. Dunn, Mr. Wu (W)


Mr. Dunn, Mr. Wu (W)

180L. System Integration in Biology, Engineering, and Medicine I Laboratory. (3) Lecture, one hour; laboratory, four hours; clinical visits, three hours; outside study, one hour. Corequisite: course 180L. Hands-on experimentation and clinical applications of selected medical therapeutic devices associated with cardiovascular and pulmonary disorders. Letter grading.

Mr. Dunn, Mr. Wu (Sp)

176. Principles of Biocompatibility. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: Chemistry 30B, Life Sciences 2, 3, Mathematics 32A. Introduction to design principles and engineering concepts used in the development of devices for minimally invasive surgery. Coverage of FDA regulatory policy and surgical procedures. Topics include optical devices, endoscopes and laparoscopes, biopsy devices, laparoscopic tools, cardiovascular and interventional radiology devices, orthopedic instrumentation, and integration of devices with therapy. Examination of complex process of tool design, fabrication, testing, and validation. Preparation of drawings and consideration of development of new and novel devices. Letter grading.

Mr. Grundfest (Sp)

150. Bioethics and Regulatory Policies in Bioengineering. (4) Lecture, four hours; discussion, two hours; outside study, six hours. As bridge connecting medicine with engineering professionals, bioengineers face ethical challenges of both and from those resulting from conflicts between motivation to use most promising technology and motivation to protect patients and research subjects. They also face ethical challenges in jurisprudence, not only in using patient data, but in the gray areas when courts require bioengineering input, and as teachers when they explain their professional activities to others. Introduction to scope of bioengineering profession ethics, with emphasis on research, and engineering ethics due to case reports being plentiful in these areas. Letter grading.

Mr. Dunn, Mr. Wu (Sp)

M172. Design of Minimally Invasive Surgical Tools. (4) Same as Biomedical Engineering CM172.) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 30B, Life Sciences 2, 3, Mathematics 32A. Introduction to design principles and engineering concepts used in the development of devices for minimally invasive surgery. Coverage of FDA regulatory policy and surgical procedures. Topics include optical devices, endoscopes and laparoscopes, biopsy devices, laparoscopic tools, cardiovascular and interventional radiology devices, orthopedic instrumentation, and integration of devices with therapy. Examination of complex process of tool design, fabrication, testing, and validation. Preparation of drawings and consideration of development of new and novel devices. Letter grading.

Mr. Dunn, Mr. Wu (W)

BME 27

Biomedical Engineering

Interdepartmental Program

UCLA

5121 Engineering V

Box 551600

Los Angeles, CA 90095-1600

(310) 794-5945
fax (310) 794-5956

http://www.bme.ucla.edu

James Dunn, M.D., Ph.D., Chair

Faculty Administrative Committee

Denise Aberle, M.D. (Bioengineering, Radiological Sciences)
Alex Bui, Ph.D. (Radiological Sciences)
Mark S. Cohen, Ph.D. (Neurology, Psychiatry and Biobehavioral Sciences, Radiological Sciences)
Timothy J. Deming, Ph.D. (Bioengineering, Chemistry and Biochemistry)
Joseph J. DiStefano III, Ph.D. (Computer Science, Medicine)
James Dunn, M.D., Ph.D. (Bioengineering, Pediatric Surgery)
Chih-Ming Ho, Ph.D. (Mechanical and Aerospace Engineering)
Jack W. Judy, Ph.D. (Electrical Engineering)
Karen M. Lyons, Ph.D. (Molecular, Cell, and Developmental Biology, Orthopaedic Surgery)
Edward R.B. McCabe, M.D., Ph.D. (Human Genetics, Pathiatrics)
Ren Sun, Ph.D. (Molecular and Medical Pharmacology)
Michael A. Teitel, M.D., Ph.D. (Pathology and Laboratory Medicine)
Benjamin M. Wu, D.D.S., Ph.D. (Bioengineering)

Professors

Denise Aberle, M.D. (Bioengineering, Radiological Sciences)
Marvin Bergsneider, M.D. (Neurosurgery)
Francisco Bezaniaza, Ph.D. (Physiology)
Douglas L. Black, Ph.D. (Microbiology, Immunology, and Molecular Genetics)
Gregory P. Carman, Ph.D. (Mechanical and Aerospace Engineering)
Tony F.C. Chan, Ph.D. (Mathematics)
Samson Chow, Ph.D. (Molecular and Medical Pharmacology)
Mark S. Cohen, Ph.D. (Neurology, Psychiatry and Biobehavioral Sciences, Radiological Sciences)
Joseph L. Demer, M.D., Ph.D. (Neurology, Ophthalmology)
Linda L. Demer, M.D., Ph.D. (Cardiology, Physiology)
Timothy J. Deming, Ph.D. (Bioengineering, Chemistry and Biochemistry)
Joseph J. DiStefano III, Ph.D. (Computer Science, Medicine)
Biao S. Li, Ph.D. (Materials Science and Engineering)
V. Reggie Edgerton, Ph.D. (Physiological Science)
Alan Garfinkel, Ph.D. (Cardiology, Physiological Science)
Robin L. Garrett, Ph.D. (Chemistry and Biochemistry)
Biomedical Engineering

28 / Biomedical Engineering

Graduate Study

For information on graduate admission, see Graduate Programs, page 23.

The following introductory information is based on the 2009-10 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnet.ucla.edu/gasaa/library/pgmrqintro.htm. Students are subject to the detailed degree requirements as published in Program Requirements for the year in which they enter the program.

The Biomedical Engineering Program offers Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Biomedical Engineering.

Biomedical Engineering M.S.

Students are expected to complete 42 units, which in most cases include either Biomedical Engineering C201, CM202, and CM203, or C204, C205, and C206, and two courses from their area of study. The M.S. degree is offered under both the thesis and comprehensive examination plan. Under the thesis plan, 8 units of thesis work may be applied toward the unit requirements for the degree. The comprehensive examination plan consists entirely of coursework (12 courses) and a comprehensive examination. Eight of the 12 courses must be graduate (200-level) courses, and students must maintain a grade-point average of B or better in both upper division and graduate courses. Three Biomedical Engineering 299 courses (6 units total) are also required.

Biomedical Engineering Ph.D.

The Ph.D. program prepares students for advanced study and research in biomedical engineering. The Ph.D. preliminary examination typically consists of both written and oral parts. To receive a pass on the examination, students must receive a pass on both parts. An oral qualifying/advanced examination is required for two minor fields of study, and defense of the dissertation is also required. The major field consists of six courses, and each minor field consists of three 4-unit courses, of which two must be graduate (200-level) courses. One minor must be in another field of biomedical engineering. Students must maintain a grade-point average of 3.25 or better in all courses.

Scope and Objectives

The Biomedical Engineering Interdepartmental Program trains specially qualified engineers and scientists to work on engineering applications in either medicine or biotechnology. Graduates apply engineering principles to current needs and contribute to future advances in the fields of medicine and biotechnology. Fostering careers in industry or academia, the program offers students the choice of an M.S. or Ph.D. degree in eight distinct fields of biomedical engineering.

In addition to selected advanced engineering courses, students are required to take specially designed biomedical engineering courses to ensure a minimal knowledge of the appropriate biological sciences. Students receive practical training via an M.S. or Ph.D. research thesis or dissertation in biomedical engineering. Faculty members have principal appointments in departments across campus and well-equipped laboratories for graduate student research projects.

Lily Wu, Ph.D. (Molecular and Medical Pharmacology, Urology)

Assistant Professors

James Bisley, Ph.D. (Neurobiology)
Dino DiCarlo, Ph.D. (Bioengineering)
Christopher Giza, Ph.D. (Surgery, Neurosurgery)
Thomas G. Graeber, Ph.D. (Molecular and Medical Pharmacology)
Xiao Hu, Ph.D., in Residence (Surgery, Neurosurgery)
Andrea M. Kasko, Ph.D. (Bioengineering)
Dejan Markovic, Ph.D.
Heather Maynard, Ph.D. (Chemistry and Biochemistry)
Aydogan Ozcan, Ph.D.
Matteo Pellegrini, Ph.D. (Molecular, Cell, and Developmental Biology)
Laurent Pilon, Ph.D.
Tatiana Segura, Ph.D. (Chemical and Biomedical Engineering)
Landan Shams, Ph.D. (Psychology)
Hsiang-Rong Tseng, Ph.D. (Molecular and Medical Pharmacology)
Zhouwen Tu, Ph.D. (Neurology)
R. Michael van Dam, Ph.D. (Molecular and Medical Pharmacology)

Adjunct Professors

Boris Kogan, Ph.D. (Computer Science)
Howard Winet, Ph.D. (Bioengineering, Orthopaedic Surgery)

Adjunct Associate Professor

Daniel J. Valentino, Ph.D. (Radiological Sciences)

Adjunct Assistant Professor

Bill J. Tawil, M.B.A., Ph.D. (Bioengineering)

Associate Professors

Alex Bui, Ph.D. (Radiological Sciences)
Katrina Dipple, M.D., Ph.D. (Human Genetics and Pediatrics)
James Dunn, M.D., Ph.D. (Bioengineering, Pediatric Surgery)
Yongho Ju, Ph.D. (Mechanical and Aerospace Engineering)
Jack W. Judy, Ph.D. (Electrical Engineering)
Daniel T. Kamei, Ph.D. (Bioengineering)
Dario Ringach, Ph.D. (Neurobiology, Psychology)
Desmond Smith, Ph.D. (Molecular and Medical Pharmacology)
Ren Sun, Ph.D. (Molecular and Medical Pharmacology)
Yi Tang, Ph.D. (Chemical and Biomedical Engineering)
Peter Tontonoz, M.D., Ph.D. (Pathology and Laboratory Medicine)
Benjamin M. Wu, D.D.S., Ph.D. (Bioengineering, Dentistry, Materials Science and Engineering)

Biomedical Engineering

28 / Biomedical Engineering

Graduate Study

For information on graduate admission, see Graduate Programs, page 23.

The following introductory information is based on the 2009-10 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnet.ucla.edu/gasaa/library/pgmrqintro.htm. Students are subject to the detailed degree requirements as published in Program Requirements for the year in which they enter the program.

The Biomedical Engineering Program offers Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Biomedical Engineering.

Biomedical Engineering M.S.

Students are expected to complete 42 units, which in most cases include either Biomedical Engineering C201, CM202, and CM203, or C204, C205, and C206, and two courses from their area of study. The M.S. degree is offered under both the thesis plan and comprehensive examination plan. Under the thesis plan, 8 units of thesis work may be applied toward the unit requirements for the degree. The comprehensive examination plan consists entirely of coursework (12 courses) and a comprehensive examination. Eight of the 12 courses must be graduate (200-level) courses, and students must maintain a grade-point average of B or better in both upper division and graduate courses. Three Biomedical Engineering 299 courses (6 units total) are also required.

Biomedical Engineering Ph.D.

The Ph.D. program prepares students for advanced study and research in biomedical engineering. The Ph.D. preliminary examination typically consists of both written and oral parts. To receive a pass on the examination, students must receive a pass in both parts. An oral qualifying/advanced examination is required for two minor fields of study, and defense of the dissertation is also required. The major field consists of six courses, and each minor field consists of three 4-unit courses, of which two must be graduate (200-level) courses. One minor must be in another field of biomedical engineering. Students must maintain a grade-point average of 3.25 or better in all courses.

Scope and Objectives

The Biomedical Engineering Interdepartmental Program trains specially qualified engineers and scientists to work on engineering applications in either medicine or biotechnology. Graduates apply engineering principles to current needs and contribute to future advances in the fields of medicine and biotechnology. Fostering careers in industry or academia, the program offers students the choice of an M.S. or Ph.D. degree in eight distinct fields of biomedical engineering.

In addition to selected advanced engineering courses, students are required to take specially designed biomedical engineering courses to ensure a minimal knowledge of the appropriate biological sciences. Students receive practical training via an M.S. or Ph.D. research thesis or dissertation in biomedical engineering. Faculty members have principal appointments in departments across campus and well-equipped laboratories for graduate student research projects.

Lily Wu, Ph.D. (Molecular and Medical Pharmacology, Urology)

Assistant Professors

James Bisley, Ph.D. (Neurobiology)
Dino DiCarlo, Ph.D. (Bioengineering)
Christopher Giza, Ph.D. (Surgery, Neurosurgery)
Thomas G. Graeber, Ph.D. (Molecular and Medical Pharmacology)
Xiao Hu, Ph.D., in Residence (Surgery, Neurosurgery)
Andrea M. Kasko, Ph.D. (Bioengineering)
Dejan Markovic, Ph.D.
Heather Maynard, Ph.D. (Chemistry and Biochemistry)
Aydogan Ozcan, Ph.D.
Matteo Pellegrini, Ph.D. (Molecular, Cell, and Developmental Biology)
Laurent Pilon, Ph.D.
Tatiana Segura, Ph.D. (Chemical and Biomedical Engineering)
Landan Shams, Ph.D. (Psychology)
Hsiang-Rong Tseng, Ph.D. (Molecular and Medical Pharmacology)
Zhouwen Tu, Ph.D. (Neurology)
R. Michael van Dam, Ph.D. (Molecular and Medical Pharmacology)

Adjunct Professors

Boris Kogan, Ph.D. (Neurobiology, Physiology)
Harold G. Monbouquette, Ph.D. (Chemical and Biomedical Engineering)
Samuel S. Murray, M.D., Ph.D. (Medicine)
Peter M. Narins, Ph.D. (Ecology and Evolutionary Biology, Physiological Science)
Ichiro Nishimura, D.D.S., D.M.Sc., D.M.D. (Dentistry)
Michael Sofroniew, M.D., Ph.D. (Neurobiology)
Igor Spigelman, Ph.D. (Dentistry)
Ricky Taira, Ph.D. in Residence (Radiological Sciences)
Michael Teitel, M.D., Ph.D. (Pathology and Laboratory Medicine, Pediatrics)
Albert Thomas, Ph.D., in Residence (Radiological Sciences)
Paul M. Thompson, Ph.D., in Residence (Neurology)
James G. Tidball, Ph.D. (Physiological Science)
Kang Ting, D.M.D., D.M.Sc., (Dentistry)
Arthur Toga, Ph.D. (Neurology)
Jeffrey Wang, M.D. (Orthopaedic Surgery)
David Wong, Ph.D. (Dentistry)
Hong Zhou, Ph.D. (Microbiology, Immunology, and Molecular Genetics, California NanoSystems Institute)

Professor Emeriti

Hooshang Kangarloo, M.D. (Pediatrics, Radiological Sciences)

Associate Professors

Alex Bui, Ph.D. (Radiological Sciences)
Katrina Dipple, M.D., Ph.D. (Human Genetics and Pediatrics)
James Dunn, M.D., Ph.D. (Bioengineering, Pediatric Surgery)
Yongho Ju, Ph.D. (Mechanical and Aerospace Engineering)
Jack W. Judy, Ph.D. (Electrical Engineering)
Daniel T. Kamei, Ph.D. (Bioengineering)
Dario Ringach, Ph.D. (Neurobiology, Psychology)
Desmond Smith, Ph.D. (Molecular and Medical Pharmacology)
Ren Sun, Ph.D. (Molecular and Medical Pharmacology)
Yi Tang, Ph.D. (Chemical and Biomedical Engineering)
Peter Tontonoz, M.D., Ph.D. (Pathology and Laboratory Medicine)
Benjamin M. Wu, D.D.S., Ph.D. (Bioengineering, Dentistry, Materials Science and Engineering)
Fields of Study

Biocybernetics

Graduate study in biocybernetics is intended for science or engineering students interested in systems biology biosystems or biomedical systems, with an emphasis on systems and integration. This encompasses the systems engineering/ cybernetics-based integrative properties or behavior of living systems, including their regulation, control, integration, and intercommunication mechanisms, and their associated measurement, visualization, and mathematical and computer modeling.

The program provides directed interdisciplinary biosystem studies to establish a foundation in system and information science, mathematical modeling, measurement and integrative biosystem science, as well as related specialized life sciences domain studies. It fosters careers in research and teaching in systems biology engineering, medicine, and/or the biomedical sciences, or research and development in the biomedical or pharmaceutical industry. At the system and integration level, biocybernetics methodology is quite broadly applicable to a large spectrum of biomedical problems.

Typical research areas include basic and clinical problems in biomedical systems, systems biology, all types of biocontrol systems, imaging systems, pharmaceutical systems, biotechnology systems, bioinformatics, genomics, neuroscience, and remote sensing systems for the life sciences.

Faculty research areas include computational biology, computational biochemistry, and metabolism; computational cardiology and neuroendocrinology; biomodeling of diseases, cellular processes, metabolic control systems, and gene networks; modeling in genomics, pharmacokinetics, and pharmacodynamics; vision, robotics, speech processing, neuroscience, artificial and real neural network modeling, normative expert systems, wireless remote sensing systems, telemedicine, visualization, and virtual clinical environments.

Course Requirements

Biocybernetics can serve as a minor field for other Ph.D. majors if students complete the following courses with a grade-point average of B+: Biomedical Engineering CM286B, M296A, and one additional graduate-level elective from the additional foundations or electives list.

Core Courses (Required). Biomedical Engineering C201, CM202, CM203, CM286B, CM286C, and either M296A or Biostatistics 220.


Biomechanics, Biomaterials, and Tissue Engineering

Three subfields—biomechanics, biomaterials, and tissue engineering—encompass this broad field. The properties of bone, muscles, and tissues, the replacement of natural materials with artificial compatible and functional materials such as polymer composites, ceramics, and metals, and the complex interactions between implants and the body are studied.

Course Requirements

Core Courses (Required). Biomedical Engineering C201, C204, C205, C206, CM250A, Electrical Engineering 100.

Electives. Students are expected to fulfill the remaining course requirements from courses in this group listed on the Biomedical Engineering website at http://www.bme.ucla.edu/programs/studyplans.html.

Biomedical Instrumentation

The biomedical instrumentation field trains biomedical engineers in the applications and development of instrumentation used in medicine and biotechnology. Examples include the use of lasers in surgery and diagnostics, sensors for detection and monitoring of disease, and microelectromechanical systems (MEMS) devices for controlled drug delivery, surgery, or genetics. The principles underlying each instrument and the specific needs in medical applications are emphasized.

Course Requirements

Core Courses (Required). Biomedical Engineering C201, CM204, C205, C206, CM250A, Electrical Engineering 100.

Electives. Students are expected to fulfill the remaining course requirements from courses in this group listed on the Biomedical Engineering website at http://www.bme.ucla.edu/programs/studyplans.html.

Biomedical Signal and Image Processing and Bioinformatics

The biomedical signal and image processing and bioinformatics field encompasses techniques for the acquisition, processing, classification, and analysis of digital biomedical signals, images, and related information, classification and analysis of biomedical data, and decision support of clinical processes. Sample applications include (1) digital imaging research utilizing modalities such as X-ray imaging, computed tomography (CT), and magnetic resonance (MR), positron emission tomography (PET) and SPECT, optical microscopy, and combinations such as PET/MR, (2) signal processing research on hearing to voice recognition to wireless sensors, and (3) bioinformatics research ranging from image segmentation for content-based retrieval from databases to correlat-
Course Requirements
Students selecting biomedical signal and image processing and bioinformatics as a minor field must take three courses, of which at least two must be graduate (200-level) courses.

Core Courses (Required). Biomedical Engineering C201, CM202, CM203, M214A, Electrical Engineering 113, 211A.


Remedial Courses. Electrical Engineering 102, Program in Computing 10A, 10B.

Medical Imaging Informatics
The objective of the medical imaging informatics field is to train students in imaging-based medical informatics. Specifically, the program’s aims are to enable (1) students from engineering backgrounds to become familiar with aspects of clinical and medical environments, such that they are able to appropriately apply their skills and knowledge in these domains, (2) students from medical backgrounds to learn sufficient expertise in current information and engineering technologies to address specific problems within clinical environments, (3) all students to be experts within the field of imaging-based medical informatics, becoming experienced in dealing with diverse biomedical data (imaging and text), and (4) all students to learn to work in a multidisciplinary group of researchers and individuals, enabling new developments within the field.

The underlying goal is to foster a community for students and faculty members from multiple disciplines (represented by individuals from the Schools of Engineering, Education and Information Studies, Medicine, and Public Health) to participate in the growing area of medical imaging informatics.

Course Requirements


Molecular and Cellular Bioengineering
The field of molecular and cellular bioengineering encompasses the engineering of enzymes, cellular metabolism, biological signal transduction, and cell-cell interactions. Research emphasizes the fundamental basis for diagnosis, disease treatment, and redesign of cellular functions at the molecular level. The field interacts closely with the fields of bioinstrumentation (MEMS), tissue engineering, and neuroengineering. Graduates of the program are targeted principally for employment in academia, in government research laboratories, and in the biotechnology, pharmaceutical, and biomedical industries.

Course Requirements

Electives. Students are expected to fulfill the remaining course requirements from courses in this group listed on the Biomedical Engineering website at http://www.bme.ucla.edu/programs/studyplans.html.

Neuroengineering
The neuroengineering field is a joint endeavor between the Neuroscience Interdepartmental Ph.D. Program in the Geffen School of Medicine and the Biomedical Engineering Interdepartmental Graduate Program in HSSEAS.

The objectives of the neuroengineering field are to enable (1) students with a background in engineering to develop and execute projects that address problems that have a neuroscientific base, (2) students with a background in biological sciences to develop and execute projects that make use of state-of-the-art technology, and (3) all trainees to develop the capacity for the multidisciplinary teamwork that is necessary for new scientific insights and dramatic technological progress. Courses and research projects are cosponsored by faculty members in both HSSEAS and the Brain Research Institute (BRI).

Requisites for Admission. Students entering the neuroengineering program have graduated with undergraduate degrees in engineering, physics, chemistry, or one of the life sciences (for example, biology, microbiology, immunology, and molecular genetics, molecular, cell, and development biology, neuroscience, physiology, or psychology). Engineering students must have taken at least one undergraduate course in biology, one course in chemistry, and a year of physics. Students from non-engineering backgrounds are required to have taken courses in undergraduate calculus, differential equations, and linear algebra, in addition to at least a year of undergraduate courses in each of the following: organic chemistry and biochemistry, physics, and biology. Students lacking one or more requisite courses, if they are otherwise admissible, are provided an opportunity for appropriate coursework or tutorial during the summer before they enter the neuroengineering program.

Written Preliminary Examination. The Ph.D. preliminary examination typically consists of three written parts—two in neuroscience and one in neuroengineering. To receive a pass on the examination, students must receive a pass on all parts. Students who fail the examination may repeat it once, subject to approval of the faculty examination committee.

Students who are in a field other than neuroengineering and who select neuroengineering as a minor must take Biomedical Engineering M260, M263, and Neuroscience 205.

Core Courses (Required). Biomedical Engineering M260, Neuroscience M202, 207, and either Biomedical Engineering M263 or Neuroscience 205.

Electives. During the first and second years, students take at least three courses selected from a menu of new and existing courses.

Biomedical engineering category: Biomedical Engineering C201, M261A, M261B, M261C.

MEMS category: Biomedical Engineering CM250A, Mechanical and Aerospace Engineering CM280L, 284.
Upper Division Courses

C101. Introduction to Biomedical Engineering. (4) Lecture, three hours; laboratory, three hours; outside study, six hours. Designed for physical sciences, life sciences, and engineering students. Introduction to wide scope of biomedical engineering via treatment of selected important individual topics by small team of specialists. Concurrently scheduled with course C201. Letter grading. Mr. Kamei (F)

CM102. Basic Human Biology for Biomedical Engineers I. (4) Same as Physiological Science 102.) Lecture, three hours; laboratory, two hours. Preparation: human molecular biology, biochemistry, and cell biology. Not open for credit to Physiological Science majors. Broad overview of basic biological activities and organization of human body in system (organ/tissue) to system, with particular emphasis on molecular basis. Modeling/simulation of functional aspect of biological system included. Actual demonstration of biomedical instruments, as well as visits to biomedical facilities. Concurrently scheduled with course CM202. Letter grading. Mr. Grundfest (F)


CM104. Physical Chemistry of Biomacromolecules. (4) (Same as Bioengineering 104.) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 20A, 20B, 30A, Life Sciences 2, 3. To understand physical chemistry of biomacromolecules such as protein or DNA can be analyzed and characterized by applying fundamentals of polymer physical chemistry, polymer structure and conformation, bulk and solution thermodynamics and phase behavior, polymer networks, and viscoelasticity. Application to problems involving biomacromolecules such as protein conformation, solution of charged species, and separation and characterization of biomacromolecules. Concurrently scheduled with course C204. Letter grading. Ms. Kasiko (F)

CM105. Biopolymer Chemistry and Bioconjugates. (4) (Same as Bioengineering 105.) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: Chemistry 20A, 20B, 20L. Highly recommended: one organic chemistry course. Bioconjugate chemistry is science of coupling biomolecules for wide range of applications. Oligonucleotides may be coupled to one surface in gene chip, or one protein may be coupled to one polymer to enhance its stability in serum. Wide variety of bioconjugates are used in delivery of pharmaceuticals, in sensors, in medical diagnostics, and in tissue engineering. Basic concepts of chemical ligation, including choice and design of conjugate linkers depending on type of biomolecule and desired application, such as degradable versus nondegradable linkers. Presentation and discussion of design and synthesis of synthetic bioconjugates for some sample applications. Concurrently scheduled with course C205. Letter grading. Mr. Deming (W)

CM106. Topics in Biophysics, Channels, and Membranes. (4) (Same as Bioengineering 106.) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: Chemistry 20B, Life Sciences 2, 3, 4, Mathematics 33B, Physics 1C, 4AL, 4BL. Coverage in depth of physical processes associated with biological membranes and channel proteins, with specific emphasis on electrophysiology. Basic physical principles governing electrostatics in dielectric media, building on complexity to ultimately address action potentials and signal propagation in nerves. Topics include Nernst/Planck and Poisson/Boltzmann equations, Nernst potential, Donnan equilibrium, GHK equations, energy barriers in ion channels, cable equation, action potentials, Hodgkin/Hux-ley model, ion channel gating. Kinesin and motor proteins and conduction, dendritic integration. Concurrently scheduled with course C206. Letter grading. Mr. Schmidt (W)

CM131. Nanopore Sensing. (4) (Same as Bioengineering 131.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Bioengineering 100, 120, Life Sciences 2, 3, Physics 1A, 1B, 1C. Analysis of sensors based on measurements of fluctuating ionic conductance through artificial or protein nanopores. Physics of pore conductance. Applications to single molecule detection and DNA sequencing. Review of current literature and technological applications. History and instrumentation of resistive pulse sensing, theory and instrumentation of electrical measurements in electrolytes, nanopore fabrication, ionic conductance through pores and GHK equation, patch clamp and single channel measurements and instrumentation, noise issues, protein engineering, molecular sensing, DNA sequencing, membrane engineering, and future directions of field. Concurrently scheduled with course C231. Letter grading. Mr. Schmidt (F)

CM140. Introduction to Biomechanics. (4) (Same as Mechanical and Aerospace Engineering CM140.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: Mechanical and Aerospace Engineering 101, 102, 156A. Introduction to mechanical functions of human body; skeletal adaptations to optimize load transfer, mobility, and function. Dynamics and kinematics. Fluid mechanics applications. Heat and mass transfer. Power generation. Laboratory simulations and tests. Concurrently scheduled with course CM240. Letter grading. Mr. Gupta (W)

CM145. Molecular Biotechnology for Engineers. (4) (Same as Chemical Engineering CM145.) Lecture, four hours; discussion, two hours; outside study, eight hours. Selected topics in molecular biology that form foundation of biotechnology and biomedical industry today. Topics include recombinant DNA technology, molecular resolution of genetic expression, directed mutagenesis and protein engineering, DNA-based diagnostics and DNA microarrays, antibody and protein-based diagnostics, genomics and bioinformatics, isolation of human genes, gene therapy, and tissue engineering. Concurrently scheduled with course CM245. Letter grading. Mr. Liao (F)

CM150. Introduction to Micromanichining and Microelectromechanical Systems (MEMS). (4) (Formerly numbered M150.) (Same as Electrical Engineering CM150 and Mechanical and Aerospace Engineering CM180.) Lecture, four hours; discussion, one hour. Review of current literature and textbook study. Concurrently scheduled with course CM150L. Introduction to micro machining technologies and microelectromechanical systems (MEMS). Methods of micromachining and how these methods can be used to produce variety of MEMS, including microstructures, microsensors, and microactuators. Students design micromachining processes capable of achieving desired MEMS device. Concurrently scheduled with course CM250A. Letter grading. Mr. Judy (F)

Lower Division Courses

19. Fiat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.

Biomedical Engineering / 31
CM150L. Introduction to Micromachining and Microelectromechanical Systems (MEMS) Laboratory. (2) (Formerly numbered M150L.) (Same as Electrical Engineering and Mechanical and Aerospace Engineering CM180L.) Lecture, one hour; laboratory, four hours; outside study, one hour. Requisites: Chemistry 20A, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Concurrently scheduled with CM150. Hands-on introduction to micromachining technologies and microelectromechanical systems (MEMS) laboratory. Methods of micromachining and how these methods can be used to produce variety of MEMS, including microstructures, microsensors, and microactuators. Students go through process of fabricating MEMS device. Concurrently scheduled with course CM250L. Letter grading. Mr. Judd (F)

C170. Energy-Tissue Interactions. (4) Lecture, three hours; outside study, nine hours. Requisites: Electrical Engineering 172, 175, Life Sciences 3, Physics 17, Corequisite: course C170L. Introduction to therapeutic and diagnostic use of energy delivery devices in medical and dental applications, with emphasis on understanding fundamental mechanisms underlying various types of energy tissue interactions. Concurrently scheduled with course C270L. Letter grading. Mr. Grundfest (F)

C170L. Introduction to Techniques in Studying Laser-Tissue Interaction. (2) Laboratory, four hours; outside study, one hour. Corequisite: course C170. Introduction to simulation and experimental techniques used in studying laser-tissue interactions. Topics include computer simulations of light propagation in tissue, measuring absorption spectra of tissue, making tissue phantoms, determination of optical properties of different tissues, techniques of temperature distribution measurements. Concurrently scheduled with course C270L. Letter grading.

C171. Laser-Tissue Interaction II: Biologic Spectroscopy. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course C170L. Designed for physical sciences, life sciences, and engineering majors. Introduction to optical spectroscopy principles, design of spectroscopic measurement devices, optical properties of tissues, and fluorescence spectroscopy biologic media. Concurrently scheduled with course C271L. Letter grading. Mr. Grundfest (W)

CM172. Design of Minimally Invasive Surgical Tools. (4) (Same as Bioengineering M172.) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 30B, Life Sciences 2, 3, Mathematics 32A. Introduction to design principles and engineering concepts used in design and manufacture of tools for minimally invasive surgery. Coverage of FDA regulatory policy and surgical procedures. Topics include optical devices, endoscopes and laparoscopes, biopsy devices, laparoscopic tools, cardiovascular and interventional radiology devices, orthopedic instrumentation, and integration of devices with therapy. Examination of complex process of tool design, fabrication, testing, and validation. Preparation of drawings and consideration of development of new and novel devices. Concurrently scheduled with course C272. Letter grading. Mr. Grundfest (F)

CM180. Introduction to Biomaterials, Biomechanics, and Tissue Engineering. (Same as Materials Science CM180.) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 20A, 20B, and 20L, or Materials Science 104. Engineering materials used in medicine and dentistry for repair and/or restoration of damaged natural tissues. Topics include relationships between material properties, suitability to task, surface chemistry, processing and treatment methods, and biocompatibility. Concurrently scheduled with course CM280. Letter grading. Mr. Wu (W)

C181. Biomaterials-Tissue Interactions. (4) Lecture, three hours; outside study, nine hours. Requisites: course CM180. In-depth exploration of host cellular and chemical presentation of tissue, interface, and clotting, biocompatibility, animal models, inflammation, infection, extracellular matrix, cell adhesion, and role of mechanical forces. Concurrently scheduled with course C281. Letter grading. Mr. Sp (W)

CM183. Targeted Drug Delivery and Controlled Drug Release. (4) (Same as Bioengineering M183.) Lecture, three hours; outside study, seven hours. Requisites: Chemistry 20A, 20B, 20L. New therapeutics require comprehensive understanding of modern biology, physiology, biomaterials, and engineering. Targeted delivery of genes and drugs and their controlled release are important in treatment of challenging diseases and relevant to tissue engineering and regenerative medicine. Drug pharmacodynamics and clinical pharmacokinetics. Application of engineering principles (diffusion, transport, kinetics) to problems in drug formulation and delivery to establish rationale for design and development of novel drug delivery systems that can provide spatial and temporal control of drug release. Introduction to biomaterials with specialized structural and interfacial properties. Exploration of both chemistry of materials and physical and chemical devices and compounds used in delivery and release. Concurrently scheduled with course C283. Letter grading.

Ms. Kasiko (F)

C185. Introduction to Tissue Engineering. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: course CM102 or CM202, Chemistry 20A, 20B, 20L. Tissue engineer applies principles of biology and physical sciences with engineering approach to regenerate tissues and organs. Guiding principles for proper selection of three basic components for tissue engineering: cells, scaffolds, and molecular signals. Concurrently scheduled with course C285. Letter grading. Mr. Wu (Sp)

CM186A. Introduction to Computational and Systems Biology. (2) (Same as Computational and Systems Biology M186A and Computer Science M186A.) Lecture, two hours; outside study, four hours. Requisites: Computer Science 31 (or Program in Computing 10A), Mathematics 31A, 31B. Survey course designed to introduce students to computational and systems modeling and computer simulation in biology and medicine, providing flavor, culture, and cutting-edge contributions of burgeoning computational multidisciplinary biosciences and aiming for more informed basis for building them. Integrative introduction with emphasis on ongoing computational and systems biology research at UCLA in systems biology, bioinformatics, genomics, neuroengineering, tissue bioengineering, systems biology software, knowledge systems, biosystem simulation, and/or other computational and systems biology/biomedical engineering areas. P/NP grading. Mr. DiStefano (W)

CM186B. Computational Systems Biology: Modeling and Simulation of Biological Systems. (5) (Formerly numbered M186B.) (Same as Computational and Systems Biology M186B and Computer Science CM186B.) Lecture, four hours; laboratory, three hours; outside study, two hours. Corequisite: Electrical Engineering 102. Dynamic biosystems modeling and computer simulation methods for studying biological/biomedical processes and systems at multiple levels of organization. Control systems, multicompartmental, predator-prey, pharmacokinetic (PK), pharmacodynamic (PD), and other structural modeling methods applied to life sciences problems at molecular, cellular, organismal, and organismal levels. Both theory- and data-driven modeling, with focus on translating modeling goals and data into mathematical models and implementing them for simulation and analysis. Basics of numerical simulation algorithms, with modeling software exercises in class and PC laboratory assignments. Concurrently scheduled with course CM286B. Letter grading. Mr. DiStefano (F)

CM186C. Biomodeling Research and Research Communication Workshop. (2 to 4) (Formerly numbered CM186BL.) (Same as Computational and Systems Biology CM186C.) Lecture, one hour; discussion, two hours; laboratory, one hour; outside study, eight hours. Requisites: course CM186B. Closely directed, interactive, and real research experience in active quantitative systems biology research laboratory. Direction on how to focus on topics of current interest in scientific community and appropriate research capabilities. Critiques of oral presentations and written progress reports explain how to proceed with search for research results. Major emphasis on effective research reporting, both oral and written. Concurrently scheduled with course CM286C. Letter grading. Mr. DiStefano (Sp)

C187. Applied Tissue Engineering: Clinical and Industrial Perspectives. (4) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: course CM102, Chemistry 20A, 20B, 20L, Life Sciences 1 or 2. Overview of central topics of tissue engineering, with focus on how to build artificial tissues into regulated clinically viable products. Topics include biomaterials selection, cell source, delivery methods, FDA approval procedures, and physical/chemical and biological testing. Case studies include skin and artificial skin, bone and cartilage, blood vessels, neurotissue engineering, and liver, kidney, and other organs. Clinical and industrial perspectives of tissue engineering products. Manufacturing considerations, clinical issues, and regulatory challenges in design and development of tissue-engineering devices. Concurrently scheduled with course C287. Letter grading. Mr. Wu (F)

188. Special Courses in Biomedical Engineering. (4) Lecture, four hours; outside study, eight hours. Special topics in biomedical engineering for undergraduate students that are taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated for credit. Letter grading.

Graduate Courses

C201. Introduction to Biomedical Engineering. (4) Lecture, three hours; laboratory, three hours; outside study, six hours. Designed for physical sciences, life sciences, and engineering students. Introduction to wide scope of biomedical engineering via treatment of selected important individual topics by small team of specialists. Concurrently scheduled with course C101. Letter grading. Mr. Kamei (F)

CM202. Basic Human Biology for Biomedical Engineering Students. (4) (Same as Science CM202.) Lecture, three hours; laboratory, two hours. Preparation: human molecular biology, biochemistry, and cell biology. Not open for credit to Physiological Science majors. Broad overview of basic biological activities and organization of human body in system (organ/tissue) to system basis, with particular emphasis on molecular basis. Modeling/simulation of functional aspect of biological system included. Actual demonstration of biomedical instruments, as well as visits to biomedical facilities. Concurrently scheduled with course CM102. Letter grading. Mr. Grundfest (F)

C204. Physical Chemistry of Biomacromolecules. (4) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 20A, 20B, 30A, Life Sciences 2, 3. To understand biological materials and design synthetic replacements, it is imperative to understand their physical chemistry. Biomacromolecules such as protein or DNA can be analyzed and characterized by applying fundamental principles of polymer physical chemistry. Investigation of polymer structure and conformation, bulk and solution thermodynamics and phase behavior, intermolecular and intramolecular networks, and viscoelasticity. Application of engineering principles to problems involving biomacromolecules such as protein conformation, solvation of charged species, and separation and characterization of DNA molecules. Concurrency with course CM104. Letter grading. Ms. Kaso (F)

C205. Biopolymer Chemistry and Bioconjugates. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Requisites: Chemistry 20B, 20C. Highly recommended: one organic chemistry course. Bioconjugate chemistry is science of coupling biomolecules for wide range of applications. Oligonucleotides may be coupled to one surface in gene chip, or one protein may be coupled to one polymer to enhance its stability in serum. Wide variety of bioconjugates are used in delivery of pharmaceutical agents, medical imaging, and tissue engineering. Basic concepts of chemical ligation, including choice and design of conjugate linkers depending on type of biomolecule and desired application, as well as various strategies and examples of bioconjugates. Presentation and discussion of design and synthesis of synthetic bioconjugates for some sample applications. Concurrently scheduled with course CM105. Letter grading. Mr. Deming (W)

C206. Topics in Biophysics, Channels, and Membranes. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: Chemistry 20B, Life Sciences 2, 3, 4, Mathematics 33B, Physics 42B, or equivalent. Description of dynamic behavior of transmembrane proteins. Emphasis on understanding mechanisms by which ions and small molecules pass through membranes. Basic concepts of membrane biophysics, including the structure of lipid bilayers and transmembrane ion channels. Basic principles of channel design, including the role of ion selectivity and voltage sensitivity. Applications of biophysics to understanding of biological membranes and artificial membranes. Emphasis on understanding the role of biophysics in the design and development of biologically inspired materials and devices. Letter grading. Mr. Kungarloo (F)

220. Introduction to Medical Informatics. (2) Lecture, two hours; outside study, four hours. Designed for graduate students. Introduction to research topics and terminology of medical informatics. Focus on understanding the role of informatics in the delivery of healthcare and in the design of healthcare systems. Topics include data structures and algorithms, database design and management, networking, and computer security. Emphasis on understanding the role of informatics in the design and development of biologically inspired materials and devices. Letter grading. Mr. Monbouquette (W)

222. Clinical Rotation Medical Informatics. (2) Lecture, two hours; laboratory, four hours. Corequisite: course 221. Designed for graduate students. Clinical rotation through medical informatics modalities and clinical environments. Exposure to challenges of medical practice today and current clinical usage of imaging, including computed tomography, magnetic resonance, and other traditional forms of image acquisition. Designed to provide students with real-world exposure to practical applications of imaging and to reinforce human anatomy and physiology concepts from other courses. Four hours per week in clinical environments, concurrent with a clinical rotation, to gain appreciation of current practices, imaging, and information systems. Participation in clinical noon conferences to further broaden exposure to understanding of medical problems. SU grading. Mr. Kungarloo (F)

223A-223B-223C. Programming Laboratories for Medical Informatics 1, II, III. (4-4-4) Lecture, two hours; laboratory, two hours; outside study, eight hours. Designed for graduate students. Programming laboratories to support coursework in other medical informatics core curriculum courses. Exposure to programming concepts and software development methodologies, with focus on basic abstraction techniques used in image processing and medical image information systems. Letter grading. Mr. Bui (F)

224A. Advanced Imaging for Informatics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 224A. Additional modalities and current research in medical imaging. Topics include functional magnetic resonance imaging (fMRI), MR diffusion/perfusion, and optical imaging, with focus on image analysis and visualization tools. Basic physics principles behind these newer imaging techniques, with exposure to seminal works. Current research efforts, with focus on clinical applications and new types of information available. Geared toward nonphysicists to provide basic understanding of issues related to advanced medical image acquisition and to understand functionality of imaging databases and image modalities that are products of biological reactors. Letter grading. Mr. Kungarloo (W)

226. Medical Knowledge Representation. (4) Seminar, four hours; outside study, eight hours. Designed for graduate students. Issues related to medical knowledge representation and its application in healthcare processes. Topics include data structures used for representing knowledge (conceptual graphs, frame-based models), different data models for representing spatio-temporal information, rule-based implementations, current statistical methods for discovery of knowledge (data mining, statistical classifiers, and hierarchical classification), and basic information retrieval. Review of work in constructing ontologies, with focus on problems in implementation and definition. Common medical ontologies, coding schemes, and information indexing terminologies (SNOMED, UMLS, MeSH, LOINC). Letter grading. Mr. Taira (Sp)

227. Medical Information Infrastructures and Internet Technologies. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Introduction to networking, communications, and information infrastructures in medical environment. Exposure to basic concepts related to networking at several levels: low-level (TCP/IP services), medium-level (network topologies), and high-level (distributed computing, Web-based services) information systems (HIS, RIS, PACS). Focus on understanding the role of informatics in the design and development of biologically inspired materials and devices. Letter grading. Mr. Bui (F)

228. Medical Decision Making. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Overview of issues related to medical decision making. Introduction to concept of evidence-based medicine and decision processes related to process of care and outcomes. Basic probability and statistics to understand research evidence, decision evaluations, and algorithmic methods for decision-making processes (Bayes theorem, decision trees). Study design, hypothesis testing, and estimation. Focus on current research efforts, with focus on clinical applications and new types of information available. Geared toward nonphysicists to provide basic understanding of issues related to basic medical image acquisition. Letter grading. Mr. Morokha (W)
C231. Nanopore Sensing. (4) Lecture; four hours; discussion; one hour; outside study, seven hours. Requisites: Bioengineering 100, 120, Life Sciences 2, 3, Physics 1A, 1B, 1C. Analysis of sensors based on measurements of fluctuating ionic conductance through artificial or protein nanopores. Physics of pore conductance. Applications to single molecule detection, DNA sequencing, and bioelectrical measurements. Review of current literature and technological applications. Instruction and instrumentation of resistive pulse sensing, theory and instrumentation of electrical measurements in electrolytes, nanopore fabrication, ionic conductance through pores and GHK equation, patch clamp and single channel measurements and instrumentation, noise issues, protein engineering, molecular sensing, DNA sequencing, and clinical applications. Power generation. Laboratorv and classroom tests. Concurrently scheduled with course CM141. Letter grading. Mr. Schmidt (F)

CM240. Introduction to Biomechanics. (4) (Same as Mechanical and Aerospace Engineering CM240.) Lecture; four hours; discussion; two hours; outside study, six hours. Requisites: Mechanical and Aerospace Engineering 101, 102, 156A. Introduction to mechanical functions of human body; skeletal adaptions to optimize load transfer, mobility, and function. Dynamics and kinematics. Fluid mechanics applications. Heat and mass transfer. Power generation. Laboratory and classroom tests. Concurrently scheduled with course CM140. Letter grading. Mr. Gupta (W)

CM245. Molecular Biotechnology for Engineers. (4) (Same as Chemical Engineering CM245.) Lecture; four hours; discussion; one hour; outside study, eight hours. Selected topics in molecular biology that form foundation of biotechnology and biomedical industry today. Topics include recombinant DNA technology, molecular imaging, gene therapy, and tissue engineering. Concurrently scheduled with course CM145. Letter grading. Mr. Liao (F)

M348. Introduction to Biological Imaging. (4) (Same as Biomedical Physics M248 and Pharmacology M248.) Lecture, three hours; laboratory, one hour; outside study, seven hours. Exploration of role of biological imaging in modern biology and medicine, including imaging physics, instrumentation, image processing, and applications of imaging for range of modalities. Practical experience provided through series of imaging laboratories. Letter grading.

CM250A. Introduction to Micromachining and Microelectromechanical Systems (MEMS). (4) (Formerly numbered M250A.) (Same as Electrical Engineering CM250A and Mechanical and Aerospace Engineering CM280A.) Lecture, four hours; discussion; one hour; outside study, seven hours. Requisites: Chemistry 20A, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Corequisite: course CM250L. Introduction to micromachining technologies and microelectromechanical systems (MEMS). Methods of micromachining and how these methods can be used to produce variety of MEMS, including microstructures, microsensors, and microactuators. Students design microfabrication processes capable of achieving desired MEMS device. Concurrently scheduled with course CM150 or CM250A. Letter grading. Mr. Judy (W)

M250B. Microelectromechanical Systems (MEMS) Fabrication. (4) (Same as Electrical Engineering M250B and Mechanical and Aerospace Engineering M260B.) Lecture, three hours; discussion; one hour; outside study, eight hours. Requisite: course CM150 or CM250A. Advanced discussion of micromachining processes used to construct MEMS. Coverage of many lithographic, deposition, and etching processes used in combination in process integration. Materials issues such as chemical resistance, corrosion, mechanical properties, and residuallintinsic stress. Letter grading. Mr. Judy (Sp)

CM250L. Introduction to Micromachining and Microelectromechanical Systems (MEMS) Laboratory. (2) (Same as Electrical Engineering CM250L and Mechanical and Aerospace Engineering CM280L.) Lecture, one hour; laboratory, four hours; outside study, one hour. Requisites: Chemistry 20A, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Corequisite: course CM250A. Hands-on introduction to micromachining technologies and microelectromechanical systems (MEMS) laboratory. Methods of micromachining and how these methods can be used to produce variety of MEMS, including microstructures, microsensors, and microactuators. Students go through process of fabricating MEMS device. Concurrently scheduled with course CM150L. Letter grading. Mr. Judy (F)

M252. Microelectromechanical Systems (MEMS): Device Physics and Design. (4) (Formerly numbered M250B.) (Same as Electrical Engineering M252 and Mechanical and Aerospace Engineering M282.) Lecture, four hours; outside study, eight hours. Introduction to MEMS design. Design methods, design rules, sensing and actuation mechanisms, microsensors, and microactuators. Designing MEMS to be produced with both foundry and nonfoundry processes. Computer-aided design for MEMS. Design project required. Letter grading.

Mr. Wu (Sp)


Mr. Judy (Sp)


Mr. Judy (Sp)


M263. Neuroanatomy: Structure and Function of Nervous System. (4) (Same as Neuroscience M203.) Lecture, three hours; discussion/laboratory, three hours. Anatomy of central and peripheral nervous system at cellular histological and molecular systems level, with emphasis on contemporary experimental approaches to morphological study of nervous system. Includes cellular circuitry and neurochemical anatomy of major brain regions. Consideration of representative vertebrate and invertebrate nervous systems. Letter grading.

C270. Energy-Tissue Interactions. (4) Lecture, three hours; outside study, nine hours. Requisite: course CM280. In-depth exploration of host cellular response to biomaterials: vascular response, infection, and biocompatibility. Topics include morphology and composition of biomaterials and nanoscales, mesoscales, and macroscales, techniques for characterizing structure and properties of biomaterial interfaces, and methods for designing and fabricating biomaterials with prescribed structure and properties in vitro and in vivo. Letter grading. Ms. Maynard (W)

C270L. Introduction to Techniques in Studying Laser-Tissue Interaction. (2) Laboratory, four hours; outside study, two hours. Requisite: course C270. Designed for physical science, life sciences, and engineering majors. Introduction to study techniques used in studying laser-tissue interactions. Topics include computer simulations of light propagation in tissue, measurement absorption spectra of tissue/tissue phantoms, making tissue phantoms, determination of optical properties of different tissues, techniques of temperature distribution measurements. Concurrently scheduled with course C170L. Letter grading.


Mr. Grundfest (W)

C272. Design of Minimally Invasive Surgical Tools. (4) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisite: Chemistry 20A, 20B, 20L, or Materials Science 104. Engineering materials used in medicine and dentistry for repair and restoration of damaged natural tissues. Topically include relationships between material properties, suitability to task, surface chemistry, processing and treatment methods, and biocompatibility. Concurrently scheduled with course CM180. Letter grading. Mr. Wu (Sp)

C281. Biomaterials-Tissue Interactions. (4) Lecture, three hours; outside study, nine hours. Requisite: course CM280. In-depth exploration of host cellular response to biomaterials: vascular response, infection, and biocompatibility. Topics include morphology and composition of biomaterials and nanoscales, mesoscales, and macroscales, techniques for characterizing structure and properties of biomaterial interfaces, and methods for designing and fabricating biomaterials with prescribed structure and properties in vitro and in vivo. Letter grading. Mr. Wu (Sp)

282. Biomaterial Interfaces. (4) Lecture, four hours; laboratory, eight hours. Requisite: course CM180 or CM280. Function, utility, and biocompatibility of biomaterials depend critically on their surface and interfacial properties. Discussion of morphology and composition of biomaterials and nanoscales, mesoscales, and macroscales, techniques for characterizing structure and properties of biomaterial interfaces, and methods for designing and fabricating biomaterials with prescribed structure and properties in vitro and in vivo. Letter grading. Ms. Maynard (W)

Ms. Kasko (F)

M284. Functional Neuroimaging: Techniques and Applications. (3) (Same as Biomedical Physics M285, Neuroscience M285, Psychology M285, and Psychology M278.) Lecture, three hours. In-depth examination of activation imaging, including MRI and electrophysiological methods, data analysis and analysis of experimental design, and results obtained thus far in human systems. Strong focus on understanding technologies, how to design activation imaging paradigms, and how to interpret results. Laboratory work on development and implementation of functional MRI experiment. S/U or letter grading.

C285. Introduction to Tissue Engineering. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: course CM102 or CM202, Chemistry 20A, 20B, 20L. Tissue engineering applies principles of biology and physical sciences with engineering approach to regenerate tissues and organs. Guides principles for proper selection of three-dimensional scaffolds, biodegradable polymers, cells, cell lines, and molecular signals. Concurrently scheduled with course C185. Letter grading. Mr. Wu (Sp)

CM286B. Computational Systems Biology: Modeling and Simulation of Biological Systems. (8) (Same as Computer Science CM286B.) Lecture, four hours; laboratory, three hours; outside study, eight hours. Corequisite: Electrical Engineering 102. Dynamic biosystems modeling and computer simulation methods for studying biological/biomedical processes and systems at multiple levels of organization. Control system, multicompartamental, prey-predator, pharmacokinetics (PK), pharmacodynamics (PD), and other structural modeling methods applied to life sciences problems at molecular, cellular (biophysical pathways/networks), organ, and organismal levels. Both theory and descriptive modeling, with focus on translating biomodeling goals and data into mathematical models and implementing them for simulation and analysis. Basics of numerical simulation algorithms, with modeling software exercises in class and PC laboratory assignments. Concurrently scheduled with course CM186B. Letter grading. Mr. DiStefano (F)

M286C. Biomodeling Research and Research Communication Workshop. (2 to 4) (Formerly numbered CM286L.) (Same as Computer Science CM286C.) Lecture, one hour; discussion, two hours; laboratory, one hour; outside study, eight hours. Requisite: course CM102. Course work is closely directed to effective and real research experience in active quantitative systems biology research laboratory. Direction on how to focus on topics of current interest in scientific community, appropriateness to student interests and capabilities. Critiques of oral presentations and written progress reports explain how to proceed with search for research results. Major emphasis on effective research reporting, both oral and written. Concurrently scheduled with course CM186C. Letter grading.

Mr. DiStefano (Sp)

C287. Applied Tissue Engineering: Clinical and Industrial Perspectives. (4) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: course CM186B, Chemistry 20A, 20B, 20L, Life Sciences 1 or 2. Overview of central topics of tissue engineering, with focus on how to build artificial tissues into regulated clinically viable products. Topics include biomaterials selection for tissue design, delivery methods, FDA approval processes, and physi- cal/chemical and biological testing. Case studies include skin and cartilage, bone and cartilage, blood vessels, neurotransmitter tissue engineering, and liver, kidney, and other organs. Clinical and industrial perspectives of tissue engineering products. Manufacturing constraints, clinical limitations, and regulatory challenges in design and development of tissue-engineering devices. Concurrently scheduled with course C187. Letter grading. Mr. Wu (F)

295A-295Z. Seminars: Research Topics in Biomedical Engineering and Bioengineering. (1 to 4) Seminar, one to four hours. Limited to biomedical engineering graduate students. Advanced study and analysis of current topics in bioengineering. Discussion of current research and literature in research specialty of faculty member teaching course. Student presentation of projects in research specialty may be required for credit. S/U grading.

295A. Biomaterial Research.

295B. Biomaterials and Tissue Engineering Research.

295C. Minimally Invasive and Laser Research.

295D. Hybrid Device Research.

295E. Molecular Cell Bioengineering Research.

295F. Biopolymer Materials and Chemistry.

M296A. Advanced Modeling Methodology for Dynamic Biomedical Systems. (4) (Same as Computer Science M296A, and Medicine M270C.) Lecture, four hours; outside study, eight hours. Requisite: Electrical Engineering 141 or 142 or Mathematics 115A or Mechanical and Aerospace Engineering 171A. Development of dynamic systems modeling methodology for physiological, biomedical, pharmaceutical, chemical, and related systems. Control system, multicompartamental, noncompartmental, and input/output models, linear and nonlinear. Emphasis on model applications, limitations, and relevance in biomedical sciences and other limited data environments. Problem solving in PC laboratory. Letter grading. Mr. DiStefano (F)

M296B. Optimal Parameter Estimation and Experiment Design for Biomedical Systems. (4) (Same as Biostatistics M270, Computer Science M296B, and Medicine M270D.) Lecture, four hours; outside study, eight hours. Requisite: course M296A or Biostatistics 220. Estimation methodology and model parameter estimation algorithms for fitting dynamic system models to biomedical data. Model discrimination methods. Theory and algorithms for designing optimal experiments for developing and quantifying models, with special focus on optimal sampling schedule design for kinetic models. Exploration of PC software for model building and optimal experiment design via applications in physiology and pharmacology. Letter grading. Mr. DiStefano (W)

M296C. Advanced Topics and Research in Biomedical Engineering. (4) (Same as Computer Science M296C and Medicine M270E.) Lecture, four hours; outside study, eight hours. Requisite: course M296A. Recommended: course M296B. Research topics in advancement of system modeling and simulation, model development, and model/computing in biological and medical sciences. Review and critique of literature. Research problem posing and formulation. Approaches to solutions. Individual M.S.- and Ph.D-level project training. Letter grading. Mr. DiStefano (Sp)

M296D. Introduction to Computational Cardiology. (4) (Same as Computer Science M296D.) Lecture, four hours; outside study, eight hours. Requisite: course CM186B. Introduction to mathematical modeling and computer simulation of cardiac electrophysiological processes. Ionic models of action potential (AP). Theory of AP propagation in one-dimensional and two-dimensional cardiac tissue. Simulation on sequential and parallel supercomputers, choice of numerical algorithms, to optimize accuracy and to provide computational stability. Letter grading. Mr. Kogan (F/Sp)

298. Special Studies in Biomedical Engineering. (4) Lecture, four hours; outside study, eight hours. Study of selected topics in biomedical engineering taught by resident and visiting faculty members. Letter grading.

299. Seminar: Biomedical Engineering Topics. (2) Seminar, two hours; outside study, four hours. Designed for graduate biomedical engineering students. Seminar led by distinguished industrial and biomedical engineers from UCLA, other universities, and biomedical engineering companies such as Baxter, AMD, Medtronic, and Guidant on development and application of recent technological advances in discipline. Exploration of cutting-edge developments and challenges in wound healing models, stem cell biology, angiogenesis, signal transduction, gene therapy, 3D bioprinting technology, tissue engineering and microfluidics, tissue and bioinformatics. S/U grading. Mr. Wu (F/Sp)

375. Teaching Apprentice Practicum. (4) Seminar, to be arranged. Preparation: apprentice personnel employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading.

495. Teaching Assistant Training Seminar. (2) Seminar, two hours; outside study, four hours. Limited to graduate biomedical engineering students. Required of all departmental teaching assistants. May be taken concurrently while holding TA appointment. Seminar on communicating bioengineering and biomedical engineering principles, concepts, and methods; teaching assistant preparation, organization, and presentation of material, including use of visual aids, grading, advising, and rapport with students. S/U grading. Mr. DiStefano (F)

590. Directed Individual or Tutorial Studies. (2 to 8) Tutorial, to be arranged. Limited to graduate biomedical engineering students. Petition forms to request enrollment may be obtained from program office. Supervised investigation of advanced technical problems. S/U grading.

597A. Preparation for M.S. Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate biomedical engineering students. Reading and preparation for M.S. comprehensive examination. S/U grading.

597B. Preparation for Ph.D. Preliminary Examinations. (2 to 16) Tutorial, to be arranged. Limited to graduate biomedical engineering students. S/U grading.

597C. Preparation for Ph.D. Oral Qualifying Examination. (2 to 16) Tutorial, to be arranged. Limited to graduate biomedical engineering students. Supervised investigation of advanced technical problems. S/U grading.


Chemical and Biomolecular Engineering

UCLA
5531 Boelter Hall
Box 951592
Los Angeles, CA 90095-1592

(310) 825-2046
tax: (310) 206-4107
http://www.chemeng.ucla.edu

Harold G. Monbouquette, Ph.D., Chair
James C. Liao, Ph.D., Vice Chair

Professors
Jane P. Chang, Ph.D. (William Frederick Seyer Professor of Materials Electrochemistry)
Panagiotis D. Christofides, Ph.D.
Yoram Cohen, Ph.D.
James F. Davis, Ph.D., Associate Vice Chancellor
Robert F. Hicks, Ph.D.
Louis J. Ignarro, Ph.D. (Nobel laureate, Jerome J. Belzer Professor of Medical Research)
James C. Liao, Ph.D.
Yunfeng Lu, Ph.D.
Vasilios I. Manousiouthakis, Ph.D.
Harold G. Monbouquette, Ph.D.
Selim M. Senkan, Ph.D.

Professors Emeriti
Edidon L. Knuth, Ph.D.
Ken Nobe, Ph.D.
William D. Van Vorst, Ph.D.
A.R. Frank Wazzan, Ph.D., Dean Emeritus

Associate Professor
Yi Tang, Ph.D.

Assistant Professors
Gerassimos Orkoukas, Ph.D.
Tatiana Segura, Ph.D.

Scope and Objectives
The Department of Chemical and Biomolecular Engineering conducts undergraduate and graduate programs of teaching and research that focus on the areas of cellular and biomolecular engineering, systems engineering, and semiconductor manufacturing and span the general themes of energy/environment and nanotechnology. Aside from the fundamentals of chemical engineering (applied mathematics, thermodynamics, transport phenomena, kinetics, reactor engineering and separations), particular emphasis is given to metabolic engineering, protein engineering, systems biology, synthetic biology, biotechnology, biomaterials, air pollution, water production and treatment, environmental multimedia modeling, pollution prevention, combinatorial catalysis, molecular simulation, process modeling/simulation/control/optimization/integration/synthesis, membrane science, semiconductor processing, chemical vapor deposition, plasma processing and simulation, electrochemistry and corrosion, polymer engineering, and hydrogen production.

Students are trained in the fundamental principles of these fields while acquiring sensitivity to society’s needs—a crucial combination needed to address the challenges of continued industrial growth and innovation in an era of economic, environmental, and energy constraints.

The undergraduate curriculum leads to a B.S. in Chemical Engineering, is accredited by ABET and AIChE, and includes the standard core curriculum, as well as biomedical engineering, biomolecular engineering, environmental engineering, and semiconductor manufacturing engineering options. The department also offers graduate courses and research leading to M.S. and Ph.D. degrees. Both graduate and undergraduate programs closely relate teaching and research to important industrial problems.

Undergraduate Mission and Program Objectives
The mission of the undergraduate program is to educate future leaders in chemical and biomolecular engineering who effectively combine their broad knowledge of mathematics, physics, chemistry, and biology with their engineering analysis and design skills for the creative solution of problems in chemical and biological technology and for the synthesis of innovative (bio)chemical processes and products. This goal is achieved by producing chemical and biomolecular engineering alumni who (1) draw readily on a rigorous education in mathematics, physics, chemistry, and biology in addition to the fundamentals of chemical engineering to creatively solve problems in chemical and biological technology as evidenced by contributions to new or improved products and processes and/or to publications, presentations, and patents, (2) incorporate social, ethical, environmental, and economical considerations, including the concept of sustainable development, into chemical and biomolecular engineering practice, (3) lead or participate successfully on multidisciplinary teams assembled to tackle complex multifaceted problems that may require implementation of both experimental and computational approaches and a broad array of analytical tools, and (4) pursue graduate study and achieve an M.S. or Ph.D. degree in the sciences and engineering and/or achieve success as professionals in diverse fields, including business, medicine, and environmental protection, as well as chemical and biomolecular engineering, as evidenced by professional position, responsibilities, and salary, as well as salary increases and promotion.

Undergraduate Study
Chemical Engineering B.S.
The ABET-accredited chemical engineering curricula provide a high quality, professionally oriented education in modern chemical engineering. The biomedical engineering, biomolecular engineering, environmental engineering, and semiconductor manufacturing engineering options provide students an opportunity for exposure to a subfield of chemical and biomolecular engineering. In all cases, balance is sought between engineering science and practice.

Chemical Engineering Core Option
Preparation for the Major
Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Computer Science 31; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL, 4BL.

The Major
Required: Chemical Engineering 100, 101A, 101B, 101C, 102A, 102B, 103, 104AL, 104B, 106, 107, 108A, 108B, 109, Chemistry and Biochemistry 113A, 153A; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and two elective courses (8 units) from Chemical Engineering 110, C111, C112, 113, C114, C115, C116, C118, C119, C125, C140.

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ger.

Biomedical Engineering Option
Preparation for the Major
Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Computer Science 31; Life Sciences 2, 3; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL.
The Major

Required: Chemical Engineering 100, 101A, 101B, 101C, 102A, 102B, 103, 104AL, 104B, 106, 107, 108A, 108B, 109. Chemistry and Biochemistry 113A, 153A; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and one biomedical elective course (4 units) from Chemical Engineering C115, C125, CM145 (another chemical engineering elective may be substituted for one of these with approval of the faculty adviser).

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

Biomolecular Engineering Option

Preparation for the Major

Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Computer Science 31; Life Sciences 2, 3; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL.

The Major

Required: Chemical Engineering 100, 101A, 101B, 101C, 102A, 102B, 104AL, 104B, 106, 107, 108A, 108B, 109, C115, C125, Chemistry and Biochemistry 113A, 153A; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and one biomedical elective course (4 units) from Chemical Engineering C115, C125, CM145 (another chemical engineering elective may be substituted for one of these with approval of the faculty adviser).

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

Environmental Engineering Option

Preparation for the Major

Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Computer Science 31; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL, 4BL.

The Major

Required: Chemical Engineering 100, 101A, 101B, 101C, 102A, 102B, 103, 104AL, 104C, 104CL, 106, 107, 108A, 108B, 109, 109, C116, Chemistry and Biochemistry 113A, 153A; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and two elective courses (8 units) from Chemical Engineering 113, C118, C119, C140 (another chemical engineering elective may be substituted with approval of the faculty adviser).

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

Semiconductor Manufacturing Engineering Option

Preparation for the Major

Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Computer Science 31; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL, 4BL.

The Major


For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

Graduate Study

For information on graduate admission, see Graduate Programs, page 23.

For additional information regarding the B.S., M.S., and Ph.D. in Chemical Engineering, refer to the Chemical and Biomolecular Engineering Department brochure. The following introductory information is based on the 2009-10 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnet.ucla.edu/gasaa/library/pgmrqintro.htm. Students are subject to the detailed degree requirements as published in Program Requirements for the year in which they enter the program.

The Department of Chemical and Biomolecular Engineering offers Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Chemical Engineering.

Chemical Engineering M.S.

Areas of Study

Consult the department.

For the semiconductor manufacturing field, the program requires that students have advanced knowledge, assessed in a comprehensive examination, of processing semiconductor devices on the nanoscale.

Course Requirements

The requirements for an M.S. degree are a thesis, nine courses (36 units), and a 3.0 grade-point average in the graduate courses. Chemical Engineering 200, 210,
and 220 are required for all M.S. degree candidates. Two courses must be taken from offerings in the Chemical and Biomolecular Engineering Department, while two Chemical Engineering 598 courses involving work on the thesis may also be selected. The remaining two courses may be taken from those offered by the department or any other field in life sciences, physical sciences, mathematics, or engineering. At least 24 units must be in letter-graded 200-level courses.

All M.S. students are required to enroll in the seminar, Chemical Engineering 299, during each term in residence.

A program of study that encompasses these requirements must be submitted to the departmental Student Affairs Office for approval before the end of the student’s second term in residence.

Undergraduate Courses. No lower division courses may be applied toward graduate degrees. In addition, the following upper division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199; Civil and Environmental Engineering 106A, 108, 199; Computer Science M152A, 152B, 199; Electrical Engineering 100, 101, 102, 103, 110L, M116L, 199; Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 150, 160, 161L, 199; Mechanical and Aerospace Engineering 102, 103, 105A, 105D, 199.

Semiconductor Manufacturing

The requirements for the M.S. degree in the field of semiconductor manufacturing are 10 courses (44 units) and a minimum 3.0 grade-point average overall and in the graduate courses. Students are required to take Chemical Engineering 104C/104CL, 216, 270, 270R, Electrical Engineering 123A, Materials Science and Engineering 121. In addition, two departmental elective courses and two electrical engineering or materials science and engineering electives must be selected, with a minimum of two at the 200 level. A total of at least five graduate (200-level) courses is required. Approved elective courses include Chemical Engineering C214, C218, C219, 223, C240, Electrical Engineering 124, 221A, 221B, 223, 224, Materials Science and Engineering 210, 223.

Courses taken by students who are not enrolled in the semiconductor manufacturing field may not be applied toward the 10-course requirement for the degree. A program of study encompassing the course requirements and/or substitutions must be submitted to the graduate adviser for approval before the end of the first term in residence.

Field Experience. Students may take Chemical Engineering 270R in the field, working at an industrial semiconductor fabrication facility. This option must meet all course requirements and must be approved by the graduate adviser and the industrial sponsor of the research.

Comprehensive Examination Plan

The comprehensive examination plan is not available for fields other than semiconductor manufacturing.

For the semiconductor manufacturing field, when all coursework is completed, students should enroll in Chemical Engineering 597A to prepare for the comprehensive examination, which tests their knowledge of the engineering principles of semiconductor manufacturing. In case of failure, the examination may be repeated once with the consent of the graduate adviser.

Thesis Plan

Consult the graduate adviser. The thesis plan is not available for the semiconductor manufacturing field.

Chemical Engineering Ph.D.

Major Fields or Subdisciplines

Consult the department.

Course Requirements

All Ph.D. students must take six courses (24 units), including Chemical Engineering 200, 210, and 220. Two additional courses must be taken from those offered by the Chemical and Biomolecular Engineering Department. The third course can be selected from offerings in life sciences, physical sciences, mathematics, or engineering. All of these units must be in letter-graded 200-level courses. Students are encouraged to take more courses in their field of specialization. The minor field courses should be selected in consultation with the research adviser. A 3.33 grade-point average in graduate courses is required. A program of study to fulfill the course requirements must be submitted for approval to the departmental Student Affairs Office no later than one term after successful completion of the preliminary oral examination.

All Ph.D. students are required to enroll in the seminar, Chemical Engineering 299, during each term in residence.

For information on completing the Engineer degree, see Engineering Schoolwide Programs.

Preliminary and Qualifying Examinations

All Ph.D. students must take a preliminary oral examination that tests their understanding of chemical engineering fundamentals in the areas of thermodynamics, transport phenomena, and chemical kinetics and reactor design. The examination normally is taken during the second term in residence, and a 3.33 grade-point average in graduate coursework is required to be eligible to take the examination. Students are asked to solve the examination problems in writing and then present them orally to a faculty committee. Students whose first degree is not in chemical engineering may petition to postpone the examination to the following year. Any student failing the Ph.D. preliminary examination may petition to reenter the Ph.D. program after successfully completing the requirements for the M.S., including an M.S. thesis. If the petition is granted, the student may be approved to take the preliminary examination concurrently with the master’s thesis defense.

After successfully completing the required courses and the preliminary oral examination, students must pass the written and oral qualifying examinations. These examinations focus on the dissertation research and are conducted by a doctoral committee consisting of at least four faculty members nominated by the Department of Chemical and Biomolecular Engineering, in accordance with University regulations. The written qualifying examination consists of a dissertation research proposal that provides a clear description of the problem considered, a literature review of the current state of the art, and a detailed research plan that is to be followed to solve the problem. Students submit their dissertation research proposals to their doctoral committees. The written examination is due in the seventh week of the Winter Quarter of the second year in residence.

The University Oral Qualifying Examination consists of an oral defense of the dissertation research proposal and is administered by the doctoral committee. The oral examination is held no less than two weeks after submitting the written examination.

Note: Doctoral Committees. A doctoral committee consists of a minimum of four members. Three members, including the chair, are “inside” members and must hold
appointments in the Chemical and Biomolecular Engineering Department at UCLA. The “outside” member must be a UCLA faculty member outside the Chemical and Biomolecular Engineering Department.

Facilities

Biomolecular Engineering Laboratories

The Biomolecular Engineering laboratories are equipped for cutting-edge genetic, biomolecular, and cellular engineering teaching and research. Facilities and equipment include (1) DNA microarray printing and scanning facility, (2) fluorescence microscopy, (3) real-time PCR thermocycler, (4) UV-visible and fluorescence spectrophotometers, (5) HPLC and LC-MS spectrometer, (6) aerobic and anaerobic bioreactors from bench top to 100-liter pilot scale, (7) protein purification facility, (8) potentiostat/galvanostat and impedance analyzer for electroenzymology, (9) membrane extruder and multilange laser light scattering for production and characterization of biological and semi-synthetic colloids such as micelles and vesicles, and (10) phospholimager for biochemical assays involving radiolabeled compounds.

Microbial cells are genetically and metabolically engineered to produce novel compounds that are used as drugs, specialty chemicals, and food additives. Novel gene-metabolic circuits are designed and constructed in microbial cells to perform complex and non-native cellular behavior. These designer cells are cultured in bioreactors, and intracellular states are monitored using DNA microarrays and RT-PCR. Such investigations are coupled with genomic and proteomic efforts, and mathematical modeling, to achieve system-wide understanding of the cell.

Protein engineering is being used to generate completely novel compounds that have important pharmaceutical value. Bacteria are being custom-designed to synthesize important therapeutic compounds that have anticancer, cholesterol-lowering, and/or antibiotic activities. Biosensors are being micromachined for detecting neurotransmitters in vivo. New biosensing schemes also are being invented for the detection of endocrine disrupting chemicals in the environment and for the high-throughput screening of drug candidates. Naturally occurring protein nanocapsules are being redesigned at the genetic level for applications in drug delivery and materials synthesis. Finally, the enzymology of extremely thermophilic microbes is being explored for applications in specialty chemical synthesis.

Chemical Kinetics, Catalysis, Reaction Engineering, and Combustion Laboratory

The Chemical Kinetics, Catalysis, Reaction Engineering, and Combustion Laboratory is equipped with advanced research tools for experimental and computational studies in chemical kinetics, catalytic materials, and combustion, including quadrupole mass spectrometer (QMS) systems to sample reactive systems with electron impact and photoionization capabilities; several fully computerized gas chromatograph/mass spectrometer (GC/MS) systems for gas analysis; fully computerized array channel microreactors for catalyst discovery and optimization; several flat premixed and diffusion flame burners and flow reactors to study combustion and other fast reactions; a laser photoionization (LP) time-of-flight (TOF) mass spectrometer for the ultrasensitive, real-time detection of trace pollutants in the gas phase; a gravimetric microbalance to study heterogeneous reactions; and several state-of-the-art supermicro workstations for numerical investigations in fluid mechanics, detailed chemical kinetic modeling, and computational quantum chemistry.

Electrochemical Engineering and Catalysis Laboratories

With instrumentation such as rotating ring-disk electrodes, electrochemical packed-bed flow reactors, gas chromatographs, potentiostats, and function generators, the Electrochemical Engineering and Catalysis Laboratories are used to study metal, alloy, and semiconductor corrosion processes; electro-deposition and electrosless deposition of metals, alloys, and semiconductors for GMR and MEMS applications; electrochemical energy conversion (fuel cells) and storage (batteries); and bioelectrochemical processes and biomedical systems.

The electroorganic synthesis facility is for the development of electrochemical processes to transform biomass-derived organic compounds into useful chemicals, fuels, and pharmaceuticals. The catalysis facility is equipped to support various types of catalysis projects, including catalytic hydrocarbon oxidation, selective catalytic reduction of NOx, and Fischer-Tropsch synthesis.

Electronic Materials Processing Laboratory

The Electronic Materials Processing Laboratory focuses on the synthesis and patterning of multifunctional complex oxide films and nanostructures with tailored electronic, chemical, thermal, mechanical, and biological properties. Experimental and theoretical studies are combined to understand the process chemistry and surface kinetics in atomic layer deposition, plasma etching and deposition processes, gas-phase surface functionalization, and solution phase synthesis. Novel devices including advanced microelectronics, optoelectronics, chemical sensors, and energy storage devices are realized at nano-dimensions as the technologies become more enabling based on these fundamental studies.

The laboratory is equipped with a state-of-the-art advanced rapid thermal processing facility with in-situ vapor phase processing and atomic layer deposition capabilities; advanced plasma processing tools including thin film deposition and etching; and diagnostics including optical emissions spectroscopy, Langmuir probe, and quadrupole mass spectrometry; a surface analytical facility including X-ray photoelectron spectroscopy, Auger electron spectroscopy, ultra-violet photoelectron spectroscopy, reflection high energy electron diffraction, spectroscopic ellipsometry, photoluminescence, and infrared spectroscopy; and a complete set of processing tools available for microelectronics and MEMS fabrication in the Nanoelectronic Research Facility. With the combined material characterization and electronic device fabrication, the reaction kinetics including composition and morphology, and the electrical property of these materials can be realized for applications in the next generation electronic devices and chemical or biological MEMS.

Materials and Plasma Chemistry Laboratory

The Materials and Plasma Chemistry Laboratory is equipped with state-of-the-art instruments for studying the molecular processes that occur during chemical vapor deposition (CVD) and plasma processing. CVD is a key technology for synthesizing advanced electronic and optical devices, including solid-state lasers, infrared, visible, and ultraviolet detectors and emitters, solar cells, heterojunction bipolar transistors, and high-electron mobility transistors. The laboratory houses a commercial CVD
reactor for the synthesis of III-V compound semiconductors. This tool is interfaced to an ultrahigh vacuum system equipped with scanning tunneling microscopy, low-energy electron diffraction; infrared spectroscopy and X-ray photoelectron spectroscopy. This apparatus characterizes the atomic structure of compound semiconductor heterojunction interfaces and determines the kinetics of CVD reactions on these surfaces. The atmospheric plasma laboratory is equipped with multiple plasma sources and state-of-the-art diagnostic tools. The plasmas generate, at low temperature, beams of atoms and radicals well-suited for surface treatment, cleaning, etching, deposition, and sterilization. Applications are in the biomedical, electronics, and aerospace fields. The laboratory is unique in that it characterizes the reactive species generated in atmospheric plasmas and their chemical interactions with surfaces.

Nanoparticle Technology and Air Quality Engineering Laboratory

Modern particle technology focuses on particles in the nanometer (nm) size range with applications to air pollution control and commercial production of fine particles. Particles with diameters between 1 and 100 nm are of interest both as individual particles and in the form of aggregate structures. The Nanoparticle Technology and Air Quality Engineering Laboratory is equipped with instrumentation for online measurement of aerosols, including optical particle counters, electrical aerosol analyzers, and condensation particle counters. A novel low-pressure impactor designed in the laboratory is used to fractionate particles for morphological analysis in size ranges down to 50 nm (0.05 micron). Also available is a high-volumetric flow rate impactor suitable for collecting particulate matter for chemical analysis. Several types of specially designed aerosol generators are also available, including a laser ablation chamber, tube furnaces, and a specially designed aerosol microreactor. Concern with nanoscale phenomena requires the use of advanced systems for particle observation and manipulation. Students have direct access to modern facilities for transmission and scanning electron microscopy. Located near the laboratory, the Electron Microscopy facilities staff provide instruction and assistance in the use of these instruments. Advanced electron microscopy has recently been used in the laboratory to make the first systematic studies of atmospheric nanoparticle chain aggregates. Such aggregate structures have been linked to public health effects and to the absorption of solar radiation. A novel nanostructure manipulation device, designed and built in the laboratory, makes it possible to probe the behavior of nanoparticle chain aggregates of a type produced commercially for use in nano-composite materials; these aggregates are also released by sources of pollution such as diesel engines and incinerators.

Polymer and Separations Research Laboratory

The Polymer and Separations Research Laboratory is equipped for research on membranes, water desalination, adsorption, chemical sensors, polymerization kinetics, surface engineering with polymers and the behavior of polymeric fluids in confined geometries. Instrumentation includes a high resolution multiprobe Atomic Force Microscope (AFM) and a quartz crystal microbalance system for membrane and sensor development work. An atmospheric plasma surface structuring system is available for nano-structuring ceramic and polymeric surfaces for a variety of applications that include membrane performance enhancement and chemical sensor arrays. Analytical equipment for polymer characterization includes several high-pressure liquid chromatographs for size exclusion chromatography equipped with different detectors, including refractive index, UV photodiode array, conductivity, and a photodiode array laser light scattering detector. The laboratory has a research-grade FTIR with a TGA interface, a thermogravimetric analysis system, and a dual column gas chromatograph. Equipment for viscometric analysis includes high- and low-pressure capillary viscometer, narrow gap cylindrical couette viscometer, cone-and-plate viscometer, intrinsic viscosity viscometer system and associated equipment. Flow equipment is also available for studying fluid flow through channels of different geometries (e.g., capillary, slit, porous media). The evaluation of polymeric and novel ceramic-polymer membrane structures, developed in the laboratory, is made possible with reverse osmosis, pervaporation, and cross-flow ultrafiltration systems equipped with online detectors. Studies of high recovery membrane desalination are carried out in a membrane concentrator/crystallizer system. Resin sorption and regeneration studies can be carried out with a fully automated system.

Process Systems Engineering Laboratory

The Process Systems Engineering Laboratory is equipped with state-of-the-art computer hardware and software used for the simulation, design, optimization, control, and integration of chemical processes. Several personal computers and workstations, as well as an 8-node dual-processor cluster, are available for teaching and research. SEASnet and campuswide computational facilities are also available to the laboratory’s members. Software for simulation and optimization of general systems includes MINOS, GAMS, MATLAB, CPLEX, and LINDO. Software for simulation of chemical engineering systems includes HYSYS for process simulation and CACHE-FUJITSU for molecular calculations. UCLA-developed software for heat/power integration and reactor network attainable region construction are also available.

Faculty Areas of Thesis Guidance

Professors

Jane P. Chang, Ph.D. (MIT, 1998)  
Materials processing, gas-phase and surface reaction, plasma enhanced chemistries, atomic layer deposition, chemical microelectromechanical systems, and computational surface chemistry

Yoram Cohen, Ph.D. (Delaware, 1981)  
Separation processes, graft polymerization, surface nanostructuring, macromolecular dynamics, pollutant transport and exposure assessment

James F. Davis, Ph.D. (Northwestern, 1981)  
Intelligent systems in process control, operations and design, decision support, management of abnormal situations, data interpretation, knowledge databases, pattern recognition

Robert F. Hicks, Ph.D. (UC Berkeley, 1984)  
Chemical vapor deposition and atmospheric plasma processing

Louis J. Ignarro, Ph.D. (Minnesota, 1966)  
Regulation and modulation of NO production

James C. Liao, Ph.D. (Wisconsin, Madison, 1987)  
Biochemical engineering, metabolic reaction engineering, reaction path analysis and control

Selim M. Senkan, Ph.D. (MIT, 1977)  
Reaction engineering, combinatorial catalysis, combustion, laser photoionization, real-time detection, quantum chemistry

Robert F. Hicks, Ph.D. (UC Berkeley, 1984)  
Chemical vapor deposition and atmospheric plasma processing

Louis J. Ignarro, Ph.D. (Minnesota, 1966)  
Regulation and modulation of NO production

James C. Liao, Ph.D. (Wisconsin, Madison, 1987)  
Biochemical engineering, metabolic reaction engineering, reaction path analysis and control

Selim M. Senkan, Ph.D. (MIT, 1977)  
Reaction engineering, combinatorial catalysis, combustion, laser photoionization, real-time detection, quantum chemistry

Mr. Cohen, Mr. Hicks (F)


Ms. Chang, Mr. Hicks (W)

101C. Mass Transfer. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 101B. Introduction to analysis of mass transfer systems of interest to chemical engineering practice. Fundamentals of mass and energy transport, fixed bed and fluidized bed reactor systems. Letter grading.

Ms. Chang, Mr. Hicks (Sp)

102A. Thermodynamics I. (4) (Formerly numbered M105A.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Mathematics 33A, 33B. Introduction to thermodynamics of chemical and biological processes. First and second laws of thermodynamics. Energy, temperature, pressure, flow rate, viscosity, and fluid composition in chemical systems. Applications of first and second laws in biological processes and living organisms. Letter grading.

Mr. Lu, Mr. Orkoulas (W)


Mr. Lu, Mr. Orkoulas (Sp)

103. Separation Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 100, 101B. Application of principles of heat, mass, and momentum transport to design and operation of separation processes such as distillation, gas absorption, filtration, and reverse osmosis. Letter grading.

Ms. Chang, Mr. Senkan (Sp)

104A. Chemical Engineering Laboratory I. (6) Lecture, two hours; laboratory, eight hours; outside study, four hours; other, four hours. Requisites: courses 100, 101B, 102B. Measurements of temperature, pressure, flow rate, viscosity, and fluid composition in chemical processes. Methods of data acquisition, equipment selection, data analysis, and interpretation. Laboratory safety. Development of written and oral communications skills. Letter grading.

Mr. Hicks (Not offered 2009-10)

104AL. Chemical and Biomolecular Engineering Laboratory I. (3) Laboratory, six hours; discussion, one hour; outside study, two hours. Requisites: courses 100, 101B, 102B. Not open for credit to students with credit for course 104A. Measurements of temperature, pressure, flow rate, viscosity and fluid composition in chemical processes. Methods of data acquisition, equipment selection and fabrication, and laboratory safety. Development of written and oral communication skills. Letter grading.

Mr. Monboquet (W,Sp)

104B. Chemical and Biomolecular Engineering Laboratory II. (6) Lecture, two hours; laboratory, eight hours; outside study, four hours; other, four hours. Requisites: courses 104A, 104AL, 106 (or C115). Course consists of four experiments in chemical engineering unit operations, each of two weeks duration. Students present their results both written and orally. Written report includes experimental data, experimental procedures, scale-up and process design, and error analysis. Letter grading.

Mr. Senkan (F)

104C. Semiconductor Processing. (3) Lecture, four hours; outside study, one hour. Requisite: course 101C. Corequisite: course 104CL. Basic engineering principles of semiconductor unit operations, including fabrication and characterization of semiconductor devices. Investigation of processing steps used to make CMOS devices, including wafer cleaning, oxidation, diffusion, lithography, chemical vapor deposition, plasma etching, metallization, and statistical design of experiments and data analysis. Letter grading.

Ms. Chang, Mr. Hicks (Sp)

104CL. Semiconductor Processing Laboratory. (3) Laboratory, four hours; outside study, five hours. Requisite: course 101C. Corequisite: course 104C. Series of experiments that emphasize basic engineering principles of semiconductor unit operations, including fabrication and characterization of semiconductor devices. Investigation of processing steps used to make CMOS devices, including wafer cleaning, oxidation, diffusion, lithography, chemical vapor deposition, plasma etching, and metallization. Hands-on device testing includes transistors, diodes, and capacitors. Letter grading.

Ms. Chang, Mr. Hicks (Sp)


Ms. Segura, Mr. Tang (F, W, Sp)

104DL. Molecular Biotechnology Laboratory: From Gene to Product. (4) Laboratory, eight hours; outside study, four hours. Requisites: courses 101C, 102C. Corequisite: course 104C. Hands-on molecular and biotechnological techniques in modern biotechnology Cloning of protein-coding gene into plasmid, transformation of construct into E. coli, production of gene product. Hands-on practice of downstream processing of bioreactor broth to purify recombinant protein, and characterization of purified protein. Letter grading.

Ms. Segura, Mr. Tang (F, W, Sp)

106. Chemical Reaction Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 100, 101C, 102B. Fundamentals of chemical kinetics and catalysis. Introduction to analysis and design of homogeneous and heterogeneous chemical reactors. Letter grading.

Mr. Senkan (F)


Mr. Christofides, Mr. Manoussakis (W)

108A. Process Economics and Analysis. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 103 (or C125), 104AL, 106 (or C115). Integration of chemical engineering fundamentals such as transport phenomena, thermodynamics, separation operations, and reaction engineering and simple economic principles for purpose of designing chemical processes and evaluating alternatives. Letter grading.

Mr. Manoussakis (W)
108B. Chemical Process Computer-Aided Design and Analysis. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: Computer 125 or 132. Concurrently scheduled with course C213 or C215. Letter grading. (Not offered 2009-10)

109. Numerical and Mathematical Methods in Chemical and Biological Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Preparation: basic knowledge of MATLAB programming. Numerical methods for computation of solution of systems or linear and nonlinear algebraic equations, ordinary differential equations, and partial equations. Chemical and biomolecular engineering examples used throughout to illustrate application of these methods. Use of MATLAB as platform (programming environment) to write programs based on numerical methods to solve various problems arising in chemical engineering. Letter grading. Mr. Christofides (F)

110. Intermediate Engineering Thermodynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 102B. Principles and engineering applications of thermodynamics. First and second laws. Determination of partition function in terms of simple molecular models and spectroscopic data; nonideal gases; phase transitions and adsorption; nonequilibrium processes; and coupled transport processes. Letter grading. Mr. Nobe (Not offered 2009-10)

C111. Cryogenics and Low-Temperature Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 102A, 102B (or Materials Science 130). Fundamentals of cryogenics and cryogenic engineering pertaining to industrial processes. Basic principles of cryogenic partition function and study of cryogenic systems. Design of cryogenic systems. Use of cryogenic systems in biological research. Concurrently scheduled with course C211. Letter grading. Mr. Manousiouthakis (F)

C112. Polymer Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 101A, 101C. Thermodynamics of polymers, criteria for selecting reaction scheme, polymerization techniques, polymer characterization, rheology of macromolecules, polymer thermodynamics, diffusion in polymer systems. Polymers in biomedical applications and in microelectronics. Concurrently scheduled with course C212. Letter grading. Mr. Cohen, Mr. Lu (Not offered 2009-10)

113. Air Pollution Engineering. (4) Lecture, four hours; preparation, two hours; outside study, six hours. Requisites: courses 101C, 102B. Integrated approach to air pollution, including concentrations of atmospheric pollutants, air pollution standards, air pollution sources and control technology, and relationship of air quality to emission sources. Links air pollution to multimedia environmental assessment. Letter grading. (Not offered 2009-10)

C114. Electrochemical Processes and Corrosion. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 102A, 102B (or Materials Science 130). Fundamentals of electrochemistry and engineering applications to industrial electrochemical processes and metallic corrosion. Primary emphasis on fundamental approach to analysis of electrochemical and corrosion processes. Specific topics include corrosion of metals and semiconductors, electrochemical metal and semiconductor surface finishing, passivity, electrodeposition, electrodesposited and fuel cells, electrolysis and bioelectrochemical processes. May be concurrently scheduled with course C214. Letter grading. Mr. Nobe (Not offered 2009-10)

C115. Biochemical Reaction Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 101C. Use of previously learned concepts of biochemical thermodynamics, transport phenomena, and reaction kinetics to develop tools needed for technical design and economic analysis of biological reactor. May be concurrently scheduled with course CM215. Letter grading. Mr. Liao, Ms. Segura (F)

C116. Surface and Interface Engineering. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Requisite: Introduction to surfaces and interfaces of engineering materials, particularly catalytic surface and thin films for solid-state electronic devices. Topics include classification of crystals and surfaces, exchange and structure and composition of crystals and their surfaces and interfaces. Examination of engineering applications, including catalytic surfaces, interfaces in microelectronics, and solid-state laser. May be concurrently scheduled with course C216. Letter grading. Ms. Chang, Mr. Hicks (S)


C211. Membrane Science and Technology. (4) Lecture, four hours; study, seven hours. Requisite: course 101A. Fundamentals of membrane science and technology, with emphasis on separations at micro, nano, and macro scales of separation in biological membranes. Relationship between structure/morphology of dense and porous membranes and their separation characteristics. Use of nanotechnology for design of selective and transport membranes. Basic approaches to studies of transport (flux and selectivity). Examples provided from various fields/applications, including biotechnology, microelectronics, chemical processes, sensors, and biomedical devices. Concurrently scheduled with course C221. Letter grading. Mr. Cohen (Not offered 2009-10)

C212. Cell Material Interactions. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course CM145, Life Sciences 2, 3. Introduction to design and synthesis of biomaterials for regenerative medicine, in vitro cell culture, and drug delivery. Biological principles of cellular microenvironment and design of biomaterials for inclusion and transport (flux and selectivity). Examples provided from various fields/applications, including biotechnology, microelectronics, chemical processes, sensors, and biomedical devices. Concurrently scheduled with course C221. Letter grading. Mr. Cohen (Not offered 2009-10)

C214. Synthetic Biology for Biofuels. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Chemistry 153A, Life Sciences 3. Development of methods for converting microorganisms to products of interest. Fermentation technology is common goal of metabolic engineering and synthetic biology. Production of advanced biofuels involves designing and constructing novel metabolic networks in cells. Such efforts require understanding of biochemistry, protein structure, and biological regulations and are aided by tools in bioinformatics, systems biology, and molecular biology. Fundamentals of metabolic biochemistry, protein structure and function, and bioinformatics. Use of systems modeling for metabolic networks to design microorganisms for energy applications. Concurrently scheduled with course CM225. Letter grading. Mr. Liao (Sp)

C135. Advanced Process Control. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 107. Introduction to advanced process control. Topics include (1) Lyapunov stability for autonomous nonlinear systems including converse theorems, (2) input to state stability, interconnected systems, and small gain theorems, (3) design of nonlinear and robust controllers for various classes of nonlinear systems, (4) model predictive control of linear and nonlinear systems, (5) advanced methods for tuning of classical controllers, (6) and introduction to control of distributed parameter systems. Concurrently scheduled with course C235. Letter grading. Mr. Christofides (Sp)

C140. Fundamentals of Aerosol Technology. (4) Lecture, four hours; outside study, eight hours. Requisite: course 101C. Technology of particle/gas systems with applications to gas cleaning, commercial production of fine particles, and catalysis. Particle transport and deposition, optical properties, experimental methods, dynamics and control of particle formation processes. Concurrently scheduled with course C240. Letter grading. (Not offered 2009-10)

C145. Molecular Biotechnology for Engineers. (4) (Same as Biomedical Engineering CM145.) Lecture, four hours; discussion, one hour; outside study, eight hours. Selected topics in molecular biology that form foundation of biotechnology and biomedical industry today. Topics include recombinant DNA technique, molecular research tools, manipulation of gene expression, directed mutagenesis and protein engineering, DNA-based diagnostics and DNA microarrays, antibody and protein-based diagnostics, genomics and bioinformatics, isolation of human genes, gene therapy, and tissue engineering. Concurrently scheduled with course C245. Letter grading. Mr. Liao, Mr. Tang (F)

188. Special Courses in Chemical Engineering. (4) Seminar, four hours; outside study, eight hours. Special topics in chemical engineering for undergraduates that are taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated once for credit with topic or instructor change. Letter grading.

194. Research Group Seminars: Chemical Engineering. (4) Seminar, four hours; outside study, eight hours. Designed for undergraduate students who are part of research group. Discussion of research methods and current literature in field. May be repeated for credit. Letter grading.

199. Directed Research in Chemical Engineering. (2 to 8) Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation of selected topic under guidance of faculty mentor. Culminating paper or project required. May be repeated for credit with school approval. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading (FW,Sp).
Graduate Courses

200. Advanced Engineering Thermodynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 102B. Phenomenological and statistical thermodynamics of chemical and physical systems with engineering applications. Presentation of role of atomic and molecular spectra and intermolecular forces in interpretation of thermodynamic properties of gases, liquids, solids, and plasmas. Letter grading.

201. Methods of Molecular Simulation. (4) Lecture, four hours; outside study, eight hours. Requisite: course 200 or Chemistry C223A or Physics 215A. Modern simulation techniques for classical molecular systems. Monte Carlo and molecular dynamics in various ensembles. Applications to liquids, solids, and polymers. Letter grading.

210. Advanced Chemical Reaction Engineering. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 101C, 106. Principles of chemical reactor analysis and design. Particular emphasis on simultaneous effects of chemical reaction and mass transfer on noncatalytic and catalytic reactions in fixed and fluidized beds. Letter grading. Mr. Senkan (F)

C211. Cryogenics and Low-Temperature Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 102A, 102B (or Materials Science 130). Fundamentals of cryogenics and cryoengineering science pertaining to industrial low-temperature processes. Basic approaches to analysis of cryofluids and envelopes needed for operation of cryogenic systems; low-temperature behavior of matter, optimization of cryosystems and other special conditions. Concurrently scheduled with course C111. Letter grading. Ms. Manoussiotakis (F)

C212. Polymer Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 101A, Chemistry 30A. Formation of polymers, criteria for selecting reaction scheme, polymerization techniques, polymer characterization. Mechanical properties. Rheology of macromolecules, polymer process engineering. Diffusion in polymeric systems. Polymers in biomedical applications and in microelectronics. Concurrently scheduled with course C112. Letter grading. Mr. Cohen, Mr. Lu (Not offered 2009-10)

C214. Electrochemical Processes and Corrosion. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 102A, 102B (or Materials Science 130). Fundamentals of electrochemistry and engineering applications to industrial electrochemical processes and metallic corrosion. Primary emphasis on fundamental approach to analysis of electrochemical and corrosion processes. Specific topics include corrosion of metals and semiconductors, electrochemical metal and semiconductor surface finishing, passivity, electrodepolarization, electroless deposition, batteries and fuel cells, electroosmosis and bioelectrochemical processes. May be concurrently scheduled with course C114. Letter grading. Mr. Nobe (Not offered 2009-10)

CM215. Biochemical Reaction Engineering. (4) (Same as Biomedical Engineering M215.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 101G. Use of previously learned concepts of biophysical chemistry, thermodynamics, transport phenomena, and reaction kinetics to develop tools needed for technical design and economic analysis of biological reactors. May be concurrently scheduled with course C115. Letter grading. Mr. Liao, Ms. Segura (F)

C216. Surface and Interface Engineering. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Requisite: Chemistry 113A. Introduction to surfaces and interfaces of engineering materials, particularly catalytic surface and thin films for solid-state electronic devices. Topics include classification of crystals and surfaces, analysis of structure and composition of crystals and their surfaces and interfaces. Examination of engineering applications, including catalytic surfaces, interfaces in microelectronics, and solid-state laser technology. Concurrently scheduled with course C116. Letter grading. Ms. Chang, Mr. Hicks (Sp)

217. Electrochemical Engineering. (4) Lecture, four hours; outside study, eight hours. Requisite: course C114. Transport phenomena in electrochemical systems; relationships between molecular transport, convection, and electrode kinetics, along with applications to industrial electrochemistry, fuel cell design, and modern battery technology. Letter grading. Mr. Nobe (F)


220. Advanced Mass Transfer. (4) Lecture, four hours; outside study, eight hours. Requisite: course 101C. Advanced treatment of mass transfer, with applications to industrial separation processes, gas cleaning, pulmonary bioengineering, controlled release systems, and reactor design; molecular and continuum theories of diffusion transport in porous and thin layers, membrane transport, convective mass transfer, concentration boundary layers, turbulent transport. Letter grading. Mr. Cohen (Sp)

C221. Membrane Science and Technology. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 101A, 101C, 103. Fundamentals of membrane science and technology, with emphasis on separations at micro, nano, and molecular/angstrom scale with membranes. Relationships between structure/morphology of dense and porous membranes and their separation characteristics. Use of nanotechnology for design of selective membranes and models of membrane transport (flux and selectivity). Examples provided from various fields/applications, including biotechnology, microelectronics, chemical processes, sensors, and bio-medical devices. Concurrently scheduled with course C121. Letter grading. Mr. Cohen (Not offered 2009-10)

222A. Stochastic Modeling and Simulation of Chemical Processes. (4) Lecture, four hours; outside study, eight hours. Introduction, definition, rationale of stochastic processes. Distribution, moments, correlation. Mean square calculus. Wiener process, white noise, Poisson process. Generalized functions. Linear systems with stochastic inputs, ergodicity. Application to chemical process modeling and simulation. Markov chains and processes. Ito integrals, stochastic difference, and differential equations. SU or letter grading. Mr. Manoussiotakis (F)

222B. Stochastic Optimization and Control. (4) Lecture, four hours; outside study, eight hours. Requisite: course 222A. Introduction to linear and nonlinear systems theory and estimation theory. Prediction, Kalman filter, smoothing of discrete and continuous systems. Stochastic control, systems with multiplicative noise. Applications to control of chemical processes. Stochastic optimization, statistical estimation and dynamical programming. SU or letter grading. Mr. Manoussiotakis (W)

223. Design for Environment. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 106, 200. Principles of chemical engineering, materials science and engineering, or Master of Engineering program students. Design of products for meeting environmental objectives; lifecycle inventories; lifecycle impact assessment; design for energy efficiency; design for waste minimization, computer-aided design tools, materials selection methods. Letter grading.

C224. Cell Material Interactions. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 101C, 102B. Phenomenological and statistical thermodynamics of biological reactors. May be concurrently scheduled with course C114. Letter grading.

Ms. Segura (Not offered 2009-10)

CM225. Bioprocesses and Bioprocess Engineering. (4) (Same as Biomedical Engineering M225.) Lecture, four hours; discussion, one hour; outside study, seven hours. Corequisites: course 108A. Separation strategies, design, and applications to chemical and biological systems; lifecycle inventories; lifecycle impact assessment. Use of stem cells in tissue engineering. Concurrently scheduled with course C124. Letter grading. Mr. Monbouquette (Sp)

C227. Synthetic Biology for Biofuels. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Chemistry 153A, Life Sciences 3. Engineering microorganisms for complex phenotype is common goal of metabolic engineering and synthetic biology. Production of advanced biofuels involves design of optimized metabolic networks in cells. Such efforts require profound understanding of biochemistry, protein structure, and biological regulations and are aided by tools in bioinformatics, systems biology, and molecular biology. Fundamentals of metabolic biochemistry, protein structure and function, and bioinformatics. Use of systems modeling for metabolic networks to design microorganisms for energy applications. Concurrently scheduled with course C127. SU or letter grading. Mr. Liao (Sp)


231. Molecular Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 106 or 110. Analysis and design of molecular-beam systems. Molecular-beam sampling of reactive mixtures in combustion chambers or gas jets. Molecular-beam studies of gas-surface interactions, including energy accommodations and heterogeneous reactions. Applications to air pollution control and to catalysis. Letter grading. Mr. Cohen (Sp)
232. Combustion Processes. (4) Lecture, four hours; outside study, eight hours. Requisite: course 108, 200, or Mechanical and Aerospace Engineering C132A. Fundamentals; change equations for multicomponent reactive mixtures, rate laws. Applications: combustion, including burning of (1) premixed gases or (2) condensed fuels. Detonation, Sound absorption and dispersion. Letter grading. Mr. Senkan (Sp)

234. Plasma Chemistry and Engineering. (4) Lecture, four hours; outside study, eight hours. Designed for graduate chemistry or engineering students. Application of chemistry, physics, and engineering principles to design and operation of plasma and ion-beam reactors used in etching, deposition, oxidation, and cleaning of materials. Examination of atomic, molecular, and ionic phenomena involved in plasma and ion-beam processing of semiconductors, etc. Letter grading. Ms. Chang, Mr. Hicks (Sp)

C235. Advanced Process Control. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 107. Introduction to advanced process control. Topics include (1) Lyapunov stability for autonomous nonlinear systems including converse theorems, (2) input to state stability of interconnected systems, and small gain theorems, (3) design of nonlinear and robust controllers for various classes of nonlinear systems, (4) model predictive control of linear and nonlinear systems, (5) advanced methods for tuning of classical controllers, and (6) introduction to control of distributed parameter systems. Concurrently scheduled with course C135. Letter grading. Mr. Christofides (Sp)

C236. Advanced Power Deposition. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 210, 216. Chemical vapor deposition is widely used to deposit thin films that comprise microelectronic devices. Topics: fundamentals of transport phenomena, gas and surface chemical kinetics, structure and composition of deposited films, and relationship between processes and film properties. Letter grading. C220. Fundamentals of Aerosol Technology. (4) Lecture, four hours; outside study, eight hours. Requisite: course 101C. Technology of particle/gas systems with applications to gas cleaning, commercial products, and catalysis. Particle transport and deposition, optical properties, experimental methods, dynamics and control of particle formation processes. Concurrently scheduled with course C120. (Not offered 2009-10.) Letter grading. Mr. Liao, Mr. Tang (F)

C245. Molecular Biotechnology for Engineers. (4) (Same as Biomedical Engineering CM245.) Lecture, four hours; discussion, one hour; outside study, seven hours. Selected topics in molecular biology that form foundation of biotechnology and biomedical industry today. Topics include recombinant DNA technology, molecular research tools, manipulation of gene expression, directed mutagenesis and protein engineering, DNA-based diagnostics and DNA microarrays, antibody and protein-based diagnostics, genomics and bioinformatics, isolation of human genes, gene therapy, and tissue engineering. Concurrently scheduled with course CM145. Letter grading. Mr. Liao, Mr. Tang (F)


250. Computer-Aided Chemical Process Design. (4) Lecture, four hours; outside study, eight hours. Requisite: course 108B. Application of optimization methods in chemical process design; computer aids in process engineering; process modeling; system-level flowsheet invention; process synthesis; optimal design and operation of large-scale chemical processing systems. Letter grading. Mr. Manousiouthakis (F)


270. Principles of Reaction and Transport Phenomena. (4) Lecture, four hours; outside study, laboratory, eight hours. Fundamentals in transport phenomena, chemical reaction kinetics, and thermodynamics at molecular level. Topics include Boltzmann equation, microscopic chemical kinetics, transition state theory, and statistical analysis. Examination of engineering applications related to state-of-art research areas in chemical engineering. Letter grading. Ms. Chang (W)

270R. Advanced Research in Semiconductor Manufacturing. (6) Laboratory, four hours; outside study, nine hours. Requisite: course 270. Designing students in M.S. semiconductor manufacturing option. Supervised research in processing semicon ductor materials and devices. Letter grading. M280A. Linear Dynamic Systems. (4) (Same as Electrical Engineering E240A and Mechanical and Aerospace Engineering M270A.) Lecture, four hours; outside study, eight hours. Requisite: Electrical Engineering 141 or Mechanical and Aerospace Engineering 171A. State-space description of linear time-invariant (LTI) and time-varying (LTV) systems in continuous and discrete time. Linear algebra concepts such as eigenvalues and eigenvectors, singular values, Cayley/Hamilton theorem, Jordan form; solution of state equations; stability, controllability, observability, realizability, and minimality. Stabilization design via state feedback and observers; separation principle. Connections with transfer function techniques. Letter grading.

M280C. Optimal Control. (4) (Same as Electrical Engineering M240C and Mechanical and Aerospace Engineering M270C.) Lecture, four hours; outside study, eight hours. Requisite: Electrical Engineering 240B or Mechanical and Aerospace Engineering 270B. Applications of variational methods, Pontryagin maximum principle, Hamilton/Jacobi/Bellman equation (dynamic programming) to optimal control of dynamic systems modeled by nonlinear ordinary differential equations. Letter grading. M282A. Nonlinear Dynamic Systems. (4) (Same as Electrical Engineering M242A and Mechanical and Aerospace Engineering M272A.) Lecture, four hours; outside study, eight hours. Requisite: course M280A or Electrical Engineering M240A or Mechanical and Aerospace Engineering M270A. State-space techniques for studying solutions of time-invariant and time-varying nonlinear dynamic systems with emphasis on stability. Lyapunov theory (including converse theorems), invariance, center manifold theorem, input-to-state stability and small-gain theorem. Letter grading. M283C. Analysis and Control of Infinite Dimensional Systems. (4) Lecture, four hours; outside study, eight hours. Requisites: courses M280A, M282A. Designed for graduate students. Introduction to advanced dynamical analysis and controller synthesis methods for nonlinear infinite dimensional systems. Topics include (1) linear operator and stability theory (basic results on Banach and Hilbert spaces, semigroup theory, convergence theory in function spaces), (2) nonlinear model reduction (linear and nonlinear Balanced model reduction, proper orthogonal decomposition), (3) nonlinear and robust control of nonlinear hyperbolic and parabolic partial differential equations (PDEs), (4) applications to transport-reaction processes. Letter grading. Mr. Christofides


290. Special Topics, (2 to 4) Seminar, four hours. Requisites for each offering announced in advance by department. Advanced and current study of one or more aspects of chemical engineering, such as chemical process dynamics and control, fuel cells and batteries, membrane transport, advanced chemical engineering analysis, polymers, optimization in chemical process design. May be repeated for credit with topic change. Letter grading.

M297. Seminar: Systems, Dynamics, and Control Topics. (2) (Same as Electrical Engineering M248S and Mechanical and Aerospace Engineering M299A.) Seminar, two hours; outside study, six hours. Limited to graduate engineering students. Presentations of research topics by leading academic researchers from fields of systems, dynamics, and control. Students who work in these fields present their projects and results.

298A-298Z. Research Seminars. (2 to 4 each) Seminar, to be arranged. Requisites for each offering announced in advance by department. Lectures, discussions, student presentations, and projects in areas of current interest. May be repeated for credit. S/U grading. (F,W,S,Sp)

299. Departmental Seminar. (2) Seminar, two hours. Limited to graduate chemical engineering students. Seminar by leading academic and industrial chemical engineers on research or development of recent technological advances in discipline. May be repeated for credit. S/U grading. (F,W,S,Sp)

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: prerequisite apprenticeship employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. (F,W,S,Sp)

405A. Teaching Assistant Training Seminar. (2) Seminar, two hours; outside study, four hours; one-day intensive training at beginning of Fall Quarter. Limited to graduate chemical engineering students. Required of all new teaching assistants. Special seminar on communicating chemical engineering principles, concepts, and methods; teaching assistant preparation, organization, and presentation of material, including use of grading, advising, and rapport with students. S/U grading.

495B. Teaching with Technology for Teaching Assistants. (2) Seminar, two hours; outside study, four hours. Limited to graduate chemical engineering students. Designed for teaching assistants interested in learning more about effective use of technology and ways to incorporate that technology into their classrooms for benefit of student learning. S/U grading.
Civil and Environmental Engineering

UCLA
5731 Boelter Hall
Box 951593
Los Angeles, CA 90095-1593
(310) 825-1346
fax: (310) 206-2222
e-mail: ceedept@cee.ucla.edu
http://cee.ucla.edu

Professors
Juin-Shyan (J-S) Chen, Ph.D., Chair
Jonathan P. Stewart, Ph.D., Vice Chair
Keith D. Stolzenbach, Ph.D., Vice Chair

Professors Emeriti
Stanley B. Dong, Ph.D.
Lewis P. Felton, Ph.D.
Michael E. Fourney, Ph.D.
Gary C. Hart, Ph.D.
Poul V. Lade, Ph.D.
Tung Hua Lin, D.Sc.
Chung Yen Liu, Ph.D.
Richard L. Perrine, Ph.D.
Moshe F. Rubinstein, Ph.D.
Lucien A. Schmit, Jr., M.S.
Lawrence G. Selna, Ph.D.

Associate Professors
Eric M.V. Hoek, Ph.D.
Terri S. Hogue, Ph.D.
Jennifer A. Jay, Ph.D.
Steven A. Margulis, Ph.D.
Ertugrul Taciroglu, Ph.D.

Assistant Professors
Scott J. Brandenberg, Ph.D.
Shaili Mahendra, Ph.D.
Jian Zhang, Ph.D.

Senior Lecturer
Christopher Tu, Ph.D.

Adjunct Professor
Ne-Zheng Sun, Ph.D.

Adjunct Associate Professors
Issam Najm, Ph.D.
Daniel E. Pradel, Ph.D.
Thomas Sabol, Ph.D.

Scope and Objectives
The civil and environmental engineering programs at UCLA include structural engineering, structural mechanics, geotechnical engineering, earthquake engineering, hydrology and water resources engineering, and environmental engineering.

The ABET-accredited civil engineering curriculum leads to a B.S. in Civil Engineering, a broad-based education in structural engineering, geotechnical engineering, hydrology and water resources engineering, and environmental engineering. This program is an excellent foundation for entry into professional practice in civil engineering or for more advanced study. The department also offers the undergraduate Environmental Engineering minor.

At the graduate level, M.S. and Ph.D. degree programs are offered in the areas of structures (including structural/earthquake engineering and structural mechanics), geotechnical engineering, hydrology and water resources engineering, and environmental engineering. In these areas, research is being done on a variety of problems ranging from basic physics and mechanics problems to critical problems in earthquake engineering and in the development of new technologies for pollution control and water distribution and treatment.

Department Mission
The Civil and Environmental Engineering Department seeks to exploit its subfield teaching and research strengths as well as to engage in multidisciplinary collaboration. This occurs within the context of a central guiding theme: engineering sustainable infrastructure for the future. Under this theme the department is educating future engineering leaders, most of whom will work in multidisciplinary environments and confront a host of twenty-first-century challenges. With an infrastructure-based vision motivating its teaching and research enterprise, the department conceptualizes and orients its activity toward broadening and deepening fundamental knowledge of the interrelationships among the built environment, natural systems, and human agency.

Undergraduate Program Objectives
The objectives of the ABET-accredited civil engineering curriculum at UCLA are to (1) provide graduates with a solid foundation in basic mathematics, science, and humanities, as well as fundamental knowledge of relevant engineering principles, (2) provide students with the capability for critical thinking, engineering reasoning, problem solving, experimentation, and teamwork, (3) prepare graduates for
advanced study and/or professional employment within a wide array of industries or governmental agencies, (4) produce graduates who understand ethical issues associated with their profession and who are able to apply their acquired knowledge and skills to the betterment of society, and (5) foster in students a respect for the educational process that is manifest by a lifelong pursuit of learning.

Undergraduate Study

Civil Engineering B.S.

Preparation for the Major

Required: Chemistry and Biochemistry 20A, 20B, 20L; Civil and Environmental Engineering 1, 15; Computer Science 31 (or another programming course approved by the Faculty Executive Committee); Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C (or Electrical Engineering 1), 4AL.

The Major

Required: Chemical Engineering 102A or Mechanical and Aerospace Engineering 105A, Civil and Environmental Engineering 101, 103, 108, 110, 120, 135A, 151, 153, Materials Science and Engineering 104, Mechanical and Aerospace Engineering 103, 182A; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and at least nine major field elective courses (36 units) that must include the required courses in two of the following tracks and at least two laboratory courses, one of which must be from one of the two selected tracks and the other from any separate track.

Environmental Engineering: Civil and Environmental Engineering 157B or 157C; recommended: courses 154, 155, 163, 164, M166; laboratory courses: 156A, 156B, 157C, M166L.

Geotechnical Engineering: Civil and Environmental Engineering 121; recommended: courses 123, 125, 139, Earth and Space Sciences 139; laboratory courses: 128L, 129.

Structural Engineering and Mechanics: Civil and Environmental Engineering 135B, one lecture course from 130, M135C, 137, 141, or 142, and one structures major project design course from 135L or 142L or 144 or 147; recommended: courses 121, 125, 130, 137, 141, 142, 143, 144, 147; laboratory courses: 130L, 135L, 137L, 142L.

Water Resources Engineering: Civil and Environmental Engineering 150 and 157L; recommended: courses 154, 156A, 157A; laboratory courses: 157L, 157M.


For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/

Environmental Engineering Minor

The Environmental Engineering minor is designed for students who wish to augment their major program of study with courses addressing issues central to the application of environmental engineering to important environmental problems facing modern society in developed and developing countries. The minor provides students with a greater depth of experience and understanding of the role that environmental engineering can play in dealing with environmental issues.

To enter the minor, students must be in good academic standing (2.0 grade-point average or better) and file a petition in the Office of Academic and Student Affairs, 6426 Boelter Hall.

Required Lower Division Course (5 units): Mathematics 3C or 32A.

Required Upper Division Courses (24 units minimum): Civil and Environmental Engineering 153 and five courses from 151, 154, 155, 156A, M166, Chemical Engineering C118, Environmental Health Sciences C125, C164.

No more than two upper division courses may be applied toward both this minor and a major or minor in another department or program, and at least 16 units applied toward the minor must be taken in residence at UCLA. Transfer credit for any of the above is subject to departmental approval; consult the undergraduate counselors before enrolling in any courses for the minor.

Each minor course must be taken for a letter grade, and students must have a minimum grade of C (2.0) in each and an overall grade-point average of 2.0 or better. Successful completion of the minor is indicated on the transcript and diploma.

Graduate Study

For information on graduate admission, see Graduate Programs, page 23.

The following introductory information is based on the 2009-10 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Pro-
gram Requirements are available at http://www.gdnet.ucla.edu/gasa/a/library/pgmrqintro.htm. Students are subject to the detailed degree requirements as published in Program Requirements for the year in which they enter the program.

The Department of Civil and Environmental Engineering offers Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Civil Engineering.

Civil Engineering M.S.

Course Requirements
Students may select either the thesis plan or comprehensive examination plan. At least nine courses are required, a majority of which must be in the Civil and Environmental Engineering Department. At least five of the courses must be at the 200 level. In the thesis plan, seven of the nine must be formal 100- or 200-series courses. The remaining two may be 598 courses involving work on the thesis. In the comprehensive examination plan, 500-series courses may not be applied toward the nine-course requirement. A minimum 3.0 grade-point average is required in all coursework.

Each major field has a set of required preparatory courses which are normally completed during undergraduate studies. Equivalent courses taken at other institutions can satisfy the preparatory course requirements. The preparatory courses cannot be used to satisfy course requirements for the M.S. degree; courses must be selected in accordance with the lists of required graduate and elective courses for each major field.

Undergraduate Courses. No lower division courses may be applied toward graduate degrees. In addition, the following upper division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199; Civil and Environmental Engineering 106A, 108, 199; Computer Science M152A, 152B, M171L, 199; Electrical Engineering 100, 101, 102, 103, 110L, M116L, M171L, 199; Materials Science and Engineering 110, 120, 130, 131L, 132, 140, 141L, 150, 160, 161L, 199; Mechanical and Aerospace Engineering 102, 103, 105A, 105D, 199.

The M.S. degree offers four fields of specialization that have specific course requirements.

Environmental Engineering
Required Preparatory Courses. Chemistry and Biochemistry 20A, 20B, 20L; Civil and Environmental Engineering 150 or 151, 153; Mathematics 32A, 33A; Mechanical and Aerospace Engineering 103, 105A; Physics 1A, 1B, 4AL, 4BL.
Required Graduate Courses. Civil and Environmental Engineering 254A, 255A, 255B.

Geotechnical Engineering
Required Preparatory Courses. Civil and Environmental Engineering 108, 120, 121.
Required Graduate Courses. Civil and Environmental Engineering 220, 221, 223, 224.
Major Field Elective Courses. Minimum of three courses must be selected from Civil and Environmental Engineering 123, 128L, 222, 225, 226, 227, 228L, 245.

Hydrology and Water Resources Engineering
Required Preparatory Courses. Chemistry and Biochemistry 20A, 20B, 20L; Civil and Environmental Engineering 150 or 151, 153; Mathematics 32A, 32B, 33A; Mechanical and Aerospace Engineering 103, 105A; Physics 1A, 1B, 4AL, 4BL.
Required Graduate Courses. Minimum of five courses must be selected from Civil and Environmental Engineering 250A through 250D, 251A through 251D, 252, 253, and 260, with a minimum of three from 251A through 251D, 252, 253, 260.

Elective Courses. Civil and Environmental Engineering 150, 164, 254A, 255A, 255B, 263A; a maximum of two of the following courses for students electing the thesis plan or a maximum of three of the following courses for students electing the comprehensive examination plan: Atmospheric and Oceanic Sciences M203A, 218, Computer Science 270A, 271A, 271B, Electrical Engineering 236A, 236B, 236C, M237, Mathematics 269A, 269B, 269C.

Students may petition the department for permission to pursue programs of study that differ from the above norms.

Structural/Earthquake Engineering
Required Preparatory Courses. Civil and Environmental Engineering 135A, 135B, 141, 142.
Required Graduate Courses. Civil and Environmental Engineering 235A, 246; at least three of the following courses: Civil and Environmental Engineering 225, 235B, 241, 243A, 245.


Structural Mechanics
Required Preparatory Courses. Civil and Environmental Engineering 130, 135A, 135B.
Required Graduate Courses. Civil and Environmental Engineering 232, 235A, 235B, 236, M237A.

Elective Courses. Undergraduate: No more than two courses from Civil and Environmental Engineering M135C, 137, 137L; graduate: Civil and Environmental Engineering M230A, M230B, M230C, 233, 235C, 238, 246, 247, Mechanical and Aerospace Engineering 269B.

Comprehensive Examination Plan
In addition to the course requirements, under this plan there is a comprehensive written examination covering the subject matter contained in the program of study. The examination is administered by a comprehensive examination committee, which may conduct an oral examination in
addition to the written examination. In case of failure, the examination may be repeated once with the consent of the graduate adviser.

**Thesis Plan**
In addition to the course requirements, under this plan students are required to write a thesis on a research topic in civil and environmental engineering supervised by the thesis adviser. An M.S. thesis committee reviews and approves the thesis. No oral examination is required.

**Civil Engineering Ph.D.**

**Major Fields or Subdisciplines**
Environmental engineering, geotechnical engineering, hydrology and water resources engineering, structural/earthquake engineering, and structural mechanics.

**Course Requirements**
There is no formal course requirement for the Ph.D. degree, and students may theoretically substitute coursework by examinations. However, students normally take courses to acquire the knowledge needed for the required written and oral preliminary examinations. The basic program of study for the Ph.D. degree is built around one major field and two minor fields. The major field has a scope corresponding to a body of knowledge contained in a detailed Ph.D. field syllabus available on request from the department office. Each minor field normally embraces a body of knowledge equivalent to three courses from the selected field, at least two of which are graduate courses. Grades of B− or better, with a grade-point average of at least 3.33 in all courses included in the minor field, are required. If students fail to satisfy the minor field requirements through coursework, a minor field examination may be taken (once only). The minor fields are selected to support the major field and are usually subsets of other major fields.

**Written and Oral Qualifying Examinations**
After mastering the body of knowledge defined in the major field, students take a written preliminary examination. When the examination is passed and all coursework is completed, students take an oral preliminary examination that encompasses the major and minor fields. Both preliminary examinations should be completed within the first two years of full-time enrollment in the Ph.D. program. Students may not take an examination more than twice.

After passing both preliminary examinations, students take the University Oral Qualifying Examination. The nature and content of the examination are at the discretion of the doctoral committee, but ordinarily include a broad inquiry into the student’s preparation for research. The doctoral committee also reviews the prospectus of the dissertation at the oral qualifying examination.

**Note: Doctoral Committees.** A doctoral committee consists of a minimum of four members. Three members, including the chair, must be “inside” members who hold full-time faculty appointments in the Civil and Environmental Engineering Department at UCLA. The “outside” member must be a UCLA faculty member outside the Civil and Environmental Engineering Department.

**Fields of Study**

**Environmental Engineering**
Research in environmental engineering focuses on the understanding and management of physical, chemical, and biological processes in the environment and in engineering systems. Areas of research include process development for water and wastewater treatment systems and the investigation of the fate and transport of contaminants in the environment.

**Geotechnical Engineering**
Research in geotechnical engineering focuses on understanding and advancing the state of knowledge on the effects that soils and soil deposits have on the performance, stability, and safety of civil engineering structures. Areas of research include laboratory investigations of soil behavior under static and dynamic loads, constitutive modeling of soil behavior, behavior of structural foundations under static and dynamic loads, soil improvement techniques, response of soil deposits and earth structures to earthquake loads, and the investigation of geotechnical aspects of environmental engineering.

**Hydrology and Water Resources Engineering**
Ongoing research programs deal with hydrologic processes, statistics related to climate and hydrology, multiobjective water resources planning and management, numerical modeling of solute transport in groundwater, remediation studies of contaminated soil and groundwater, and optimization of conjunctive use of surface water and groundwater.

**Structures (Structural Mechanics and Earthquake Engineering)**
Research in structural mechanics is directed toward improving the ability of engineers to understand and interpret structural behavior through experiments and computer analyses. Areas of special interest include computer analysis using finite-element techniques, computational mechanics, structural dynamics, nonlinear behavior, plasticity, micromechanics of composites, damage and fracture mechanics, probabilistic static and dynamic analysis of structures, and experimental stress analysis.

Designing structural systems capable of surviving major earthquakes is the goal of experimental studies on the strength of full-scale reinforced concrete structures, computer analysis of soils/structural systems, design of earthquake resistant masonry, and design of seismic-resistant buildings and bridges.

Teaching and research areas in structural/earthquake engineering involve assessing the performance of new and existing structures subjected to earthquake ground motions. Specific interests include assessing the behavior of reinforced concrete buildings and bridges, as well as structural steel, masonry, and timber structures. Integration of analytical studies with laboratory and field experiments is emphasized to assist in the development of robust analysis and design tools, as well as design recommendations. Reliability-based design and performance assessment methodologies are also an important field of study.

**Facilities**
The Civil and Environmental Engineering Department has a number of laboratories to support its teaching and research:

**Instructional Laboratories**

**Advanced Soil Mechanics Laboratory**
The Advanced Soil Mechanics Laboratory is used for presenting and performing advanced triaxial, simple shear, and consolidation soil tests. It is also used for demonstration of cyclic soil testing techniques and advanced data acquisition and processing.
Environmental Engineering Laboratories
The Environmental Engineering Laboratories are used for the study of basic laboratory techniques for characterizing water and wastewaters. Selected experiments include measurement of biochemical oxygen demand, suspended solids, dissolved oxygen hardness, and other parameters used in water quality control.

Experimental Fracture Mechanics Laboratory
The Experimental Fracture Mechanics Laboratory is used for preparing and testing specimens using modern dynamic testing machines to develop an understanding of fracture mechanics and to become familiar with experimental techniques available to study crack tip stress fields, strain energy release rate, surface flaws, and crack growth in laboratory samples.

Mechanical Vibrations Laboratory
The Mechanical Vibrations Laboratory is used for conducting free and forced vibration and earthquake response experiments on small model structures such as a three-story building, a portal frame, and a water intake/outlet tower for a reservoir. Two electromagnetic exciters, each with a 30-pound force capacity, are available for generating steady state forced vibrations. A number of accelerometers, LVDTs (displacement transducers), and potentiometers are available for measuring the motions of the structure. A laboratory view-based computer-controlled dynamic data acquisition system, an oscilloscope, and a spectrum analyzer are used to visualize and record the motion of the model structures.

Two small electromagnetic and servohydraulic shaking tables (1.5 ft. x 1.5 ft., and 2 ft. x 4 ft.) are available to simulate the dynamic response of structures to base excitation such as earthquake ground motions.

Reinforced Concrete Laboratory
The Reinforced Concrete Laboratory is available for students to conduct monotonic and cyclic loading to verify analysis and design methods for moderate-scale reinforced concrete slabs, beams, columns, and joints, which are tested to failure.

Soil Mechanics Laboratory
The Soil Mechanics Laboratory is used for performing experiments to establish data required for soil classification, soil compaction, shear strength of soils, soil settlement, and consolidation characteristics of soils.

Structural Design and Testing Laboratory
The Structural Design and Testing Laboratory is used for the design/optimization, construction, instrumentation, and testing of small-scale structural models to compare theoretical and observed behavior. Projects provide integrated design/laboratory experience involving synthesis of structural systems and procedures for measuring and analyzing response under load.

Research Laboratories
Building Earthquake Instrumentation Network
The Building Earthquake Instrumentation Network consists of more than 100 earthquake strong motion instruments in three campus buildings to measure the response of actual buildings during earthquakes. When combined with over 50 instruments placed in four Century City high-rises and retail buildings, this network, which is maintained by the U.S. Geological Society and State of California Division of Mines and Geology Strong Motion Program, represents the most detailed building instrumentation network in the world. The goal of the research conducted using the response of these buildings is to improve computer modeling methods and the ability of structural engineers to predict the performance of buildings during earthquakes.

Environmental Engineering Laboratories
The Environmental Engineering Laboratories are used for conducting water and wastewater analysis, including instrumental techniques such as GC, GC/MS, HPLC, TOC, IC, and particle counting instruments. A wide range of wet chemical analysis can be made in this facility with 6,000 square feet of laboratory space and an accompanying 4,000-square-foot rooftop facility where large pilot scale experiments can be conducted. Additionally, electron microscopy is available in another laboratory.

Recently studies have been conducted on oxygen transfer, storm water toxicity, transport of pollutants in soil, membrane fouling, removal from drinking water, and computer simulation of a variety of environmental processes.

Experimental Mechanics Laboratory
The Experimental Mechanics Laboratory supports two major activities: the Optical Metrology Laboratory and the Experimental Fracture Mechanics Laboratory.

In the Optical Metrology Laboratory, tools of modern optics are applied to engineering problems. Such techniques as holography, speckle-interferometry, Moiré analysis, and fluorescence-photo mechanics are used for obtaining displacement, stress, strain, or velocity fields in either solids or liquids. Recently, real-time video digital processors have been combined with these modern optical technical techniques, allowing direct interfacing with computer-based systems such as computer-aided testing or robotic manufacturing.

The Experimental Fracture Mechanics Laboratory is currently involved in computer-aided testing (CAT) of the fatigue fracture mechanics of ductile material. An online dedicated computer controls the experiment as well as records and manipulates data.

Large-Scale Structure Test Facility
The Large-Scale Structure Test Facility allows investigation of the behavior of large-scale structural components and systems subjected to gravity and earthquake loadings. The facility consists of a high-bay area with a 20 ft. x 50 ft. floor with anchor points at 3 ft. on center. Actuators with servohydraulic controllers are used to apply monotonic or cyclic loads. The area is serviced by two cranes. The facilities are capable of testing large-scale structural components under a variety of axial and lateral loadings.

Associated with the laboratory is an electrohydraulic universal testing machine with force capacity of 100 tons. The machine is used mainly to apply tensile and compressive loads to specimens so that the properties of the materials from which the specimens are made can be determined. It can also be used in fatigue-testing of small components.

Soil Mechanics Laboratory
The Soil Mechanics Laboratory is used for standard experiments and advanced research in geotechnical engineering, with equipment for static and dynamic triaxial and simple shear testing. Modern computer-controlled servo-hydraulic closed-loop system supports triaxial and simple shear devices. The system is connected to state-of-the-art data acquisition equipment. The laboratory also includes special simple
shear apparatuses for small-strain static and cyclic testing and for one-dimensional or two-dimensional cyclic loading across a wide range of frequencies. A humidity room is available for storing soil samples.

Faculty Areas of Thesis Guidance

Professors
Jiun-Shyan (J-S) Chen, Ph.D. (Northwestern, 1989)
Finite element methods, meshfree methods, large deformation mechanics, inelasticity, contact problems, structural dynamics

Michael K. Shih, Ph.D. (Clemson, 1976)
Process development and control for water and wastewater treatment plants

Jonathan F. Stewart, Ph.D. (UC Berkeley, 1996)
Geotechnical engineering, earthquake engineering

Keith D. Stolzenbach, Ph.D. (MIT, 1971)
Environmental fluid mechanics, fate and transport of pollutants, dynamics of particles

Michael Vucetic, Ph.D. (Rensselaer, 1986)
Geotechnical engineering, soil dynamics, geotechnical earthquake engineering, experimental studies of static and cyclic soil properties

John W. Wallace, Ph.D. (UC Berkeley, 1988)
Earthquake engineering, design methodologies, seismic loading and retrofit, large-scale testing laboratory and field testing

William W-G. Yeh, Ph.D. (Stanford, 1967)
Hydrology and optimization of water resources systems

Professors Emeriti
Stanley B. Dong, Ph.D. (UC Berkeley, 1962)
Structural mechanics, structural dynamics, finite element methods, numerical methods and mechanics of composite materials

Lewis P. Felton, Ph.D. (Carnegie Institute of Technology, 1964)
Structural analysis, structural mechanics, automated optimum structural design, including reliability-based design

Michael E. Fouad, Ph.D. (Caltech, 1963)
Experimental mechanics, special emphasis on application of modern optical techniques

Gary C. Hart, Ph.D. (Stanford, 1968)
Structural engineering analysis and design of buildings for earthquake and wind loads, structural dynamics, and uncertainty and risk analysis of structures

Poul V. Lade, Ph.D. (UC Berkeley, 1972)
Soil mechanics, stress-strain and strength characteristics of soils, deformation and stability analyses of foundation engineering problems

Chung Yen Liu, Ph.D. (Caltech, 1962)
Fluid mechanics, environmental, numerical

Richard L. Perrine, Ph.D. (Stanford, 1953)
Resource and environmental problems—chemical, petroleum, or hydrological, physics of flow through porous media, transport phenomena, kinetics

Moshe F. Rubinstein, Ph.D. (UCLA, 1961)
Systems analysis and design, problem-solving and decision-making models

Lucien A. Schmit, Jr., M.S. (MIT, 1950)
Structural mechanics, optimization, automated design methods for structural systems and components, application of finite element analysis techniques and mathematical programming algorithms in structural design, analysis and synthesis methods for fiber composite structural components.

Lawrence G. Selina, Ph.D. (UC Berkeley, 1967)
Reinforced concrete, earthquake engineering

Terry S. Hogue, Ph.D. (Arizona, 2003)
Surface hydrology, hydroclimatology, rainfall-runoff modeling, operational flood forecasting, parameter estimation, model optimization techniques, sensitivity analysis, land-surface-atmosphere interactions, surface vegetation atmosphere transfer schemes (SVATs), and carbon flux modeling

Jennifer A. Jay, Ph.D. (MIT, 1999)
Aqueous chemistry, environmental microbiology

Steven A. Margulis, Ph.D. (MIT, 2002)
Surface hydrology, hydrometeorology, remote sensing, data assimilation

Ertugrul Tacioglu, Ph.D. (Illinois, Urbana-Champaign, 1998)
Computational structural and solid mechanics and constitutive modeling of materials

Assistant Professors
Scott J. Brandenberg, Ph.D. (UC Davis, 2005)
Geotechnical earthquake engineering, soil-structure interaction, liquefaction, data acquisition and processing, numerical analysis

Shalily Mahendra, Ph.D. (UC Berkeley, 2007)
Environmental microbiology, biodegradation of groundwater contaminants, microbial nanomaterial interactions, nanotoxicology, applications of molecular biological and isotopic tools in environmental engineering

Jian Zhang, Ph.D. (UC Berkeley, 2002)
Earthquake engineering, structural dynamics and mechanics, seismic protective devices and strategies, soil-structure interaction, and bridge engineering

Senior Lecturer
Christopher Tu, Ph.D. (UC Davis, 1975)
Groundwater movement and surface water hydrology

Adjunct Professor
Ne-Zheng Sun, Ph.D. (Shandong, 1965)
Mathematical modeling of groundwater flow and contaminant transport, water resources management, numerical analysis and optimization

Adjunct Associate Professors
Issam Najm, Ph.D. (Illinois, Urbana-Champaign, 1990)
Water chemistry, physical and chemical processes in drinking water treatment

Daniel E. Pradel, Ph.D. (U. Tokyo, 1987)
Soil mechanics and foundation engineering

Thomas Sabol, Ph.D. (UCLA, 1985)
Seismic performance and structural design issues for steel and concrete seismic force resisting systems; application of probabilistic methods to earthquake damage quantification

Lower Division Courses

1. Introduction to Civil Engineering. (2) Lecture, two hours; outside study, two hours. Introduction to scope of civil engineering profession, including earth-quake, environmental, geotechnical, structural, transportation, and water resources engineering. P/NP grading. (Sp)

15. Introduction to Computing for Civil Engineers. (2) Lecture, two hours; laboratory, two hours; outside study, two hours. Introduction to computer programming using MATLAB. Selected topics in programming, with emphasis on numerical techniques and methodology as applied to civil engineering problems. Letter grading. (F)

18. Fiat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading. (Sp)

58SL. Wetlands and Water Quality Service Learning Course. (4) Lecture, three hours; outside study, nine hours. Learning and teaching of basic water quality concepts and wetland functions in one of two middle school classrooms in Los Angeles. Topics include photosynthesis, respiration, basic water quality parameters (pH, dissolved oxygen, salinity, turbidity), basic contaminant chemistry and metal precipitation, and role of wetlands in microbial water quality. Field trip with middle school students to Ballona Wetlands. Letter grading. (F)

97. Variable Topics in Civil and Environmental Engineering. (2 to 4) Seminar, two hours; outside study, four hours. Introduction to issues of professional practice in structural engineering. Content and organization of model building codes and material-specific reference standards. Interpretation of architectural and structural and design drawings and specifications. Material-independent structural calculations such as tributary area, nullhystory loads, and estimation of simple seismic and wind loads. P/NP grading. (F)


103. Applied Numerical Computing and Modeling in Civil and Environmental Engineering. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 15, Mathematics 33B (may be taken concurrently). Introduction to numerical computing with specific applications in civil and environmental engineering. Topics include error and computational arithmetic, root finding, interpolation, numerical integration and differentiation, solution of systems of linear and nonlinear equations, numerical solution of ordinary and partial differential equations. Letter grading. (Sp)

Upper Division Courses

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.
105. Technical Communication. (4) Lecture, four hours; outside study, eight hours. Techniques for effectively communicating technical material accurately, clearly, and briefly, with emphasis on organization and development of oral presentation skills. How to write clearly and concisely, organize material logically, present it in readable style, edit work accurately, and apply Computerized writing principles to technical documents. Topics include organization of information; application of principles to achieve unity, coherence, and consistency of parallel and/or sequential structures; preparation and delivery of oral presentations. Letter grading.

Ms. Shane (W)

106A. Problem Solving in Engineering Economy. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: Mathe- matics 120, 126. Corequisites: course 101. Review of equilibrium principles; forces and moments transmitted by slender members. Methods of stress and strain. Stress-strain relations with focus on linear elasticity. Review of writing principles to structural elements; virtual work; analysis of indeterminate structures; energy concepts. Letter grading. MR. JU (F, Sp)

108. Introduction to Mechanics of Deformable Solids. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: Mathe- matics 120, 126. Corequisites: course 101. Review of equilibrium principles; forces and moments transmitted by slender members. Methods of stress and strain. Stress-strain relations with focus on linear elasticity. Review of writing principles to structural elements; virtual work; analysis of indeterminate structures; energy concepts. Letter grading. MR. JU, MR. TACIROGLU (F)

110. Introduction to Probability and Statistics for Engineers. (4) Lecture, four hours; outside study, eight hours; discussion, eight hours. Recommended: course 15. Introduction to fundamental concepts and applications of probability and statistics in civil engineering, with focus on how these concepts are used in experimental design and sampling; data analysis and reliability analysis, and the design of experiments. Topics include basic probability concepts, random variables and probability distributions, functions of random variables, estimating parameters from observational data, regression, hypothesis testing, and Bayesian concepts. Letter grading. MR. STOLENBACK (Sp)

120. Principles of Soil Mechanics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 108. Soil as foundation for structures and as material of construction. Soil formation, classification, physical and mechanical properties, soil compaction, earth pressures, consolidation, and shear strength. Letter grading. MR. VUCETIC (F)

121. Design of Foundations and Earth Structures. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 120. Design methods for foundations and earth structures. Site investigation, including evaluation of soil properties for design. Design of footings and piles, including stability and settlement calculations. Design of slopes and earth retaining structures. Letter grading. MR. STEWART (W)

123. Advanced Geotechnical Design. (4) Lecture, four hours; computer laboratory, two hours; outside study, six hours. Requisite: course 121. Analysis and design of earth dams, including seepage, piping, and slope stability analyses. Case history studies involving laboratory and field testing of expansive soil properties, and design of repair methodologies for those problems. Within context of above technical problems, emphasis on preparation of professional engineering documents such as proposals, work acknowledgments, figures, plans, and reports. Letter grading. MR. STEWART (Sp)


128L. Soil Mechanics Laboratory. (4) Lecture, one hour; laboratory, eight hours; outside study, three hours. Requisite or corequisite: course 120. Labora- tory experiments to be performed by students to obtain soil parameters required for assigned design problems. Soil classification, grain size distribution, Atterberg limits, specific gravity, compaction, expansion index, consolidation, shear strength determina- tion. Design problems, laboratory report writing. Let- ter grading. MR. BRANDENBERG (F, Sp)


130. Elementary Structural Mechanics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 108. Analysis of stress and strain, phenomenological material behavior, ex- tension, bending, and transverse shear stresses in beams with general cross-sections, shear center, de- flexion of beams, torsion of beams, warping, column instability and failure. Letter grading. MR. TACIROGLU (W)


135A. Elementary Structural Analysis. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 15, 103, 108. Introduc- tion to structural analysis; classification of structural elements; analysis of statically determinate structures, beams, and frames; deflections in elementary structures; virtual work; analysis of indeterminate structures using force method; introduction to displacement method and energy concepts. Letter grading. MR. JU (F)

135B. Intermediate Structural Analysis. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 135A. Analysis of truss and frame structures using matrix methods; matrix force methods; matrix displacement method; analysis concepts based on theorem of virtual work; moment distribution. Letter grading. MR. JU (W)

135C. Introduction to Finite Element Methods. (4) Formerly numbered 135C.) (Same as Mecha- nical and Aerospace Engineering 166B.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 130 or Mechanical and Aerospace Engineering 156A or 166A. Introduction to basic concepts of finite element methods (FEM) and applications. As to structural and solid mechanics and heat transfer. Direct matrix structural analysis; weighted residual, least squares, and Ritz approxi- mation methods; shape functions; convergence prop- erties; isoparametric formulation of multidimensional heat flow and elasticity; numerical integration. Practi- cal use of FEM software; geometric and analytical modeling; preprocessing and postprocessing tech- niques; term projects with computers. Letter grading. MR. CHEN, MR. KLUG (F)

135L. Structural Design and Testing Laboratory. (4) Lecture, two hours; laboratory, four hours; outside study, six hours. Requisites: courses 15, 135A. Limit- ed enrollment. Computer-aided optimum design, con- struction, instrumentation, and test of small-scale model structure. Use of computer-based data acquisi- tion and interpretation systems for comparison of experimental and theoretically predicted behavior. Letter grading. MR. JU (F, Sp)

137. Elementary Structural Dynamics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 135B. Basic structural dynamics course for civil engineering students. Elas- tic, free, forced vibration, and earthquake response spectra analysis for single and multidegree of freedom systems. Axial, bending, and torsional vibration of beams. Letter grading. MR. JU (F)

137L. Structural Dynamics Laboratory. (4) Lecture, two hours; laboratory, six hours; outside study, four hours. Requisite or corequisite: course 137. Cali- bration of instrumentation for dynamic measure- ments. Determination of natural frequencies and damping factors from free vibrations. Determination of natural frequencies, mode shapes, and damping factors from forced vibrations. Dynamic similitude. Letter grading. MR. JU (Not offered 2009-10)

141. Steel Structures. (4) Lecture, four hours; dis- cussion, two hours; outside study, six hours. Requi- site: course 135A. Introduction to building codes. Fundamentals of load and resistance factor design of steel elements. Design of tension and compression members. Design of beams and beam columns. Sim- ple connection design. Introduction to computer mod- eling methods and design process. Letter grading. MR. WALLACE (F)


142L. Reinforced Concrete Structural Laborato- ry. (4) Lecture, two hours; laboratory, six hours; out- side study, four hours. Requisites: courses 135B, 142. Limited enrollment. Design considerations used for reinforced concrete beams, columns, slabs, and joints evaluated using analysis and experiments. Links between theory, building codes, and experi- mental results. Students demonstrate accuracies and limitations of calculation procedures used in design of reinforced concrete structures. Development of skills for written and oral presentations. Letter grading. MR. WALLACE (Sp)
143. Design of Prestressed Concrete Structures. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 135A, 142. Prestressing and post-tensioning techniques. Properties of concrete and prestressing steels. Design considerations: anchorage/bonding of cables/wire, flexure analysis by superposition and strength methods, draping of cables, deflection and stiffness. Underesti- mation structures, limitation of prestressing. Letter grading. Mr. Wallace (Sp)


150. Introduction to Hydrology. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: Mechanical and Aerospace Engi- neering 103. Recommended: course 15. Study of hy- drologic cycle and relevant atmospheric processes. Water and energy balance, radiation, precipitation for- mation, infiltration, evaporation, vegetation transpira- tion, groundwater flow, storm runoff, and drainage sys- tems. Letter grading. Mr. Margulis (F)

151. Introduction to Water Resources Engineer- ing. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Recommended requisite: Mechanical and Aerospace Engineering 103. Princi- ples of hydraulics, flow of water in open channels and pressure conduits, reservoirs and dams, hydraulic machinery, hydropower electric. Introduction to sys- tem analysis and design applied to water resources engineering. Letter grading. Ms. Hogue (W)


154. Chemical Fate and Transport in Aquatic En- vironments. (4) Lecture, four hours; outside study, eight hours. Recommended requisite: course 153. Fundamental physical, chemical, and biological prin- ciples governing movement and fate of chemicals in surface waters and groundwater. Topics include physical transport in various aquatic environments, air-water exchange, acid-base equilibria, oxidation-reduction chemistry, chemical sorption, biodegrada- tion, and bioaccumulation. Practical quantitative problems solved considering both chemical and transport of chemicals in environment. Letter grading. Ms. Jay (Sp)

155. Unit Operations and Processes for Water and Wastewater Treatment. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requ- isite: course 153. Biological, chemical, and physical methods used to modify water quality. Fundamentals of phenomena governing design of engineered sys- tems for water and wastewater treatment. Field trip. Letter grading. Mr. Stenstrom (F)

156A. Environmental Chemistry Laboratory. (4) Lecture, four hours; laboratory; four hours; outside study, four hours. Requisites: course 153 (may be taken concurrently). Chemistry 17A, 17B, 20B. Basic labora- tory techniques in analytical chemistry related to water and wastewater analysis. Selected experi- ments include gravimetric analysis, titrimetry spectro- photonometry, redox systems, pH and potentiometric con- ductivity. Concepts to be applied to analysis of “real” water samples in course 156B. Letter grading. Mr. Stenstrom (F)

156B. Environmental Engineering Unit Opera- tions and Processes Laboratory. (4) Laboratory; six hours; discussion, two hours; outside study, four hours. Requisites: Chemistry 20A, 20B. Character- istics of and analysis of typical natural waters and wastewaters for inorganic and organic constituents. Selected experiments include analysis of solids, ni- trogen species, oxygen demand, and chlorine residu- al, that are used in unit operation experiments that in- clude reactor dynamics, aeration, gas stripping, co- agulation/flocculation, and membrane separation. Letter grading. Mr. Stenstrom (W)

157A. Hydrologic Modeling. (4) Lecture, four hours; discussion, two hours; laboratory, four hours; outside study, six hours. Requ- isites: courses 103, 150, 151. Introduction to hydro- logic modeling. Topics selected from areas of (1) open-channel flow, including one-dimensional steady flow, unsteady flow, and sediment transport, (2) pipe flow and water distribution systems, (3) rainfall-runoff modeling, and (4) groundwater flow modeling, with fo- cus on use of industry and/or research standard mod- els with locally relevant applications. Letter grading. Mr. Margulis (Not offered 2009-10)

157B. Design of Water Treatment Plants. (4) Lec- ture, two hours; discussion, two hours; laboratory, four hours; outside study, four hours. Requisite: course 155. Water quality standards and regulations, overview of water treatment plants, design of unit op- erations, predesign of water treatment plants, hydraulics and operation of water treatment plants. Letter grading. Mr. Stenstrom (Not offered 2009-10)

157C. Design of Wastewater Treatment Plants. (4) Lecture, four hours; outside study, eight hours. Requisite: course 155. Process design of wastewater treatment plants, including primary and secondary treatment, detailed design review of existing plants, process control, and economics. Letter grading. Mr. Stenstrom (Sp)

157L. Hydrologic Analysis and Design. (4) Lec- ture, two hours; laboratory, four hours; outside study, six hours. Requisites: courses 150 and/or 151. Co- lection, compilation, and interpretation of data for quan- titation of surface water components of hydro- logic cycle, including precipitation, evaporation, infil- tration, and runoff. Use of hydrologic variables and parameters for development, construction, and appli- cation of analytical models for selected problems in hydrology and water resources. Field trip required. Letter grading. Ms. Hogue (Sp)

157M. Hydrology of Mountain Watersheds. (4) Lecture, one hour; fieldwork, four hours; laboratory, three hours; outside study, four hours; one field trip. Requisite: course 150 or 157L. Advanced field- and laboratory-based course with focus on study of hy- drologic and geochemoic processes in snow-domi- nated and mountainous regions. Students measure and quantity snowpack properties, snowmelt, dis- charge, evaporation, infiltration, soil properties, and local meteorology, as well as investigate geochemoic properties of surface and groundwater waters. Ex- ploration of rating curves, stream classification, and flooding potential. Extended field trip required. Letter grading. Ms. Hogue (Sp)


M166. Environmental Microbiology. (4) (Same as Environmental Health Sciences M166.) Lecture, four hours; discussion, two hours; outside study, six hours. Recommended requisite: course 153. Microbi- cell and its metabolic capabilities, microbial genet- ics and its potentials, growth of microbes and kinetics of growth, microbial ecology and diversity, microbiolo- gy of wastewater treatment, probing of microbes, pubic health microbiology, pathogen control. Letter grading. Ms. Jay (W)

M166L. Environmental Microbiology and Biotech- nology Laboratory. (1) Formerly numbered 166L.) Lecture, two hours; outside study, two hours. Corequisite: course M166. General laboratory prac- tice within environment microbiology, covering of environmental samples, classical and modern molec- ular techniques for enumeration of microbes from en- vironmental samples, techniques for determination of microorganisms family in environmental samples. Tech- niques setups for studying environmental biotechnology. Letter grading. Ms. Jay (W)

180. Introduction to Transportation Engineering. (4) Lecture, four hours; discussion, two hours; out- side study, six hours. Designed for juniors/seniors. General characteristics of transportation systems, in- cluding streets and highways, rail, transit, air, and wa- ter. Capacity considerations including time-space dia- gramm and queuing. Concepts of traffic assignment system design, including horizontal and vertical align- ment, cross sections, earthwork, drainage, and pave- ments. Letter grading. Mr. Stewart (Sp)

181. Traffic Engineering Systems: Operations and Control. (4) Lecture, four hours; fieldwork/laborato- ry, two hours; outside study, six hours. Designed for juniors/seniors. Applications of traffic flow theories; data collection and analyses; intersection capacity analyses; simulation models; traffic signal design; signal timing design, implementation, and perfor- mance evaluation; Intelligent Transportation Sys- tems concept, architecture, and integration. Letter grading. Mr. Stewart (F)

188. Special Courses in Civil and Environmental Engineering. (2 to 6) Lecture, to be arranged; out- side study, to be arranged. Special topics in civil engi- neering for undergraduate students that are taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated once for credit with topic or instructor change. Letter grading. Ms. Jay (F)

194. Research Group Seminars: Civil and Envi- ronmental Engineering. (2 to 8) Seminar, two to eight hours; outside study, four to 16 hours. Designed for undergraduate students who are part of research groups. Discussion of current literature in field or of research of faculty members or students. May be repeated for credit. Letter grading.


223. Earth Retaining Structures. (4) Lecture. four hours; outside study, eight hours. Requisites: courses 120, 121. Basic concepts of theory of earth pressures behind retaining structures, with special application to design of retaining walls, bulkheads, sheet piles, and excavation bracing. Effects of flexibility, creep in soils, and construction techniques on stability of bulkheads and sheet piles. Mechanical stabilization of soils, such as with soil nails and geosynthetics. Letter grading. Mr. Brandenberg (W).


225. Geotechnical Earthquake Engineering. (4) Lecture. four hours; outside study, eight hours. Requisites: courses 125 (may be taken concurrently), 222. Analysis of earthquake-induced ground failure, including soil liquefaction, cyclic softening of clays, seismic compression, surface fault rupture, and seismic slope stability. Ground response effects on earthquake ground motions. Soil-structure interaction, including inertial and kinematic interaction and foundation deformations under seismic loading. Letter grading. Mr. Stewart (Sp).

226. Geoenvironmental Engineering. (4) Lecture. four hours; outside study, eight hours. Requisite: course 120. Field of geoenvironmental engineering involves application of geological principles to environmental problems. Topics include environmental regulations, waste characterization, geosynthetics, solid waste landfills, subsurface barrier walls, and disposal of high level waste. Letter grading. Mr. Stewart, Mr. Vucetic (Sp).

227. Numerical Methods in Geotechnical Engineering. (4) Lecture, four hours; outside study, eight hours. Requisite: basic concepts of computer modeling of soils using finite element method, and to constitutive modeling based on elasticity and plasticity theories. Special emphasis on numerical applications and identification of modeling concerns such as instability, bifurcation, nonexistence, and nonuniqueness of solutions. Letter grading. Mr. Stewart, Mr. Vucetic (Sp).

228L. Advanced Soil Mechanics Laboratory. (4) Lecture, one hour; laboratory, six hours; outside study, five hours. Requisites: courses 120, 121. Lectures and laboratory studies covering more advanced aspects of laboratory investigation of soil properties and their application to design. Tests to determine field permeability, consolidation, and shear strength. Review of advanced instrumentation and measurement techniques. Letter grading. Mr. Vucetic (W).

229A. Linear Elasticity (Same as Mechanical and Aerospace Engineering M256A.) Lecture, four hours; outside study, eight hours. Requisite: Mechanical and Aerospace Engineering 156A or 166A. Linear elastostatics. Cartesian tensors; infinitesimal strain tensor; Cauchy stress tensor; strain energy; equilibrium equations; linear constitutive relations; plane elastostatic problems, holes, corners, inclusions, cracks; equilibrium of Kelvin, Boussinesq, and Cerruti. Introduction to boundary integral equation method. Letter grading. Mr. Ju, Mr. Mal (F).

M230B. Nonlinear Elasticity. (4) (Same as Mechanical and Aerospace Engineering M256B.) Lecture, four hours; outside study, eight hours. Requisite: course M230A. Kinematics of deformation, material and spatial coordinates, deformation gradient tensor, nonlinear and linear strain tensors, strain displacement relations; balance laws, Cauchy and Piola stresses, Cauchy equations of motion, balance of energy, stored energy; constitutive relations, elasticity, hyperelasticity, the linearization of field equations; solution of selected problems. Letter grading. Mr. Ju, Mr. Mal (W).


232. Theory of Plates and Shells. (4) Lecture. four hours; outside study, eight hours. Requisite: course 130. Statically indeterminate theories of thin plates; energy methods; free vibrations; membrane theory of shells; axisymmetric deformations of cylindrical and spherical shells, including bending. Letter grading. Mr. Ju (F).


234. Advanced Topics in Structural Mechanics. (4) Lecture, four hours; outside study, eight hours. Limited to graduate engineering students. Current topics in composite materials, computational methods, finite element analysis, structural synthesis, nonlinear mechanics, and structural mechanics in general. Topics may vary from term to term. Letter grading. Mr. Ju (Sp).

235A. Advanced Structural Analysis. (4) Lecture, four hours; outside study, eight hours. Requisite: course 135A. Recommended: course 135B. Review of matrix force and displacement methods of structural analysis; virtual work theorem, virtual forces, and displacements; theorems on stationary value of total and complementary potential energy; minimum total potential energy; Maxwell/Betti theorems, effects of approximations, introduction to finite element analysis. Letter grading. Mr. Ju, Mr. Taciroglu (F).

235B. Finite Element Analysis of Structures. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 130, 235A. Direct energy formulations for deformable systems; solution methods for linear equations; analysis of structural systems with one-dimensional elements; introduction to variational calculus; discrete element displacement force, and mixed methods for membrane, plate, shell structures; instability effects. Letter grading. Mr. Chen (W).

235C. Nonlinear Structural Analysis. (4) Lecture, four hours; outside study, eight hours. Requisite: course 235B. Classification: material nonlinearities; conservative, nonconservative material behavior; geometric nonlinearities, Lagrangian, Eulerian description of motion; finite element methods in geometrically nonlinear problems; postbuckling behavior of structures; solution of nonlinear equations; incremental, iterative, programming methods. Letter grading. Mr. Ju, Mr. Taciroglu (Sp).


### 242. Advanced Reinforced Concrete Design. (4)

Mr. Wallace (Not offered 2009-10)

### 243A. Behavior and Design of Reinforced Concrete Structural Systems. (4)
Lecture, four hours; outside study, eight hours. Requisite: course 142. Advanced topics on design of reinforced concrete structures, including stress-strain relationships for plain and concrete-steel composite analysis. Applications of sections, and design for shear. Design of slender and low-rise walls, as well as design of beam-column joints. Introduction to displacement-based design and applications of strut-and-tie models. Letter grading.

Mr. Wallace (F)

### 243B. Response and Design of Reinforced Concrete Structural Systems. (4)
Lecture, four hours; outside study, eight hours. Requisites: courses 243A, 246. Infrastructures and behavior of reinforced concrete buildings to earthquake ground motions. Topics include use of elastic and inelastic response spectra, role of strength, stiffness, and ductility in determining response. Letter grading.

Mr. Ju (Not offered 2009-10)

### 245. Earthquake Ground Motion Characterization. (4)
Lecture, four hours; outside study, eight hours. Requisite: course 141 or 142 or 143 or 144. Modeling of uncertainties in structural loads and structural mechanics; structural safety analysis; and calculation of capacity reduction factors. Letter grading.

Mr. Ju

### 246. Structural Loads and Safety for Civil Structures. (4)
Lecture, four hours; outside study, eight hours. Corequisite: course 137 or 246. Earthquake fundamentals, including plate tectonics, fault types, seismic waves, and magnitude scales. Characterization of earthquake source, including magnitude range and rate of future earthquakes. Ground motion prediction equations and site effects on ground motion. Seismic hazard analysis. Ground motion selection and modification for response history analysis. Letter grading.

Mr. Stolzenbach (W)

### 247. Earthquake Hazard Mitigation. (4)
Lecture, four hours; outside study, eight hours. Requisites: courses 137, 141, 142, 235A. Spectral analysis of ground motions; response, time, and Fourier spectra. Effects of soil deposits on unconfined and confined systems due to earthquakes. Computational methods to evaluate structural response. Response analysis, including evaluation of contemporary design standards. Limitations due to idealizations. Letter grading.

Mr. Taciorgulu (W)

### 248. Probabilistic Structural Dynamics. (4)

Mr. Ju (Sp)

### 249. Selected Topics in Structural Engineering, Mechanics, and Geotechnical Engineering. (2)
Lecture, two hours; outside study, six hours. Review of recent research developments in structural engineering, mechanical, and geotechnical engineering. Structural analysis, finite elements, structural stability, dynamics of structures, structural design, earthquake engineering, ground motion, elasticity, plasticity, structural mechanics, mechanics of composites, constitutive modeling, geomechanics, and geotechnical engineering. May be repeated for credit.

SU grading.

Mr. Ju, Mr. Stewart, Mr. Taciorgulu, Mr. Wallace (F/W/Sp)

### 250A. Surface Water Hydrology. (4)
Lecture, four hours; outside study, eight hours. Requisite: course 150. In-depth study of surface water hydrology, including discussion and interrelationship of major topics such as rainfall and evaporation, soils and infiltration properties, runoff and snowmelt processes. Introduction to radiation-runoff modeling, floods, and policy issues involved in water resource engineering and management. Letter grading.

Ms. Hogue (F)

### 250B. Groundwater Hydrology. (4)

Mr. Yeh (W)

### 250C. Hydrometeorology. (4)
Lecture, four hours; outside study, eight hours. Requisite: course 250A. In-depth study of hydrometeorological processes. Role of hydrology in climate system, precipitation and evaporation processes, atmospheric radiation, exchange of mass, heat, and momentum between soil and vegetation surface and overlying atmosphere, flux and transport in turbulent boundary layer, basic remote sensing principles. Letter grading.

Mr. Margulis (W)

### 250D. Water Resources Systems Engineering. (4)
Lecture, four hours; outside study, eight hours. Requisite: course 151. Application of mathematical programming techniques to water resources systems. Topics include reservoir management and operation; optimal timing, sequencing and sizing of water resources projects; and multiojective planning and configuration use of reservoirs. Emphasis on management of water quantity. Letter grading.

Ms. Hogue (Sp)

### 251A. Rainfall-Runoff Modeling. (4)
Lecture, four hours; outside study, eight hours. Requisites: courses 250B, 251B. Multidisciplinary concepts, including rainfall-runoff analysis, input data, uncertainty analysis, lumped and distributed modeling, parameter estimation and sensitivity analysis, and application of models for flood forecasting and prediction of streamflows in water resource applications. Letter grading.

Ms. Hogue (Sp)

### 251B. Contaminant Transport in Groundwater. (4)
Formerly numbered 251C. Lecture, four hours; outside study, eight hours. Requisites: courses 250B, 253. Phenomena and mechanisms of hydrodynamic dispersion, governing equations of mass transport in porous media, various analytical and numerical solutions, determination of dispersion parameters by laboratory and field experiments, biological and reactive transport in multiphase flow, remediation design, software packages and applications. Letter grading.

Mr. Yeh

### 251C. Remote Sensing with Hydrologic Applications. (4)
Lecture, four hours; outside study, eight hours. Requisites: courses 250A, 250C. Introduction to remote sensing concepts of remote sensing as they relate to surface and atmospheric hydrologic processes. Applications include radiative transfer model and retrieval of hydrologically relevant parameters like topography, soil moisture, snow properties, vegetation, and precipitation. Letter grading.

Mr. Margulis (Sp)

### 251D. Hydrologic Data Assimilation. (4)
Lecture, four hours; outside study, eight hours. Requisites: courses 250A, 250C. Introduction to basic concepts of classical and Bayesian estimation theory for purposes of hydrologic data assimilation. Applications geared toward assimilating disparate observations into dynamic models of hydrologic systems. Letter grading.

SU grading.

Mr. Stolzenbach (F/W/Sp)

### 252. Engineering Economic Analysis of Water and Environmental Planning. (4)
Lecture, four hours; outside study, eight hours. Requisite: course 105A, one or more courses from Economics 1, 2, 11, 12, 100, 101. Economic theory and applications in analysis and management of water and environmental problems; application of price theory to water resources management and renewable resources; benefit-cost analysis with applications to water resources and environmental planning. Letter grading.

Mr. Ye (Sp)


Mr. Stoltenfer (F)

### 254A. Environmental Aquatic Inorganic Chemistry. (4)
Lecture, four hours; outside study, eight hours. Requisites: Chemistry 20B, Mathematics 31A, 31B, Physics 1A, 1B. Equilibrium and kinetic descriptions of chemical behavior of metals and inorganic ions in natural fresh/marine surface waters and in waste streams. Processes involving biogeochemical cycling and alkalinity (carbonate system), complexation, precipitation/dissolution, adsorption oxidation/reduction, and photochemistry. Letter grading.

Mr. Stoltenfer (F)

### 255A. Physical and Chemical Processes for Water and Wastewater Treatment. (4)
Lecture, four hours; outside study, eight hours. Requisites: courses 155, 254A. Review of momentum and mass transfer, chemical reaction engineering, coagulation and flocculation, granular filtrations, sedimentation, carbon adsorption, gas transfer, disinfection, oxidation, and membrane processes. Letter grading.

Mr. Stoltenfer (W)

### 255B. Biological Processes for Water and Wastewater Treatment. (4)
Lecture, four hours; outside study, eight hours. Requisites: courses 254A, 255A. Fundamentals of environmental engineering microbiology; kinetics of microbial growth and biological oxidation; applications for activated sludge, gas transfer, fixed-film processes, aerobic and anoxic digestion, sludge disposal, and biological nutrient removal. Letter grading.

Mr. Stoltenfer (Sp)

### 258A. Membrane Separations in Aquatic Systems. (4)
Lecture, four hours; outside study, eight hours. Requisite: course 254A. Applications of membrane separations to desalination, water reclamation, brine disposal, and ultrapure water systems. Discussion of reverse osmosis, ultrafiltration, electrodialysis, and ion exchange technologies from both practical and theoretical standpoints. Letter grading.

Mr. Stoltenfer (W)

### 259A. Selected Topics in Environmental Engineering. (2)
Lecture, two hours; outside study, four hours. Review of recent research and developments in environmental engineering. Water and wastewater treatment systems, nonpoint pollution, multimedia impacts. May be repeated for credit. SU grading.

Mr. Stoltenfer (W)

### 259B. Selected Topics in Water Resources. (2 to 4)
Lecture, four hours; outside study, eight hours. Review of recent research and developments in water resources. Water supply and hydrology, global climate change, economic estimation techniques. Early stages of water resources development. May be taken for maximum of 4 units. Letter grading.

Mr. Stoltenfer (F/W,Sp)

---

54 / Civil and Environmental Engineering
260. Advanced Topics in Hydrology and Water Resources. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 250A, 250B, 250D. Current research topics in inverse problem of parameter estimation, experimental design, conjunctive use of surface and groundwater, multivariate water resources planning, and optimization of water resource systems. Topics may vary from term to term. Letter grading.

Mr. Yeh (Sp)


Mr. Stenstrom (Sp)

261B. Advanced Biological Processes for Water and Wastewater Treatment. (4) Lecture, four hours; outside study, eight hours. Requisite: course 256B. In-depth treatment of selected topics related to biological treatment of waters and wastewaters, such as biodegradation of xenobiotics, pharmaceuticals, endocrine-disrupting chemicals, and nutrients. Discussion of theoretical aspects, experimental observations, and recent literature. Application to important and emerging environmental problems. Letter grading.

Mr. Stenstrom (Sp)

M262A. Introduction to Atmospheric Chemistry. (4) (Same as Atmospheric and Oceanic Sciences M203A.) Lecture, three hours. Requisite for undergraduates: Chemistry 20B. Principles of chemical kinetics, thermodynamics, spectroscopy, and photochemistry; chemical composition and history of Earth's atmosphere; biogeochemical cycles of key atmospheric constituents; basic photochemistry of troposphere and stratosphere, upper atmosphere chemical processes; air pollution; chemistry and climate. S/U or letter grading. (W)

M262B. Atmospheric Diffusion and Air Pollution. (4) (Same as Atmospheric and Oceanic Sciences M224B.) Lecture, three hours. Nature and sources of atmospheric pollution; diffusion from point, line, and area sources; pollution dispersion in urban complex; meteorological factors and air pollution potential; meteorological aspects of air pollution. S/U or letter grading.

263A. Physics of Environmental Transport. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Transport processes in surface water, groundwater, and atmosphere. Emphasis on exchanges across phase boundaries: sediment/water interface; air/water gas exchange; particles, droplets, and bubbles; small-scale dispersion and mixing; effect of reactions on transport; linkages between physical, chemical, and biological processes. Letter grading.

Mr. Stolzenbach (W)

263B. Advanced Topics in Transport at Environmental Interfaces. (4) Lecture, four hours; outside study, eight hours. Requisite: course 263A. In-depth treatment of selected topics involving transport phenomena at environmental interfaces between solid, fluid, and gas phases, such as aquatic sediments, porous aggregates, and vegetative canopies. Discussion of theoretical models and experimental observations. Application to important environmental engineering problems. Letter grading.

Mr. Stolzenbach (Sp)

265A. Mass Transfer in Environmental Systems. (4) Lecture, four hours; computer applications, two hours; outside study, eight hours. Designed for graduate environmental engineering program students. Physical chemistry and mass transfer fundamentals related to contaminant fate and transport in soil, air, and water systems, including solute/water sorption and desorption, contaminant retardation, vaporization and dissolution of nonaqueous phase liquids (NAPL), and other environmental systems. Letter grading.

Mr. Stolzenbach (F)

265B. Contaminant Transport in Soils and Groundwater. (4) Lecture, four hours; computer applications, two hours; outside study, six hours. Requisites: courses 250B, 265A. Principles of mass transfer as they apply in soil and groundwater, independent estimation of transport model parameters; remediation hazardous waste sites. Letter grading.

Mr. Stolzenbach (Sp)


Ms. Jay (Sp)

296. Advanced Topics in Civil Engineering. (2 to 4) Seminar, to be arranged. Discussion of current research and literature in research specialty of faculty member teaching course. S/U grading. (F,W,Sp)

297. Seminar: Current Topics in Civil Engineering. (2 to 4) Seminar, to be arranged. Lectures, discussions, and student presentations and projects in areas of current interest in civil engineering. May be repeated for credit. S/U grading. (F,W,Sp)

298. Seminar: Engineering. (2 to 4) Seminar, to be arranged. Limited to graduate civil engineering students. Seminars may be organized in advanced technical fields. If appropriate, field trips may be arranged. May be repeated with topic change. Letter grading.

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: apprentice personnel employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. (F,W,Sp)

495. Teaching Assistant Training Seminar. (2) Seminar, two hours. Preparation: appointment as teaching assistant in Civil and Environmental Engineering Department. Seminar on communication of civil engineering principles, concepts, and methods; teaching assistant preparation, organization, and presentation of material, including use of visual aids; grading, advising, and rapport with students. S/U grading.

596. Directed Individual or Tutorial Studies. (2 to 8) Tutorial, to be arranged. Limited to graduate civil engineering students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies. Supervision of investigation of advanced technical problems. S/U grading.

597A. Preparation for M.S. Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate civil engineering students. Reading and preparation for M.S. comprehensive examination. S/U grading.

597B. Preparation for Ph.D. Preliminary Examinations. (2 to 16) Tutorial, to be arranged. Limited to graduate civil engineering students. S/U grading.

597C. Preparation for Ph.D. Oral Qualifying Examination. (2 to 16) Tutorial, to be arranged. Limited to graduate civil engineering students. Preparation for oral qualifying examination, including preliminary research and literature in research specialty of faculty member. S/U grading.

598. Research for and Preparation of M.S. Thesis. (2 to 12) Tutorial, to be arranged. Limited to graduate civil engineering students. S/U grading.

599. Research for and Preparation of Ph.D. Dissertation. (2 to 16) Tutorial, to be arranged. Limited to graduate civil engineering students. Usually taken after students have been advanced to candidacy. S/U grading.
Computer Science Department open house presentation.

Assistant Professors
Petros Faloutsos, Ph.D.
Adam W. Meyerson, Ph.D.
Zhuowen Tu, Ph.D.

Senior Lecturer
Leon Levine, M.S., Emeritus

Lecturers S.O.E.
Paul R. Eggert, Ph.D.
David A. Smallberg, M.S.

Adjunct Professors
Alan Kay, Ph.D.
Boris Kogan, Ph.D.
Peter L. Reiher, Ph.D.
M. Yahya Sanadidi, Ph.D.

Scope and Objectives
Computer science is concerned with the design, modeling, analysis, and applications of computer-related systems. Its study at UCLA provides education at the undergraduate and graduate levels necessary to understand, design, implement, and use the software and hardware of digital computers and digital systems. The programs provide comprehensive and integrated studies of subjects in computer system architecture, computer networks, distributed computer systems, programming languages and software systems, information and data management, artificial intelligence, computer science theory, computational systems biology and bioinformatics, and computer vision and graphics.

The undergraduate and graduate studies and research projects in computer science are supported by significant computing resources. In addition to the departmental computing facility, there are over a dozen research laboratories specializing in areas such as distributed systems, multimedia computer communications, distributed sensor networks, VLSI systems, VLSI CAD, embedded and reconfigurable systems, computer graphics, bioinformatics, and artificial intelligence. Also, the Cognitive Systems Laboratory is engaged in studying computer systems that emulate or support human reasoning. The Biocybernetics Laboratory is devoted to multidisciplinary research involving the application of engineering and computer science methods to problems in biology and medicine.

The B.S. degree may be attained either through the Computer Science and Engineering major or through the Computer Science major described below.

In addition to the B.S. in Computer Science and Engineering and the B.S. in Computer Science, HSSEAS offers M.S. and Ph.D. degrees in Computer Science, as well as minor fields for graduate students seeking engineering degrees. In cooperation with the John E. Anderson Graduate School of Management, the Computer Science Department offers a concurrent degree program that enables students to obtain the M.S. in Computer Science and the M.B.A. (Master of Business Administration).

Department Mission
The Computer Science Department strives for excellence in creating, applying, and imparting knowledge in computer science and engineering through comprehensive educational programs, research in collaboration with industry and government, dissemination through scholarly publications, and service to professional societies, the community, state, and nation.

Computer Science and Engineering Undergraduate Program Objectives
The computer science and engineering undergraduate program educational objectives are that our alumni (1) make valuable technical contributions to design, development, and production in their practice of computer science and computer engineering, in related engineering or application areas, and at the interface of computers and physical systems, (2) demonstrate strong communication skills and the ability to function effectively as part of a team, (3) demonstrate a sense of societal and ethical responsibility in their professional endeavors, and (4) engage in professional development or postgraduate education to pursue flexible career paths amid future technological changes.

Computer Science Undergraduate Program Objectives
The computer science undergraduate program educational objectives are that our alumni (1) make valuable technical contributions to design, development, and production in their practice of computer science and related engineering or application areas, particularly in software systems and algorithmic methods, (2) demonstrate strong communication skills and the ability to function effectively as part of a team, (3) demonstrate a sense of societal and ethical responsibility in their professional endeavors, and (4) engage in professional development or postgraduate education to pursue flexible career paths amid future technological changes.

Undergraduate Study
Computer Science and Engineering B.S.
The ABET-accredited computer science and engineering curriculum at UCLA provides the education and training necessary to design, implement, test, and utilize the hardware and software of digital computers and digital systems. The curriculum has components spanning both the Computer Science and Electrical Engineering Departments. Within the curriculum students study all aspects of computer systems from electronic design through logic design, MSI, LSI, and VLSI concepts and device utilization, machine language design, implementation and programming, operating system concepts, systems programming, networking fundamentals, higher-level language skills, and application of...
these to systems. Students are prepared for employment in a wide spectrum of high-technology industries.

The computer science and engineering curriculum is accredited by the Computing Accreditation Commission and the Engineering Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, (410) 347-7700.

Preparation for the Major

Required: Chemistry and Biochemistry 20A; Computer Science 1, 31, 32, 33, 35L, M51A (or Electrical Engineering M16); Electrical Engineering 1, 2, 10; Mathematics 31A, 31B, 32A, 32B, 33A, 33B, 61; Physics 1A, 1B, 4AL, 4BL.

The Major

Required: Computer Science 101, 111, 118, 131, M151B (or Electrical Engineering M116C), M152A (or Electrical Engineering M116L), 152B, 180, 181, Electrical Engineering 102, 110, 110L, 115A, 115C, Statistics 110A; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and three upper division computer science elective courses (12 units), one of which must be selected from Computer Science 143 or 161 or 174A. The remaining two elective courses must be selected from Computer Science 112, 113, M117 (or Electrical Engineering M117), CM121 (or Chemistry and Biochemistry CM160A), CM122 (or Chemistry and Biochemistry CM160B), CM124 (or Human Genetics CM124), 130, 132, 133, 136, 143, 144, 151C, 161, 170A, M171L (or Electrical Engineering M171L), 174A, 174B, 174C, 183, M186A (or Biomedical Engineering M186A or Computational and Systems Biology M186A), CM186B (or Biomedical Engineering CM186B or Computational and Systems Biology M186B), CM186C (or Biomedical Engineering CM186C or Computational and Systems Biology M186C). Electrical Engineering M117L), 174A, 174B, 174C, 183, M186A (or Biomedical Engineering M186A or Computational and Systems Biology M186A), CM186B (or Biomedical Engineering CM186B or Computational and Systems Biology M186B), CM186C (or Biomedical Engineering CM186C or Computational and Systems Biology M186C). Electrical Engineering 103 may be substituted for one elective (credit is not given for both Computer Science 170A and Electrical Engineering 103 unless one of the courses is included in the technical breadth area); 4 units of either Computer Science 194 or 199 may be applied as an elective by petition.

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

Computer Science B.S.

The computer science curriculum is designed to accommodate students who want professional preparation in computer science but do not necessarily have a strong interest in computer systems hardware. The curriculum consists of components in computer science, a minor or technical support area, and a core of courses from the social sciences, life sciences, and humanities. Within the curriculum, students study subject matter in software engineering, principles of programming languages, data structures, computer architecture, theory of computation and formal languages, operating systems, distributed systems, computer modeling, computer networks, compiler construction, and artificial intelligence. Majors are prepared for employment in a wide range of industrial and business environments.

The computer science curriculum is accredited by the Computing Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, (410) 347-7700.

Preparation for the Major

Required: Chemistry and Biochemistry 20A; Computer Science 1, 31, 32, 33, 35L, M51A (or Electrical Engineering M16); Electrical Engineering 1; Mathematics 31A, 31B, 32A, 32B, 33A, 33B, 61; Physics 1A, 1B, 4AL, 4BL.

The Major

Required: Computer Science 101, 111, 118, 130 (or 152B), 131, M151B (or Electrical Engineering 116C), M152A (or Electrical Engineering 116L), 180, 181, Computer Science 101, 111, 118, 130 (or 152B), 131, M151B (or Electrical Engineering 116C), M152A (or Electrical Engineering 116L), 180, 181, Statistics 110A; three upper division science and technology courses (12 units) not used to satisfy other requirements, that may include three computer science courses or three courses selected from an approved list available in the Office of Academic and Student Affairs; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and six additional science, life science and technology courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and six technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and six technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and six technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and six technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs.

Graduate Study

For information on graduate admission, see Graduate Programs, page 23.

The following introductory information is based on the 2009-10 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnet.ucla.edu/gsasa/library/pgmrq intro.htm. Students are subject to the degree requirements as published in Program Requirements for the year in which they enter the program.

The Department of Computer Science offers Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Computer Science and participates in a concurrent degree program (Computer Science M.S./Management M.B.A.) with the John E. Anderson Graduate School of Management.

Computer Science M.S.

Course Requirements

Course Requirement. A total of nine courses is required for the M.S. degree, including a minimum of five graduate courses. No specific courses are required, but a majority of both the total number of formal courses and the total number of
graduate courses must consist of courses offered by the Computer Science Department.

Undergraduate Courses: No lower division courses may be applied toward graduate degrees. In addition, the following upper division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199; Civil and Environmental Engineering 106A, 108, 199; Computer Science M152A, 152B, 199; Electrical Engineering 100, 101, 102, 103, 110L, M116L, 199; Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 140, 141L, 150, 160, 161L, 199; Mechanical and Aerospace Engineering 102, 103, 105A, 105D, 199.

Breadth Requirement. M.S. degree students must satisfy the computer science breadth requirement by the end of the third term in graduate residence at UCLA. The requirement is satisfied by mastering the contents of five undergraduate courses or equivalent: Computer Science 180, two courses from 111, 118, and M151B, one course from 130, 131, or 132, and one course from 143, 161, or 174A. A UCLA undergraduate course taken by graduate students cannot be used to satisfy graduate degree requirements if students have already received a grade of B— or better for a course taken elsewhere that covers substantially the same material.

For the M.S. degree, students must also complete at least three terms of Computer Science 201 with grades of Satisfactory. Competence in any or all courses in breadth requirements may be demonstrated in one of three ways:

1. Satisfactory completion of the course at UCLA with a grade of B— or better
2. Satisfactory completion of an equivalent course at another university with a grade of B— or better
3. Satisfactory completion of a final examination in the course at UCLA

Comprehensive Examination Plan
In the comprehensive examination plan, at least five of the nine courses must be 200-series courses. The remaining four courses may be either 200-series or upper division courses. No units of 500-series courses may be applied toward the comprehensive examination plan requirements.

Thesis Plan
In the thesis plan, seven of the nine courses must be formal courses, including at least four from the 200 series. The remaining two courses may be 598 courses involving work on the thesis. The thesis is a report on the results of student investigation of a problem in the major field of study under the supervision of the thesis committee, which approves the subject and plan of the thesis and reads and approves the complete manuscript. While the problem may be of one or limited scope, the thesis must exhibit a satisfactory style, organization, and depth of understanding of the subject. Students should normally start to plan the thesis at least one year before the award of the M.S. degree is expected. There is no examination under the thesis plan.

Computer Science M.S./Management M.B.A.
The Department of Computer Science and the John E. Anderson Graduate School of Management offer a concurrent degree program that enables students to complete the requirements for the M.S. in Computer Science and the M.B.A. (Master of Business Administration) in three academic years. Students should request application materials from both the M.B.A. Admissions Office, John E. Anderson Graduate School of Management, and the Department of Computer Science.

Computer Science Ph.D.
Major Fields or Subdisciplines
Artificial intelligence; computational systems biology; computer networks; computer science theory; computer system architecture; graphics and vision; information and data management; and software systems.

Course Requirements
Normally, students take courses to acquire the knowledge needed to prepare for the written and oral examinations and for conducting Ph.D. research. The basic program of study for the Ph.D. degree is built around the major field requirement and two minor fields. The major field and at least one minor field must be in computer science.

The fundamental examination is common for all Ph.D. candidates in the department and is also known as the written qualifying examination.

To satisfy the major field requirement, students are expected to attain a body of knowledge contained in six courses, as well as the current literature in the area of specialization. In particular, students are required to take a minimum of four graduate courses in the major field of Ph.D. research, selecting these courses in accordance with guidelines specific to the major field. Guidelines for course selection in each major field are available from the departmental Student Affairs Office. Grades of B— or better, with a grade-point average of at least 3.33 in all courses used to satisfy the major field requirement, are required. Students are required to satisfy the major field requirement within the first nine terms after enrolling in the graduate program.

Each minor field normally embraces a body of knowledge equivalent to three courses, at least two of which are graduate courses. Grades of B— or better, with a grade-point average of at least 3.33 in all courses included in the minor field, are required. By petition and administrative approval, a minor field may be satisfied by examination.

Breadth Requirement. Ph.D. students must satisfy the computer science breadth requirement by the end of the third term in graduate residence at UCLA. The requirement is satisfied by mastering the contents of five undergraduate courses or equivalent: Computer Science 180, two courses from 111, 118, and M151B, one course from 130, 131, or 132, and one course from 143, 161, or 174A. A UCLA undergraduate course taken by graduate students cannot be used to satisfy graduate degree requirements if students have already received a grade of B— or better for a course taken elsewhere that covers substantially the same material.

For the Ph.D. degree, students must also complete at least three terms of Computer Science 201 with grades of Satisfactory. Competence in any or all courses in breadth requirements may be demonstrated in one of three ways:

1. Satisfactory completion of the course at UCLA with a grade of B— or better
2. Satisfactory completion of an equivalent course at another university with a grade of B— or better
3. Satisfactory completion of a final examination in the course at UCLA

For requirements for the Graduate Certificate of Specialization, see Engineering Schoolwide Programs.
Written and Oral Qualifying Examinations

The written qualifying examination consists of a high-quality paper, solely authored by the student. The paper can be either a research paper containing an original contribution or a focused critical survey paper. The paper should demonstrate that the student understands and can integrate and communicate ideas clearly and concisely. It should be approximately 10 pages single-spaced, and the style should be suitable for submission to a first-rate technical conference or journal. The paper must represent work that the student did as a graduate student at UCLA. Any contributions that are not the student's own, including those of the student's adviser, must be explicitly acknowledged in detail. Prior to submission, the paper must be reviewed by the student's adviser on a cover page with the adviser's signature indicating review. After submission, the paper must be reviewed and approved by at least two other members of the faculty. There are two deadlines a year for submission of papers.

After passing the preliminary examination and coursework for the major and minor fields, the student should form a doctoral committee and prepare to take the University Oral Qualifying Examination. A doctoral committee consists of a minimum of four members. Three members, including the chair, must hold appointments in the Computer Science Department at UCLA. The remaining member must be a UCLA faculty member outside the Computer Science Department. The nature and content of the oral qualifying examination are at the discretion of the doctoral committee but ordinarily include a broad inquiry into the student's preparation for research. The doctoral committee also reviews the prospectus of the dissertation at the oral qualifying examination.

Fields of Study

Artificial Intelligence

Artificial intelligence (AI) is the study of intelligent behavior. While other fields such as philosophy, psychology, neuroscience, and linguistics are also concerned with the study of intelligence, the distinguishing feature of AI is that it deals primarily with information processing models. Thus the central scientific question of artificial intelligence is how intelligent behavior can be reduced to information processing. Since even the simplest computer is a completely general information processing device, the test of whether some behavior can be explained by information processing mechanisms is whether a computer can be programmed to produce the same behavior. Just as human intelligence involves gathering sensory input and producing physical action in the world, in addition to purely mental activity, the computer for AI purposes is extended to include sense organs such as cameras and microphones, and output devices such as wheels, robotic arms, and speakers.

The predominant research paradigm in artificial intelligence is to select some behavior that seems to require intelligence on the part of humans, to theorize about how the behavior might be accounted for, and to implement the theory in a computer program to produce the same behavior. If successful, such an experiment lends support to the claim that the selected behavior is reducible to information processing terms, and may suggest the program's architecture as a candidate explanation of the corresponding human process.

The UCLA Computer Science Department has active research in the following major subfields of artificial intelligence:

1. **Problem Solving.** Analysis of tasks, such as playing chess or proving theorems, that require reasoning about relatively long sequences of primitive actions, deductions, or inferences.
2. **Knowledge representation and qualitative reasoning.** Analysis of tasks such as commonsense reasoning and qualitative physics. Here the deductive chains are short, but the amount of knowledge that potentially may be brought to bear is very large.
3. **Expert systems.** Study of large amounts of specialized or highly technical knowledge that is often probabilistic in nature. Typical domains include medical diagnosis and engineering design.
4. **Natural language processing.** Symbolic, statistical, and artificial neural network approaches to text comprehension and generation.
5. **Computer vision.** Processing of images, as from a TV camera, to infer spatial properties of the objects in the scene (three-dimensional shape), their dynamics (motion), their photometry (material and light), and their identity (recognition).
6. **Robotics.** Translation of a high-level command, such as picking up a particular object, into a sequence of low-level control signals that might move the joints of a robotic arm/hand combination to accomplish the task; often this involves using a computer vision system to locate objects and provide feedback.
7. **Machine learning.** Study of the means by which a computer can automatically improve its performance on a task by acquiring knowledge about the domain.
8. **Parallel architecture.** Design and programming of a machine with thousands or even millions of simple processing elements to produce intelligent behavior; the human brain is an example of such a machine.

Computational Systems Biology

The computational systems biology (CSB) field can be selected as a major or minor field for the Ph.D. or as a specialization area for the M.S. degree in Computer Science.

Graduate studies and research in the CSB field are focused on computational modeling and analysis of biological systems and biological data.

Core coursework is concerned with the methods and tools development for computational, algorithmic, and dynamic systems network modeling of biological systems at molecular, cellular, organ, whole organism, or population levels—and leveraging them in biosystem and bioinformatics applications. Methodological studies include bioinformatics and systems biology modeling, with focus on genomics, proteomics, metabolomics, and higher levels of biological/physiological organization, as well as multiscale approaches integrating the parts.

Typical research areas with a systems biology focus include molecular and cellular systems biology, organ systems physiology, medical, pharmacological, pharmacokinetic (PK), pharmacodynamic (PD), toxicokinetic (TK), physiologically based PBPK-PD, PBTK, and pharmacogenomic system studies; neurosystems, imaging and remote sensing systems, robotics, learning and knowledge-based systems, visualization, and virtual clinical environments. Typical research areas with a bioinformatics focus include development of computational methods for analysis of high-throughput molecular data, including genomic sequences, gene expression data, protein-protein interaction, and genetic variation. These computational
methods leverage techniques from both statistics and algorithms.

**Computer Networks**
The computer networks field involves the study of computer networks of different types, in different media (wired, wireless), and for different applications. Besides the study of network architectures and protocols, this field also emphasizes distributed algorithms, distributed systems, and the ability to evaluate system performance at various levels of granularity (but principally at the systems level). In order to understand and predict systems behavior, mathematical models are pursued that lead to the evaluation of system throughput, response time, utilization of devices, flow of jobs and messages, bottlenecks, speedup, power, etc. In addition, students are taught to design and implement computer networks using formal design methodologies subject to appropriate cost and objective functions. The tools required to carry out this design include probability theory, queueing theory, distributed systems theory, mathematical programming, control theory, operating systems design, simulation methods, measurement tools, and heuristic design procedures. The outcome of these studies provides the following:

1. An appropriate model of the computer system under study
2. An adequate (exact or approximate) analysis of the behavior of the model
3. The validation of the model as compared to simulation and/or measurement of the system
4. Interpretation of the analytical results in order to obtain behavioral patterns and key parameters of the system
5. Design methodology

**Resource Allocation**
A central problem in the design and evaluation of computer networks deals with the allocation of resources among competing demands (e.g., wireless channel bandwidth allocation to backlogged stations). In fact, resource allocation is a significant element in most of the technical (and nontechnical) problems we face today. Most of our resource allocation problems arise from the unpredictability of the demand for the use of these resources, as well as from the fact that the resources are geographically distributed (as in computer networks). The computer networks field encounters such resource allocation problems in many forms and in many different computer system configurations. Our goal is to find allocation schemes that permit suitable concurrency in the use of devices (resources) so as to achieve efficiency and equitable allocation. A very popular approach in distributed systems is allocation on demand, as opposed to prescheduled allocation. On-demand allocation is found to be effective, since it takes advantage of statistical averaging effects. It comes in many forms in computer networks and is known by names such as asynchronous time division multiplexing, packet switching, frame relay, random access, and so forth.

**Computer Science Theory**
Computer science is in large measure concerned with information processing systems, their applications, and the corresponding problems of representation, transformation, and communication. The computer science fields are concerned with different aspects of such systems, and each has its own theoretical component with appropriate models for description and analysis, algorithms for solving the related problems, and mathematical tools. Thus in a certain sense computer science theory involves all of computer science and participates in all disciplines.

The term theoretical computer science has come to be applied nationally and internationally to a certain body of knowledge emphasizing the interweaving themes of computability and algorithms, interpreted in the broadest sense. Under computability, one includes questions concerning which tasks can and cannot be performed by information systems of different types restricted in various ways, as well as the mathematical analysis of such systems, their computations, and the languages for communication with them. Under algorithms, one includes questions concerning (1) how a task can be performed efficiently under reasonable assumptions on available resources (e.g., time, storage, type of processor), (2) how efficiently a proposed system performs a task in terms of resources used, and (3) the limits on how efficiently a task can be performed. These questions are often addressed by first developing models of the relevant parts of an information processing system (e.g., the processors, their interconnections, their rules of operation, the means by which instructions are conveyed to the system, or the way the data is handled) or of the input/output behavior of the system as a whole. The properties of such models are studied both for their own interest and as tools for understanding the system and improving its performance or applications.

**Computer System Architecture**
Computer system architecture deals with the design, implementation, and evaluation of computer systems and their building blocks. It deals with general-purpose systems as well as embedded special-purpose systems. The field also encompasses the development of tools to enable system designers to describe, model, fabricate, and test highly complex computer systems.

Computer systems are implemented as a combination of hardware and software. Hence, research in the field of computer architecture often involves both hardware and software issues. The requirements of application software and operating systems, together with the capabilities of compilers, play a critical role in determining the features implemented in hardware. At the same time, the computer architect must also take into account the capabilities and limitations of the underlying implementation technology as well as of the design tools.

The goal of research in computer architecture is to develop building blocks, system organizations, design techniques, and design tools that lead to improved performance and reliability as well as reduced power consumption and cost.

Corresponding to the richness and diversity of computer systems architecture research at UCLA, a comprehensive set of courses is offered in the areas of advanced processor architecture, arithmetic processor systems, parallel and distributed architectures, fault-tolerant systems, reconfigurable systems, embedded systems, and computer-aided design of VLSI circuits and systems.

1. **Novel architectures** encompass the study of computations that are performed in ways that are quite different than those used by conventional machines. Examples include various domain-specific architectures charac-
terized by high computational rates, low power, and reconfigurable hardware implementations.

2. The study of high-performance processing algorithms deals with algorithms for very high-performance numerical processing. Techniques such as redundant-digit representations of number systems, fast arithmetic, and the use of highly parallel arrays of processing elements are studied with the goal of providing the extremely high processing speeds required in a number of upcoming computer applications.

3. The study of computational algorithms and structures deals with the relationship between computational algorithms and the physical structures that can be employed to carry them out. It includes the study of interconnection networks, and the way that algorithms can be formulated for efficient implementation wherever regularity of structure and simplicity of interconnections are required.

4. Computer-aided design of VLSI circuits and systems is an active research area that develops techniques for the automated synthesis and analysis of large-scale systems. Topics include high-level and logic-level synthesis, technology mapping, physical design, interconnect modeling, and optimization of various VLSI technologies such as full-custom designs, standard cells, programmable logic devices (PLDs), multi-chip modules (MCMs), system-on-a-chip (SoCs), network-on-a-chip (NoC), system-in-a-package (SiPs), and design for nanotechnologies.

5. VLSI architectures and implementation is an area of current interest and collaboration between the Electrical Engineering and Computer Science Departments that addresses the impact of large-scale integration on the issues of computer architecture. Application of these systems in medicine and healthcare, multimedia, and finance is being studied in collaboration with other schools on campus.

Graphics and Vision

Information and Data Management
The information and data management field focuses on basic problems of modeling and managing data and knowledge, and their relation with other fundamental areas of computer science, such as operating systems and networking, programming languages, and human-computer interface design.

A data management system embodies a collection of data, devices in which the data are stored, and logic or programs used to manipulate that data. Information management is a generalization of data management in which the data being stored are permitted to be arbitrarily complex data structures, such as rules and trees. In addition, information management goes beyond simple data manipulation and query and includes inference mechanisms, explanation facilities, and support for distributed and web-based access. The need for rapid, accurate information is pervasive in all aspects of modern life. Modern systems are based on the coordination and integration of multiple levels of data representation, from characteristics of storage devices to conceptual and abstract levels. As human enterprises have become more complex, involving more complicated decisions and trade-offs among decisions, the need for sophisticated information and data management has become essential.

Software Systems
The programming languages and systems field is concerned with the study of theory and practice in the development of software systems. Well-engineered systems require appreciation of both principles and architectural trade-offs. Principles provide abstractions and rigor that lead to clean designs, while systems-level understanding is essential for effective design.

Principles here encompass the use of programming systems to achieve specified goals, the identification of useful programming abstractions or paradigms, the development of comprehensive models of software systems, and so forth. The thrust is to identify and clarify concepts that apply in many programming contexts.

Development of software systems requires an understanding of many methodological and architectural issues. The complex systems developed today rely on concepts and lessons that have been extracted from years of research on programming languages, operating systems, database systems, knowledge-based systems, real-time systems, and distributed and parallel systems.

Facilities
Departmental laboratory facilities for instruction and research include:

Artificial Intelligence Laboratories
Artificial Intelligence Laboratory
The Artificial Intelligence Laboratory is used for investigating knowledge representation systems, pattern recognition, expert systems, intelligent user agents, planning, problem solving, heuristic search, and related areas.

Cognitive Systems Laboratory
The Cognitive Systems Laboratory is used for studying systems that emulate human cognition, especially learning, planning, and reasoning under uncertainty. Topics include causal reasoning, knowledge discovery, knowledge compilation, physical systems diagnosis, and automated explanation. See http://singapore.cs.ucla.edu.

Collaborative Design Laboratory
The Collaborative Design Laboratory is used for investigating methods for effective computer support of small teams involved in design and research.

Computational Systems Biology Laboratories
Biocybernetics Laboratory
The Biocybernetics Laboratory emphasizes integrative, interdisciplinary computational biology and experimentation in life sciences, medicine, physiology, and pharmacology. Laboratory pedagogy involves development and exploitation of the synergistic and methodologic interface between modeling and laboratory data and experimentation, and integrated approaches for solving complex biosystem problems from sparse biodata. See http://biocyb.cs.ucla.edu.

Biomedical Engineering Laboratory
The Biomedical Engineering Laboratory was established jointly by HSSEAS and the School of Medicine to support courses and research projects in health care information systems, covering issues in user requirement specifications, image data processing and retrieval, feature abstraction, simulation and analysis, visualization, and systems integration.

Computational Cardiology Laboratory
The Computational Cardiology Laboratory is a computational laboratory for mathematical modeling and computer simulation of cardiac systems in normal and patholog-

UCLA Vision Laboratory
The UCLA Vision Laboratory is used for computer vision research, in particular the processing of sensory information to retrieve mathematical models of the environment in order for machines to interact with it. Applications include shape analysis, visual motion analysis, visual recognition, 3-D reconstruction, and vision-based control (for instance, autonomous vehicle navigation). See http://vision.ucla.edu.

Computer Networks Laboratories

CENS Systems Laboratory
The CENS Systems Laboratory is used for research on the architectural challenges posed by massively distributed, large-scale, physically coupled, and usually untethered and small-form-factor computing systems. Through prototype implementations and simulation, such issues as data diffusion protocols, localization, time synchronization, low-power wireless communications, and self-configuration are explored. See http://ecs.cs.ucla.edu.

Computer Communications Laboratory
The Computer Communications Laboratory is used for investigating local-area networks, packet-switching networks, and packet-radio networks.

High-Performance Internet Laboratory
The High-Performance Internet Laboratory is used for investigating high-performance quality of service (QoS) techniques in the Internet, including QoS routing in Internet domains, QoS fault-tolerant multicast, TCP congestion control, and gigabit network measurements. See http://www.cs.ucla.edu/NRL/hpi/.

Internet Research Laboratory
The Internet Research Laboratory (IRL) is used for exploring the forefront of current Internet architecture and protocol development, including quantifying the dynamics in large-scale networks and securing large-scale systems such as the Internet routing infrastructure and Domain Name System (DNS). See http://irl.cs.ucla.edu.

Network Research Laboratory
The Network Research Laboratory is used for investigating wireless local-area networks (with specific interest in ad-hoc networks, vehicular networks, and personal area networks) and the interaction between wired and wireless network layers, middleware, and applications. Activities include protocol development, protocol analysis and simulation, and wireless testbed experiments. See http://www.cs.ucla.edu/NRL/wireless/.

Computer Science Theory Laboratories

Center for Information and Computation Security (CICS)
The Center for Information and Computation Security (CICS) promotes all aspects of research and education in cryptography and computer security. See http://www.cs.ucla.edu/security/.

Theory Laboratory
The Theory Laboratory is used for developing theoretical foundations for all areas of computer science. Activities include fundamental research into algorithms, computational complexity, distributed computing, cryptography, hardware and software security, quantum computing, biological computing, machine learning, and computational geometry.

Computer Systems Architecture Laboratories

Concurrent Systems Laboratory
The Concurrent Systems Laboratory is used for investigating the design, implementation, and evaluation of computer systems that use state-of-the-art technology to achieve high performance and high reliability. Projects involve both software and hardware, and often focus on parallel and distributed systems in the context of general-purpose as well as embedded applications. See http://www.cs.ucla.edu/csd/research/labs/cscl/.

Digital Arithmetic and Reconfigurable Architecture Laboratory
The Digital Arithmetic and Reconfigurable Architecture Laboratory is used for fast digital arithmetic (theory, algorithms, and design) and numerically intensive computing on reconfigurable hardware. Research includes floating-point arithmetic, online arithmetic, application-specific architectures, and design tools. See http://arith.cs.ucla.edu.

Embedded and Reconfigurable System Design Laboratory
The Embedded and Reconfigurable System Design Laboratory is used for studying reconfigurable cores in embedded systems that provide the required adaptability and reconfigurability, and the design and
CAD aspects of low-power embedded systems. See http://er.cs.ucla.edu.

**VLSI CAD Laboratory**
The VLSI CAD Laboratory is used for computer-aided design of VLSI circuits and systems. Areas include high-level and logic-level synthesis, technology mapping, physical design, interconnect modeling and optimization of various VLSI technologies such as full-custom designs, standard cells, programmable logic devices (PLDs), multichip modules (MCMs), system-on-a-chip (SOCs), system-in-a-package (SIPs), and design for nanotechnologies. See http://cadlab.cs.ucla.edu.

**Information and Data Management Laboratories**

**Data Mining Laboratory**
The Data Mining Laboratory is used for extraction of patterns, anomalies, concepts, classification rules, and other forms of high-level relationships that are latent in large commercial and scientific databases. See http://dml.cs.ucla.edu/main.html.

**Knowledge-Based Multimedia Medical Distributed Database Systems Laboratory**
The Knowledge-Based Multimedia Medical Distributed Database Systems Laboratory is used for developing new methodologies to access multimedia (numeric, text, image/picture) data by content and feature rather than by artificial keys such as patient ID. See http://www.kmed.cs.ucla.edu.

**Multimedia Stream System Laboratory**
The Multimedia Stream System Laboratory is used for investigation and development of stream-based data model constructs and the corresponding querying facilities in response to the growing requirements of advanced multimedia database applications. See http://www.mmss.cs.ucla.edu.

**Multimedia Systems Laboratory**
The Multimedia Systems Laboratory is used for research on all aspects of multimedia: physical and logical modeling of multimedia objects, real-time delivery of continuous multimedia, operating systems and networking issues in multimedia systems, and development of multimedia courseware. See http://www.mmsl.cs.ucla.edu.

**UCLA Web Information Systems Laboratory**
The UCLA Web Information Systems Laboratory is used for investigating Web-based information systems. The laboratory seeks to develop the enabling technology for such systems by integrating the Web with database systems. Current projects focus on the preservation and warehousing of XML and database information to support temporal queries on historical archives, and data systems management systems to support advanced queries and data mining applications on the massive streams of information that are continuously flowing through the Web. See http://wis.cs.ucla.edu.

**Software Systems Laboratories**

**Compilers Laboratory**
The Compilers Laboratory is used for research into compilers, embedded systems, and programming languages.

**Distributed Simulation Laboratory**
The Distributed Simulation Laboratory is used for research on operating system support and applications and utilization of special architectures such as the Intel Hypercube.

**Laboratory for Advanced System Research**
The Laboratory for Advanced System Research is used for developing advanced operating systems, distributed systems, and middleware and conducting research in systems security.

**Parallel Computing Laboratory**
The Parallel Computing Laboratory is used for research in scalable simulation, providing an efficient lightweight simulation language, as well as tools for large-scale parallel simulation on modern supercomputers. See http://pcl.cs.ucla.edu.

**Software Systems Laboratory**
The Software Systems Laboratory is used for research into the design, implementation, and evaluation of operating systems, networked systems, programming languages, and software engineering tools. Some of these research laboratories also provide support for upper division and/or graduate courses.

**Computing Resources**
In summarizing the resources now available to conduct experimentally based research in the UCLA Computer Science Department, it is useful to identify the major components of the research environment: the departmental computing facility, other hardware and software systems, administrative structure, and technical support staff.

**Hardware**
Computing facilities range from large campus-operated supercomputers to a major local network of servers and workstations that are administered by the department computing facilities (DCF) or school network (SEASnet).

The departmental research network includes Sun servers and shared workstations, on the school's own ethernet TCP/IP local network. A wide variety of peripheral equipment is also part of the facility, and many more research-group workstations share the network; the total number of machines exceeds 700, the majority running the Linux operating system. The network consists of switched10/100/1000 ethernet to the desktop with a gigabit backbone connection. The department LAN is connected to the campus gigabit backbone. An 802.11g wireless network is also available to faculty, staff, and graduate students.

**Administrative Structure**
The central facilities and wide-area networking are operated by the campuswide Communications Technology Services. Access to the departmental and SEASNet machines is controlled so as to maximize the usefulness of these computers for education and research, but no direct charges are involved.

**Technical Support Staff**
The support staff consists of hardware and software specialists. The hardware laboratory supports network connections, configurations, routers, switches, and network monitoring tools. The software group administers the department UNIX servers, providing storage space and backup for department users.

**Faculty Areas of Thesis Guidance**

**Professors**
Alfonso F. Cardenas, Ph.D. (UCLA, 1969) Database management, distributed heterogeneous and multimedia (text, image/picture, video, voice) systems, information systems planning and development methodologies, software engineering, medical informatics, legal and intellectual property issues
Tony F.C. Chan, Ph.D. (Stanford, 1978) Image processing and computer vision, multilevel techniques for VLSI physical design, computational techniques for brain mapping
Also Professor of Mathematics


Milos D. Ercegovac, Ph.D. (Illinois, 1975)

Michael G. Dyer, Ph.D. (Yale, 1982)

Adnan Y. Darwiche, Ph.D. (Stanford, 1993)

Stephen J. Gildea, Ph.D. (UCLA, 1972)

Chee Soo Lam, Ph.D. (SJTU, 1987)

Jens Palsberg, Ph.D. (Aarhus U., Denmark, ‡1992)

Mario Gerla, Ph.D. (UCLA, 1973)

Kizar S. Tse, Ph.D. (UC Berkeley, 1982)

Anil D. Parikh, Ph.D. (UCLA, 1982)

Thelma Estrin, Ph.D. (Wisconsin, 1951)

Dobbie McCann, Ph.D. (Vanderbilt, 1989)

Gerald Estrin, Ph.D. (Wisconsin, 1951)

Frank T. Benham, Ph.D. (UCLA, 1976)

Lawrence P. McNamee, Ph.D. (Pittsburgh, 1964)

Computer-aided verification of hardware and software systems; logic and automata theory; embedded, hybrid, and probabilistic systems

Walter J. Gutfeil, Ph.D. (Harvard, 1963)

Computer vision; shape analysis, motion analysis, texture analysis, 3-D reconstruction, vision-based control, computer graphics; image-based modeling and rendering; medical imaging; registration, segmentation, statistical shape analysis; autonomous systems; sensor-based modeling, non-linear filtering; human-computer interaction: vision-based interfaces, visibility, visualization

Stefano Soatto, Ph.D. (Caltech, 1996)

Computer vision; computer graphics, shape analysis, texture analysis, 3-D reconstruction, vision-based control, computer graphics; image-based modeling and rendering; medical imaging; registration, segmentation, statistical shape analysis, autonomous systems; sensor-based modeling, non-linear filtering; human-computer interaction: vision-based interfaces, visibility, visualization

Mani B. Srivastava, Ph.D. (UC Berkeley, 1992)

Energy aware networking and computing, embedded networked sensing, embedded software, low-power wireless networks and applications of wireless and embedded technology, computer vision, computer graphics, computer vision, medical imaging; machine learning

Demetri Terzopoulos, Ph.D. (MIT, 1984)

Mobile and wireless networks: MAC, routing and transport protocols, vehicular communications, peer-to-peer mobile networks, personal-area networks (Bluetooth and Zigbee), underwater sensor networks, Internet transport protocols (TCP, streaming), Internet path characterization, capacity and bandwidth estimates, analytic and simulation models for network and protocol performance evaluation

Song-Chun Zhu, Ph.D. (Harvard, 1996)

Computer vision, statistical modeling and computing, vision and visual arts, machine learning

Professors Emeriti


Digital computer architecture and design, fault-tolerant computing, digital arithmetic

Rajive L. Bagrodia, Ph.D. (U. Texas, 1987)

Wireless networks, nomadic computing, parallel programming, performance evaluation of computer and communication systems

Bertram Russell, Ph.D. (UCLA, 1962)

Computer systems architecture, interactive computer graphics

Jack W. Carlyle, Ph.D. (UC Berkeley, 1961)

Computer architecture, computer system architecture, interactive computer graphics

William P. Black, Ph.D. (UCLA, 1983)

Parallel computing, computer architecture, computer system architecture, interactive computer graphics


Parallel computing, computer architecture, computer system architecture, interactive computer graphics


Problem solving, heuristic search, planning in domains, multi-agent search, parallel and distributed computation and architectures

David A. Tennent, Ph.D. (UCLA, 1973)

Digital computer architecture and design, computer-aided design, artificial life/intelligence

Alan L. Yuille, Ph.D. (Cambridge University, 1986)

Computer vision, computational models of cognition, machine learning

Carlos Zaniolo, Ph.D. (UCLA, 1976)

Knowledge bases and deductive databases, parallel execution of PROLOG programs, formal software specifications, distributed systems, artificial intelligence, and computational biology

Lixia Zhang, Ph.D. (MIT, 1989)

Computer network, Internet architecture, protocol design, security and resiliency of large-scale systems

Simos Pragastis, Ph.D. (MIT, 1987)

Computer system architecture, computer architecture, computer system architecture, interactive computer graphics

Paul F. Curran, Ph.D. (UC Berkeley, 1980)

Computer architecture, computer system architecture, interactive computer graphics

Robert E. Lucas, Ph.D. (Georgia Tech, 1975)

Computer architecture, computer system architecture, interactive computer graphics

Robert L. Glass, Ph.D. (UC Berkeley, 1983)

Computer architecture, computer system architecture, interactive computer graphics


Multimedia systems, database systems, data mining

Lawrence P. McNamee, Ph.D. (Pittsburgh, 1964)

Computer graphics, discrete simulation, digital filtering, computer-aided design, LSI fabrication techniques, printed circuit board design

Michael A. Melkanoff, Ph.D. (UCLA, 1955)

Programming languages, data structures, database design, relational models, simulation systems, robotics, computer-aided design and manufacturing, numerical-controlled machinery

Judea Pearl, Ph.D. (Polytechnic Institute of Brooklyn, 1965)

Artificial intelligence, philosophy of science, reasoning under uncertainty, causal inference, causal and counterfactual analysis

David A. Rennels, Ph.D. (UCLA, 1973)

Information processing in biological systems, with emphasis on neuroscience, cybernetics, online laboratory, operations research, and pattern recognition, analog and hybrid systems/signal processing

Associate Professors

Jungho (John) Cho, Ph.D. (Stanford, 2002)

Databases, web technologies, information discovery and integration

Eleazar Eskin, Ph.D. (Columbia, 2002)

Bioinformatics, genetics, genomics, machine learning

Edward Kohler, Ph.D. (MIT, 2001)

Operating systems, software systems, programming languages and systems, networking systems

Piyush Pankaj, Ph.D. (UCLA, 2000)

Computer-aided verification of hardware and software systems; logic and automata theory; embedded, hybrid, and probabilistic systems


Programming language design, static type systems, formal methods, software model checking, compilers

Glen D. Reiman, Ph.D. (UC San Diego, 2001)

Microprocessor architecture, exploitation of instruction/thread/memory-level parallelism, power-efficient design, hardware/software co-design, multicore and multiprocessor design

Amir Sahai, Ph.D. (MIT, 2000)

Theoretical computer science, cryptography, computer security, algorithms, error-correcting codes and learning theory

Yuval Tarn, Ph.D. (UC Berkeley, 1985)

Computer systems, computer architecture, software systems, parallel and distributed systems, dependable systems, cluster computing, reliable network services, interconnection networks and switches, multi-core architectures, reconfigurable systems

Assistant Professors

Petros Faloutsos, Ph.D. (Toronto, 2002)

Computer graphics, computer animation

Adam W. Meyerson, Ph.D. (Stanford, 2002)

Approximation algorithms, randomized algorithms, online algorithms, theoretical problems in networks and databases

Zhuowen Tu, Ph.D. (Ohio State, 2002)

Statistical modeling/computational biology, machine learning, brain imaging

† Also Professor of Mathematics

‡ Also Professor of Medicine

§ Member of Brain Research Institute
Senior Lecturer
Leon Levine, M.S. (MIT, 1949), Emeritus
Computer methodology

Lecturers S.O.E.
Paul R. Eggert, Ph.D. (UCLA, 1980)
Programming languages, operating systems principles, compilers, Internet

David A. Smallberg, M.S. (UCLA, 1996)
Programming languages, software development

Adjunct Professors
Alan Kay, Ph.D. (Utah, 1969)
Object-oriented programming, personal computing, graphical user interfaces

Boris Kogan, Ph.D. (Moscow, Russia, 1962)
Mathematical modeling and computer simulation (using parallel supercomputers) of dynamic processor in excitable biological systems, particularly mechanisms of heart arrhythmias, fibrillation and defibrillation

Peter L. Reiher, Ph.D. (UCLA, 1987)
Computer and network security, ubiquitous computing, file system, distributed systems

M. Yahya Sanadidi, Ph.D. (UCLA, 1982)
Computer networking, path characteristics estimation and applications in flow control, adaptive streaming and overlay design, probability models of computing systems, algorithms and networks

Lower Division Courses

1. Freshman Computer Science Seminar. (1)
Seminar, one hour; discussion, one hour. Introduction to department resources and principal topics and key ideas in computer science and computer engineering. Assignments given to bolster independent study and writing skills. Letter grading. Mr. Cong (F)

2. Great Ideas in Computer Science. (4)
Lecture, four hours; outside study, eight hours. Broad coverage for liberal arts and social sciences students of computer science theory, technology, and implications, including artificial and neural machine intelligence, computability limits, virtual reality, cellular automata, artificial life, programming languages survey, and philosophical and societal implications. P/NP or letter grading. Mr. Dyer (Sp)

19. Fiat Lux Freshman Seminars. (1)
Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

31. Introduction to Computer Science I. (4)
Lecture, four hours; discussion, two hours; outside study, six hours. Introduction to computer science via theory, applications, and programming. Basic data types, operators and control structures. Input/output, procedural and data abstraction. Introduction to object-oriented software development. Functions, recursion, arrays, strings, pointers. Abstract data types, object-oriented programming. Examples and exercises from computer science theory and applications. Letter grading. Mr. Palsberg, Mr. Smallberg (F,W,Sp)

32. Introduction to Computer Science II. (4)

33. Introduction to Computer Organization. (5)
Lecture, four hours; discussion, two hours; outside study, nine hours. Enforced requisite: course 32. Introductory course on computer architecture, assembly language, and operating systems fundamentals. Number systems, machine language, and assembly language. Procedure calls, stacks, interrupts, and traps. Addressing models, file management and operating systems concepts: processes and process management, input/output (I/O) programming, memory management, file systems. Letter grading. Mr. Palsberg, Mr. Smallberg (F,Sp)

35L. Software Construction Laboratory. (2)
Formerly numbered 35L Laboratory, four hours; outside study, two hours. Requisite: course 31. Fundamentals of common methods and environments, particularly open-source tools to be used in upper division computer science courses. Letter grading. Mr. Eggert, Mr. Palsberg (F,Sp)

51A. Logic Design of Digital Systems. (4)
Same as Electrical Engineering 16J.
Lecture, four hours; discussion, two hours; outside study, six hours. Introduction to digital systems. Specification and implementation of combinational and sequential systems. Standard logic modules and programmable logic arrays. Specification and implementation of algorithmic systems: data and control sections. Number systems and arithmetic algorithms. Error control codes for digital information. Mr. Ercogevac, Mr. Potkonjak (F,W,Sp)

97. Variable Topics in Computer Science. (1 to 4)
Lecture, one to four hours; discussion, zero to two hours. Designed for freshmen/sophomores. Variable topics in computer science not covered in regular computer science courses. May be repeated once for credit with topic or instructor change. Letter grading. Mr. Palsberg (F)

99. Student Research Program. (1 to 2)
Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading. Mr. Ercogevac (Sp)

Upper Division Courses

101. Upper Division Computer Science Seminar. (1)
Seminar, one hour; discussion, one hour. Introduction to current research, trends, emerging areas, and contemporary issues in computer science and engineering. Assignments given to bolster independent study and writing skills. Letter grading. Mr. Palsberg (Sp)

111. Operating Systems Principles. (4)
Lecture, four hours; laboratory, two hours; outside study, six hours. Requisites: courses 32, 33, 35L. Introduction to operating systems design and evaluation. Computer software systems performance, robustness, and functionality. Kernel structure, bootstrapping, input/output (I/O) devices and interrupts. Processes and threads; address space, memory management, and virtual memory. Scheduling, synchronization. File systems: layout, performance, robustness. Distributed systems: networking, remote procedure call (RPC), asynchronous RPC, distributed file systems, transactions. Protection and security. Exercises involving applications using, and internals of, real-world operating systems. Letter grading. Mr. Eggert, Mr. Kohler (F,Sp)

112. Computer System Modeling Fundamentals. (4)
Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: Statistics 100A or 110A. Designed for juniors/seniors. Probability and stochastic process models as applied in computer science. Basic probability concepts include random variables, conditional probability, expectation and higher moments, Bayes theorem, Markov chains. Applications include probabilistic algorithms, evidential reasoning, analysis of algorithms and data structures, reliability, communication protocol and queueing models. Letter grading. Mr. Gerla, Mr. Munzt (W)

113. Introduction to Distributed Embedded Systems. (4)
Lecture, four hours; laboratory, four hours; outside study, four hours. Requisites: courses 111, 118. Introduction to basic concepts, design, and implement wireless distributed embedded systems. Topics include design implications of energy and otherwise resource-constrained nodes and networks, self-configuration, reconfiguration, localization and time synchronization, applications, and usage issues such as human interfaces, safety, and security. Heavily project based. Letter grading. Mr. Estrin (M)

M117. Computer Networks: Physical Layer. (6)
(Same as Electrical Engineering M117.) Lecture, four hours; discussion, four hours; outside study, 10 hours. Introduction to basic principles and concepts of network communication hardware. Enforced requisite: course CM108A or CM117L. Introduction to fundamental data communication concepts underlying and supporting modern networks, with focus on physical and media access layers of network protocol stack. Includes high-speed LANs (e.g., fast and giga Ethernet), optical DWDM (dense wavelength division multiplexing), time division SONET networks, wireless LANs (IEEE802.11), and ad hoc wireless and personal area networks (e.g., Bluetooth). Experimental laboratory sessions included. Letter grading. Mr. Gerla (W,Sp)

118. Computer Network Fundamentals. (4)
Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 32, 33, 35L, 111. Designed for juniors/seniors. Introduction to design and performance evaluation of computer networks, including such topics as packet switching, layered network architecture, Internet protocol architecture, network applications, transport protocols, routing algorithms and protocols, internetworking, congestion control, and link layer protocols. Concluding Ethernet and wireless channels. Letter grading.

Mr. Gerla, Ms. Zhang (F,Sp)

CM121. Introduction to Bioinformatics. (4)
(Same as Chemistry CM160A.) Lecture, four hours; laboratory, four hours. Enforced requisite: course CM121. Introduction to bioinformatics as it relates to experimental and genotyping technologies. Computational techniques and algorithms for processing nucleotide and amino acid sequences. Introduction to high-throughput sequencing technologies. Computational methods for the prediction of protein fold and function. Design, implementation, development, and use of software for gene expression analysis, data mining, and genotyping methods. Letter grading. Mr. Eskin (F)

CM122. Algorithms in Bioinformatics and Systems Biology. (4)
(Same as Chemistry CM160B.) Lecture, four hours; laboratory, four hours. Enforced requisite: course CM122. Provides a rigorous introduction to algorithms and data structures for computational biology. Focuses on sequence analysis and alignment algorithms. Concurrently scheduled with course CM222. P/NP or letter grading. Mr. Eskin (F)

CM24. Computational Genetics. (4)
(Same as Mathematics CM170A.) Lecture, three hours; discussion, one hour. Introduction to computational methods and software tools for biological research. Includes applications in computational genomics and genetics. Letter grading. Mr. Eskin (Not offered 2009-10)
130. Software Engineering. (4) Lecture, four hours; laboratory, two hours; outside study, six hours. Requi- sites: courses 32, 35L. Recommended: Engineering 183 or 185. Structured programming, program speci- fication, program proving, modularity, abstract data types, composite design, software tools, software control systems, program testing, team programming. Letter grading. Mr. Friedman, Mr. Maimundr (W,SP).

131. Programming Languages. (4) Lecture, four hours; laboratory, two hours; outside study, six hours. Requisites: courses 32, 33, 35L. Basic concepts in design and use of programming languages, including abstraction, modularity, control mechanisms, types, declarations, syntax, and semantics. Study of several different language paradigms, including functional, object-oriented, and logic programming. Letter grading. Mr. Eggert, Mr. Millstein (F,SP).

132. Compiler Construction. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 32, 33L, 131, 181. Compiler structure; lexical and syntactic analysis; semantic analysis and code generation; theory of parsing. Letter grading. Mr. Eggert, Mr. Palsberg (W,SP).

133. Parallel and Distributed Computing. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 111 (may be taken concurrently), 131. Distributed memory and shared memory parallel architectures; asynchronous parallel languages: MPI, MAI; primitives for parallel computation; specification of parallelism, interprocess communication and synchronization; design of parallel programs for scientific computation and distributed systems. Letter grading. Mr. Cong (SP).

134. Introduction to Computer Security. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 111, 118. Introduction to basic concepts of information security necessary for students to understand risks and mitigations asso- ciated with protection of systems and data. Topics in- clude security models and architectures, security threats and risk analysis, access control and authen- tication/authorization, cryptography, network securi- ty, secure application design, and ethics and law. Letter grading. Mr. Eggert, Mr. Reher (W).


144. Web Application. (4) Lecture, four hours dis- cussion, two hours; outside study, six hours. Enforced requisite: course 143. Important concepts and theory for building effective and safe Web applications and first-hand experience with basic tools. Topics include basic Web architecture and protocol, XML and XML query language, mapping between XML and relation- al models, information retrieval model and theory, se- curity and user model, Web services and distributed transactions. Letter grading. Mr. Chang (SP).

M151B. Computer Systems Architecture. (4) (Same as Electrical Engineering M116C.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 33, and M51A or Electrical Engineering M16. Recommended: courses 111, and M152A or Electrical Engineering M16L. Com- puter system organization and design, implementa- tion of CPU datapath and control, instruction set de- sign, memory hierarchy (caches, main memory, virtu- al memory) organization and management, input/ output subsystems (bus structures, interrupts, DMA), performance evaluation, pipelined processors. Letter grading. Mr. Reinman, Mr. Tamir (F,SP).


152A. Introductory Digital Design Laboratory. (2) (Same as Electrical Engineering M116L.) Laboratory, four hours; outside study, two hours. Requisite: course M51A or Electrical Engineering M16. Hands- on design, implementation, and debugging of digital logic circuits, use of systolic- and scan-based tools for schematic capture and simulation, implementation of complex circuits using programmed array logic, de- sign projects. Letter grading. Mr. Sarraatazedeh (F,SP).

152B. Digital Design Project Laboratory. (4) (For- merly numbered M152B.) Laboratory, four hours; dis- cussion, two hours; outside study, six hours. Requisite: course M51B or Electrical Engineering M116C. Design and implementation of complex digital sub- systems using field-programmable gate arrays (e.g., processors, special-purpose processors, device con- trollers, and input/output interfaces). Students work in teams to develop and implement designs and to doc- ument and give oral presentations of their work. Let- ter grading. Mr. Sarraatazedeh (F,SP).

161. Fundamentals of Artificial Intelligence. (4) Lecture, four hours; laboratory, two hours; outside study, six hours. Requisite: course 32. Introduction to fundamental problem solving and knowledge repre- sentation paradigms of artificial intelligence. Introduc- tion to Lisp with regular programming assignments. State-space and problem reduction methods, brute- force and heuristic search, planning techniques, two- player games. Knowledge structures including predi- cate logic, production systems, semantic networks and primitives, frames, scripts. Special topics in natural language processing, expert systems, vision, and parallel architectures. Letter grading. Mr. Darwiche, Mr. Korf (F).


M171L. Data Communication Systems Laborato- ry. (2 to 4) (Same as Electrical Engineering M171L.) Laboratory, four to eight hours; outside study, two to four hours. Recommended preparation: course M152A. Limited to seniors. Interpretation of analog- signaling aspects of digital systems and data commu- nications through experience in using contemporary test instruments to generate and display signals in relevant laboratory setups. Use of oscilloscopes, pulse and function generators, baseband spectrum analyzers, desktop computers, terminals, modern, PCs, and workstations in experiments on pulse trans- mission impairments, waveforms and their spectra, modem and terminal characteristics, and interfaces. Letter grading. Mr. Geria (F,SP).

174A. Introduction to Computer Graphics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 32. Basic princi- ples and techniques behind modern two- and three-dimensional computer graphics systems, including complete set of steps that modern graphics pipelines use to create realistic images in real time. How to position and ma- nipulate objects in scene using geometric and cam- era transformations. How to create final image using perspective and orthographic transformations. Basics of modeling primitives such as polygonal models and implicit and parametric surfaces. Basic ideas behind color spaces, illumination models, shading, and tex- ture mapping. Letter grading. Mr. Faloutsos, Mr. Soatto (F,SP).

174B. Introduction to Computer Graphics: Three- Dimensional Photography and Rendering. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 174A. State of art in three-dimensional photography and image-based rendering. How to use cameras and light to capture shape and appearance of real objects and scenes. Process provides simple way to acquire three-dimen- sional models of unparalleled detail and realism. Ap- plications of techniques from entertainment (reverse engineering and postprocessing of movies, genera- tion of realistic synthetic objects and characters) to medical imaging (modeling of biological structures from im- aging data), mixed reality (augmentation of video), and security (visual surveillance). Fundamental ana- lytical tools for modeling and inferring geometric (shape) and photometric (reflectance, illumination) properties of objects and scenes, and for rendering and manipulating novel views. Letter grading. Mr. Faloutsos, Mr. Soatto (Not offered 2009-10).

174C. Computer Animation. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 174A. Designed for juniors/ seniors. Introduction to computer animation, includ- ing basic principles of character modeling, forward and inverse kinematics, forward and inverse dynam- ics, motion capture animation techniques, physics- based animation of particles and systems, and motor control. Concurrently scheduled with course C274C. Letter grading. Mr. Faloutsos (W, alternate years).

180. Introduction to Algorithms and Complexity. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 32, and Mathematics 61 or 180. Designed for junior/senior Computer Science majors. Introduction to design and analysis of algorithms. Design techniques: divide-and-conquer, greedy method, dynamic programming; solving the prototypical 0-1 knapsack problem. Data structures and representations; complexity mea- sures: time, space, upper, lower bounds, asymptotic complexity; NP-completeness. Letter grading. Mr. Gafni, Mr. Mavrogenis (FW,SP).

181. Introduction to Formal Languages and Au- tomat Theory. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 32, and Mathematics 61 or 180. Designed for junior/senior Computer Science majors, Grammars, automata, and languages. Finite-state languages and finite-state automata. Context-free languages and pushdown systems. State and transition enumerations of regular languag- es, and Turing machines. Closure properties, pump- ing lemmas, and decision algorithms. Introduction to computability. Letter grading. Mr. Greibach, Mr. Ostrofsky, Mr. Sahai (FW,SP).
183. Introduction to Cryptography. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Preparation: knowledge of basic probability theory. Introduction to cryptography, computer security, and basic concepts and techniques. Topics include notions of hardness, one-way functions, hard-core bits, pseudorandom generators, pseudorandom functions and permutations, semantic security, public-key and private-key encryption, key-agreement, homomorphic encryption, one-way functions, hash functions, digital signatures, interactive proofs, zero-knowledge proofs, collision-resistant hash functions, commitment protocols, message authentication, digital signatures, two-party secure computation with static security. Letter grading. Mr. Ostrovsky (Sp, odd years)

M186A. Introduction to Computational and Systems Biology. (2) (Same as Biomedical Engineering M186A and Computational and Systems Biology M186A.) Lecture, four hours; outside study, two hours. Requisites: course 31 (or Program in Computing 10A), Mathematics 31A, 31B. Survey course designed to introduce students to computational and systems biology. Topics include: (1) bioinformatics, genomics, systems biology, systems biology software, knowledge discovery, systems, biosystem simulation, and/or other computational and systems biology/biomedical engineering areas. P/NP grading. Mr. DiStefano (F)

CM186B. Computational Systems Biology: Modeling and Simulation of Biological Systems. (5) (Formerly numbered M186B.) (Same as Biomedical Engineering CM186B and Computational and Systems Biology CM186B.) Lecture, four hours; laboratory, three hours; outside study, eight hours. Concurrently scheduled with course CM186B. Closely directed, interactive laboratory, one hour; outside study, eight hours. Requisites: course CM186B. Close-up study of topics in computer science and electrical engineering students. Methodologies and technologies for design of embedded systems. Topics include hardware and software platforms for embedded systems, techniques for modeling and specification of system behavior, software organization, real-time operating system scheduling, real-time communication and radio scheduling, wired and wireless embedded systems, security-aware system design, timing synchronization, fault tolerance and debugging, and techniques for hardware and software architecture optimization. Theoretical foundations as well as practical design methods. Letter grading. Mr. Predki-Puria, Mr. Pravda (F)

M213A. Embedded Systems. (4) (Same as Electrical Engineering M202A.) Lecture, four hours; outside study, eight hours. Requisite: course 111. Designed for graduate computer science and electrical engineering students. Methodologies and technologies for design of embedded systems. Topics include hardware and software platforms for embedded systems, techniques for modeling and specification of system behavior, software organization, real-time operating system scheduling, real-time communication and radio scheduling, wired and wireless embedded systems, security-aware system design, timing synchronization, fault tolerance and debugging, and techniques for hardware and software architecture optimization. Theoretical foundations as well as practical design methods. Letter grading. Mr. Predki-Puria, Mr. Pravda (F)

M213B. Distributed Embedded Systems. (4) (Same as Electrical Engineering M202B.) Lecture, four hours; outside study, eight hours. Requisites: courses 31 and 112. Designed for graduate computer science and electrical engineering students. Interdisciplinary course with focus on study of distributed embedded systems concepts needed to realize systems such as wireless sensor and actuator networks for monitoring and control of physical world. Topics include network self-configuration with localization and timing synchronization, security-aware system design, modeling and protocols for MAC, routing, transport, disruption tolerance; programming issues and models with language, OS, database, and middleware; in-network compression and encryption; fundamental characteristics such as coverage, connectivity, capacity, latency; techniques for exploitation and management of actuators and mobility; data and system integrity issues with calibration, faults, debugging, and security; and usage issues such as human interfaces and safety. Letter grading. Ms. Estrin, Mr. Srivastava

214. Data Transmission in Computer Communications. (4) Lecture, four hours; outside study, eight hours. Requisite: course 112. Resource sharing; computer traffic; channelization; first-comer, first-served (FCFS) queueing; multiplexing; bandwidth-sharing; design, implementation, and analysis. Basics of numerical simulation algorithms, with modeling software exercises in class and PC laboratory assignments. Concurrently scheduled with course CM214B. Letter grading. Mr. Mr. Gerla (W)

CM186C. Biomodeling Research and Research Communication Workshop. (2 to 4) (Formerly numbered CM186C.) Lecture, four hours; biomedical engineering students. May be repeated for credit with topic or instructor change. Letter grading.

194. Research Group Seminars: Computer Science. (4) Seminar, four hours; outside study, eight hours. Designed for undergraduate students who are part of research group. Discussion of research methods and current literature in field of or research of faculty members or students. May be repeated for credit. Letter grading. (F/W/Sp)

199. Directed Research in Computer Science. (2 to 8) Tutorial, to be arranged. Limited to juniors/seiors. Supervised individual research or investigation under guidance of faculty mentor. Culminating paper or project required. May be repeated for credit with school approval. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading. (F/W/Sp)

Graduate Courses

201. Computer Science Seminar. (2) Seminar, four hours; outside study, two hours. Designed for graduate computer science students. Seminars on current research topics in computer science. May be repeated for credit. S/U grading. (F/W/Sp)

202. Advanced Computer Science Seminar. (4) Seminar, four hours; outside study, eight hours. Preparation: completion of major field examination. Seminar current computer science research into theory of, analysis and synthesis of, and applications of information processing systems. Each member completes one tutorial and one or more original pieces of work in one specialized area. May be repeated for credit. Letter grading. Ms. Estrin (F/W/Sp)

211. Network Protocol and Systems Software Design for Wireless and Mobile Internet. (4) Lecture, four hours; outside study, eight hours. Requisite: course 118. Designed for graduate students. In-depth study of network protocol and systems software design in area of wireless and mobile Internet. Topics include (1) networking fundamentals; design philosophy of TCP/IP; end-to-end arguments, and protocol design principles, (2) networking protocols; 802.11 MAC standard, packet scheduling, mobile IP, ad hoc routing, and wireless TCP; (3) mobile computing systems software: middleware, file system, services, and applications, and (4) topological studies: energy-efficient design; security, location management, and quality of service. Letter grading. Ms. Estrin (F/W/Sp)


212B. Queuing Applications: Scheduling Algorithms and Queuing Networks. (4) Lecture, four hours; outside study, eight hours. Requisite: course 212A. Priority queueing applications. Applications to time-sharing scheduling algorithms: FB, Round Robin, Conserva- tion Law, Bounds, Queuing networks: definitions; job flow balance; product form solutions — local balance, M/M; computational algorithms for performance measures; asymptotic behavior and bounds; approximation techniques — diffusion — iterative techniques; applications. Letter grading. Mr. Muntz

215. Computer Communications and Networks. (4) Lecture, four hours; outside study, eight hours. Requisite: course 112. Resource sharing; computer traffic; channelization; first-comer, first-served (FCFS) queueing; multiplexing; bandwidth-sharing; design, implementation, and analysis. Basics of numerical simulation algorithms, with modeling software exercises in class and PC laboratory assignments. Concurrently scheduled with course CM215B. Letter grading. Mr. Carlyle

216. Distributed Multiaccess Control in Networks. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 212A, 215. Topics from field of distributed control and access in computer networks, including terrestrial distributed computer networks; satellite packet switching; ground radio, packet switching; local networks; commercial network services and architectures. Optional topics include extended error control techniques; modems; SDL, HDLC, X.25, etc.; protocol verification; network simulation and measurement; integrated networks; communication processors. Letter grading. Mr. Chu

217A. Internet Architecture and Protocols. (4) Lecture, four hours; outside study, eight hours. Requisite: course 118. Focus on mastering existing core set of Internet protocols, including IP, core transport protocols, routing protocols, DNS, NTP, and security protocols such as DNSSEC, to understand principles behind design of these protocols, appreciate their design tradeoffs, and learn lessons from their operations. Letter grading. Ms. Zhang
217B. Advanced Topics in Internet Research. (4) (Formerly numbered 217.) Lecture, four hours; outside study, eight hours. Requisite: course 217A. Design for graduate students. Overview of Internet development history and fundamental principles underlying TCP/IP protocol design. Discussion of current Internet research topics, including recent research results in routing protocols, transport protocols, network measurements, network security protocols, and clean-slate approach to network architecture design. Fundamental issues in network protocol design and implementations. Letter grading.

Ms. Zhang


Mr. Gerla (F)

219. Current Topics in Computer System Modeling and Analysis. (2 to 12) Lecture, four hours; outside study, eight hours. Review of current literature in area of computer system modeling analysis in which instructor has developed special proficiency as consequence of research interests. Students report on selected topics. May be repeated for credit with consent of instructor. Letter grading.

CM221. Introduction to Bioinformatics. (4) (Same as Bioinformatics M220A; formerly Biometry M260A, and Human Genetics M260A.) Lecture, three hours discussion, one hour. Enforced requisites: course 180 or Program in Computing 60 with grade of C– or better, and Biostatistics 100A or 110A or Mathematics 170A or Statistics 100A or 110A. Introduction to bioinformatics and methodologies, with emphasis on concepts and inventing new bioinformatic methods. Focus on sequence analysis and alignment algorithms. Concurrently scheduled with course CM121. S/U or letter grading.

Mr. Eskin (F)


Mr. Eskin (Not offered 2009-10)

CM224. Computational Genetics. (4) (Same as Human Genetics CM224.) Lecture, three hours; discussion, one hour; outside study, eight hours. Preparation: one statistics course and familiarity with any programming language. Designed for undergraduate and graduate engineering students, as well as students from biological sciences and medical school. Introduction to current quantitative understanding of human genetics and computational interdisciplinary research in genetics. Topics include introduction to genetics, human population history, linkage analysis, association analysis, association study design, isolated and admixed populations, population structure, human SNP variation, model organism and genotyping technologies. Computational techniques include those from statistics and computer science. Concurrently scheduled with course CM124. Letter grading.

Mr. Eskin (Sp)

M229S. Seminar: Current Topics in Bioinformatics. (4) (Same as Human Genetics M229S.) Seminar, four hours; outside study, eight hours. Designed for graduate students. Overview of Internet resources for students from biological sciences and medical school. Introduction to current topics in bioinformatics, genomics, and computational techniques and preparation for computational interdisciplinary research in genet- ics and genomics. Topics include genome analysis, regulatory genomics, association analysis, association study design, isolated and admixed populations, population substructure, human structural variation, model organisms, and genomic technologies. Computational techniques include those from statistics and computer science. May be repeated for credit with consent of instructor. Letter grading.

230A. Models of Information and Computation. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 131, 181. Paradigms, models, frameworks, and methodologies, with emphasis on correctness and performance. Topics include basic information and computation models; axiomatic systems; domain theory; least fixed point theory; well-founded induction. Logical models: sentences, axioms and rules, normal forms, derivation and proof, models and semantics, propositional logic, first-order logic, logic programming. Functional models: expressions, equations, evaluation, combinators; lambda calculus; primitive recursive function. Program models: program derivation and verification using Hoare logic, object models, standard templates, design patterns, frameworks. Letter grading.

Mr. Bagrodia, Mr. Kale, Mr. Zaniolo

231. Types and Programming Languages. (4) Lecture, four hours; outside study, eight hours. Requisite: course 131. Introduction to static type systems and their usage in programming language design and software reliability. Operational semantics, simply-typed lambda calculus, type soundness proofs, types for mutable references, types for exceptions. Parametric polymorphism, let-bound polymorphism, polymorphism type change. Letter grading.

Mr. Millestein (F)

232. Static Program Analysis. (4) Lecture, four hours; outside study, eight hours. Requisite: course 132. Introduction to static analysis of object-oriented programs and its usage for optimization and bug finding. Class hierarchy analysis, rapid type analysis, equality-based analysis, abstract analysis, flow-insensitive and flow-sensitive analysis, context-insensitive and context-sensitive analysis. Soundness proofs for static analyses. Efficient data structures for static analysis including directed graphs and binary decision diagrams. Flow-directed method inlining, type-safe method inlining, synchronization optimization, deadlock detection, security vulnerabili- ty detection. Formal specification and implementation of variability of static analyses, as well as readings from recent research literature on modern applications of type systems. Letter grading.

Mr. Palisberg, Mr. Reiper

233A. Parallel Programming. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 111, 131, 132. Mutual exclusion and resource allocation in distributed systems; primitives for parallel computation: specification of parallelism, interprocess communication and synchronization, atomic actions, binary and multway rendezvous; synchronous and asynchronous languages; CSP, Ada, Linda, Maie, OC, and others; introduction to parallel program verification. Letter grading.

Mr. Cong

233B. Verification of Concurrent Programs. (4) Lecture, four hours; outside study, eight hours. Requisite: course 233A. Formal techniques for verification of concurrent programs. Topics include safety, livelocks, program and state abstraction, based techniques, weakest precondition semantics, Hoare logic, temporal logic, UNITY, and axiomatic semantics for select- ed parallel languages. Letter grading.

Mr. Bagrodia

234. Computer-Aided Verification. (4) Lecture, four hours; outside study, eight hours. Requisite: course 181. Introduction to theory and practice of formal methods for design and verification of concurrent and embedded systems, with focus on algorithmic tech- niques for checking logical properties of hardware and software systems. Topics include semantics of reactive systems, invariants, verification, temporal logic, model checking, theory of omega automata, state space reduction techniques, compositional and hier- archical systems, verification. Letter grading.

Mr. Rajumard


Mr. Kohler

236. Computer Security. (4) Lecture, four hours; outside study, eight hours. Requisite: courses 111, 118. Basic and research material on computer security. Topics include basic principles and goals of computer security; common security tools, use of crypto- graphic protocols for securing protocol data units (hello, Datagram Delivery, virtual private networks, honeypots), and worm and virus protection, security assurance and testing, design of secure programs, privacy, applying security principles to realistic problems, and new and emerging threats and security tools. Letter grading.

Mr. Palisberg, Mr. Reiper

239. Current Topics in Computer Science: Programming Languages and Systems. (2 to 12) Lecture, four hours; outside study, eight hours. Review of current literature in area of computer science programming languages and systems in which instructor has developed research competency as well as sequence and research interests. May be repeated for credit with topic change. Letter grading.


Mr. Parker, Mr. Zaniolo


Mr. Cardenas
241B. Pictorial and Multimedia Database Management. (4) Lecture, three and one-half hours; discussion, 30 minutes; laboratory, one hour; outside study, seven hours. Requires: course 143. Multimedia data: alphanumeric, long text, images/pictures, video, and audio content. Querying, visual languages, and communication. Database design and organization, logical and physical. Indexing methods for efficient multimedia streaming. Other topics at discretion of instructor. Letter grading.

Mr. Cardenas

244A. Distributed Database Systems. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 112, 143, 180, 181. Designed for graduate students; four hours; outside study, eight hours. Requisite: course 251A. Number systems: conventional, redundant, and error-correcting. Binary and base-10 algorithms and implementations. Complexity measures. Fast algorithms and implementations for two-operand addition, multipoperand addition, multiplication, division, and square root. Error detection and correction, multiplication and division of transcendental functions. Floating-point arithmetic and numerical error control. Arithmetic error codes. Residue arithmetic. Examples of contemporary arithmetic ICs and processors. Letter grading.

Mr. Ercogevac (W)


Mr. Ercogevac (W)


Mr. Chu

253C. Testing and Testable Design of VLSI Systems. (4) Lecture, four hours; outside study, eight hours. Requisites: courses M251A, 258A. Detailed study of various problems in testing and testable designs of VLSI systems, including fault modeling, fault simulation, testing for single stuck faults and multiple stuck faults, fault tolerant design, design for testability, compression techniques, and built-in self-test. Letter grading.

Mr. Cong

254A. Computer Memories and Memory Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 251A. General types of memory systems; control, access modes, hierarchies, and allocation algorithms. Characteristics, system organization, and device considerations of primary memory, secondary memory, thin film memories, and semiconductor memories. Letter grading.

Mr. Chu

255A. Distributed Processing Systems. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 215 and/or 241A. Task partitioning and allocation, interprocess communication, task response time model, process scheduling, message passing protocols, replicated file systems, interface, cache memory, actor model, fine grain multiprocessors, distributed operating system kernel, error recovery strategy, performance monitoring and measurement, scalability and maintainability, prototypes and commercial distributed systems. Letter grading.

Mr. Chu

256A. Advanced Scalable Architectures. (4) Lecture, four hours; outside study, eight hours. Requisite: course M151B. Recommended: course 251A. State-of-the-art scalable multiprocessors. Interdependency among implementation technology, chip microarchitecture, and system architecture. High-performance building blocks, such as chip multiprocessors (CMPs). On-chip and off-chip communication. Mechanisms for exploiting parallelism at multiple levels. Current research areas. Examples of chips and systems. Letter grading.

Mr. Tamir

256B. Design of VLSI Circuits and Systems. (4) Same as Electrical Engineering M216A.) Lecture, four hours; discussion, one hour; laboratory, four hours; outside study, three hours. Requisites: course M51A. Computer Science 251A or Electrical Engineering 115A. Recommended: Electrical Engineering 115C. LSI/VLSI design and application in computer systems. Fundamental design techniques that can be used in both complex integrated systems on chips. Letter grading.

Mr. Chu

258C. LSI in Computer System Design. (4) Lecture, four hours; laboratory, four hours; outside study, four hours. Requisite: course 251A. LSI design and application in computer systems. In-depth studies of VLSI architectures and VLSI design tools. Letter grading.

Mr. Ercogevac

258E. Foundations of VLSI CAD Algorithms. (4) Lecture, four hours; outside study, eight hours. Preparation: one course in analysis and design of algorithms. Basic theory of computational optimization for VLSI physical layout, including mathematical programming, network flows, matching, greedy and heuristic algorithms, and stochastic methods. Emphasis on practical application to computer-aided physical design of VLSI circuits at high-level phases of layout: partitioning, placement, graph folding, floorplanning, and global routing. Letter grading.

Mr. Pearl
M262C. Causal Inference. (4) (Same as Statistics M261C.) Lecture, four hours; outside study, eight hours. Prerequisites: course 112 or equivalent probability theory course. So-called causal effect as a function of treatment and control variables. Methodological issues involved in causal modeling and inference. Credit cannot be received for both course M262B and M262C. Letter grading. Mr. Pearl

262Z. Current Topics in Cognitive Systems. (4) Lecture, four hours; outside study, eight hours. Prerequisites: courses 263A, 263B, and 268S. Additional prerequisites for each offering announced in advance by department. Theory and implementation of systems that emulate or support human reasoning. Current literature and individual studies in artificial intelligence, knowledge-based systems, decision support systems, computational psychology, and heuristic programming theory. May be repeated for credit with topic change. Letter grading. Mr. Pearl

263A. Language and Thought. (4) Lecture, four hours; outside study, eight hours. Prerequisites: course 130 or 131 or 161. Introduction to natural language processing (NLP), with emphasis on semantics. Presentation of process models for variety of tasks, including question answering, paraphrasing, machine translation, word-sense disambiguation, narrative and editorial comprehension. Examination of both symbolic and statistical approaches to language processing and acquisition. Letter grading. Mr. Dyer

263B. Connectionist Natural Language Processing. (4) Lecture, four hours; outside study, eight hours. Prerequisites: course 161 or 263A. Examination of connectionist/ANN architectures designed for natural language processing. Issues include localist versus distributed representations, variable binding, instantiation and indecision. Topics include acquisition of language and world knowledge (for instance, via back propagation in PDP networks and competitive learning in self-organizing feature maps), and grounding of symbols in sensory/motor experience. Letter grading. Mr. Dyer

263C. Animats-Based Modeling. (4) Lecture, four hours; outside study, eight hours. Prerequisites: course 130 or 131 or 161. Animats are mobile/sensing animal-like software agents embedded in simulated dynamic environments. Emphasis on modeling: goal-oriented behavior via neurocontrollers, adaptation via reinforcement learning, evolutionary programming. Animal-like foraging, obstacle avoidance, fixed-predation, navigation, predator avoidance, cooperative nest construction, communication, and parenting. Letter grading. Mr. Dyer (F)

264A. Automated Reasoning: Theory and Applications. (4) Lecture, four hours; laboratory, four hours; outside study, four hours. Prerequisites: course 161. Introduction to theory and practice of automated reasoning using propositional and first-order logic. Topics include syntax and semantics of formal logic; algorithms for logical reasoning, including satisfiability and entailment; syntactic and semantic restrictions on knowledge bases; effect of these restrictions on expressiveness, compactness, and computational tractability; applications of automated reasoning to diagnosis, planning, design, formal verification, and reliability analysis. Letter grading. Mr. Darwiche (F)


266B. Statistical Computing and Inference in Vision and Image Science. (4) (Same as Statistics M232B.) Lecture, three hours. Preparation: basic statistics, linear algebra, computer vision. Introduction to broad range of algorithms for statistical inference and learning that could be used in vision, pattern recognition, speech, bioinformatics, data mining. Topics include Markov chain Monte Carlo computing, sequential Monte Carlo methods, belief propagation, partial differential equations. S/U or letter grading.

267A. Neural Models. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Analysis of major connectionist computing paradigms and underlying models of biological and physical processes. Focus on brain theories that are important for modeling. Recent work in particular, on models of sensory perception, sensory-motor coordination, and cerebellar and cerebral structure and function. Students required to prepare papers analyzing research in one area of interest. Letter grading. Mr. Vidal

267B. Artificial Neural Systems and Connectionist Computing. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Examination of major connectionist computing paradigms and underlying models of biological and physical processes. Examination of past and current implementation of artificial neural systems with their applications to associative knowledge processing, general multisensor pattern recognition including speed and vision, and adaptive robot control. Students required to prepare papers analyzing research in one area of interest. Letter grading. Mr. Vidal


268S. Seminar: Computational Neuroscience. (2) Seminar, two hours; outside study, four hours. Designed for students undertaking thesis research. Discussion of advanced topics and current research in computational neuroscience. Neural networks and connectionism as paradigm for parallel and concurrent computation in application to problems of perception, vision, multimodal sensory integration, and robotics. May be repeated for credit. S/U grading.

269. Seminar: Current Topics in Artificial Intelligence. (2 to 4) Seminar, to be arranged. Review of current literature and research practicum in area of artificial intelligence in which instructor has developed special proficiency as consequence of research interests. Students report on selected topics. May be repeated for credit with topic change. Letter grading.

270A. Computer Methodology: Advanced Numerical Methods. (4) Lecture, four hours; outside study, eight hours. Prerequisites: Electrical Engineering 103 or Mathematics 151B or comparable experience with numerical computing. Designed for graduate computer science and engineering students. Principles of computer treatment of selected numerical problems in algebraic and differential systems, transforms and spectra, data acquisition and reduction; emphasis on concepts pertinent to modeling and simulation and applicability of contemporary developments in numerical software. Computer exercises. Letter grading. Mr. Carlyle


271C. Seminar: Advanced Simulation Methods. (2) Seminar, two hours; outside study, six hours. Prerequisite: course 271A. Discussion of advanced topics in simulation of systems characterized by ordinary and partial differential equations. Topics include (among others) simulation languages, datamodel machines, array processors, and advanced mathematical modeling techniques. Topics vary each term. May be repeated for credit. S/U grading.

272. Advanced Discrete Event Simulation and Modeling Techniques. (4) Lecture, four hours; outside study, eight hours. In-depth study in discrete event simulation and modeling techniques, including building valid and credible simulation models, output analysis of systems, comparisons of alternative system configurations, variance reduction techniques, stochastic event models. Letter grading.


274C. Computer Animation. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Prerequisite: course 174A. Introduction to computer animation, including basic principles of character modeling, forward and inverse kinematics, forward and inverse dynamics, collision detection, animation techniques, physics-based animation of particles and systems, and motor control. Concurrently scheduled with course C174C. Letter grading.

275. Artificial Life for Computer Graphics and Vision. (4) Lecture, four hours; outside study, eight hours. Enforced prerequisite: course 174A. Recommended: course 161. Investigation of important role that concepts from artificial life, emerging discipline that spans computational and biological sciences, can play in construction of advanced computer graphics and vision models for virtual reality, animation, interactive games, active vision, visual sensor networks, medical image analysis, etc. Focus on comprehensive models that can realistically emulate virtual living things (plants and animals) 100 or more orders of magnitude faster than real-time for real animals to humans. Exposure to effective computational modeling of natural phenomena of life and their incorporation into sophisticated, self-animating graphical entities. Specific topics include modeling plants using L-systems, biomechanical simulation and control, behavioral animation, reinforcement and neural-network learning of locomotion, cognitive modeling, artificial animals and insects, human facial animation, and artificial evolution. Letter grading. Mr. Terzopoulos
M276A. Pattern Recognition and Machine Learning. (4) (Same as Statistics M231.) Lecture, three hours. Designed for graduate students. Fundamental concepts, theories, and algorithms for pattern recognition and machine learning that are used in computer vision, image processing, speech recognition, data mining, statistics, and computational biology. Topics include Bayesian decision theory, parametric and nonparametric learning, clustering, complexity (VC-dimension, MDL, AIC), PCA/ICA/ICA, MDS, SVM, boosting, and multiple-kernel learning. Letter grading.

276B. Structured Computer Vision. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Methods for computer processing of image data. Systems, concepts, and algorithms for image analysis, radiologic and robotic applications. Letter grading.

276C. Speech and Language Communication in Artificial Intelligence. (4) Lecture, four hours; outside study, eight hours. Requisite: course M276A or 276B. Topics in human-computer communication: interaction with pictorial information systems, sound and symbol generation by humans and machines, semantics of data, systems for speech recognition and understanding, and the design of speech and tone for computer input and output in applications. Letter grading.

279. Current Topics in Computer Science: Methodology. (2 to 12) Lecture, four hours; outside study, eight hours. Review of current literature in area of computational methodology for which instructor has developed special proficiency as consequence of research interests. Students report on selected topics. May be repeated for credit with topic change. Letter grading.

280A-280ZZ. Algorithms. (4 each) Lecture, four hours; outside study, eight hours. Requisite: course 180. Additional requisites for each offering announced in advance by department. Selections from design, analysis, optimization, and implementation of algorithms; computational complexity and general theory of algorithms; algorithms for particular application areas. Subtitles of some current sections: Principles of Design and Analysis (280A); Distributed Algorithms (280D); Graphs and Networks (280G). May be repeated for credit with consent of instructor and topic change. Letter grading.

280AP. Approximation Algorithms. (4) Lecture, four hours; outside study, eight hours. Requisite: course 180. Background in discrete mathematics helpful. Theoretically sound techniques for dealing with NP-hard problems. Inability to solve these problems efficiently means algorithmic techniques are based on approximation — finding solution that is near to best possible in efficient running time. Coverage of approximation techniques for number of different problems, with algorithm design techniques that include primal-dual method, linear program rounding, greedy algorithms, and local search. Letter grading. Mr. Meyerson (F)

281A. Computability and Complexity. (4) Lecture, four hours; outside study, eight hours. Requisite: course 181 or compatible background. Concepts fundamental to study of discrete information systems and theory of computing, with emphasis on regular sets of strings, Turing-recognizable (recursively enumerable) sets, closure properties, machine characterizations, decidability, unsolvability, problems, “easy” and “hard” problems, PTIME/NTIME. Letter grading. Ms. Greibach, Mr. Parker

281D. Discrete State Systems. (4) Lecture, four hours; outside study, eight hours. Recommended requisite: course 181. Finite-state machines, transducers, and their generalizations; regular expressions, transduction expressions, realizable? decomposition, synthesis, and design considerations; topics in state and system identification, fault diagnosis, linear machines, probabilistic machines, applications in coding, communication, computing, system modeling, and simulation. Letter grading. Mr. Carlyle

M282A. Cryptography. (4) (Same as Mathematics M205A.) Lecture, four hours; outside study, eight hours. Introduction to theory of cryptography, stressing: number theory, finite fields, and probability problems. Topics include notions of hardness, one-way functions, hard-core bits, pseudorandom generators, pseudorandom functions and pseudorandom permutations, semantic security, public-key cryptography and private-key cryptography, zero-knowledge proofs, key-agreement, contract signing, and two-party secure computation with static security. Letter grading. Mr. Ostrovsky (F)

M282B. Cryptographic Protocols. (4) (Same as Mathematics M205B.) Lecture, four hours; outside study, eight hours. Requisite: course M282A. Consideration of advanced cryptographic protocol design and analysis. Topics include noninteractive zero-knowledge proofs, zero-knowledge arguments, current and non-black-box zero-knowledge; IP=PSPACE proof, stronger notions of security for public-key encryption, including chosen-ciphertext security; secure multiparty computation; dealing with dynamic adversary; nonamalleability and computability of secure protocols; software protection; threshold cryptography; identity-based cryptography; private information retrieval, distributed min- and max-maid attacks; voting protocols; identification protocols; digital cash schemes; lower bounds on use of cryptographic primitives, software obfuscation. May be repeated for credit with topic change. Letter grading. Mr. Ostrovsky


284A-284ZZ. Automata and Languages. (4 each) Lecture, four hours; outside study, eight hours. Requisite: course 181. Additional requisites for each offering announced in advance by department. Selections from families of formal languages, grammars, machines, operators; pushdown automata, context-free languages and their generalizations; parsing; multidimensional grammars, developments systems; machine-based complexity. Subtitles of some current and planned sections: Context-Free Languages (284A); Regular Languages (284P). May be repeated for credit with consent of instructor and topic change. Letter grading. Ms. Greibach

CM286B. Computational Systems Biology: Modeling and Simulation of Biological Systems. (5) (Same as Biomedical Engineering CM286B.) Lecture, four hours; laboratory, three hours; outside study, eight hours. Corequisite: Biological Engineering 102. Dynamic biosystems modeling and computer simulation methods for studying biological/biomedical processes and systems at multiple levels of organization. Control system, multicompartamental, predator-prey, pharmacokinetic (PK), pharmacodynamic (PD), and other structures used to model data collected at all levels of biology and sciences problems at molecular, cellular (biochemical pathways/networks), organ, and organismic levels. Both theory- and data-driven modeling, with focus on translating biomarker data into mathematical models and implementing them for simulation and analysis. Basics of numerical simulation algorithms, with modeling software exercises in class and PC laboratory. Cross listed with course CM186B. Letter grading. Mr. DiStefano (F)

CM286C. Biomodeling Research and Research Communication Workshop. (2 to 4) (Formerly numbered CM286L.) Lecture, two hours; laboratory, one hour; outside study, eight hours. Requisite: course CM286B. Closely directed, interactive, and real research experience in active quantitative biology systems laboratory research. Discussion on how to focus on topics of current interest in scientific community, appropriate to student interests and goals. Critiques of oral presentations and written progress reports explain how to proceed with search for research results. Major emphasis on effective research reporting, both oral and written. Concurrently scheduled with course CM186C. Letter grading. Mr. DiStefano (Sp)

287A. Theory of Program Structure. (4) Lecture, four hours; outside study, eight hours. Requisite: course 181. Models of computer programs and their syntax and semantics; emphasis on programs and recursion schemes; equivalence, optimization, correctness, and translatability of programs; expressive power of program constructs and data structures; selected current topics. Letter grading.

288S. Seminar: Theoretical Computer Science. (2) Seminar, two hours; outside study, six hours. Requisites: courses 280A, 281A. Intended for students undertaking thesis research. Discussion of advanced topics and current research problems. Ms. Greibach

288S. Seminar: Current Topics in Computer Science. (2) Seminar, two hours; outside study, six hours. Requisites: courses 280A, 281A. Intended for students undertaking thesis research. Discussion of advanced topics and current research problems. Ms. Greibach

289A-289ZZ. Current Topics in Computer Science. (2 to 12 each) Lecture, four hours; outside study, eight hours. Review of current literature in area of computer theory in which instructor has developed special proficiency as consequence of research interests. Students report on selected topics. Letter grading.

289C. Complexity Theory. (4) Lecture, four hours; outside study, eight hours. Diagonalization, polynomial-time hierarchy, PCP theorem, randomness and derandomization, circuit complexity, attempts and limitations to proving P does not equal NP; average-case complexity, one-way functions, hardness amplification. Problem sets and presentation of previous and original research related to course topics. Letter grading.

Mr. Sahai (F)

289A. Online Algorithms. (4) Lecture, four hours; outside study, eight hours. Course 180. Introduction to decision making under uncertainty and competitive analysis. Review of current research in online algorithms for problems arising in many areas, such as networking, economics, searching for research results. Major emphasis on effective research reporting, both oral and written. Letter grading.

Mr. Meyerson (F, W, Sp)

289A-289ZZ. Current Topics in Computer Science. (2 to 12 each) Lecture, four hours; outside study, eight hours. Review of current literature in area of computer theory in which instructor has developed special proficiency as consequence of research interests. Students report on selected topics. Letter grading.

Mr. Meyerson (Sp, alternate years)

289RA. Randomized Algorithms. (4) Lecture, four hours; outside study, eight hours. Basic concepts and design techniques for randomized algorithms, such as probability theory, Markov chains, random walks, and probabilistic method. Applications to randomized algorithms in data structures, graph theory, computational geometry, number theory, and parallel and distributed systems. Letter grading.

Ms. Greibach (F, W, Sp)

289A. Online Algorithms. (4) Lecture, four hours; outside study, eight hours. Course 180. Introduction to decision making under uncertainty and competitive analysis. Review of current research in online algorithms for problems arising in many areas, such as networking, economics, searching for research results. Major emphasis on effective research reporting, both oral and written. Letter grading.

Mr. Meyerson (F, W, Sp)

289A. Online Algorithms. (4) Lecture, four hours; outside study, eight hours. Course 180. Introduction to decision making under uncertainty and competitive analysis. Review of current research in online algorithms for problems arising in many areas, such as networking, economics, searching for research results. Major emphasis on effective research reporting, both oral and written. Letter grading.

Mr. Meyerson (F, W, Sp)
M296B. Optimal Parameter Estimation and Experiment Design for Biomedical Systems. (4) (Same as Biostatistics M270. Biomedical Engineering M296B, and Medicine M270D.) Lecture, four hours; outside study, eight hours. Prerequisite: course M296A. Recommended: course M296A. Research techniques and experience on special topics involving models, modeling methods, and model-computer interactions in biological and medical sciences. Critical areas of literature review, data transformation, problem solving and formulation. Approaches to revising models in sequential and parallel supercomputers, choice of numerical algorithms, optimization, and computer hardware and software for model building and optimal experiment design via applications in physiology and pharmacology. Letter grading. Mr. DiStefano

M296C. Advanced Topics and Research in Biomedical Systems Modeling and Computing. (4) (Same as Biomedical Engineering M296C and Medicine M270E.) Lecture, four hours; outside study, eight hours. Prerequisite: course M296A. Recommended: course M296B. Research techniques and experience on special topics involving models, modeling methods, and model-computer interactions in biological and medical sciences. Critical areas of literature review, data transformation, problem solving and formulation. Approaches to revising models in sequential and parallel supercomputers, choice of numerical algorithms, optimization, and computer hardware and software for model building and optimal experiment design via applications in physiology and pharmacology. Letter grading. Mr. DiStefano, Mr. Kogan

298. Research Seminar: Computer Science. (2 to 4) Seminar, two to four hours; outside study, four to eight hours. Designed for graduate computer science students. Discussion of advanced topics and current research in algoithmic processes that describe and transform information: theory, analysis, design, efficiency, implementation, and application. May be repeated for credit. S/U grading. (F.W.Sp)

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: apprentice personnel employment as teaching assistant, associate, or fellow. Teaching apprentice work under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. (F.W.Sp)

495. Teaching Assistant Training Seminar. (2) Seminar, two hours; outside study, six hours. Limited to graduate Computer Science Department students. Seminar on communication of computer science materials in classroom: preparation, organization of material, presentation, use of visual aids, grading, advisering, and rapport with students. S/U grading.

495B. Teaching with Technology. (2) Seminar, two hours; outside study, four hours. Limited to graduate Computer Science Department teaching assistants. Seminar for teaching assistants covering how technology can be used to aid instruction in and out of classroom. S/U grading. Mr. Korf

497D-497E. Field Projects in Computer Science. (4-4) Fieldwork, to be arranged. Students are divided into teams led by instructor; each team is assigned one external company or organization that they investigate as candidate for possible computerization, submitting team report of their findings and recommendations. In Progress (497D) and S/U or letter (497E) grading. Mr. Cardenas

596. Directed Individual or Tutorial Studies. (2 to 8) Tutorial, to be arranged. Limited to graduate computer science students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies. Supervised investigation of advanced technical problems. S/U grading.

597A. Preparation for M.S. Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate computer science students. Reading and preparation for M.S. comprehensive examination. S/U grading.

597B. Preparation for Ph.D. Preliminary Examinations. (2 to 16) Tutorial, to be arranged. Limited to graduate computer science students. Preparation for Ph.D. preliminary examinations. S/U grading.

597C. Preparation for Ph.D. Oral Qualifying Examination. (2 to 16) Tutorial, to be arranged. Limited to graduate computer science students. Preparation for oral qualifying examination, including preliminary research. S/U grading.

598. Research for and Preparation of M.S. Thesis. (2 to 12) Tutorial, to be arranged. Limited to graduate computer science students. Preparation for independent research for M.S. candidates, including thesis prospectus. S/U grading.

599. Research for and Preparation of Ph.D. Dissertation. (2 to 16) Tutorial, to be arranged. Limited to graduate computer science students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies. S/U grading.

Electrical Engineering

UCLA 56-125B Engineering IV Box 951594 Los Angeles, CA 90095-1594

(310) 825-2647 fax: (310) 206-8495 e-mail: eechair@ee.ucla.edu http://www.ee.ucla.edu

Ali H. Sayed, Ph.D., Chair
Rajeev Jain, Ph.D., Vice Chair, Industry Relations
Mani B. Srivastava, Ph.D., Vice Chair, Graduate Affairs
Lieven Vandenberghe, Ph.D., Vice Chair, Undergraduate Affairs

Professors
Asad A. Abidi, Ph.D.
Abeer A.H. Alwan, Ph.D.
A.V. Balakrishnan, Ph.D.
Frank M.C. Chang, Ph.D. (Wintek Endowed Professor of Electrical Engineering)
Panagiota D. Christofides, Ph.D.
Babak Daneshdar, Ph.D.
Deborah L. Estrin, Ph.D. (Jonathan B. Postel Professor of Networking)
Warren S. Grundfest, M.D., FACS
Tatsuo Itoh, Ph.D. (Northrop Grumman Professor of Electrical Engineering)
Rajeev Jain, Ph.D.
Bahram Jalali, Ph.D.
Chandrashekhar J. Joshi, Ph.D.
William J. Kaiser, Ph.D.
Alan J. Laub, Ph.D.
Jia-Ming Liu, Ph.D.
Warren B. Mori, Ph.D.
Stanley J. Osher, Ph.D.
C. Kurman N. Patel, Ph.D.
Gregory J. Potfie, Ph.D., Associate Dean
Yahya Rahmat-Samii, Ph.D., (Northrop Grumman Professor of Electrical Engineering/ Electromagnetics)
Behzad Razavi, Ph.D.
Vwni P. Roychowdhury, Ph.D.
Izhak Rubin, Ph.D.
Henry Samueii, Ph.D.
Ali H. Sayed, Ph.D.
Stefano Soatto, Ph.D.
Jason L. Speyer, Ph.D.
Mani B. Srivastava, Ph.D.
Oscar M. Stafsudd, Ph.D.
Lieven Vandenberghe, Ph.D.
John D. Villasenor, Ph.D.
Kang L. Wang, Ph.D., (Raytheon Company Professor of Electrical Engineering)
Richard D. Wesel, Ph.D., Associate Dean
Alan N. Willson, Jr., Ph.D.
Jason C.S. Woo, Ph.D.
Kung Yao, Ph.D.

Professors Emeriti
Frederick G. Allen, Ph.D.
Francis F. Chen, Ph.D.
Robert S. Elliott, Ph.D.
Harold R. Fetterman, Ph.D.
Stephen E. Jacobsen, Ph.D.
Harold M. Lebowitz, Ph.D.
Gabor C. Temes, Ph.D.
in, for example, communications and telecommunication, covers a broad spectrum of specializations and signals and systems. These areas include circuits and systems, physical and wave electronics, microelectronics, signal processing, and solid-state electronics. Interactions with other disciplines are strong. Faculty members pursue new technologies in electrical engineering to serve the needs of industry, government, society, and the scientific community by expanding the body of knowledge in the field. The program grants one undergraduate degree (Bachelor of Science in Electrical Engineering) and two graduate degrees (Master of Science and Doctor of Philosophy in Electrical Engineering). The graduate program provides students with an opportunity to pursue advanced coursework, in-depth training, and research investigations in several fields.

Scope and Objectives
The Department of Electrical Engineering fosters a dynamic academic environment that is committed to a tradition of excellence in teaching, research, and service and has state-of-the-art research programs and facilities in a variety of fields. Departmental faculty members are engaged in creative research investigations and are pursuing new technologies across disciplines in order to serve the needs of industry, government, society, and the scientific community by expanding the body of knowledge in the field. Interactions with other disciplines are strong. Faculty members regularly conduct collaborative research projects with colleagues in the Geffen School of Medicine, Graduate School of Education and Information Studies, School of Theater, Film, and Television, and College of Letters and Science.

There are three primary research areas in the department: circuits and systems, physical and wave electronics, and signals and systems. These areas cover a broad spectrum of specializations in, for example, communications and telecommunication, control systems, electromagnetics, embedded computing systems, engineering optimization, integrated circuits and systems, microelectromechanical systems (MEMS), nanotechnology, photonics and optoelectronics, plasma electronics, signal processing, and solid-state electronics. Interactions with other disciplines are strong. Faculty members are engaged in creative research investigations and are pursuing new technologies across disciplines in order to serve the needs of industry, government, society, and the scientific community by expanding the body of knowledge in the field. Interactions with other disciplines are strong. Faculty members pursue new technologies in electrical engineering to serve the needs of industry, government, society, and the scientific community by expanding the body of knowledge in the field. The program grants one undergraduate degree (Bachelor of Science in Electrical Engineering) and two graduate degrees (Master of Science and Doctor of Philosophy in Electrical Engineering). The graduate program provides students with an opportunity to pursue advanced coursework, in-depth training, and research investigations in several fields.

Department Mission
The education and research activities in the Electrical Engineering Department are strongly aligned with its mission statement. In partnership with its constituents, consisting of students, alumni, industry, and faculty members, the mission of the department is to (1) produce highly qualified, well-rounded, and motivated students with fundamental knowledge of electrical engineering who can provide leadership and service to California, the nation, and the world, (2) pursue creative research and new technologies in electrical engineering and across disciplines in order to serve the needs of industry, government, society, and the scientific community by expanding the body of knowledge in the field, (3) develop partnerships with industrial and government agencies, (4) achieve visibility by active participation in conferences and technical and community activities, and (5) publish enduring scientific articles and books.

Undergraduate Program Objectives
The ABET-accredited electrical engineering curriculum provides an excellent background for either graduate study or employment. Undergraduate education in the department provides students with (1) fundamental knowledge in mathematics, physical sciences, and electrical engineering, (2) the opportunity to specialize in specific areas of interest or career aspiration, (3) intensive training in problem solving, laboratory skills, and design skills, and (4) a well-rounded education that includes communication skills, the ability to function well on a team, an appreciation for ethical behavior, and the ability to engage in lifelong learning. This education is meant to prepare students to thrive and to lead. It also prepares them to achieve the following two program educational objectives: (1) that graduates of the program have successful technical or professional careers and (2) that graduates of the program continue to learn and to adapt in a world of constantly evolving technology.

Undergraduate Study
Electrical Engineering B.S.
The undergraduate curriculum allows Electrical Engineering majors to specialize in one of three emphasis areas or options. The three options are structured as an electrical engineering degree, and the only

Professor Ozcan and students work in the Bio- and Nano-Photonics Laboratory on developing next-generation imaging systems for telemedicine needs.
degree offered to undergraduate students by the department is the Bachelor of Science degree in Electrical Engineering.

No distinction is made among the three options: (1) electrical engineering (EE) option is the regular option that provides students with preparation in electrical engineering with a range of required and elective courses across several disciplines; (2) computer engineering (CE) option provides students with preparation in embedded systems and software and hardware issues. Students replace some of the senior courses in the regular EE option with computer engineering-oriented courses or computer science courses; and (3) biomedical engineering (BE) option provides students with exposure to additional chemistry and life sciences courses and helps them meet most of the premedical preparation requirements so that they are prepared for careers in bioengineering, medicine, or electrical engineering.

### Electrical Engineering Option

#### Preparation for the Major

**Required:** Chemistry and Biochemistry 20A; Computer Science 31, 32; Electrical Engineering 1, 2, 3, 10, M16 (or Computer Science M51A); Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 4AL, 4BL.

#### The Major

**Required:** Electrical Engineering 101, 102, 103, 110, 110L, 113, 115A, 115AL, 121B, 131A, 132A, 141, 161; Mathematics 132, Statistics 105; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and three major field elective courses (12 units), one design course (4 units), and one laboratory course (2 to 4 units) selected from one of the following pathways:

**Antennas and Microwaves:** Three major field elective courses from Electrical Engineering 162A, 163A, and 163B or 163C; one capstone design course from 164D or 184D; and one laboratory course from 164L (or by petition from 194 or 199)

**Integrated Circuits:** Three major field elective courses from Electrical Engineering 115B, 115C, and 132B or 163A; one capstone design course from 115D or 184D; and one laboratory course from 115BL (or by petition from 194 or 199)

**Microelectromechanical (MEMS) Systems:** Three major field elective courses from Electrical Engineering 115B or 123A or 124, 128 or 163A or 173, and CM150; one capstone design course from 129D; and one laboratory course from 122L or CM150L (or by petition from 194 or 199)

**Photonics and Plasma Electronics:** Three major field elective courses from Electrical Engineering 172, 173, and 174 or 175 or M185; one capstone design course from 173D; and one laboratory course from 172L (or by petition from 194 or 199)

**Signals and Systems:** Three major field elective courses from Electrical Engineering 114, 115B, 131B, 132B, 136, 142, 162A; one capstone design course from 113D, 173D, 180D, 181D, or 184D; and one laboratory course from 115BL or M116L or M171L (or by petition from 194 or 199)

**Solid State:** Three major field elective courses from Electrical Engineering 123A, 123B, and 124 or 128; one capstone design course from 129D; and one laboratory course from 122L (or by petition from 194 or 199)

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

### Biomedical Engineering Option

#### Preparation for the Major

**Required:** Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL; Computer Science 31; Electrical Engineering 1, 2, 3, 10, M16 (or Computer Science M51A); Life Sciences 2, 3; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 4AL, 4BL.

#### The Major

**Required:** Electrical Engineering 101, 102, 103, 110, 110L, 113, 115A, 115C, 115AL, 131A, 132A, 141, 142, 162A; one capstone design course from 113D, 131B, 132B, 136, 142, 162A; one capstone design course from 113D, 173D, 180D, 181D, or 184D; and one laboratory course from 115BL or M116L or M171L (or by petition from 194 or 199)

**Solid State:** Three major field elective courses from Electrical Engineering 123A, 123B, and 124 or 128; one capstone design course from 129D; and one laboratory course from 122L (or by petition from 194 or 199)

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

### Graduate Study

For information on graduate admission see Graduate Programs, page 23.

The following introductory information is based on the 2009-10 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnet.ucla.edu/gasaa/library/pgmrqintro.htm. Students are subject to the degree requirements as published in Program Requirements for the year in which they enter the program.

The Department of Electrical Engineering offers Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Electrical Engineering.
**Electrical Engineering M.S.**

**Areas of Study**

Students may pursue specialization across three major areas of study: (1) circuits and embedded systems, (2) physical and wave electronics, and (3) signals and systems. These areas cover a broad spectrum of specializations in, for example, communications and telecommunications, control systems, electromagnetics, embedded computing systems, engineering optimization, integrated circuits and systems, microelectromechanical systems (MEMS), nanotechnology, photonics and optoelectronics, plasma electronics, signal processing, and solid-state electronics. Students must select a number of formal graduate courses to serve as their major and minor fields of study according to the requirements listed below for the thesis (seven courses) and non-thesis (eight courses) options. The selected courses must be approved by the faculty adviser.

**Course Requirements**

Students may select either the thesis plan or the non-thesis (comprehensive examination) plan. The selection of courses is tailored to the professional objectives of the students and must meet the requirements stated below. The courses should be selected and approved in consultation with the faculty adviser. Departures from the stated requirements are considered only in exceptional cases and must be approved by the departmental graduate adviser.

The minimum requirements for the M.S. degree are as follows:

1. **Requisite.** B.S. degree in Electrical Engineering or a related field

2. All M.S. program requirements should be completed within two academic years from admission into the M.S. graduate program in the Henry Samueli School of Engineering and Applied Science

3. Students must maintain a minimum cumulative grade-point average of 3.0 every term and 3.0 in all graduate courses

4. **Thesis Option.** Students selecting the thesis option must complete at least the following requirements: (a) five formal graduate courses to serve as the major field of study, (b) two formal graduate courses to serve as the minor field of study, (c) Electrical Engineering 297, (d) two Electrical Engineering 598 courses involving work on the M.S. thesis, (e) no other 500-level courses, other seminar courses, nor Electrical Engineering 296 or 375 may be applied toward the course requirements, and (f) an M.S. thesis completed under the direction of the faculty adviser to a standard that is approved by a committee comprised of three faculty members. The thesis research must be conducted concurrently with the coursework

5. **Non-Thesis Option.** Students selecting the non-thesis option must complete at least the following requirements: (a) six formal graduate courses to serve as the major field of study, (b) two formal graduate courses to serve as the minor field of study, (c) Electrical Engineering 297, (d) Electrical Engineering 299 to serve as the M.S. comprehensive examination, which is evaluated by a committee of three faculty members appointed by the department. In case of failure, students may be reexamined only once with consent of the departmental graduate adviser, and (e) no 500-level courses, other seminar courses, nor Electrical Engineering 296 or 375 may be applied toward the course requirements

6. Students must select a number of formal graduate courses to serve as their major and minor fields of study according to the requirements listed above for the thesis (seven courses) and non-thesis (eight courses) options. The selected courses must be approved by the faculty adviser

7. For the thesis option at least four, and for the non-thesis option five, of the formal graduate courses used to satisfy the M.S. program requirements listed above must be in the Electrical Engineering Department

8. A formal graduate course is defined as any 200-level course, excluding seminar or tutorial courses

9. At most one upper division undergraduate course is allowed to replace one of the formal graduate courses covering the major and minor fields of study provided that (a) the undergraduate course is not required of undergraduate students in the Electrical Engineering Department and (b) the undergraduate course is approved by the faculty adviser

10. A track is a coherent set of courses in some general field of study. The department suggests lists of established tracks as a means to assist students in selecting their courses. Students are not required to adhere to the suggested courses in any specific track

**Circuits and Embedded Systems Area Tracks**

1. **Embedded Computing Track.** Courses deal with the engineering of computer systems as may be applied to embedded devices used for communications, multimedia, or other such restricted purposes. Courses include Computer Science 251A, Electrical Engineering 201A, 201C, M202A, M202B, 213A, M216A

2. **Integrated Circuits Track.** Courses deal with the analysis and design of analog and digital integrated circuits; architectural and integrated circuit implementations of large-scale digital processors for communications and signal processing; hardware-software codesign; and computer-aided design methodologies. Courses include Computer Science 251A, 252A, Electrical Engineering 213A, 215A through 215E, M216A, 221A, 221B

**Physical and Wave Electronics Area Tracks**

1. **Electromagnetics Track.** Courses deal with electromagnetic theory; propagation and scattering; antenna theory and design; microwave and millimeter wave circuits; printed circuit antennas; integrated and fiber optics; microwave-optical interaction, antenna measurement, and diagnostics; numerical and asymptotic techniques; satellite and personal communication antennas; periodic structures; genetic algorithms; and optimization techniques. Courses include Electrical Engineering 221C, 260A, 260B, 261, 262, 263, 266, 270

2. **Photonics and Plasma Electronics Track.** Courses deal with laser physics, optical amplification, electro-optics, acousto-optics, magneto-optics, nonlinear optics, photonic switching and modulation, ultrafast phenomena, optical fibers, integrated waveguides, photodetection, optoelectronic integrated circuits, optical microelectromechanical systems (MEMS), analog and digital signal transmission, photonic sensors, lasers in biomedicine, fundamental plasma waves and instability; interac-
tion of microwaves and laser radiation with plasmas; plasma diagnostics; and controlled nuclear fusion. Courses include Electrical Engineering 270, 271, 272, 273, 274, 285A, 285B, M287

3. Solid-State and Microelectromechanical Systems (MEMS) Devices Track. Courses deal with solid-state physical electronics, semiconductor device physics and design, and microelectromechanical systems (MEMS) design and fabrication. Courses include Electrical Engineering 221A, 221B, 221C, 222, 223, 224, 225, CM250A, M250B, Mechanical and Aerospace Engineering 281, 284, C287L

**Signals and Systems Area Tracks**

1. Communications Systems Track. Courses deal with communication and telecommunication principles and engineering applications; channel and source coding; spread spectrum communication; cryptography; estimation and detection; algorithms and processing in communication and radars; satellite communication systems; stochastic modeling in telecommunication engineering; mobile radio engineering; and telecommunication switching, queuing system, communication networks, local-area, metropolitan-area, and wide-area computer communication networks. Courses include Electrical Engineering 205A, 210A, 230A through 232E, 233, 238, 241A

2. Control Systems and Optimization Track. Courses deal with state-space theory of linear systems; optimal control of deterministic linear and nonlinear systems; stochastic control; Kalman filtering; stability theory of linear and nonlinear feedback control systems; computer-aided design of control systems; optimization theory, including linear and nonlinear programming; convex optimization and engineering applications; numerical methods; non-convex programming; associated network flow and graph problems; renewal theory; Markov chains; stochastic dynamic programming; and queuing theory. Courses include Electrical Engineering 205A, 208A, M208B, M208C, 210B, 236A, 236B, 236C, M237, M240A, 240B, M240C, 241A, 241C, M242A, 243


**Ad Hoc Tracks**

In consultation with their faculty advisers, students may petition for an ad hoc track tailored to their professional objectives. This may comprise graduate courses from established tracks, from across areas, and even from outside electrical engineering. The petition must justify how the selection of courses in the ad hoc track forms a coherent set of courses, and how the proposed ad hoc track serves the professional objectives. The petition must be approved by the faculty adviser and the departmental graduate adviser.

**Comprehensive Examination**

For M.S. students following the non-thesis option, the M.S. comprehensive examination is satisfied by completion of Electrical Engineering 299 (project seminar) under the direction of a faculty member. Students are assigned some topic of independent study by the faculty member. The study culminates with a written report and an oral presentation. The M.S. project seminar program across the department is administered, for each student, by the faculty member directing the course, the director of the area to which the student belongs, and the departmental graduate adviser. In case of failure, students my be reexamined only once with consent of the departmental graduate adviser.

**Electrical Engineering Ph.D.**

**Areas of Study**

Students may pursue specialization across three major areas of study: (1) circuits and embedded systems, (2) physical and wave electronics, and (3) signals and systems. These areas cover a broad spectrum of specializations in, for example, communications and telecommunications, control systems, electromagnetics, embedded computing systems, engineering optimization, integrated circuits and systems, microelectromechanical systems (MEMS), nanotechnology, photonics and optoelectronics, plasma electronics, signal processing, and solid-state electronics.

**Course Requirements**

The selection of courses for the Ph.D. program is tailored to the professional objectives of the students and must meet the requirements stated below. The courses should be selected and approved in consultation with the faculty adviser. Departures from the stated requirements are considered only in exceptional cases and must be approved by the departmental graduate adviser. Normally, students take additional courses to acquire deeper and broader knowledge in preparation for the dissertation research.

The minimum requirements for the Ph.D. degree are as follows:

1. **Requisite.** M.S. degree in Electrical Engineering or a related field granted
Students must maintain a minimum cumulative grade-point average of 3.5 in the Ph.D. program.

4. Students must complete at least the following requirements: (a) four formal graduate courses selected in consultation with the faculty adviser, (b) Electrical Engineering 297, (c) one technical communications course such as Electrical Engineering 295, (d) no 500-level courses, other seminar courses, or Electrical Engineering 296 or 375 may be applied toward the course requirements, (e) pass the Ph.D. preliminary examination which is administered by the department and takes place once every year. In case of failure, students may be reexamined only once with consent of the departmental graduate adviser, (f) pass the University Oral Qualifying Examination which is administered by the doctoral committee, (g) complete a Ph.D. dissertation under the direction of the faculty adviser, and (h) defend the Ph.D. dissertation in a public seminar with the doctoral committee.

5. A formal graduate course is defined as any 200-level course, excluding seminar or tutorial courses. Formal graduate courses taken to meet the M.S. degree requirements may not be applied toward the Ph.D. course requirements.

6. At least two of the formal graduate courses must be in electrical engineering.

7. Within two academic years from admission into the Ph.D. program, all courses should be completed and the Ph.D. preliminary examination should be passed. It is strongly recommended that students take the Ph.D. preliminary examination during their first academic year in the program.

8. The University Oral Qualifying Examination must be taken when all required courses are complete, and within one year after passing the Ph.D. preliminary examination.

9. Students admitted originally to the M.S. program in the Electrical Engineering Department must complete all M.S. program requirements with a grade-point average of at least 3.5 to be considered for admission into the Ph.D. program. Only after admission into the program can students take the Ph.D. preliminary examination.

10. Students must nominate a doctoral committee prior to taking the University Oral Qualifying Examination. A doctoral committee consists of a minimum of four members. Three members, including the chair, are “inside” members and must hold appointments in the Electrical Engineering Department at UCLA. The “outside” member must be a UCLA faculty member outside the Electrical Engineering Department. By petition, one of the four members may be a faculty member from another UC campus.

Facilities and Programs

Computing Resources

Students and faculty have access to a modern networked computing environment that interconnects UNIX workstations as well as Windows and Linux PCs. These machines are provided by the Electrical Engineering Department; most of them operate in a client-server mode, but standalone configurations are supported as well. Furthermore, this network connects to mainframes and supercomputers provided by the Henry Samueli School of Engineering and Applied Science and the Office of Academic Computing, as well as off-campus supercomputers according to need.

The rapidly growing department-wide network comprises about 500 computers. These include about 200 workstations from Sun, HP, and SGI, and about 300 PCs, all connected to a 100 Mbit/s network with multiple parallel T3 lines running to individual research laboratories and computer rooms. The server functions are performed by several high-speed, high-capacity RAID servers from Network Appliance and IBM which serve user directories and software applications in a unified transparent fashion. All this computing power is distributed in research laboratories, computer classrooms, and open-access computer rooms.

Research Centers and Laboratories

Center for High-Frequency Electronics

The Center for High-Frequency Electronics has been established with support from several governmental agencies and contributions from local industries, beginning with a $10 million grant from Hewlett-Packard.

The first major goal of the center is to combine, in a synergistic manner, five areas of research. These include (1) solid-state mil-
millimeter wave devices, (2) millimeter systems for imaging and communications, (3) millimeter wave high-power sources (gyrotrons), (4) GaAs gigabit logic systems, and (5) VLSI and LSI based on new materials and structures. The center supports work in these areas by providing the necessary advanced equipment and facilities and allows the University to play a major role in initiating and generating investigations into new electronic devices. Students, both graduate and undergraduate, receive training and instruction in a unique facility.

The second major goal of the center is to bring together the manpower and skills necessary to synthesize new areas of activity by stimulating interactions between different interdependent fields. The Electrical Engineering Department, other departments within UCLA, and local universities (such as Caltech and USC) have begun to combine and correlate certain research programs as a result of the formation of the center.

**Circuits Laboratories**
The Circuits Laboratories are equipped for measurements on high-speed analog and digital circuits and are used for the experimental study of communication, signal processing, and instrumentation systems. A hybrid integrated circuit facility is available for rapid mounting, testing, and revision of miniature circuits. These include both discrete components and integrated circuit chips. The laboratory is available to advanced undergraduate and graduate students through faculty sponsorship on thesis topics, research grants, or special studies.

**Electromagnetics Laboratories**
The Electromagnetics Laboratories involve the disciplines of microwaves, millimeter waves, wireless electronics, and electromechanics. Students enrolled in microwave laboratory courses, such as Electrical Engineering 164D and 164L, special projects classes such as Electrical Engineering 199, and/or research projects, have the opportunity to obtain experimental and design experience in the following technology areas: (1) integrated microwave circuits and antennas, (2) integrated millimeter wave circuits and antennas, (3) numerical visualization of electromagnetic waves, (4) electromagnetic scattering and radar cross-section measurements, and (5) antenna near field and diagnostics measurements.

**Nanoelectronics Research Facility**
The state-of-the-art Nanoelectronics Research Facility for graduate research and teaching as well as the undergraduate microwaves teaching laboratory are housed in an 8,500-square-foot class 100 clean room with a full complement of utilities, including high purity deionized water, high purity nitrogen, and exhaust scrubbers. The NRF supports research on nanometer-scale fabrication and on the study of fundamental quantum size effects, as well as exploration of innovative nanometer-scale device concepts. The laboratory also supports many other schoolwide programs in device fabrication, such as MEMS and optoelectronics. For more information, see http://www.nanolab.ucla.edu.

**Photonics and Optoelectronics Laboratories**
In the Laser Laboratory students study the properties of lasers and gain an understanding of the application of this modern technology to optics, communication, and holography. The Photonics and Optoelectronics Laboratories include facilities for research in all of the basic areas of quantum electronics. Specific areas of experimental investigation include high-powered lasers, nonlinear optical processes, ultrafast lasers, parametric frequency conversion, electro-optics, infrared detection, and semiconductor lasers and detectors. Operating lasers include mode-locked and Q-switched Nd:YAG and Nd:YLF lasers, Ti:Al2O3 lasers, ultraviolet and visible wavelength argon lasers, wavelength-tunable dye lasers, as well as gallium arsenide, helium-neon, excimer, and high-powered continuous and pulsed carbon dioxide laser systems. Also available are equipment and facilities for research on semiconductor lasers, fiber optics, nonlinear optics, and ultrashort laser pulses. Facilities for mirror polishing and coating and high-vacuum gas handling systems are also available. These laboratories are open to undergraduate and graduate students who have faculty sponsorship for their thesis projects or special studies.

**Plasma Electronics Facilities**
Two laboratories are dedicated to the study of the effects of intense laser radiation on matter in the plasma state. One, located in Engineering IV, houses a state-of-the-art table top terawatt (T3) 400fs laser system that can be operated in either a single or dual frequency mode for laser-plasma interaction studies. Diagnostic equipment includes a ruby laser scattering system, a streak camera, and optical spectrographs and multichannel analyzer. Parametric instabilities such as stimulated Raman scattering have been studied, as well as the resonant excitation of plasma waves by optical mixing. The second laboratory, located in Boelter Hall, houses the MARS laser, currently the largest on-campus university CO2 laser in the U.S. It can produce 200J, 170ps pulses of CO2 radiation, focusable to 1016 W/cm2. The laser is used for testing new ideas for laser-driven particle accelerators and free-electron lasers. Several high-pressure, short-pulse drivers can be used on the MARS; other equipment includes a theta-pinch plasma generator, an electron linac injector, and electron detectors and analyzers.

A second group of laboratories is dedicated to basic research in plasma sources for basic experiments, plasma processing, and plasma heating.

**Solid-State Electronics Facilities**
Solid-state electronic equipment and facilities include (1) a modern integrated semiconductor device processing laboratory, (2) complete new Si and III-V compound molecular beam epitaxy systems, (3) CAD and mask-making facilities, (4) lasers for beam crystalization study, (5) thin film and characterization equipment, (6) deep-level transient spectroscopy instruments, (7) computerized capacitance-voltage and other characterization equipment, including doping density profiling systems, (8) low-temperature facilities for material and device physics studies in cryogenic temperatures, (9) optical equipment, including many different types of lasers for optical characterization of superlattice and quantum well devices, (10) characterization equipment for high-speed devices, including (11) high magnetic field facilities for magnetotransport measurement of heterostructures. The laboratory facilities are available to faculty, staff, and graduate students for their research.

**Multidisciplinary Research Facilities**
The department is also associated with several multidisciplinary research centers including:

- California NanoSystems Institute (CNSI)
- Center for Embedded Networked Sensing (CENS)
- Center for High-Frequency Electronics (CHFE)
Faculty Groups and Laboratories

Department faculty members also lead a broad range of research groups and laboratories that cover a wide spectrum of specialties, including:

- Adaptive Systems Laboratory (Sayed)
- Antenna Research, Analysis, and Measurement Laboratory (Rahmat-Samii)
- Autonomous Intelligent Networked Systems (Rubin)
- CMOS Research Laboratory (Woo)
- Communication Circuits Laboratory (Razavi)
- Complex Networks Group (Roychowdhury)
- Design Automation Laboratory (He)
- Digital Device Research Laboratory (K. Wang)
- Digital Microwave Laboratory (E. Wang)
- Flight Systems Research Center (Balakrishnan)
- High-Performance Mixed Mode Circuit Design Group (Yang)
- High-Speed Electronics Laboratory (Chang)
- Image Communications Laboratory (Villasenor)
- Integrated Circuits and Systems Laboratory (Abidi)
- Laser-Plasma Group (Joshi)
- Microfabrication Laboratory (Judy)
- Microsystems Research Laboratory (Judy)
- Microwave Electronics Laboratory (Itoh)
- Millimeter Wave and Optoelectronics Laboratory (Fetterman)
- Nanoelectronics Research Center (Judy; Franz)
- Networked and Embedded Systems Laboratory (Srivastava)
- Neuroengineering Research Laboratory (Judy)
- Optoelectronics Circuits and Systems Laboratory (Jalali)
- Optoelectronics Group (Yablonovitch)
- Proactive Medianet Laboratory (van der Schaaf)
- Speech Processing and Auditory Perception Laboratory (Alwan)
- Wireless Integrated Systems Research Group (Daneshrad)

Faculty Areas of Thesis Guidance

Professors

Asad A. Abidi, Ph.D. (UC Berkeley, 1981)
  High-performance analog electronics, device modeling
Abeer A.H. Alwan, Ph.D. (MIT, 1992)
  Speech processing, acoustic properties of speech sounds with applications to speech synthesis, recognition by machine and coding, hearing-aid design, and digital signal processing
* A.V. Balakrishnan, Ph.D. (USC, 1954)
  Control and communications, flight systems applications
Frank M.C. Chang, Ph.D. (National Chiao-Tung, Taiwan, 1979)
  High-speed semiconductor (GaAs, InP and Si) devices and integrated circuits for digital, analog, microwave, and optoelectronic integrated circuit applications
Panagiotis D. Christofides, Ph.D. (Minnesota, 1996)
  Process modeling, dynamics and control, computational and applied mathematics
Bakab Daneshrad, Ph.D. (UCLA, 1993)
  Digital VLSI circuits: wireless communication systems, high-performance communications integrated circuits for wireless applications
Deborah L. Estrin, Ph.D. (MIT, 1985)
  Sensor networks, embedded network sensing, environmental monitoring, computer networks
Warren S. Grundfest, M.D., FACS (Columbia U., 1980)
  Development of lasers for medical applications, minimally invasive surgery, magnetic resonance-guided interventional procedures, laser lithotripsy, microendoscopy, photodynamic therapy (PDT), optical technology, biologic feedback control mechanisms
Tatsuo Itoh, Ph.D. (Illinois, Urbana, 1969)
  Microwave and millimeter wave electronics; guided wave structures, low-power wireless electronics; integrated passive components and antennas; photonic bandgap structures and meta materials applications; active integrated antennas, smart antennas; RF technologies for reconfigurable front-ends; sensors and transponders
Rajeev Jain, Ph.D. (Katholieke U., Leuven, Belgium, 1985)
  Design of digital communications and digital signal processing circuits and systems
Brahm Jalali, Ph.D. (Columbia U., 1989)
  RF photonics, integrated optics, fiber optic integrated circuits
  Laser fusion, laser acceleration of particles, nonlinear optics, high-power lasers, plasma physics
William J. Kaiser, Ph.D. (Wayne State, 1983)
  Research and development of new microsensor and microinstrument technology for industry, science, and biomedical applications; development and applications of new atomic-resolution scanning probe microscopy methods for microelectronic device research
Alan Laub, Ph.D. (Minnesota, 1974)
  Numerical linear algebra, numerical analysis, condition estimation, computer-aided control system design, high-performance computing
Jia-Ming Liu, Ph.D. (Harvard, 1982)
  Nonlinear optics, ultrafast optics, laser chaos, semiconductor lasers, optoelectronics, photonic, nonlinear and ultrafast processes
Warren B. Mori, Ph.D. (UCLA, 1987)
  Laser and charged particle beam-plasma interactions, advanced accelerator concepts, advanced light sources, laser fusion, high-energy density science, high-performance computing, plasma physics
  Scientific computing, applied mathematics
† C. Kumar N. Patel, Ph.D. (Stanford, 1961)
  Quantum electronics; nonlinear optics; photoacoustics in gases, liquids, and solids, ultra-low level detection of trace gases, chemical and toxic gas sensors
Gregory J. Pottie, Ph.D. (McMaster, 1988)
  Communication systems and theory with applications to wireless sensor networks
Yahya Rahmat-Samii, Ph.D. (Illinois, 1975)
  Satellite communications antennas, personal communication antennas including human interactions, antennas for remote sensing and radio astronomy applications, advanced numerical and genetic optimization techniques in electromagnetics, frequency selective surfaces and photonic band gap structures, novel integrated and fractal antennas, near-field antenna measurements and diagnostic techniques, electromagnetic theory
Behzad Razavi, Ph.D. (Stanford, 1992)
  Analog, RF, and mixed-signal integrated circuit design, dual-standard RF transceivers, phase-locked systems and frequency synthesizers, A/D and D/A converters, high-speed data communication circuits
Iwarri P. Roychowdhury, Ph.D. (Stanford, 1989)
  Models of computation including parallel and distributed processing systems, quantum computation and information processing, circuits and computing paradigms for nanoelectronics and molecular electronics, adaptive and learning algorithms, nonparametric methods and algorithms for large-scale information processing, combinatorics and complexity, and information theory
Izhak Rubin, Ph.D. (Princeton, 1970)
  Telecommunications and computer communications systems and networks, mobile wireless networks, multimedia IP networks, UAV/UGV-aided networks, integrated system and network management, C4ISR systems and networks, optical networks, network simulations and analysis, traffic modeling and engineering
Henry Samueli, Ph.D. (UCLA, 1980)
  VLSI implementation of signal processing and digital communication systems, high-speed digital integrated circuits, digital filter design
Ali H. Sayed, Ph.D. (Stanford, 1992)
  Adaptive systems, statistical and digital signal processing, estimation theory, signal processing for communications, linear system theory, interplays between signal processing and control methodologies, fast algorithms for large-scale problems
Stefano Soatto, Ph.D. (Caltech, 1996)
  Computer vision, systems and control theory, detection and estimation, robotics, system identification, shape analysis, motion analysis, image processing, video processing, autonomous systems
Jason L. Speyer, Ph.D. (Harvard, 1968)
  Stochastic and deterministic optimal control and estimation with application to aerospace systems; guidance, flight control, and flight mechanics

* Also Professor of Mathematics
† Also Professor of Physics
Mani B. Srivastava, Ph.D. (UC Berkeley, 1992)  
Wireless networking, embedded computing, networked embedded systems, sensor networks, mobile and ubiquitous computing, low-power and power-aware systems

Oscar M. Staats, Ph.D. (UCLA, 1967)  
Quantum electronics, I.R. lasers and nonlinear optics; solid-state I.R. detectors

Lieven Vandenberghe, Ph.D. (Katholieke U., Leuven, Belgium, 1992)  
Optimization in engineering and applications in systems and control, circuit design, and signal processing

John D. Villasenor, Ph.D. (Stanford, 1989)  
Communications, signal and image processing, configurable computing systems, and design environments

Kang L. Wang, Ph.D. (MIT, 1970)  
Nanoelectronics and optoelectronics, nano and molecular devices, MBE and superlattices, microwave and millimeter electronics, quantum information

Richard D. Heath, Jr., Ph.D. (Stanford, 1996)  
Communication theory and signal processing with particular interests in channel coding, including turbo codes and trellis codes, joint algorithms for distributed communication and detection

Alan N. Willson, Jr., Ph.D. (Syracuse, 1967)  
Theory and application of digital signal processing including VLSI implementations, digital filter design, and circuit theory

Jason C.S. Woo, Ph.D. (Stanford, 1987)  
Solid-state technology, CMOS and bipolar device/circuit optimization, novel device design, modeling of integrated circuits, VLSI fabrication

Kung Yao, Ph.D. (Princeton, 1965)  
Communication theory, signal and array processing, sensor system, wireless communication systems, VLSI and systolic algorithms

Professors Emeriti

Frederick G. Allen, Ph.D. (Harvard, 1956)  
Semiconductor physics, solid-state devices, surface physics

Francis F. Chen, Ph.D. (Harvard, 1954)  
Radio frequency plasma sources and diagnostics for semiconductor processing

Robert S. Elliott, Ph.D. (Illinois, 1952)  
Electromagnetics

Harold R. Fetterman, Ph.D. (Cornell, 1968)  
Optical millimeter wave interactions, high-frequency optical polymer modulators and applications, solid-state millimeter wave structures and systems, biomedical applications of lasers

Stephen E. Jacobsen, Ph.D. (UC Berkeley, 1968)  
Operations research, mathematical programming, nonconvex programming, applications of mathematical programming to engineering and economics/financial systems

Nhan N. Levan, Ph.D. (Monash U., Australia, 1966)  
Control systems, stability and stabilizability, errors in dynamic systems, signal analysis, wavelets, theory and applications

Dee-Son Pan, Ph.D. (Caltech, 1977)  
New semiconductor devices for millimeter and RF power generation and amplification, transistors, and geometry of semiconductor devices, generic device modeling

Frederick W. Schott, Ph.D. (Stanford, 1949)  
Electromagnetics, applied electromagnetics

Gabor C. Temes, Ph.D. (Texas, 1961)  
Analog MOS integrated circuits, signal processing, analog and digital filters

Chand R. Viswanathan, Ph.D. (UCLA, 1964)  
Semiconductors: VLSI devices and technology, thin oxides; reliability and failure physics of MOS devices; process-induced damage, low-frequency noise

Control systems, modeling and control of nonlinear distributed-parameter systems with applications to micro-opto-electromechanical systems, micro and nano manipulation systems, coordination and control of multiple micromachines

Donald M. Wiberg, Ph.D. (Caltech, 1965)  
Identification and control, especially of aerospace, biomedical, mechanical, and nuclear processes, modeling and simulation of respiratory and cardiovascular systems

Jack Willis, B.Sc. (U. London, 1945)  
Active circuits, electronic systems

Associate Professors

Mark H. Hansen, Ph.D. (UC Berkeley, 1994)  
Estimation and inference, statistical learning, data analysis; model selection, nonparametric methods; visualization and information design

Lei He, Ph.D. (UCLA, 1999)  
Computer-aided design of VLSI circuits and systems, coarse-grain programmable systems and field programmable gate array (FPGA), high-performance interconnect modeling and design, power-efficient computer architectures and systems, numerical and combinatorial optimization

Diana L. Hultfakler, Ph.D. (Texas, Austin, 1995)  
Solid-state nanotechnology, MWIR optoelectronic devices, solar cells, Si photovoltaics, novel materials

Jack W. Judy, Ph.D. (UC Berkeley, 1996)  
Microelectromechanical systems (MEMS), microfabrication, microsystems, microactuators, and microsystems, neuroengineering, neural-electronic interfaces, neuromEMS, implantable electronic systems, wireless telemetry, neural prostheses, and magnetism and magnetic materials

Mihaela van der Schaar, Ph.D. (Eindhoven U. of Technology, the Netherlands, 2001)  
Multimedia processing and compression, multimedia networking, multimedia communications, multimedia architectures, enterprise multimedia streaming, mobile and ubiquitous computing

C.-K. Ken Yang, Ph.D. (Stanford, 1998)  
High-performance VLSI design, digital and mixed-signal circuit design

Assistant Professors

Danijela Cabric, Ph.D. (UC Berkeley, 2007)  
Wireless communications system design, cognitive radio networks. VLSI architectures of signal processing and digital communication algorithms, performance analysis and experiments on emerging system platforms

Robert N. Candler, Ph.D. (Stanford, 2006)  
MEMS and nanoscale devices, fundamental limitations of sensors, packaging, biological and chemical sensing

Chu Chi, Ph.D. (Stanford, 2004)  
Nanoelectronic and optoelectronic devices and technology, heterostructure semiconductor devices, monolithic integration of heterogenous technology, exploratory nanotechnology

Lara Dolecek, Ph.D. (UC Berkeley, 2007)  
Information and coding theory, graphical models, statistical algorithms and computational methods with applications to large-scale and complex systems for data processing, communication, and storage

Purnendu Gupta, Ph.D. (UC San Diego, 2007)  
CAD for VLSI design and manufacturing, physical design, manufacturing-aware circuits and layouts, design-aware manufacturing

Jin Hyung Lee, Ph.D. (Stanford, 2004)  
Advanced imaging techniques for biomedical applications; neurosciences and neural-engineering, magnetic resonance imaging (MRI); development of novel image contrast and reconstruction strategies; alternate image acquisition, reconstruction, and processing techniques

Dejan Markovic, Ph.D. (UC Berkeley, 2006)  
Power/area-efficient digital integrated circuits, VLSI architectures for wireless communications, organization methods and supporting CAD tools

Christoph Niemann, Ph.D. (U. Technology, Darmstadt, Germany, 2002)  
Plasma physics in the context of thermonuclear fusion, laser and charged particle beam-plasma interaction, high-energy density science, plasma- and particle-beam diagnostics

Aydogan Ozcan, Ph.D. (Stanford, 2005)  
Bioimaging, nano-photonic, nonlinear optics

Sudhakar Pamarti, Ph.D. (UC San Diego, 2003)  
Mixed-signal IC design, signal processing and communication theory

Paulo Tabuada, Ph.D. (Technical University of Lisbon, Portugal, 2002)  
Real-time, networked, embedded control systems, mathematical systems theory including discrete-event, timed, and hybrid systems; geometric nonlinear control; algebraic/categorical methods

Yuanou Ethan Wang, Ph.D. (Texas, Austin, 1999)  
Smart antennas, RF and microwave power amplifiers, numerical techniques, DSP techniques for microwave systems, phased arrays, wireless and radar systems, micro-wave integrated circuits

Benjamin Williams, Ph.D. (MIT, 2003)  
Development of terahertz quantum cascade lasers

Adjunct Professors

Ezio Biglieri, Dr. Ing. (Politecnico di Torino, Italy, 1967)  
Digital communication, wireless channels, modulation, error-control coding, signal processing in telecommunications

Mary Eshaghi-Wilner, Ph.D. (USC, 1998)  
Nanoscale architectures, bioinformatics networks, heterogeneous computing, mapping and scheduling paradigms, optical interconnects, VLSI and reconfigurable chips, parallel algorithms for image processing

Michael P. Fitz, Ph.D. (USC, 1989)  
Physical layer communication theory and implementation with applications in wireless systems

Joel Schulman, Ph.D. (Caltech, 1979)  
Semiconductor super lattices, solid-state physics

Ingrid M. Verbauwheide, Ph.D. (Katholieke U., Leuven, Belgium, 1991)  
Embedded systems, VLSI architecture and circuit design and design methodologies for applications in security, wireless communications and signal processing

Eli Yablonovitch, Ph.D. (Harvard, 1972)  
Optoelectronics, high-speed optical communications, photonic integrated circuits, photonic crystals, plasmonic optics and plasmonic circuits, quantum computing and communication

Adjunct Assistant Professor

Hooman Darabi, Ph.D. (UCLA, 1999)  
Analog and RF circuit design for wireless and mobile applications, integration of highly selective passive components for multimode applications, broadband and integrated circuit design, over-sampled data converters

* Also Professor Emeritus of Anesthesiology
Lower Division Courses

1. Electrical Engineering Physics I. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: Mathematics 32A, 32B, Physics 1A, 1B. Introduction to modern physics and electromagnetism with engineering orientation. Emphasis on mathematical tools necessary to express and solve Maxwell equations. Relation of these concepts to waves propagating in free space, including dielectrics and optical systems. Letter grading. 

Mr. Roh, Mr. Joshi, Mr. Niemann (FW)

2. Physics for Electrical Engineers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 1. Introduction to concepts of modern physics necessary to understand solid-state devices, including elementary quantum theory, Fermi energies, and concepts of electrons in solids. Discussion of electrical properties of semiconductors leading to operation of junction devices. Letter grading. 

Mr. Jaisi (W,Sp)

3. Introduction to Electrical Engineering. (2) Lecture, two hours. Introduction to field of electrical engineering; research and applications across several areas, such as communications, control, electromagnetics, embedded computing, engineering optimization, integrated circuits, MEMS, nanotechnology, photonics and optoelectronics, plasma electronics, signal processing, and solid-state electronics. P/NP grading. 

(W.Sp)


Ms. Cabric, Mr. Daneshfar (FSp)

M16. Logic Design of Digital Systems. (4) (Same as Computer Science M16A.) Lecture, four hours; discussion, two hours; outside study, six hours. Introduction to digital systems. Specification and implementation of combinational and sequential systems. Standard logic modules and programmable logic arrays. Specification and implementation of algorithmic systems: data and control sections. Number systems and arithmetic algorithms. Error control codes for digital interconnects. Letter grading. 

Ms. Cabric, Mr. Daneshfar (FW,Sp)

19. Fiat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.

Upper Division Courses

100. Electrical and Electronic Circuits. (4) Lecture, three hours; discussion, one hour; outside study, seven hours. Requisites: course 1 or Physics 1C, Mathematics 33A, 33B. Electrical quantities, linear circuit elements, circuit principles, signal waveforms, transient and steady state circuit behavior, semiconductor diodes and transistors, small signal models, and operational amplifiers. Letter grading. 

Mr. Razavi (FW)

101. Engineering Electromagnetics. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 1 or Physics 1C, Mathematics 32A and 32B, or 33A and 33B. Electromagnetic field concepts, waves and phasors, transmission lines and Smith chart, transient responses, vector analysis, introduction to Maxwell equations, static and quasi-static electric and magnetic fields. Letter grading. 

Mr. Ozcan, Mr. Williams (FW)

101E. Engineering Electromagnetics I. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 1 or Physics 1C, Mathematics 32A and 32B, or 33A and 33B. Electromagnetic field concepts, waves and phasors, transmission lines and Smith chart, transient responses, vector analysis, introduction to Maxwell equations, static and quasi-static electric and magnetic fields. Letter grading. 

Mr. Rahmat-Samii (FW)


Mr. Balakrishnan, Ms. Lee, Mr. Tabuada (FW,Sp)

103. Applied Numerical Computing. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Civil Engineering 15 or Computer Science 31, Mathematics 33A, 33B (may be taken concurrently). Introduction to numerical computing and analysis. Floating point representation and round-off error; numerical methods for systems of linear equations; methods for systems of nonlinear equations; numerical optimization, linear programming, least squares, interpolation, approximation, numerical integration, and differential equations. Letter grading. 

Mr. van der Avenbergh (FSp)

110. Circuit Analysis II. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 10. Corequisite: course 102. Sinusoidal excitation and phasors, AC steady state analysis, AC systems: steady state frequency, poles, zeros, frequency response, mutual inductance, ideal transformer, application of Laplace transforms to circuit analysis. Letter grading. 

Mr. Gupta, Mr. Pamarti (FSp)

110L. Circuit Measurements Laboratory. (2) Laboratory, four hours; outside study, two hours. Requisite: course 100 or 110. Experiments with basic circuits containing resistors, capacitors, inductors, and op-amps. Ohm’s law, voltage and current division, Thevenin and Norton equivalent circuits, superposition, transient and steady state analysis, and frequency response principles. Letter grading. 

Mr. Stafudd (FW,Sp)


Mr. Ali-Ebrahimi, Dr. Schaar (FSp)

113D. Digital Signal Processing Design. (4) Laboratory, four hours; outside study, four hours. Requisite: course 113. Real-time implementation of digital signal processing algorithms on digital processor chips. Projects involving hardware and software implementation of filters, audio equalizers, and communication systems. Letter grading. 

Mr. Jain (FW)

114. Speech and Image Processing Systems Design. (4) (Formerly numbered 114D.) Lecture, three hours; discussion, one hour; laboratory, two hours; outside study, six hours. Requisite: course 113. Design principles of speech and image processing systems. Speech production, analysis, and modeling in first half of course; design techniques for image enhancement, filtering, and transformation in second half. Lectures supplemented by laboratory implementation of speech and image processing tasks. Letter grading. 

Mr. Vilenkin (W)


Mr. Chang, Mr. Razavi (FW)

115AL. Analog Electronics Laboratory I. (2) Laboratory, four hours; outside study, two hours. Requisites: courses 110L, 115A. Experimental determination of device characteristics, resistive diode circuits, single and multistage amplifier circuits, feedback amplifier circuits, effect of feedback on single-stage amplifiers. Letter grading. 

Mr. Yang (FW,Sp)


Mr. Abidi (W)

115BL. Analog Electronics Laboratory II. (4) Laboratory, four hours; outside study, eight hours. Requisites: courses 115AL, 115B. Experimental and computer studies of multistage, wideband, tuned, and power amplifiers, and multi-loop feedback amplifiers. Introduction to thick film hybrid techniques. Construction of amplifier using hybrid thick film techniques. Letter grading. 

Mr. Razavi (Sp)

115C. Digital Electronic Circuits. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 115A, Computer Science M51A. Recommended: course 115B. Transistor-level digital circuit design and analysis. Modern logic families (static CMOS, pass-transistor, dynamic logic), integrated circuit (IC) layout, digital circuits (logic gates, flipflops/registers, counters, etc.), computer-aided simulation of digital circuits. Letter grading. 

Mr. Papamarkos, Mr. Pamarti (Sp)


Mr. Markovic, Mr. Papamarkos (W)

116C. Computer Systems Architecture. (4) (Same as Computer Science M151B.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course M15 or Computer Science M51A, Computer Science 33. Recommended: course 115B. Transistor-level computer architecture. CPU internal structure, instruction set design, data memory hierarchy (caches, main memory, virtual memory) organization and management, input/output subsystems (bus structures, interrupts, DMA), performance evaluation, pipelined processors. Letter grading. 

Mr. Gupta (FW,Sp)
M116L. Introductory Digital Design Laboratory. (2) (Same as Computer Science M152A.) Laboratory, four hours; outside study, two hours. Requisite: course M101, or M105. Hands-on design, implementation, and debugging of digital logic circuits, use of computer-aided design tools for schematic capture and simulation, implementation of complex circuits using programmable array logic, design projects. Letter grading. Mr. He (F,Sp)

M117. Computer Networks: Physical Layer. (6) (Same as Computer Science M117.) Lecture, four hours; discussion, four hours; outside study, 10 hours. Not open to students with credit for course M117L. Introduction to fundamental data communication concepts underlying and supporting modern networks, with focus on physical and media access layers of network protocol stack. Systems include high-speed LANs (e.g., fast and gigabit Ethernet), optical DWDM (dense wavelength division multiplexing), time division SONET networks, wireless LANs (IEEE802.11), and ad hoc wireless and personal area networks (e.g., Bluetooth). Experimental laboratory sessions included. Letter grading. Mr. Geria (W,Sp)

121B. Principles of Semiconductor Device Design. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 2. Introduction to principles of operation of bipolar and MOS transistors, equivalent circuits, high-frequency behavior, voltage limitations. Letter grading. Mr. Chui, Mr. Woo (W,Sp)

122L. Semiconductor Devices Laboratory. (4) (Formerly numbered 122AL.) Lecture, four hours; laboratory, four hours. Requisites: courses 2, 121B (may be taken concurrently). Design fabrication and characterization of n-p junctions and transistors. Students perform various processing tasks such as wafer preparation, oxidation, diffusion, metallization, and photolithography. Letter grading. Mr. Candler (W,Sp)

123A. Fundamentals of Solid-State I. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: course 2 or Physics 1C. Limited to junior/senior engineering majors. Fundamentals of solid-state, introduction to quantum mechanics and quantum statistics applied to solid-state. Crystal structure, energy levels in solids, and band theory and semiconductor properties. Letter grading. Mr. K.L. Wang (F)

123B. Fundamentals of Solid-State II. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 123A. Band structure of semiconductors, experimental probes of basic band structure parameters, statistics of carriers, carrier transport properties at low fields, excess carrier transport properties, carrier recombination mechanisms, heterojunction properties. Letter grading. Ms. Huffaker (Not offered 2009-10)

128. Principles of Nanoelectronics. (4) Lecture, four hours; discussion, four hours; outside study, four hours. Requisites: course 1, or Physics 1A and 1B. Introduction to fundamentals of nanoelectronics for electronics nanosystems. Principles of fundamental quantities: electron charge, effective mass, Bohr magneton, and spin, as well as theoretical approaches. From these nanoscale components, discussion of basic behaviors of nanosystems such as analysis of dynamics, variability, and noise, contrasted with those of scaled CMOS. Incorporation of design project with hands-on exposure to design electronics nanosystems. Letter grading. Mr. K.L. Wang (W)

129D. Semiconductor Processing and Device Design. (4) Lecture, two hours; laboratory, four hours; outside study, six hours. Requisite: course 121B. Introduction to CAD tools and in-lab processing. Course familiarizes students with tools and processes. Using CAD tools, CMOS process integration to be designed. Letter grading. Mr. Chui (Sp)

131A. Probability. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 102, 113, 114. Axioms of probability; random variables; correlation functions; moments; probability distributions. Applications to communication, control, and signal processing. Introduction to computer simulation and generation of random events. Letter grading. Mr. Roychowdhury, Mr. Wesel (FW)

131B. Introduction to Stochastic Processes. (4) Lecture, four hours; outside study, eight hours. Requisite: course 131A. Introduction to concepts of stochastic processes, emphasizing continuous- and discrete-time stationary processes, correlation functions and spectral density, linear transformation, and mean-square estimation. Applications to communication, control, and signal processing. Introduction to communication and random processes. Letter grading. Mr. Balakrishnan (Sp)


142. Linear Systems: State-Space Approach. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 102. State-space methods of linear system analysis and synthesis, with application to problems in networks, control, and system modeling. Letter grading. Mr. Tabuada (Not offered 2009-10)

CM150. Introduction to Micromaching and Microelectromechanical Systems (MEMS). (4) (Formerly numbered M150.) (Same as Biomedical Engineering CM151, Mechanical and Mechatronics Engineering CM180.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Mechanics 20A, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Corequisite: course CM150. Methods of micromachining and how these methods can be used to produce a variety of MEMS, including microstructures, microsensors, and microactuators. Students design microfabrication processes capable of achieving desired MEMS device. Concurrently scheduled with course CM150A. Letter grading. Mr. Candler (F)

150DL. Photonic Sensor Design Laboratory. (4) Lecture, two hours; laboratory, four hours; outside study, eight hours. Limited to seniors. Multidisciplinary course with lectures and laboratory experiments on optical sensors. Fundamentals of intensity and interference-based transducers, polarimeters, multiplexing and sensor networks, physical and biomedical sensors. Design and implementation of optical gyroscope, computer interface, and signal processing. Letter grading. Mr. Jafari (Not offered 2009-10)

CM150L. Introduction to Micromaching and Microelectromechanical Systems Laboratory. (2) (Formerly numbered M150L.) (Same as Biomedical Engineering CM151L and Mechanical and Aerospace Engineering CM180L.) Lecture, one hour; laboratory, four hours; outside study, seven hours. Requisites: Chemistry 20A, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Corequisite: course CM150L. Hands-on introduction to micromachining technologies and microelectromechanical systems (MEMS). Laboratory component of micromachining and how these methods can be used to produce a variety of MEMS, including microstructures, microsensors, and microactuators. Students design and implement optical gyroscope, computer interface, and signal processing. Letter grading. Ms. Huffaker, Mr. Y.E. Wang (F,Sp)

162A. Wireless Communication Links and Antennas. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: course 121B. Basic principles of transmitting and receiving antennas and antenna arrays. Array synthesis. Adaptive arrays. Friis transmission formula, radar equations. Cell-site and mobile antennas, bandwidth budget. Noise in communication systems (transmission lines, antennas, atmospheric, etc.). Cell-site and mobile antennas, cell coverage for signal and traffic, interference, multipath fading, ray bending, and other propagation phenomena. Letter grading. Mr. Rahmat-Samii (Sp)

163A. Introductory Microwave Circuits. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 121B. Transmission line description of waveguide, impedance transformers, power dividers, directional couplers, filters, hybrid junctions, reciprocal devices. Letter grading. Mr. Chang (Not offered 2009-10)

163B. Microwave and Millimeter Wave Active Devices. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 121B. MESFET, HEMT, HBT, IMPATT, Gunn, small signal models, noise model, large signal model, load pull method, parameter extraction technique. Letter grading. Mr. Chang (Not offered 2009-10)

163C. Active Microwave Circuits. (4) Lecture, three hours; outside study, nine hours. Requisites: courses 121B and 163B. Transistor amplifiers and oscillators; stability, noise, distortion. Letter grading. Mr. Toh, Mr. Y.E. Wang (W)
164D. Microwave Wireless Design. (4) Lecture, one hour; laboratory, four hours; outside study, seven hours. Requisite: course 181. Microwave integrated circuit design from wireless system perspective, with focus on (1) use of microwave circuit simulation tools, (2) design of wireless front-end circuits including low noise amplifier, mixer, and power amplifier, (3) knowledge and skill required in wireless interface characterisation and implementation. Letter grading. 
Mr. Chiang (Sp)

164L. Microwave Wireless Laboratory. (2) Lecture, one hour; laboratory, three hours; outside study, three hours. Requisite: course 161. Measurement techniques and instrumentation for active and passive microwave components; cavity resonators, waveguides, wave meters, slotted lines, mixers, couplers. Design, fabrication, and characterization of microwave circuits in microstrip and coaxial systems. Letter grading. 
Mr. Itoh (W)

M171L. Data Communication Systems Laboratory. (2 to 4) (Same as Computer Science M171L) Laboratory, four to eight hours; outside study, two to four hours. Recommended preparation: course M116L. Limited to seniors. Interpretation of analog signal aspects of digital systems and circuit communications through experience in using contemporary test instruments to generate and display signals in relevant laboratory setups. Use of oscilloscopes, pulse and function generators, baseband and spectrum analyzers, desktop computers, terminals, modems, PCs, and workstations in experiments on pulse transmission impairments, waveforms and their spectra, modem and terminal characteristics, and interfaces. Letter grading. 
Mr. Fetterman (FW,Sp)

172. Introduction to Lasers and Quantum Electronics. (4) Lecture, three hours; discussion, one hour; laboratory, two hours. (F, W, Sp) Requisite: course 101. Physical applications and principles of lasers. Gaussian optics, resonant cavities, atomic radiation, laser oscillation and amplification, cw and pulsed lasers. Applications to modern and emerging industries. Letter grading. 
Mr. Jali (W), Mr. Williams (Sp)

172L. Laser Laboratory. (4) Laboratory, four hours; outside study, eight hours. Requisite or corequisite: course 172. Properties of lasers, including saturation, gain, mode structure. Laser applications, including optics, modulation, communication, holography, and interferometry. Letter grading. 
Mr. Yoshio, Mr. Stafsudd (F,Sp)

173. Photonic Devices. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite or corequisite: course 101. Applications and principles of photonic devices. Topics include crystal optics, dielectric optical waveguides, waveguide couplers, electro-optic devices, magneto-optic devices, acousto-optic devices, second-harmonic generation, optical Kerr effect, optical switching devices. Letter grading. 
Mr. Liu (W)

173D. Photonics and Communication Design. (4) Lecture, four hours; outside study, eight hours. Requisite: course 102. Recommended: course 132A. Introduction to measurement of basic photonic devices, including LEDs, lasers, detectors, and amplifiers; fiber-optic fundamentals and measurement of fiber systems. Modulation techniques, including AM, FM, phase and suppressed carrier methods. Letter grading. 
Mr. Stafsudd (W)

174. Semiconductor Optoelectronics. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 172. Introduction to semiconductor optoelectronic devices for optical communications, interconnects, and signal processing. Basic optical properties of semiconductors, pin photodiodes, avalanche photodiode detectors (APD), light-emitting diodes (LED), semiconductor lasers, optical modulators and amplifiers, and typical photonics and communication devices. Letter grading. 
Mr. Fetterman, Mr. Ozcan (Not offered 2009-10)

175. Fourier Optics. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: courses 102, 161. Two-dimensional linear systems and Fourier transforms. Foundation of diffraction theory. Analysis of optical imaging systems. Spatial filtering and optical information processing. Wavefront reconstruction and holography. Letter grading. 
Mr. Stafsudd (Not offered 2009-10)

176. Lasers in Biomedical Applications. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 101. Study of different lasers and their applications. Examination of their roles in current and projected biomedical applications. Specific capabilities of laser radiation to be related to each example. Letter grading. 
Mr. Ozcan (Sp)

180D. Systems Design. (4) Lecture, two hours; laboratory, two hours; outside study, eight hours. Limit to senior Electrical Engineering majors. Advanced systems design integrating communications, control, and signal processing subsystems. Different project to be assigned yearly in which student teams create high-performance designs that manage trade-offs among subsystems. Letter grading. 
Mr. Kaiser (F)

181D. Robotic Systems Design. (4) Lecture, two hours; laboratory study, six hours. Requisites: courses M16, 110L, M116L or Computer Science M152A, Computer Science 31, 33. Recommended: course 181 or 181A. Design of robotics systems that combine embedded hardware, software, mechanical subsystems, and fundamental algorithms for sensing and control to expose students to basic concepts in robotics and current state of art. Letter grading. 
Mr. Yang (Sp)

184D. Independent Group Project Design. (4) Laboratory, 10 hours; discussion, two hours. Requisites: courses M16, 110L, 110L. Course centered on group project that runs year long to give students intensive experience on hardware design, microcontroller programming, and project coordination. Several projects based on autonomous robots that traverse small mazes and courses are offered and target regional competitions. Students may submit proposals that are evaluated and approved by faculty members. Topics include sensors circuits and amplifier-based design, microcontroller programming, feedback control, actuation, and motor control. Letter grading. 
Mr. Mor (F, even years)

M185. Introduction to Plasma Electronics. (4) (Same as Physics M122) Lecture, three hours. Requisite: course 101 or Physics 114A. Senior-level introduction to plasma sources of ionized gas, ignition, and plasma-matter interactions and applications to materials processing, generation of coherent radiation and particle beams, and renewable energy sources. Letter grading. 
Mr. Mori (F, even years)

188. Special Courses in Electrical Engineering. (4) Seminar, four hours; outside study, eight hours. Special topics in electrical engineering for undergraduate students that are taught on experimental or temporary basis, such as those taught by resident and graduate students that are taught on experimental or temporary basis, such as those taught by resident and graduate students. Letter grading. 
Mr. Kaiser (W)

194. Research Group Seminars: Electrical Engineering. (2 to 4) Seminar, four hours; outside study, eight hours. Designed for undergraduate students who are part of research group. Discussion of research methods and current literature in field. May be repeated once for credit with topic or instructor change. Letter grading. 
Mr. Kaiser (W)

199. Directed Research in Electrical Engineering. (2 to 8) Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation under guidance of faculty mentor. Culminating paper or project required and must be approved by school with approval. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading. 
(F,Sp)

Graduate Courses

201A. VLSI Design Automation. (4) Lecture, four hours; outside study, eight hours. Requisite: course 115C. Fundamentals of design automation of VLSI circuits and systems, including introduction to circuit and system platforms such as field programmable gate arrays and multicore systems, high level synthesis, logic synthesis, and technology mapping; physical design; and testing and verification. Letter grading. 
Mr. He (Not offered 2009-10)

Mr. He (Sp)

M202A. Embedded Systems. (4) (Same as Computer Science M213A) Lecture, four hours; outside study, eight hours. Prerequisites: courses M16, 110, 110L. Course centered on group project that runs year long to give students intensive experience on hardware design, microcontroller programming, and project coordination. Several projects based on autonomous robots that traverse small mazes and courses are offered and target regional competitions. Students may submit proposals that are evaluated and approved by faculty members. Topics include sensing circuits and amplifier-based design, microcontroller programming, feedback control, actuation, and motor control. Letter grading. 
Mr. Mor (F, even years)

M202B. Distributed Embedded Systems. (4) (Formerly numbered 206A) (Same as Computer Science M213B) Lecture, four hours; outside study, eight hours. Prerequisites: courses M16, 110, 110L. Course centered on group project that runs year long to give students intensive experience on hardware design, microcontroller programming, and project coordination. Several projects based on autonomous robots that traverse small mazes and courses are offered and target regional competitions. Students may submit proposals that are evaluated and approved by faculty members. Topics include sensing circuits and amplifier-based design, microcontroller programming, feedback control, actuation, and motor control. Letter grading. 
Mr. Mor (F, even years)

202C. Networked Embedded Systems Design. (4) Lecture, four hours; laboratory, four hours; outside study, four hours. Designed for graduate computer science and electrical engineering students. Training in combination of networked embedded systems design and combining embedded hardware platform, embedded operating system, and hardware/software interface. Essential graduate student background for research in industry career paths. Techniques for model-driven design of embedded systems. Describes for applications ranging from conventional wireless mobile devices to new area of wireless health. Laboratory design modules and course projects based on state-of-art embedded hardware platform. Letter grading. 
Mr. Kaiser (W)

205A. Matrix Analysis for Scientists and Engineers. (4) Lecture, four hours; outside study, eight hours. Preparation: one undergraduate linear algebra course. Designed for first-year graduate students in all branches of engineering, science, and related disciplines. Introduction to matrix theory and linear algebra, language in which virtually all of modern science and engineering is currently expressed. Concepts and techniques taught in undergraduate courses and introduction to graduate-level topics. Letter grading. 
Mr. Laub (F)

Mr. Balakrishnan (Not offered 2009-10)

208B. Functional Analysis for Applied Mathematics and Engineering. (4) (Formerly numbered 208B.) (Same as Mathematics M268A.) Lecture, four hours; outside study, eight hours. Requisites: courses 208A (or Mathematics 115A and 115B), Mathematics 131A, 131B, 132. Topics may include L(p) spaces, Hilbert, Banach, and separable spaces; Fourier transforms; linear functionals. Riesz representation theorem, linear operators and their adjoints; self-adjoint and compact operators. Spectral theory. Differential operators such as Laplacian and eigenvalue problems. Resolvent distributions and Green's functions. Semigroups. Applications. S/U or letter grading.

Mr. Balakrishnan (F)


Mr. Balakrishnan (Not offered 2009-10)

209AS. Special Topics in Circuits and Embedded Systems. (4) Lecture, four hours; outside study, eight hours. Special topics in one or more aspects of circuits and embedded systems, such as digital, analog, mixed-signal, and radio frequency integrated circuits (RF ICs); electronic design automation; wireless communication circuits and systems; embedded processor architectures; embedded software; distributed sensor and actuator networks; robotics; and embedded security. May be repeated for credit with topic change. S/U or letter grading.

Mr. Chang, Mr. Kaiser (FW)

209BS. Seminar: Circuits and Embedded Systems. (2 to 4) Seminar, two to four hours; outside study, four hours. Seminars and discussions on current and advanced topics in one or more aspects of circuits and embedded systems, such as digital, analog, mixed-signal, and radio frequency integrated circuits (RF ICs); electronic design automation; wireless communication circuits and systems; embedded processor architectures; embedded software; distributed sensor and actuator networks; robotics; and embedded security. May be repeated for credit with topic change. S/U grading.

(Not offered 2009-10)


Mr. Sayed (W)


Mr. Sayed (Not offered 2009-10)


Mr. Villasenor (F)

211B. Digital Image Processing II. (4) Lecture, three hours; laboratory, four hours; outside study, five hours. Requisite: course 211A. Advanced digital image processing techniques. Topics include model-based, restoration, still-frame and video image compression, tomographic imaging, and multi-resolution analysis using wavelet transforms. Letter grading. (Same as Electrical Engineering 210A.) (Not offered 2009-10)


Mr. Willson (W)

212B. Multivariate Systems and Filter Banks. (4) Lecture, three hours; outside study, nine hours. Requisite: course 212A. Fundamentals of multirate systems; polyphase representation; multistage implementations; applications of multirate systems; maximally decimated filter banks; perfect reconstruction systems; paraunitary filter banks; wavelet transform and its relation to multirate filter banks. Letter grading.

Mr. Willson (W)


Mr. Ozcan (W)

215A. Analog Integrated Circuit Design. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 115B. Analysis and design of analog integrated circuits. MOS and bipolar device structures and models, single-stage and differential amplifiers, noise, feedback, operational amplifiers, offset and distortion, sampling devices and diagnostic circuits, bandwidth generalization. Letter grading.

Mr. Abidi (F)


Mr. Abidi (Sp)

215C. Analysis and Design of RF Circuits and Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 215A. Principles of RF circuit and system design, with emphasis on monolithic implementation in VLSI technologies. Basic concepts, communications background, transceiver architectures, low-noise amplifiers and mixers, oscillators, frequency synthesizers, power amplifiers. Letter grading.

Mr. Villasenor (W)


Mr. A. S. Tan (F)

215E. Signaling and Synchronization. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 215A, M216A. Analysis and design of circuits for synchronization and communication for VLSI systems. Use of both digital and analog design techniques to improve data rate of electronics between functional blocks, chips, and systems. Advanced clocking methodologies, phase-locked loop design for clock generation, and high-performance wire-line transmitters, receivers, and timing recovery circuits. Letter grading.

Mr. Pamarti (Sp)

M216A. Design of VLSI Circuits and Systems. (4) (Same as Computer Science M258A.) Lecture, four hours; discussion, one hour; laboratory, four hours; outside study, three hours. Requisites: courses M16 or Computer Science M51A, and 115A. Recommended: course 115C. LSU/VLSI design and application to computer systems. Use of block-based design techniques that can be used to implement complex integrated systems on chips. Letter grading.

Mr. Markovic (F)

216B. VLSI Signal Processing. (4) Lecture, four hours; outside study, eight hours. Advanced concepts in VLSI signal processing, with emphasis on architecture design and optimization within block-based description that can be mapped to hardware. Fundamental concepts from digital signal processing (DSP) theory, architecture, and circuit design applied to complex DSP algorithms in emerging applications for personal communications and healthcare. Letter grading.

Mr. Jain (Not offered 2009-10)

M216C. LSU in Computer System Design. (4) (Same as Computer Science M258C.) Lecture, four hours; laboratory, four hours; outside study, four hours. Requisite: course M216A. LSU/VLSI design and application in computer systems. In-depth studies of VLSI architectures and VLSI design tools. Letter grading.

Mr. Jain (Not offered 2009-10)

M217. Biomedical Imaging. (4) (Same as Biomedical Engineering M217) Lecture, three hours; laboratory, three hours; outside study, nine hours. Requisite: course 114 or 211A. Optical imaging modalities in biomedicine. Other non-optical imaging modalities discussed briefly for comparison purposes. Letter grading.

Mr. Jain (F)

221A. Physics of Semiconductor Devices I. (4) Lecture, four hours; outside study, eight hours. Physical principles and design considerations of junction devices. Letter grading.

Mr. Woo (F)
221B. Physics of Semiconductor Devices II. (4) Lecture, four hours; outside study, eight hours. Prerequisites: course 2. Principles of integrated circuits; course 230A. Applications of estimation methods; synchronization and adaptive equalization; representation of bandpass waveforms; signal space analysis and optimum receivers in Gaussian noise; comparison of digital modulation methods; synchronization and adaptive equalization; applications to modern communication systems. Letter grading. Mr. Daneshrad (W)


230D. Signal Processing in Communications. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course 230C. Basic digital signal processing techniques for estimation and detection of signals in communication and radar systems. Optimization of dynamic range, quantization, and state constraints; DFT, convolution, FFT, NTT, Winograd DFT, systolic array; spectral analysis-windowing, AR, and ARMA; system applications. Letter grading. Mr. Yao (Not offered 2009-10)

231A. Information Theory: Channel and Source Coding. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Prerequisite: course 131A. Fundamental limits on compression and transmission of information. Coding limits and algorithms for lossless data compression, channel capacity, rate versus distortion in lossy compression, and information theory for multiple users. Letter grading. Mr. Chang (Sp)

231E. Channel Coding Theory. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course 131A. Fundamentals of error control codes and decoding algorithms. Topics include block codes, convolutional codes, trellis codes, and turbo codes. Letter grading. Mr. Wesel (Not offered 2009-10)

232A. Stochastic Modeling with Applications to Telecommunication Systems. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Prerequisite: course 131A. Introduction to stochastic processes as applied to study of telecommunication systems and traffic engineering. Renewal theory, discrete-time Markov chains; continuous-time Markov jump processes; Applications to traffic and queuing analysis of basic telecommunication system models. Letter grading. Mr. Rubin (F)

232B. Telecommunication Switching and Queueing Systems. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course 232A. Queue modeling and analysis with applications to space-time digital switching systems and to integrated-service telecommunication systems. Essentials of traffic engineering and queuing theory. Queue size, waiting time, busy period, blocking, and stochastic process analysis for Markovian and non-Markovian models. Letter grading. Mr. Rubin (W)

232C. Telecommunication Architecture and Networks. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course 232B. Analysis and design of integrated-service telecommunication networks and multiple-access procedures. Stochastic analysis of priority-based queuing system models. Queuing networks; network protocol architectures; error control; routing, flow, and access control. Applications to local area, packet-radio, satellite, and computer communication networks. Letter grading. Mr. Rubin (Not offered 2009-10)

232D. Telecommunication Networks and Multiple-Access Communications. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course 232B. Performance analysis and design of telecommunication networks and multiple-access communication systems. Topics include architectures, multiplexing and multiple-access, message delays, error/flow control, switching, routing, protocols. Applications to local area, packet-radio, local-distribution, computer and satellite communication networks. Letter grading. Mr. Rubin (Not offered 2009-10)

232E. Graphs and Network Flows. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course 136. Solution to analysis and synthesis problems that may be formulated as flow problems with capacity constrained (or cost constrained) networks. Development of tools of network flow theory using graph theoretic methods; application to communication, transportation, and transmission problems. Letter grading. Mr. Roychowdhury, Mr. Rubin (Not offered 2009-10)

233. Wireless Communications Systems. (4) (Formerly numbered 233B.) Lecture, four hours; outside study, eight hours. Prerequisite: course 230B. Various aspects of physical layer and medium access design for wireless communications systems. Topics include wireless signal propagation and channel modeling, single carrier and spread spectrum modulation for wireless systems, diversity techniques, multiple-access schemes, transceiver design and effects of nonideal components, hardware partitioning issues. Case study highlights system level trade-offs. Letter grading. Mr. Daneshrad (W)
238. Multimedia Communications and Processing. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 113, 131A. Key concepts, principles, and real-time multimedia communications and processing across heterogeneous Internet and wireless channels. Due to flexible and low-cost infrastructure, new networks and communication technologies enable variety of delay-sensitive multimedia transmission applications and provide varying resources with limited support for quality of service required by delay-sensitive, bandwidth-intensive, and loss-tolerant multimedia applications. New concepts, principles, theories, and practical solutions for cross-layer design that can provide optimal adaptation for time-varying channel characteristics, adaptive and delay-sensitive applications, and multimedia transmission environments. Letter grading. Ms. van der Schaaf (F)

239AS. Special Topics in Signals and Systems. (4) Lecture, four hours; outside study, eight hours. Special topics in one or more aspects of signals and systems, such as communications, control, image processing, information theory, multimedia, computer networking, optimization, speech processing, telecommunications, and VLSI signal processing. May be repeated for credit with topic change. S/U or letter grading. (W, Sp)

239BS. Seminar: Signals and Systems. (2 to 4) Seminar, two to four hours; outside study, four to eight hours. Seminars and discussions on current and advanced topics in one or more aspects of signals and systems, such as communications, control, image processing, information theory, multimedia, computer networking, optimization, speech processing, telecommunications, and VLSI signal processing. May be repeated for credit with topic change. S/U grading. (Not offered 2009-10)

M240A. Linear Dynamic Systems. (4) (Same as Chemical Engineering M280A and Mechanical and Aerospace Engineering M270A.) Lecture, four hours; outside study, eight hours. Requisites: course 141 or Mechanical and Aerospace Engineering 171A. State-space description of linear time-invariant (LTI) and time-varying (LTV) systems in continuous and discrete time. Linear algebra concepts, such as eigenvalues and eigenvectors, singular values, Cayley-Hamilton theorem, Jordan form; solution of state equations; stability, controllability, observability, realizability, and minimality. Stabilization design via state feedback and observers; separation principle. Connections with transfer function techniques. Letter grading. Mr. Tabuada (F)

240B. Linear Optimal Control. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 141, M240A. Introduction to optimal control, with emphasis on detailed study of LQR, or linear regulators with quadratic cost criteria. Relationships to classical control system design. Letter grading. Mr. Balakrishnan (Not offered 2009-10)

M240C. Optimal Control. (4) (Same as Chemical Engineering M280C and Mechanical and Aerospace Engineering M270C.) Lecture, four hours; outside study, eight hours. Requisites: course 240B. Application of variational methods, Pontryagin maximum principle, Hamilton/Jacobi/Bellman equation (dynamical programming) to optimal control of stochastic systems; discrete-time state-space models; sigma algebra equivalence and separation principle; dynamic programming; compensator design for time invariant systems; feedforward control and servomechanisms, extensions to nonlinear systems; applications to intervention guidance, gust alleviation. Letter grading. Mr. Balakrishnan

M242A. Nonlinear Dynamic Systems. (4) (Same as Chemical Engineering M282A and Mechanical and Aerospace Engineering M272A.) Lecture, four hours; outside study, eight hours. Requisite: course M240A or Chemical and Aerospace Engineering M270A. State-space techniques for studying solutions of time-invariant and time-varying nonlinear dynamic systems with emphasis on stability. Lyapunov theory (including converse theorems), invariance, center manifold theorem, input-to-state stability and small-gain theorem. Letter grading. Mr. Tabuada (Not offered 2009-10)

243. Robust and Optimal Control by Convex Methods. (4) Lecture, four hours; outside study, eight hours. Requisite: course M242A. Multivariable robust control, including H2 and H∞-optimal control and robust performance analysis and synthesis against structured perturbations. State of the art on convex methods for analysis and design, in particular linear matrix inequality (LMI) approach to control. Letter grading. Mr. Tabuada (Not offered 2009-10)

M243B. Seminar: Systems, Dynamics, and Control Topics. (2) (Same as Chemical Engineering M297 and Mechanical and Aerospace Engineering M299A.) Seminar, two hours; outside study, six hours. Limited to graduate engineering students. Presentations of research topics by leading academic researchers from fields of systems, dynamics, and control. Students who work in these fields present their papers or reports. Letter grading. Mr. Judy (Sp)

CM250A. Introduction to Micromachining and Microelectromechanical Systems (MEMS). (4) (Formerly numbered M250A.) (Same as Biomedical Engineering CM250A and Mechanical and Aerospace Engineering CM280A.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Chemistry 20A, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Corequisites: course CM250L. Introduction to micromachining and microelectromechanical systems (MEMS). Methods of micromachining and how these methods can be used to produce variety of MEMS, including microstructures, microsensors, and microactuators. Designing MEMS to be produced with both foundry and nonfoundry processes. Computer-aided design for MEMS. Design project required. Letter grading. Mr. Judy (W)

CM250L. Introduction to Micromachining and Microelectromechanical Systems (MEMS) Laboratory. (2) (Same as Biomedical Engineering CM250L and Mechanical and Aerospace Engineering CM280L.) Lecture, one hour; laboratory, four hours; outside study, one hour. Requisites: Chemistry 20A, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Corequisites: course CM250A. Hands-on introduction to micro-machining technologies and microelectromechanical systems (MEMS) laboratory. Methods of micromachining and how these methods produce variety of MEMS, including microstructures, microsensors, and microactuators. Students go through process of fabricating MEMS device. Concurrently scheduled with course CM150L. Letter grading. Mr. Judy (Sp)

M252. Microelectromechanical Systems (MEMS) Device Physics and Design. (4) (Formerly numbered M252B.) (Same as Biomedical Engineering M252 and Mechanical and Aerospace Engineering M252B.) Lecture, four hours; outside study, eight hours. Introduction to MEMS design. Design methods, design rules, sensing and actuation mechanisms, microsensors, and microactuators. Designing MEMS to be produced with both foundry and nonfoundry processes. Computer-aided design for MEMS. Design project required. Letter grading. Mr. Judy (Sp)

M255. Neuroengineering. (4) (Same as Biomedical Engineering M260 and Neuroscience M260.) Lecture, four hours; laboratory, three hours; outside study, five hours. Requisites: Mathematics 32A, Physics 1A or 6B. Introduction to principles and technologies of bioelectricity and neural signal recording, processing, and stimulation. Topics include bioelectricity, electrophysiology (action potentials, local field potentials, EEG, EOG), neuromodulation, cellular and molecular recording, microelectrode technology, neural signal processing (neural signal frequency bands, filtering, spike detection, spike sorting, stimulus artifact removal), brain-computer interface, and deep-brain stimulation, and prosthetics. Letter grading.

Mr. Markovic (W)


M257. Nanoscience and Technology. (4) (Same as Mechanical and Aerospace Engineering M273.) Lecture, four hours; outside study, eight hours. Introduction to fundamentals of nano technology. Basic physical principles, quantum mechanics, chemical bonding and nanostructures, top-down and bottom-up (self-assembly) nanofabrication; nanocrystallization, nanomaterials, nanoelectronics, and nanobiotechnology. Introduction to new knowledge and techniques in nano areas to understand scientific principles behind nanotechnology and inspire students to create new ideas in multidisciplinary nano areas. Letter grading. Mr. Chen (W)

260A-260B. Advanced Engineering Electrodynamics. (4-4) Lecture, four hours; outside study, eight hours. Requisites: courses 161, 162A. Advanced treatment of concepts in electrodynamics and their applications to modern engineering problems. Waves in anisotropic, inhomogeneous, and dispersive mediums. Guided waves in bounded and unbounded regions. Radiation and interaction, including optical phenomena. Partially coherent waves, statistical media. Letter grading. Mr. Rahmat-Samii (F 260A; W 260B)

261. Microwave and Millimeter Wave Circuits. (4) Lecture, four hours; outside study, eight hours. Requisite: course 163A. Rectangular and circular waveguides, microstrip, stripline, finline, and dielectric waveguide distributed circuits, with applications in microwave and millimeter wave integrated circuits. Substrate materials, surface wave phenomena. Analytical methods for discontinuity effects. Design of passive microwave and millimeter wave circuits. Letter grading. Mr. Itoh (W)

Mr. Y. E. Wang (F; even years)


Mr. Rahmat-Samii (Not offered 2009-10)

266. Computational Methods for Electromagnetics. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 162A, 163A. Computational techniques for partial differential and integral equations: finite-difference, finite-element, method of moments, etc. Topics include transmission line resonators, integrated circuits, solid-state device modeling, electromagnetic scattering, and antennas. Letter grading.

Mr. Itoh (Sp)


Mr. Williams (Sp)


Mr. Liu (Not offered 2009-10)


Mr. Liu (Sp)

274. Fiber Optic System Design. (4) Lecture, three hours; outside study, nine hours. Requisites: courses 173D and/or 174. Top-down introduction to physical layer design in fiber optic communication systems, including Telecom, Datacom, and CATV. Fundamentals of digital and analog optical communication systems, fiber transmission characteristics, and optical modulation techniques, including direct and external modulation design. Architectural-level design of fiber optic transceiver circuits, including preamplifier, quantizer, clock and data recovery, laser driver, and predistortion circuits. Letter grading.

Mr. Jalali (F)

279AS. Special Topics in Physical and Wave Electronics. (4) Lecture, four hours; outside study, eight hours. Special topics in one or more aspects of physical and wave electronics, such as electronics, microwave and millimeter wave circuits, photonic and optoelectronics, plasma electronics, microelectronic systems, solid state, and nanotechnology. May be repeated for credit with topic change. S/U or letter grading.

Mr. Joshi (Sp)

279BS. Seminar: Physical and Wave Electronics. (2 to 4) Seminar, two to four hours; outside study, four to eight hours. Open to students who have concurrent discussions on current and advanced topics in one or more aspects of physical and wave electronics, such as electromagnetics, microwave and millimeter wave circuits, photonics and optoelectronics, plasma electronics, microwave and millimeter wave circuits, photonic and optoelectronic systems, plasma electronics, microelectronic systems, solid state, and nanotechnology. May be repeated for credit with topic change. S/U grading. (Not offered 2009-10)

285A. Plasma Waves and Instabilities. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 101, and M185 or Physics 1212. Wave phenomena in plasmas described by macroscopic fluid equations. Microwave propagation, plasma oscillations, ion acoustic waves, cyclotron waves, hydromagnetic waves, drift waves. Rayleigh/Taylor, Kelvin/Helmholtz, universal, and streamlining instabilities. Application to experiments in fully and partially ionized gases. Letter grading.

Mr. Joshi, Mr. Mori (Not offered 2009-10)


Mr. Joshi, Mr. Niemann (Not offered 2009-10)


Mr. Joshi, Mr. Niemann (Not offered 2009-10)

295. Technical Writing for Electrical Engineers. (3 or 4) Lecture, two hours; tutorial, to be arranged. Limited to graduate electrical engineering students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies. Supervised investigation of advanced technical problems. S/U grading.

295A. Preparation for M.S. Comprehensive Examination. (2 to 16) Tutorial, to be arranged. Limited to graduate electrical engineering students. Reading and preparation for M.S. comprehensive examinations. S/U grading.

295B. Preparation for Ph.D. Preliminary Examinations. (2 to 16) Tutorial, to be arranged. Limited to graduate electrical engineering students. S/U grading.

295C. Preparation for Ph.D. Oral Qualifying Examination. (2 to 16) Tutorial, to be arranged. Limited to graduate electrical engineering students. Preparation for oral qualifying examination, including preliminary research on dissertation. S/U grading.


299. Research for and Preparation of Ph.D. Dissertation. (2 to 16) Tutorial, to be arranged. Limited to graduate electrical engineering students. Usually taken after students have been advanced to candidacy. S/U grading.
Materials Science and Engineering

UCLA
3111 Engineering V
Box 951595
Los Angeles, CA 90095-1595

(310) 825-5534
tax: (310) 206-7353
http://www.seas.ucla.edu/ms/

Jenn-Ming Yang, Ph.D., Chair
Ya-Hong Xie, Ph.D., Vice Chair
Qibing Pei, Ph.D., Vice Chair

Scope and Objectives

At the heart of materials science is an understanding of the microstructure of solids. "Microstructure" is used broadly in reference to solids viewed at the subatomic (electronic) and atomic levels, and the nature of the defects at these levels. The microstructure of solids at various levels profoundly influences the mechanical, electronic, chemical, and biological properties of solids. The phenomenological and mechanistic relationships between microstructure and the macroscopic properties of solids are, in essence, what materials science is all about.

Materials engineering builds on the foundation of materials science and is concerned with the design, fabrication, and optimal selection of engineering materials that must simultaneously fulfill dimensional, property, quality control, and economic requirements.

The department also has a program in electronic materials that provides a broad-based background in materials science, with opportunity to specialize in the study of those materials used for electronic and optoelectronic applications. The program incorporates several courses in electrical engineering in addition to those in the materials science curriculum.

The undergraduate program leads to the B.S. degree in Materials Engineering. Students are introduced to the basic principles of metallurgy and ceramic and polymer science as part of the department’s Materials Engineering major.

A joint major field, Chemistry/Materials Science, is offered to students enrolled in the Department of Chemistry and Biochemistry (College of Letters and Science).

The graduate program allows for specialization in one of the following fields: ceramics and ceramic processing, electronic and optical materials, and structural materials.

Department Mission

The Department of Materials Science and Engineering faculty members, students, and alumni foster a collegial atmosphere to produce (1) highly qualified students through an educational program that cultivates excellence, (2) novel and highly innovative research that advances basic and applied knowledge in materials, and (3) effective interactions with the external community through educational outreach, industrial collaborations, and service activities.

Undergraduate Program Objectives

The Materials Engineering major at UCLA prepares undergraduate students for employment or advanced studies in industry, the national laboratories, state and federal agencies, and academia. To meet the needs of these constituencies, the objectives of the undergraduate program are to produce graduates who (1) possess a solid foundation in materials science and engineering, with emphasis on the fundamental scientific and engineering principles that govern the microstructure, properties, processing, and performance of all classes of engineering materials, (2) understand materials processes and the application of general natural science and engineering principles to the analysis and design of materials systems of current and/
or future importance to society, (3) have strong skills in independent learning, analysis, and problem solving, with special emphasis on design of engineering materials and processes, communication, and an ability to work in teams, and (4) understand and are aware of the broad issues relevant to materials, including professional and ethical responsibilities, impact of materials engineering on society and environment, contemporary issues, and need for lifelong learning.

Undergraduate Study

Materials Engineering B.S.
The ABET-accredited materials engineering program is designed for students who wish to pursue a professional career in the materials field and desire a broad understanding of the relationship between microstructure and properties of materials. Metals, ceramics, and polymers, as well as the design, fabrication, and testing of metallic and other materials such as oxides, glasses, and fiber-reinforced composites, are included in the course contents.

Materials Engineering Option
Preparation for the Major
Required: Chemistry and Biochemistry 20A, 20B, 20L; Computer Science 31 (or another programming course approved by the Faculty Executive Committee); Materials Science and Engineering 10, 90L; Mathematics 31A, 31B, 32A, 32B, 33A, 33B, Physics 1A, 1B, 1C (or Electrical Engineering 1).

The Major
Required: Chemical Engineering 102A (or Mechanical and Aerospace Engineering 105A), Civil and Environmental Engineering 101 (or Mechanical and Aerospace Engineering 101), 108, Electrical Engineering 100, Materials Science and Engineering 104, 110, 110L, 120, 130, 131, 131L, 132, 140, 143A, 150, 160, Mechanical and Aerospace Engineering 181A or 182A; two laboratory courses (4 units) from Materials Science and Engineering 212L, 141L, 143L, 161L; three technical breadth courses (12 units) from Chemical Engineering C114, Civil and Environmental Engineering 130, 135A, Electrical Engineering 2, 123A, 123B, 124, Materials Science and Engineering 111, 121, 122, 151, 161, 162, Mechanical and Aerospace Engineering 156A, 166C, plus at least one elective course (4 units) from Chemistry and Biochemistry 30A, 30AL, Electrical Engineering 131A, Materials Science and Engineering 170, 171, Mathematics 170A, or Statistics 100A.

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

Electronic Materials Option
Preparation for the Major
Required: Chemistry and Biochemistry 20A, 20B, 20L: Computer Science 31 (or another programming course approved by the Faculty Executive Committee); Electrical Engineering 10; Materials Science and Engineering 10, 90L; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C (or Electrical Engineering 1).

The Major
Required: Chemical Engineering 102A (or Mechanical and Aerospace Engineering 105A), Electrical Engineering 101, 121B, Materials Science and Engineering 104, 110, 110L, 120 (or Electrical Engineering 2), 121, 121L, 122, 130, 131, 131L, 140, Mechanical and Aerospace Engineering 101, and 181A or 182A; four courses (16 units) from Electrical Engineering 123A, 123B, Materials Science and Engineering 132, 150, 160; 4 laboratory units from Electrical Engineering 172L, Materials Science and Engineering 141L, 161L, 199; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and one major field elective course (4 units) from Electrical Engineering 110, 124, 131A, 172, Materials Science and Engineering 111, 143A, 162.

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

Graduate Study
For information on graduate admission, see Graduate Programs, page 23.

The following introductory information is based on the 2009-10 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnet.ucla.edu/gasaa/library/pgmrqintro.htm. Students are subject to the degree requirements as published in Program Requirements for the year in which they enter the program.

The Department of Materials Science and Engineering offers Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Materials Science and Engineering.

Materials Science and Engineering M.S.

Areas of Study
There are three main areas in the M.S. program: ceramics and ceramic processing, electronic and optical materials, and structural materials. Students may specialize in any one of the three areas, although most students are more interested in a broader education and select a variety of courses. Basically, students select courses that serve their interests best in regard to thesis research and job prospects.

Course Requirements
Thesis Plan.
Nine courses are required, of which six must be graduate courses. The courses are to be selected from the following lists, although suitable substitutions can be made from other engineering disciplines or from chemistry and physics with the approval of the departmental graduate adviser. Two of the six graduate courses may be Materials Science and Engineering 598 (thesis research).

Comprehensive Examination Plan.
Nine courses are required, six of which must be graduate courses, selected from the following lists with the same provisions listed under the thesis plan. The remaining three courses in the total course requirement may be upper division courses.

Ceramics and ceramic processing: Materials Science and Engineering 111, 121, 122, 143A, 151, 161, 162, 200, 201, 211, 246D, 298.

Electronic and optical materials: Materials Science and Engineering 111, 121, 122, 143A, 151, 161, 162, 200, 201, 221, 222, 223, 298.


As long as a majority of the courses taken are offered by the department, substitutions may be made with the consent of the departmental graduate adviser.

Undergraduate Courses.
No lower division courses may be applied toward graduate degrees. In addition, the following upper
division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199; Civil and Environmental Engineering 106A, 108, 199; Computer Science M152A, 152B, M171L, 199; Electrical Engineering 100, 101, 102, 103, 110L, M116L, M171L, 199; Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 140, 141L, 150, 160, 161L, 199; Mechanical and Aerospace Engineering 102, 103, 105A, 105D, 199.

**Thesis Plan**

In addition to fulfilling the course requirements, under the thesis plan students are required to write a thesis on a research topic in materials science and engineering supervised by the thesis adviser. An M.S. thesis committee composed of three departmental faculty members, including the thesis chair, reviews and approves the thesis.

**Comprehensive Examination Plan**

Consult the graduate adviser for details. If the comprehensive examination is failed, students may be reexamined once with the consent of the graduate adviser.

**Materials Science and Engineering Ph.D.**

**Major Fields or Subdisciplines**

Ceramics and ceramic processing, electronic and optical materials, and structural materials.

**Course Requirements**

There is no formal course requirement for the Ph.D. degree, and students may substitute coursework by examinations. Normally, however, students take courses to acquire the knowledge needed to satisfy the written preliminary examination requirement. In this case, a grade-point average of at least 3.33 in all courses is required, with a grade of B− or better in each course.

The basic program of study for the Ph.D. degree is built around one major field and one minor field. The major field has a scope corresponding to a body of knowledge contained in nine courses, at least six of which must be graduate courses, plus the current literature in the area of specialization. Materials Science and Engineering 599 may not be applied toward the nine-course total. The major fields named above are described in a Ph.D. major field syllabus, each of which can be obtained in the department office. The minor field normally embraces a body of knowledge equivalent to three courses, at least two of which are graduate courses. If students fail to satisfy the minor field requirements through coursework, a minor field examination may be taken (once only). The minor field is selected to support the major field and is usually a subset of the major field.

For information on completing the Engineer degree, see Schoolwide Programs, Courses, and Faculty.

**Written and Oral Qualifying Examinations**

During the first year of full-time enrollment in the Ph.D. program, students take the oral preliminary examination that encompasses the body of knowledge in materials science equivalent to that expected of a bachelor’s degree. If students opt not to take courses, a written preliminary examination in the major field is required. Students may not take an examination more than twice.

After passing both preliminary examinations, students take the University Oral Qualifying Examination. The nature and content of the examination are at the discretion of the doctoral committee but ordinarily include a broad inquiry into the student’s preparation for research. The doctoral committee also reviews the prospectus of the dissertation at the oral qualifying examination.

**Note: Doctoral Committees.** A doctoral committee consists of a minimum of four members. Three members, including the chair, are “inside” members and must hold appointments in the Materials Science and Engineering Department at UCLA. The “outside” member must be a UCLA faculty member outside the Materials Science and Engineering Department. Faculty members holding joint appointments with the department are considered “inside” members.

**Fields of Study**

**Ceramics and Ceramic Processing**

The ceramics and ceramic processing field is designed for students interested in ceramics and glasses, including electronic materials. As in the case of metalurgy, primary and secondary fabrication processes such as vapor deposition, sintering, melt forming, or extrusion strongly influence the microstructure and properties of ceramic components used in structural, electronic, or biological applications. Formal course and research programs emphasize the coupling of processing treatments, microstructure, and properties.

**Electronic and Optical Materials**

The electronic and optical materials field provides an area of study in the science and technology of electronic materials that includes semiconductors, optical ceramics, and thin films (metal, dielectric, and multilayer) for electronic and optoelectronic applications. Course offerings emphasize fundamental issues such as solid-state electronic and optical phenomena, bulk and interface thermodynamics and kinetics, and applications that include growth, processing, and characterization techniques. Active research programs address the relationship between microstructure and nanostucture and electronic/optical properties in these materials systems.

**Structural Materials**

The structural materials field is designed primarily to provide broad understanding of the relationships between processing, microstructure, and performance of various structural materials, including metals, intermetallics, ceramics, and composite materials. Research programs include material synthesis and processing, ion implantation-induced strengthening and toughening, mechanisms and mechanics of fatigue, fracture and creep, structure/property characterization, nondestructive evaluation, high-temperature stability, and aging of materials.

**Facilities**

Facilities in the Materials Science and Engineering Department include:

- Ceramic Processing Laboratory
- Electron Microscopy Laboratories with a scanning transmission electron microscope (100 keV), a field emission transmission electron microscope (200 keV), and a scanning electron microscope, all equipped with a full quantitative analyzer, a stereo microscope, micro-cameras, and metallurgical microscopes
- Glass and Ceramics Research Laboratories
- Mechanical Testing Laboratory
- Metallographic Sample Preparation Laboratory
- Nano-Materials Laboratory
- Nondestructive Testing Laboratory
Materials Science and Engineering / 91

• Organic Electronic Materials Processing Laboratory
• Semiconductor and Optical Characterization Laboratory
• Thin Film Deposition Laboratory, including molecular beam epitaxy and wafer bonding
• X-Ray Diffraction Laboratory
• X-Ray Photoelectron Spectroscopy and Atomic Force Microscopy Facility

Faculty Areas of Thesis Guidance

Professors
Russel E. Caffisch, Ph.D. (New York U., 1978) Theory and numerical simulation for materials physics, epitaxial growth, nanoscale systems, semiconductor device properties and design in applications to quantum well devices, quantum dots, nanocrystals and quantum computing

Yong Chen, Ph.D. (UC Berkeley, 1996) Nonlinear mechanics and engineering, micro- and nano-fabrication, self-assembly phenomena, microscale and nanoscale electronic, mechanical, optical, biological, and sensing devices, circuits and systems

Bruce S. Dunn, Ph.D. (UCLA, 1974) Solid electrolytes, electrical properties of ceramics and glasses, ceramic-metal bonding, optical materials

Nasr M. Ghoniem, Ph.D. (Wisconsin, 1977) Mechanical behavior of high-temperature materials, radiation interaction with material (e.g., laser, ions, plasma, electrons, and neutrons), material processing by plasma and beam sources, physics and mechanics of material defects, fusion energy

Mark S. Goorsky, Ph.D. (MIT, 1989) Electronic materials processing, strain relaxation in epitaxial semiconductors and device structures, high-resolution X-ray diffraction of semiconductors, ceramics, and high-strength alloys

Vijay Gupta, Ph.D. (MIT, 1989) Experimental mechanics, fracture of engineering solids, mechanisms of thin film and interfaces, failure mechanisms and characterization of composite materials, ice mechanics

H. Thomas Hahn, Ph.D. (Pennsylvania State, 1971) Nanocomposites, multifunctional composites, nanomechanics, rapid prototyping, information systems

Robert F. Hicks, Ph.D. (UC Berkeley, 1984) Chemical vapor deposition and atmospheric plasma processing

Richard B. Kaner, Ph.D. (Pennsylvania, 1984) Rapid synthesis of high-temperature materials, conducting polymers as separation membranes for electrolytes, synthesis of carbon nanotubes and composites

Qibing Pei, Ph.D. (Chinese Academy of Sciences, 1990) Electroactive polymers through molecular design and nano-engineering for electronic devices and artificial muscles

King-Ning Tu, Ph.D. (Harvard, 1968) Kinetic processes in thin films, metal-silicon interfaces, electromigration, Pb-free interconnects

Ya-Hong Xie, Ph.D. (UCLA, 1986) Hetero-epitaxial growth of semiconductor thin films: strained Si, self-assembled quantum dots, and other epitaxial nano-structures; Si substrate impedance engineering for mixed-signal integrated circuit technologies

Jenn-Ming Yang, Ph.D. (Delaware, 1986) Mechanical behavior of polymer, metal, and ceramic matrix composites, electronics packaging

Yang Yang, Ph.D. (Massachusetts-Lowell, 1992) Conjugated polymers and applications in optoelectronic devices such as light-emitting diodes, photodiodes, and field-effect transistors

Professors Emeriti
Alan J. Ardell, Ph.D. (Stanford, 1964) Irradiation-induced precipitation, high-temperature deformation of solids, electron microscopy, physical metallurgy of aluminum/lithium alloys, precipitation hardening

David L. Douglass, Ph.D. (Ohio State, 1958) Oxidation and sulfidation kinetics and mechanisms, materials compatibility, defect structures, diffusion

William Klement, Jr., Ph.D. (Caltech, 1962) Phase transformations in solids, high-pressure effects on solids


Kanjil Ono, Ph.D. (Northwestern, 1964) Mechanical behavior and nondestructive testing of structural materials, acoustic emission, dislocations and strengthening mechanisms, microstructural analysis, and ultrasound

Aly H. Shabaik, Ph.D. (UC Berkeley, 1966) Metal forming, metal cutting, mechanical properties, friction and wear, biomaterials, manufacturing processes

George H. Sines, Ph.D. (UCLA, 1953) Fracture of ceramics, fatigue of metals, carbon-carbon composites, failure analysis

Christian N.J. Wagner, Dr. rer. nat. (U. des Saarlandes, 1957) X-ray and neutron diffraction; structure of liquid and amorphous alloys, and plastically deformed metals, biomaterials, thin films, residual stresses

Alfred S. Yue, Ph.D. (Purdue, 1957) Semiconductor electronics; electronic materials for solar cell and detector applications, solidification and crystal growth

Associate Professors
Joanna Kakkouli, D.Phil. (University of Oxford, 1999) Chemical and physical properties of non-metallic archaeological materials; alteration processes; analysis of archaeological vitreous materials and pigments

Vidvuds Ozolins, Ph.D. (Kungliga Tekniska Hogskolan, Stockholm, 1998) Theory of materials, first-principles modeling of phase transformations in bulk and surface systems, vibrational and electronic properties

Benjamin Wu, Ph.D. (MIT, 1997) Processing, characterization, and controlled delivery of biological molecules of biorelated polymers; design and fabrication of tissue engineering scaffolds and precursor tissue analogs; tissue-material interactions and dental biomaterials

Assistant Professors
Yu Huang, Ph.D. (Harvard, 2003) Nano-material fabrication and development, bio-nano structures

Sunnie Kodambaka, Ph.D. (Illinois, Urbana-Champaign, 2002) In situ microscopy, surface thermodynamics, kinetics of crystal growth, phase transformations and chemical reactions, thin film physics

Adjunct Professors

Harry Patton Gillis, Ph.D. (Chicago, 1974) Application of surface science and chemical dynamics techniques to elucidate fundamental molecular mechanisms and optimize practical processes

John J. Gilman, Ph.D. (Columbia U., 1952) Mechanochemistry, dissolution mobility, metallic glasses, fracture phenomena, shock and deterioration fronts, research management

Marek A. Przystupa, Ph.D. (Michigan Tech, 1980) Mechanical behavior of solids

Lower Division Courses

10. Freshman Seminar: New Materials. (1) Seminar, one hour; outside study, two hours. Preparation: high school chemistry and physics. Not open to students with credit for course 104 or former course 14. Introduction to basic concepts of materials science and new materials vital to advanced technology. Microstructural analysis and various material properties discussed in conjunction with such applications as biomedical sensors, pollution control, and optoelectronics. Letter grading. Mr. Kodambaka (F)

19. Fiat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

90L. Physical Measurement in Materials Engineering, (2) Laboratory, four hours; outside study, two hours. Various physical measurement methods used in materials science and engineering, mechanico-thermal, electrical, magnetic, and optical techniques. Letter grading. Mr. Ono (Sp)

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.

Upper Division Courses

104. Science of Engineering Materials. (4) Formerly numbered 14.) Lecture, three hours; discussion, one hour; outside study, eight hours. Requirements: Chemistry 20A, 20B, 20L, Physics 1A, 1B. General introduction to different types of materials used in engineering designs: metals, ceramics, plastics, and composites, relationship between structure (crystals and microstructure) and properties of technological materials. Illustration of their fundamental differences and their applications in engineering. Letter grading. Mr. Dunn (F, W, Sp)

M105. Principles of Nanoscience and Nanotechnology. (4) Same as Engineering M101.) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: Chemistry 20, and Electrical Engineering 1 or Physics 1C. Introduction to underlying science encompassing structure, properties, and fabrication of technologically important nanoscale systems. New phenomena that emerge in very small systems (typically with feature sizes below few hundred nanometers) explained using basic concepts from physics and chemistry. Chemical, optical, and electronic properties, electron transport, structural stability, self-assembly, templated assembly and applications of various nanostructures such as quantum dots, nanoparticles, quantum wires, quantum wells and multilayers, carbon nanotubes. Letter grading. Mr. Ozolins (F)
110. Introduction to Materials Characterization A
(Crystal Structure, Nanostructures, and X-Ray Scattering).
(4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 104. Modern methods of materials characterization; fundamentals of crystallography, properties of X rays, X-ray scattering; powder method, Laue method; determination; phases diagram; powder diffraction; high-resolution X-ray diffraction methods; X-ray spectroscopy; design of materials characterization procedures. Letter grading.
Mr. Goorsky (F)

110L. Introduction to Materials Characterization A Laboratory.
(2) Laboratory, four hours; outside study, two hours. Requisite: course 104. Experimental techniques in materials characterization by X-ray scattering; powder method, Laue method; determination; phases diagram; powder diffraction; high-resolution X-ray diffraction methods; X-ray spectroscopy; design of materials characterization procedures. Letter grading.
Mr. Goorsky (F)

111. Introduction to Materials Characterization B
(Electron Microscopy).
(4) Lecture, three hours; laboratory, two hours; outside study, seven hours. Requisites: courses 104, 110. Characterization of microstructure of materials: transmission electron microscopy; reciprocal lattice, electron diffraction, stereographic projection, direct observation of defects in crystals, replicas; scanning electron microscopy: emissive and reflective modes; chemical analysis; electron optics of both instruments. Letter grading.
Mr. Kodambaka (W)

C112. Introduction to Archaeological Materials Science:
Scientific Methodologies, Techniques, and Interpretation.
(4) Lecture, three hours; laboratory, two hours. Preparation: general chemistry, or organic and inorganic chemistry. Recommended requisite: course 110. Several basic scientific techniques employed for examination of archaeological and cultural artifacts to answer questions of anthropological significance and their state of preservation. Theoretical and hands-on provide framework for portable/field and analytical techniques such as UV/VNIR spectrophotometry, X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM-EDS), and others. Examination and analysis protocols, sample preparation techniques, and methods of scientific analysis and interpretation for study of organic and inorganic materials of archaeological and cultural significance. Concurrently scheduled with course CM212. Letter grading.

120. Physics of Materials.
(4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 104, 110, 113 (or Chemistry 113). Introduction to electrical, optical, and magnetic properties of solids. Free electron model, introduction to band theory and Schrödinger wave equation. Crystal bonding and lattice vibrations. Mechanisms and characterization of electrical conductivity, optical absorption, magnetic behavior, dielectrical properties, and p-n junctions. Letter grading.
Mr. Y. Yang (W)

121. Materials Science of Semiconductors.
(4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 120. Structure and properties of elemental and compound semiconductors. Electrical and optical properties, defect chemistry, and doping, Electronic materials analysis and characterization, including electrical, optical, and ion-beam techniques. Heterostructures, band-gap engineering, development of new materials for optoelectronic applications. Letter grading.
Ms. Huang (Sp)

121L. Materials Science of Semiconductors Laboratory.
(2) Lecture, 30 minutes; discussion, 30 minutes; laboratory, outside study, three hours. Corequisite: course 121. Experiments conducted on materials characterization, including measurements of contact resistance, dielectric constant, and thin film biaxial modulus and CTE. Letter grading.
Mr. Goorsky (Sp)

(4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 104. Description of basic semiconductor materials for device processing; preparation and characterization of silicon, III-V compounds, and films. Discussion of principles of CVD, MOVCD, LPE, and MBE; metals and dielectrics. Letter grading.
Mr. Szpunar (W)

130. Phase Relations in Solids.
(4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 104, and Chemical Engineering 122A or 122B or Aerospace Engineering 1105A. Summary of thermodynamic laws, equilibrium criteria, solution thermodynamics, mass action law, binary and ternary phase diagrams, glass transitions. Letter grading.
Mr. Xie (F)

131. Diffusion and Diffusion-Controlled Reactions.
(4) Lecture, four hours; outside study, eight hours. Requisite: course 130. Diffusion in metals and solid solutions, nucleation and growth theory; precipitation from solid solution, eutectoid decomposition, design of heat treatment processes of alloys, growth of intermediate phases, gas-solid reactions, design of oxidation-resistant alloys, recrystallization, and grain growth. Letter grading.
Mr. Tu (W)

131L. Diffusion and Diffusion-Controlled Reactions Laboratory.
(2) Laboratory, two hours; outside study, four hours. Corequisite: course 131. Design of heat-treating cycles and performing experiments to study diffusion processes; oxide phases, recrystallization, and grain growth in metals. Analysis of data. Comparison of results with theory. Letter grading.
Mr. Tu (W)

(4) Lecture, four hours; outside study, eight hours. Requisite: course 131. Physical metallurgy of steels, lightweight alloys (Al and Ti), and superalloys. Strengthening mechanisms, microstructural control methods for strength and toughness improvement. Grain boundary segregation. Letter grading.
Mr. M.-J. Yang (Sp)

(4) Lecture, two hours; laboratory, 90 minutes. Processes of extracting, alloying, surface patination, metallic coatings, corrosion, and microstructure of ancient and historic metals. Extensive laboratory work in preparation and examination of metallic samples under microscope, as well as lectures on technology of metallic works of art. Practical instruction in metallographic microscopy. Exploration of microstructure, breakdown of common alloying systems and environments and analytical techniques appropriate for examination and characterization of metallic artifacts. Concurrently scheduled with course CM213. Letter grading.

140. Materials Selection and Engineering Design.
(4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 132, 150, 160. Explicit guidance among myriad materials available as part of successful design. Project design. Letter grading.
Mr. Przystupa (Sp)

141L. Computer Methods and Instrumentation in Materials Science.
(2) Laboratory, four hours. Preparation: knowledge of Basic or C programming language. Limited to junior/senior Materials Science and Engineering majors. Interface and control techniques, real-time data acquisition and processing, computer-aided testing. Letter grading.
Mr. Copsz (W)

143A. Mechanical Behavior of Materials.
(4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 104, Mechanical and Aerospace Engineering 101. Plastic flow of metals under simple strain, strain rate and temperature effects, dislocations, fracture, microstructural effects, mechanical and thermal treatment of steel for engineering applications. Letter grading.
Mr. Przystupa (W)

143L. Mechanical Behavior Laboratory.
(2) Laboratory, four hours. Requisites: courses 90L, 143A (may be taken concurrently). Methods of characterizing mechanical behavior of various materials; elastic and plastic deformation, fracture toughness, fatigue, and creep. Letter grading.
Mr. Ono

150. Introduction to Polymers.
(4) Lecture, four hours; discussion, one hour; outside study, seven hours. Polymerization mechanisms, molecular weight and distribution, chemical structure and bonding, structure crystallinity, and morphology and their effects on physical properties. Glassy polymers, springy polymers, elastomers, adhesives. Fiber forming polymers, polymer processing technology, plastication. Letter grading.
Mr. Pei (W)

(4) Lecture, four hours; outside study, eight hours. Preparation: at least two courses from 132, 143A, 150, 160. Requisite: course 104. Relationship between structure and mechanical properties of composite materials with fiber and particulate reinforcement. Properties of fiber, matrix, and interfaces. Selection of macrostructures and material systems. Letter grading.
Mr. J.-M. Yang (Sp)

160. Introduction to Ceramics and Glasses.
(4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 104, 130, Introduction to ceramics and glasses being used as important materials of engineering, processing techniques, and unique properties. Examples of design and control of properties for certain specific applications in engineering. Letter grading.
Mr. Dunn (F)

161. Processing of Ceramics and Glasses.
(4) Lecture, four hours; discussion, one hour. Requisite: course 160. Study of processes used in fabrication of ceramics and glasses for structural applications, optics, and electronics. Processing operations, including modern techniques of powder synthesis, greenware forming, sintering, glass melting. Microstructure properties relations in ceramics. Fracture analysis and design with ceramics. Letter grading.
Mr. Dunn (Sp)

162. Electronic Ceramics.
(4) Lecture, four hours; outside study, eight hours. Requisites: course 104, Electrical Engineering 1 (or Physics 1C). Utilization of ceramics in microelectronics; thin film and thin film resistors, capacitors, and substrates; design and processing of electronic ceramics and packaging; magnetic ceramics; ferroelectric ceramics and electro-optic devices; optical wave guide applications and designs. Letter grading.
Mr. Dunn (W, odd years)

(2) Lecture, one hour; discussion, one hour; outside study, four hours. Comprehensive oral presentation and communication skills provided by building on strengths of individual personal styles in creation of positive interpersonal relations. Skills set prepares students for different types of academic and professional presentations for wide range of audiences. Learning environment is highly supportive and interactive as it helps students creatively develop and grow in their unique and individual communication and presentation skills. Letter grading.
Mr. Xie
211. Electron Microscopy. (4) (Formerly numbered 244.) Lecture, four hours; outside study, eight hours. Requisite: course 111. Essential features of electron microscopy; electron micrographs. Principles of kinematical and dynamical theories of electron diffraction, including anomalous absorption, applications of theory to defects in crystals. Moiré fringes, direct lattice resolutions. Lorentz and dark-field methods. Applications of contrast theory. Letter grading.

Mr. Kodambaka (Sp, even years)

CM212. Introduction to Archaeological Materials Science: Techniques, Theory, and Interpretation. (4) (Same as Conservation M212.) Lecture, three hours; laboratory, two hours. Preparation: general chemistry, or inorganic and organic chemistry. Requisite: course 110. Several basic scientific techniques employed for examination of archaeological and cultural artifacts to answer questions of anthropological significance and the history of materials. Central archaeological techniques to provide fundamentals of portable/field and analytical techniques such as UV/VIS spectroscopy, X-ray fluorescence (XRF), X-ray diffraction (XRD), and energy dispersive spectroscopy (SEM-EDS), and others. Examination and analysis protocols, sample preparation techniques, and methods of scientific analysis and interpretation for inorganic materials of archaeological and cultural significance. Currently scheduled with course C112. Letter grading.

M213. Deterioration and Conservation of In-Situ Archaeological and Cultural Materials. (4) (Same as Conservation M213.) Seminar, two hours; laboratory, three hours. Requisites: courses M215 (or Art History M203F or Conservation M250) and M216 (or Conservation M216). Deterioration processes (both natural and man-made) of in-situ and ex-situ archaeological and cultural surfaces, with instruction to provide fundamentals of portable/field and analytical techniques such as UV/VIS spectroscopy, X-ray fluorescence (XRF), X-ray diffraction (XRD), and energy dispersive spectroscopy (SEM-EDS), and others. Examination and analysis protocols, sample preparation techniques, and methods of scientific analysis and interpretation for inorganic materials of archaeological and cultural significance. Currently scheduled with course C112. Letter grading.

M215. Techniques and Materials of Archaeological and Cultural Materials: In-Situ Architectural Decorative Surfaces. (4) (Same as Art History M203F and Conservation M250.) Seminar, two hours; laboratory, three hours. Requisite: course M216 or C112. Recommended: Conservation M215. Designed for graduate conservation and art history students. Principles of archaeological conservation of in-situ and ex-situ monumental, archaeological and cultural materials, with a focus on rock art, wall paintings, polychrome sculpture, decorative architectural elements, and mosaics. Study of materials and the documentation of decay mechanisms based on preventive, passive, and remedial solutions (latter based on minimum intervention). Sessions include holistic approaches for preservation of archaeological sites; history of sites; origin and damaging effects of salts; biodegradation; chemical and mechanical weathering; earthquakes, frost, flooding, and vandalism; structural repairs, grouting, cleaning, and décollage; sheltering and limited accessibility; fixing, consolidation, and protective surface treatments. Letter grading.

M216. Science of Conservation Materials and Methods I. (4) (Same as Conservation M216.) Seminar, one hour; laboratory, three hours. Recommended requisite: course 104. Introduction to physical, chemical, and biological characteristics of conservation materials (employed for preservation of archaeological and cultural materials) and their aging characteristics. Science and application methods of traditional organic and inorganic material introduction and introduction of novel technology based on biomineralization processes and nanostructured materials. Letter grading.

Mr. Goorsky (Sp, odd years)

212. Science of Electronic Materials. (4) Lecture, four hours; outside study, eight hours. Requisite: course 120. Study of major physical and chemical principles affecting properties and performance of semiconductor materials. Topics include bonding, carrier statistics, band-gap engineering, optical and transport properties, novel materials systems, and characterization. Letter or pass/no credit.

Mr. Goorsky (Sp)

222. Growth and Processing of Electronic Materials. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 120, 130, 131. Thermodynamics and kinetics that affect semiconductor growth and device processing. Particular emphasis on fundamentals of growth (bulk and epitaxial), heteroepitaxy, implantation, oxidation. Letter grading.

Mr. Goorsky (W)

223. Materials Science of Thin Films. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 120, 131. Fabrication, structure, and property correlations of thin films used in microelectronics for data and information processing. Topics include film deposition, interfacial properties, stress and strain, electromigration, phase changes and kinetics, reliability. Letter grading.

Mr. Tu

224. Deposition Technologies and Their Applications. (4) Lecture, three hours; outside study, nine hours. Designed for graduate engineering students. Deposition methods used in high-technology applications. Theory and experimental details of physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma-assisted vapor deposition processes, plasma spray, electrodeposition. Applications in semiconductor, chemical, optical, mechanical, and metallurgical industries. Letter grading.

Mr. Xie


Mr. Gillis, Mr. Goorsky (W)

226. Si-CMOS Technology: Selected Topics in Materials Science. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Recommended preparation: Electrical Engineering 221B. Requisites: courses 130, 131, 200, 221, 222. Selected topics in materials science from modern Si-CMOS technology, including technological challenges in high-k metal gate stacks, strained Si FETs, SOI and three-dimensional FETs, source/drain engineering including transient-enhanced diffusion, nonvolatile memory, and metallization for ohmic contacts. Letter grading.

Mr. Xie

CM233. Ancient and Historic Metals: Technology, Microstructure, and Corrosion. (4) (Same as Conservation M233.) Lecture, two hours; laboratory, 90 minutes. Designed for graduate conservation and materials science students. Processes of extraction, alloying, surface patination, corrosion, oxidation, and microstructure of ancient and historic metals. Extensive laboratory work in preparation and examination of metallic samples under microscope, as well as lectures on technology of metals in works of art. Practical instruction in metallographic microscopy. Exploration of phase and stability diagrams common alloying systems and environments and analytical techniques applied to identification and characterization of metallic artifacts. Concurrently scheduled with course C133. Letter grading.

Mr. Xie
243A. Fracture of Structural Materials. (4) Lecture, four hours; laboratory, two hours; outside study, four hours. Requisite: course 143A. Engineering and scientific aspects of crack nucleation, slow crack growth, and unstable fracture. Fracture mechanics, dislocation models, fatigue, fracture in reactive environments, alloy development, fracture-safe design. Letter grading. Mr. J-M. Yang (W, even years)

243C. Dislocations and Strengthening Mechanisms in Solids. (4) Lecture, four hours; outside study, eight hours. Requisite: course 143A. Elastic and plastic behavior of crystals, geometry, mechanics, and interaction of dislocations, mechanisms of yielding, work hardening, and other strengthening. Letter grading. Mr. Xie (F, odd years)

246B. Structure and Properties of Glasses. (4) Lecture, four hours; outside study, eight hours. Requisite: course 160. Structure of amorphous solids and glasses. Conditions of glass formation and theories of glass structure. Mechanical, electrical, and optical properties of glass and relationships to structure. Letter grading. Mr. Dunn (W, even years)

246D. Electronic and Optical Properties of Ceramics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 160. Principles governing electronic properties of ceramic single crystals and glasses and effects of processing and microstructure on these properties. Electronic conduction, ferroelectricity, and photochromism. Magnetic ceramics. Infra-red, visible, and ultraviolet transmission. Unique application of ceramics. Letter grading. Mr. Dunn (Sp, even years)


251. Chemistry of Soft Materials. (4) Lecture, four hours. Introduction to organic soft materials, including essential basic organic chemistry and polymer chemistry. Topics include the master categories of soft materials: organic molecules, synthetic polymers, and biomolecules and biomaterials. Descriptive discussion and discussion of structure-property relationship, spectroscopic and experimental techniques, and preparation methods for various soft materials. Letter grading. Mr. Pei (F)

252. Organic Polymer Electronic Materials. (4) Lecture, four hours; outside study, eight hours. Preparation: knowledge of introductory organic chemistry and polymer science. Introduction to organic electronic materials with emphasis on materials chemistry and processing. Topics include conjugated polymers; heavily doped, highly conducting polymers; applications as processable metals and in various electrical, optical, and electrochemical devices. Synthesis of semiconductor polymers for organic light-emitting diodes, solar cells, thin-film transistors. Introduction to emerging field of organic electronics. Letter grading. Mr. Pei (F)

270. Computer Simulations of Materials. (4) Lecture, four hours; outside study, eight hours. Introduction to modern methods of computational modeling in materials science. Topics include basic statistical mechanics, classical molecular dynamics, and Monte Carlo methods, with emphasis on understanding basic physical ideas and learning to design, run, and analyze computer simulations of materials. Use of examples from current literature to show how these methods can be used to study interesting phenomena in materials science. Hands-on computer experiments. Letter grading. Mr. Ozolins (F)

271. Electronic Structure of Materials. (4) Lecture, four hours; outside study, eight hours. Preparation: basic knowledge of quantum mechanics. Recommended prerequisite: course 200. Introduction to modern first-principles electronic structure calculations for various types of modern materials. Properties of electrons and interatomic bonding in molecules, crystals, and liquids, with emphasis on practical methods for solving Schrödinger equation and using it to calculate physical properties such as elastic constants, equilibrium structures, binding energies, vibrational frequencies, electronic band gaps and band structures, properties of defects, surfaces, interfaces, and magnetism. Extensive hands-on experience with modern density-functional theory code. Letter grading. Mr. Ozolins (W)

272. Theory of Nanomaterials. (4) Lecture, four hours; outside study, eight hours. Strongly recommended prerequisite: course 200. Introduction to properties and applications of nanoscale materials, with emphasis on understanding of basic principles that distinguish nanosstructures (with feature size below 100 nm) from more common microstructured materials. Explanation of new phenomena that emerge only in very small systems, using simple concepts from quantum mechanics and thermodynamics. Topics include structure and electronic properties of quantum dots, wires, nanotubes, and multilayers, self-assembly on surfaces and in liquid solutions, mechanical properties of nanostructured metamaterials, molecular electronics, spin-based electronics, and proposed realizations of quantum computing. Discussion of current and future directions of this rapidly growing field using examples from modern scientific literature. Letter grading. Mr. Ozolins (F)

CM280. Introduction to Biomaterials. (4) (Same as Biomedical Engineering CM280.) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: course 104, or Chemistry 20A, 20B, and 20L. Engineering materials used in medicine and dentistry for repair and/or restoration of damaged natural tissues. Topics include relationships between material properties, suitability to task, surface chemistry, processing and treatment methods, and biocompatibility. Concurrently scheduled with course CM180. Letter grading. Mr. Wu (W)

282. Exploration of Advanced Topics in Materials Science and Engineering. (2) Lecture, one hour; discussion, one hour; outside study, four hours. Researchers from leading research institutions around the world deliver lectures on advanced research topics in materials science and engineering. Student groups present summary previews of topics prior to lecture. Class discussions follow each presentation. May be repeated for credit. S/U grading.

296. Seminar: Advanced Topics in Materials Science and Engineering. (2) Seminar, two hours; outside study, four hours. Advanced study and analysis of current topics in materials science and engineering. Discussion of current research and literature in research specialty of faculty members teaching course. May be repeated for credit. S/U grading.

298. Seminar: Engineering. (2 to 4) Seminar, to be arranged. Limited to graduate materials science and engineering students. Seminars may be organized in advanced technical fields. If appropriate, field trips may be arranged. May be repeated with topic change. Letter grading.

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: apprenticeship as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. (F,W,Sp)

595. Directed Individual or Tutorial Studies. (2 to 8) Tutorial, to be arranged. Limited to graduate materials science and engineering students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies. Supervised investigation of advanced technical problems. S/U grading.

597A. Preparation for M.S. Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate materials science and engineering students. Reading and preparation for M.S. comprehensive examination. S/U grading.

597B. Preparation for Ph.D. Preliminary Examinations. (2 to 16) Tutorial, to be arranged. Limited to graduate materials science and engineering students. Preparation for oral qualifying examination, including preliminary research on dissertation. S/U grading.

598. Research for and Preparation of M.S. Thesis. (2 to 12) Tutorial, to be arranged. Limited to graduate materials science and engineering students. Usually taken after students have been advanced to candidacy. S/U grading.

Mechanical and Aerospace Engineering

UCLA
48-121 Engineering IV
Box 951597
Los Angeles, CA 90095-1597

(310) 825-7793
tax: (310) 206-4830
http://www.mae.ucla.edu

Adrienne G. Lavine, Ph.D., Chair
Ann R. Karagozian, Ph.D., Vice Chair
Robert T. M’Closkey, Ph.D., Vice Chair
Xiaolin Zhong, Ph.D., Vice Chair

Professors
Mohamed A. Abdou, Ph.D.
Oddvar O. Bendiksen, Ph.D.
Gregory P. Carman, Ph.D.
Albert Carnesale, Ph.D.
Ivan Catton, Ph.D.
Jun-Shyan Chen, Ph.D.
Yong Chen, Ph.D.
Vijay K. Dhir, Ph.D., Dean
Rajit Gadh, Ph.D.
Nasr M. Ghoniem, Ph.D.
James S. Gibson, Ph.D.
Vijay Gupta, Ph.D.
H. Thomas Hahn, Ph.D. (Raytheon Company Professor of Manufacturing Engineering)
Chih-Ming Ho, Ph.D. (Ben Rich Lockheed Martin Professor of Aeronautics)
Tetsuya Iwasaki, Ph.D.
Ann R. Karagozian, Ph.D.
Chang-Jin (C-J) Kim, Ph.D.
J. John Kim, Ph.D. (Rockwell International Professor of Engineering)
Adrienne G. Lavine, Ph.D.
Kuo-Nan Liu, Ph.D.
Christopher S. Lynch, Ph.D.
Ajit K. Mal, Ph.D.
Robert T. M’Closkey, Ph.D.
Anthony F. Mills, Ph.D.
Owen I. Smith, Ph.D.
Jason Speyer, Ph.D.
Tao-Chin Tsao, Ph.D.
Daniel C.H. Yang, Ph.D.
Xiaolin Zhong, Ph.D.

Professors Emeriti
Andrew F. Charwat, Ph.D.
Peretz P. Friedmann, Sc.D.
Robert E. Kelly, Sc.D.
Michel A. Mafkanoff, Ph.D.
D. Lewis Mongioi, Ph.D.
Peter A. Monkewitz, Ph.D.
Philip F. O’Brien, M.S.
David Okrent, Ph.D.
Lucien A. Schmit, Jr., M.S.
Richard Stern, Ph.D.
Russell A. Westmann, Ph.D.

Associate Professors
Jeff D. Eldredge, Ph.D.
Y. Sungtaek Ju, Ph.D.
Laurent Pilon, Ph.D.

Assistant Professors
Pei-Yu Chiou, Ph.D.
H. Pirouz Kavehpour, Ph.D.

William S. Klug, Ph.D.
Richard E. Wirz, Ph.D.

Lecturers
Ravneesh Amar, Ph.D.
C.H. Chang, M.S., Emeritus
Amiya K. Chatterjee, Ph.D.
Carl F. Ruoff, Ph.D.
Alexander Samson, Ph.D., Emeritus

Adjunct Professors
Leslie M. Lackman, Ph.D.
Wilbur J. Marner, Ph.D.
Neil B. Morley, Ph.D.
Robert S. Shaefler, Ph.D.

Scope and Objectives
The Department of Mechanical and Aerospace Engineering offers curricula in aerospace engineering and mechanical engineering at both the undergraduate and graduate levels. The scope of the departmental research and teaching program is broad, encompassing dynamics, fluid mechanics, heat and mass transfer, manufacturing and design, nanomechanical and microelectromechanical and microelectromechanical systems, structural and solid mechanics, and systems and control. The applications of mechanical and aerospace engineering are quite diverse, including aircraft, spacecraft, automobiles, energy and propulsion systems, robotics, machinery, manufacturing and materials processing, microelectronics, biological systems, and more.

At the undergraduate level, the department offers accredited programs leading to B.S. degrees in Aerospace Engineering and in Mechanical Engineering. At the graduate level, the department offers programs leading to M.S. and Ph.D. degrees in Mechanical Engineering and in Aerospace Engineering. An M.S. in Manufacturing Engineering is also offered.

Department Mission
The mission of the Mechanical and Aerospace Engineering Department is to educate the nation’s future leaders in the science and art of mechanical and aerospace engineering. Further, the department seeks to expand the frontiers of engineering science and to encourage technological innovation while fostering academic excellence and scholarly learning in a collegial environment.

Undergraduate Program Objectives
In consultation with its constituents, the Mechanical and Aerospace Engineering Department has set its educational objectives as follows: (1) to teach students how to apply their rigorous undergraduate education to creatively solve technical problems facing society and (2) to prepare them for successful and productive careers or graduate studies in mechanical or aerospace or other engineering fields and/or further studies in other fields such as medicine, business, and law.

Undergraduate Study
Aerospace Engineering B.S.
The ABET-accredited aerospace engineering program is concerned with the design and construction of various types of fixed-wing and rotary-wing (helicopters) aircraft used for air transportation and national defense. It is also concerned with the design and construction of spacecraft, the exploration and utilization of space, and related technological fields.

Aerospace engineering is characterized by a very high level of technology. The aerospace engineer is likely to operate at the forefront of scientific discoveries, often stimulating these discoveries and providing the inspiration for the creation of new scientific concepts. Meeting these demands requires the imaginative use of many disciplines, including fluid mechanics and aerodynamics, structural mechanics, materials and aeroelasticity, dynamics, control and guidance, propulsion, and energy conversion.

Preparation for the Major
Required: Chemistry and Biochemistry 20A, 20B, 20L; Computer Science 31; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL, 4BL.

The Major
Required: Mechanical and Aerospace Engineering 101, 102, 103, 105A, 107, 150A, 150B, 150P, 154A, 154B, 154S, 155 or 161A or 169A, 157A, 157S, 166A, 171A, 182A; two departmental breadth courses (Electrical Engineering 100 and Materials Science and Engineering 104 — if one or both of these courses are taken as part of the technical breadth requirement, students must select a replacement upper division course or courses from the department — except for Mechanical and Aerospace Engineering 156A — or, by petition, from outside the department); three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and two major field elective courses (8 units) from Mechanical and Aerospace Engineering 105D, 131A, 131AL, C132A, 133A, 133AL.

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

Mechanical Engineering B.S.
The ABET-accredited mechanical engineering program is designed to provide basic knowledge in thermodynamics, fluid mechanics, heat transfer, solid mechanics, mechanical design, dynamics, control, mechanical systems, manufacturing, and materials. The program includes fundamental subjects important to all mechanical engineers.

Preparation for the Major
Required: Chemistry and Biochemistry 20A, 20B, 20L; Computer Science 31; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Mechanical and Aerospace Engineering 94; Physics 1A, 1B, 1C, 4AL, 4BL.

The Major
Required: Electrical Engineering 110L, Mechanical and Aerospace Engineering 101, 102, 103, 105A, 105D, 107, 131A or 133A, 156A, 157, 162A, 162B, 162M, 171A, 182A, 183; two departmental breadth courses (Electrical Engineering 100 and Materials Science and Engineering 104 — if one or both of these courses are taken as part of the technical breadth requirement, students must select a replacement upper division course or courses from the department — except for Mechanical and Aerospace Engineering 166A — or, by petition, from outside the department); three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and two major field elective courses (8 units) from Mechanical and Aerospace Engineering 131A (unless taken as a required course), 131AL, C132A, 133A (unless taken as a required course), 133AL, 134, 135, 136, CM140, 150A, 150B, 150C, C150G, 150P, 150R, 153A, 155, 157A, 161A, 161B, 162C, 163A, 166C, M168, 169A, 171B, 172, 174, CM180, CM180L, 181A, 182B, 182C, 184, 185, C186, C187L.

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/.

Graduate Study
For information on graduate admission, see Graduate Programs, page 23.

The following introductory information is based on the 2009-10 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnet.ucla.edu/gasaa/library/pgmrqintro.htm. Students are subject to the degree requirements as published in Program Requirements for the year in which they enter the program.

The Department of Mechanical and Aerospace Engineering offers the Master of Science (M.S.) degree in Manufacturing Engineering, Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Aerospace Engineering, and Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Mechanical Engineering. All new M.S. and Ph.D. students who are pursuing an M.S. degree in the Mechanical and Aerospace Engineering Department must meet with their advisers in their first term at UCLA. The goal of the meeting is to discuss the students’ plans for satisfying the M.S. degree requirements. Students should obtain an M.S. planning form from the department Student Affairs Office and return it with their advisers’ signature by the end of the first term.

Aerospace Engineering M.S. and Mechanical Engineering M.S.
Course Requirements
Students may select either the thesis plan or comprehensive examination plan. At least nine courses are required, of which at least five must be graduate courses. In the thesis plan, seven of the nine must be formal courses, including at least four from the 200 series. The remaining two may be 598 courses involving work on the thesis. In the comprehensive examination plan, no units of 500-series courses may be applied toward the minimum course requirement. Courses taken before the award of the bachelor's degree may not be applied toward a graduate degree at UCLA. The courses should be selected so that the breadth requirements and the requirements at the graduate level are met. The breadth requirements are only applicable to students who do not have a B.S. degree from an ABET-accredited aerospace or mechanical engineering program.

Undergraduate Courses. No lower division courses may be applied toward graduate degrees. In addition, the following upper division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199; Civil and Environmental Engineering 106A, 108, 199; Computer Science M152A, 152B, M171L, 199; Electrical Engineering 100, 101, 102, 103, 110L, M116L, M171L, 199; Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 140, 141L, 150, 160, 161L, 199; Mechanical and Aerospace Engineering 101, 102, 103, 105A, 105D, 107, 188, 194, 199.
Aerospace Engineering

Broad Requirements: Students are required to take at least three courses from the following four categories: (1) Mechanical and Aerospace Engineering 154A or 154B, 154, (2) 150B or 150P, (3) 155 or 166A or 169A, (4) 161A or 171A.

Graduate-Level Requirement: Students are required to take at least one course from the following: Mechanical and Aerospace Engineering 250C, 250D, 250F, 253B, 254A, 255B, 256F, 263B, 269D, or 271B. The remaining courses can be taken to gain depth in one or more of the several specialty areas covering the existing major fields in the department.

Mechanical Engineering

Broad Requirements: Students are required to take at least three courses from the following five categories: (1) Mechanical and Aerospace Engineering 162A or 169A or 171A, (2) 150A or 150B, (3) 131A or 133A, (4) 156A, (5) 162B or 183.

Graduate-Level Requirement: Students are required to take at least one course from the following: Mechanical and Aerospace Engineering 231A, 231B, 231C, 250A, 255A, M256A, M256B, M269A, or 271A. The remaining courses can be taken to gain depth in one or more of the several specialty areas covering the existing major fields in the department.

Comprehensive Examination Plan

The comprehensive examination is required in either written or oral form. A committee of at least three faculty members, with at least two members from within the department, and chaired by the academic adviser, is established to administer the examination. Students may, in consultation with their adviser and the M.S. committee, select one of the following options for the comprehensive examination: (1) take and pass the first part of the Ph.D. written qualifying examination (formerly referred to as the preliminary examination) as the comprehensive examination, (2) conduct a research or design project and submit a final report to the M.S. committee, or (3) take and pass three comprehensive examination questions offered in association with three graduate courses. Contact the department Student Affairs Office for more information.

Thesis Plan

The thesis must describe some original piece of research that has been done under the supervision of the thesis commit-tee. Students should normally start to plan the thesis at least one year before the award of the M.S. degree is expected. There is no examination under the thesis plan.

Manufacturing Engineering M.S.

Areas of Study
Consult the department.

Course Requirements
Students may select either the thesis plan or comprehensive examination plan. At least nine courses are required, of which at least five must be graduate courses. In the thesis plan, seven of the nine must be formal courses, including at least four from the 200 series. The remaining two may be 598 courses involving work on the thesis. In the comprehensive examination plan, no units of 500-series courses may be applied toward the minimum course requirement. Courses taken before the award of the bachelor’s degree may not be applied toward a graduate degree at UCLA. Choices may be made from the following major areas:

Undergraduate Courses. No lower division courses may be applied toward graduate degrees. In addition, the following upper division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199; Civil and Environmental Engineering 106A, 108, 199; Computer Science M152A, 152B, M171L, 199; Electrical Engineering 100, 101, 102, 103, 110L, M116L, M171L, 199; Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 140, 141L, 150, 160, 161L, 199; Mechanical and Aerospace Engineering 101, 102, 103, 105A, 105D, 107, 188, 194, 199.

Upper Division Courses. Students are required to take at least three courses from the following: Mechanical and Aerospace Engineering 163A, M168, 174, 183, 184, 185.

Graduate Courses. Students are required to take at least three courses from the following: Mechanical and Aerospace Engineering 263A, 263C, 263D, CM280A, 293, 294, 295A, 295B, 296A, 296B, 297.

Additional Courses. The remaining courses may be taken from other major fields of study in the department or from the following: Architecture and Urban Design M226B, M227B, 227D; Computer Science 241A, 241B; Management 240A, 240D, 241A, 241B, 242A, 242B, 243B, 243C; Mathematics 120A, 120B.

Comprehensive Examination Plan

The comprehensive examination is required in either written or oral form. A committee of at least three faculty members, with at least two members from within the department, and chaired by the academic adviser, is established to administer the examination. Students may, in consultation with their adviser and the M.S. committee, select one of the following options for the comprehensive examination: (1) take and pass the first part of the Ph.D. written qualifying examination (formerly referred to as the preliminary examination) as the comprehensive examination, (2) conduct a research or design project and submit a final report to the M.S. committee, or (3) take and pass three comprehensive examination questions offered in association with three graduate courses. Contact the department Student Affairs Office for more information.

Thesis Plan

The thesis must describe some original piece of research that has been done under the supervision of the thesis commit-tee. Students should normally start to plan the thesis at least one year before the award of the M.S. degree is expected. There is no examination under the thesis plan.

Aerospace Engineering

Ph.D. and Mechanical Engineering Ph.D.

Major Fields or Subdisciplines
Dynamics; fluid mechanics; heat and mass transfer; manufacturing and design (mechanical engineering only); nanoelectromechanical/microelectromechanical systems (NEMS/MEMS); structural and solid mechanics; systems and control.

Ph.D. students may propose ad hoc major fields, which must differ substantially from established major fields and satisfy one of the following two conditions: (1) the field is interdisciplinary in nature or (2) the field represents an important research area for which there is no established major field in the department (condition 2 most often applies to recently evolving research areas or to areas for which there are too few faculty members to maintain an established major field). Students in an ad hoc major field must be sponsored by at least three faculty
members, at least two of whom must be from the department.

Course Requirements
The basic program of study for the Ph.D. degree is built around major and minor fields. The established major fields are listed above, and a detailed syllabus describing each Ph.D. major field can be obtained from the Student Affairs Office. The program of study for the Ph.D. requires students to perform original research leading to a doctoral dissertation and to master a body of knowledge that encompasses material from their major field and breadth material from outside the major field. The body of knowledge should include (1) six major field courses, at least four of which must be graduate courses, (2) one minor field, (3) any three additional courses, at least two of which must be graduate courses, that enhance the study of the major or minor field.

The major field syllabus advises students as to which courses contain the required knowledge, and students usually prepare for the written qualifying examination (formerly referred to as the preliminary examination) by taking these courses. However, students can acquire such knowledge by taking similar courses at other universities or even by self-study.

The minor field embraces a body of knowledge equivalent to three courses, at least two of which must be graduate courses. Minor fields are often subsets of major fields, and minor field requirements are then described in the syllabus of the appropriate major field. Established minor fields with no corresponding major field can also be used, such as applied mathematics and applied plasma physics and fusion engineering. Also, an ad hoc field can be used in exceptional circumstances, such as when certain knowledge is desirable for a program of study that is not available in established minor fields.

Grades of B– or better, with a grade-point average of at least 3.33 in all courses included in the minor field, and the three additional courses mentioned above are required. If students fail to satisfy the minor field requirements through coursework, a minor field examination may be taken (once only).

Written and Oral Qualifying Examinations
After mastering the body of knowledge defined in the major field, students take a written qualifying (preliminary) examination covering this knowledge. Students must have been formally admitted to the Ph.D. program or admitted subject to completion of the M.S. degree by the end of the term following the term in which the examination is given. The examination must be taken within the first two calendar years from the time of admission into the Ph.D. program. Students must be registered during the term in which the examination is given and be in good academic standing (minimum GPA of 3.25). The student's major field proposal must be completed prior to taking the examination. Students may not take an examination more than twice. Students in an ad hoc major field must pass a written qualifying examination that is approximately equivalent in scope, length, and level to the written qualifying examination for an established major field.

After passing the written qualifying examination, students take the University Oral Qualifying Examination within four calendar years from the time of admission into the Ph.D. program. The nature and content of the examination are at the discretion of the doctoral committee but include a review of the dissertation prospectus and may include a broad inquiry into the student's preparation for research.

Note: Doctoral Committees. A doctoral committee consists of a minimum of four members. Three members, including the chair, are “inside” members and must hold appointments in the Mechanical and Aerospace Engineering Department at UCLA. The “outside” member must be a UCLA faculty member outside the Mechanical and Aerospace Engineering Department.

Fields of Study

Dynamics
Features of the dynamics field include dynamics and control of physical systems, including spacecraft, aircraft, helicopters, industrial manipulators; analytical studies of control of large space structures; experimental studies of electromechanical systems; and robotics.

Fluid Mechanics
The graduate program in fluid mechanics includes experimental, numerical, and theoretical studies related to a range of topics in fluid mechanics, such as turbulent flows, hypersonic flows, microscale and nanoscale flow phenomena, aeracoustics, bio fluid mechanics, chemically reactive flows, chemical reaction kinetics, numerical methods for computational fluid dynamics (CFD), and experimental methods. The educational program for graduate students provides a strong foundational background in classical incompressible and compressible flows, while providing elective breadth courses in advanced specialty topics such as computational fluid dynamics, microfluidics, bio fluid mechanics, hypersonics, reactive flow, fluid stability, turbulence, and experimental methods.

Heat and Mass Transfer
The heat and mass transfer field includes studies of convection, radiation, conduction, evaporation, condensation, boiling and two-phase flow, chemically reacting and radiating flow, instability and turbulent flow, reactive flows in porous media, as well as transport phenomena in support of microscale and nanoscale thermosciences, energy, bioMEMS/NEMS, and microfabrication/nanofabrication.

Manufacturing and Design
The program is developed around an integrated approach to manufacturing and design. It includes study of manufacturing and design aspects of mechanical systems, material behavior and processing, robotics and manufacturing systems, CAD/CAM theory and applications, computational geometry and geometrical modeling, composite materials and structures, automation and digital control systems, microdevices and nanodevices, radio frequency identification (RFID), and wireless systems.

Nanoelectromechanical/Microelectromechanical Systems
The nanoelectromechanical/microelectromechanical systems (NEMS/MEMS) field focuses on science and engineering issues ranging in size from nanometers to millimeters and includes both experimental and theoretical studies covering fundamentals to applications. The study topics include microscopy, top-down and bottom-up nanofabrication/microfabrication technologies, molecular fluidic phenomena, nanoscale/microscale material processing, biomolecular signatures, heat transfer at the nanoscale, and system integration. The program is highly interdisciplinary in nature.

Structural and Solid Mechanics
The solid mechanics program features theoretical, numerical, and experimental studies, including fracture mechanics and damage tolerance, micromechanics with emphasis on technical applications, wave
propagation and nondestructive evaluation, mechanics of composite materials, mechanics of thin films and interfaces, analysis of coupled electro-magneto-
thermomechanical material systems, and ferroelectric materials. The structural mechanics program includes structural dynamics with applications to aircraft and spacecraft, fixed-wing and rotary-wing aerelasticity, fluid structure interaction, computational transonic aerelasticity, biomechanics with applications ranging from whole organs to molecular and cellular structures, structural optimization, finite element methods and related computational techniques, structural mechanics of composite material components, structural health monitoring, and analysis of adaptive structures.

Systems and Control
The program features systems engineering principles and applied mathematical methods of modeling, analysis, and design of continuous- and discrete-time control systems. Emphasis is on modern applications in engineering, systems concepts, feedback and control principles, stability concepts, applied optimal control, differential games, computational methods, simulation, and computer process control. Systems and control research and education in the department cover a broad spectrum of topics primarily based in aerospace and mechanical engineering applications. However, the Chemical and Biomolecular Engineering and Electrical Engineering Departments also have active programs in control systems, and collaboration across departments among faculty members and students in both teaching and research is common.

Ad Hoc Major Fields
The ad hoc major fields program has sufficient flexibility that students can form academic major fields in their area of interest if the proposals are supported by several faculty members. Previous fields of study included acoustics, system risk and reliability, and engineering thermodynamics. Nuclear science and engineering, a former active major field, is available on an ad hoc basis only.

Facilities
The Mechanical and Aerospace Engineering Department has a number of experimental facilities at which both fundamental and applied research is being conducted.


Active Materials Laboratory
The Active Materials Laboratory contains equipment to evaluate the coupled response of materials such as piezoelectric, magnetostrictive, shape memory alloys, and fiber optic sensors. The laboratory has manufacturing facilities to fabricate magnetostrictive composites and thin film shape memory alloys. Testing active material systems is performed on one of four servo-hydraulic load frames. All of the load frames are equipped with thermal chambers, solenoids, and electrical power supplies.

Autonomous Vehicle Systems Instrumentation Laboratory
The Autonomous Vehicle Systems Instrumentation Laboratory (AVSIL) is a testbed at UCLA for design, building, evaluation, and testing of hardware instrumentation and coordination algorithms for multiple vehicle autonomous systems. The AVSIL contains a hardware-in-the-loop (HIL) simulator designed and built at UCLA that allows for real-time, systems-level tests of two formation control computer systems in a laboratory environment, using the Inter-state Electronics Corporation GPS Satellite Constellation Simulator. The UCLA flight control software can be modified to accommodate satellite-system experiments using real-time software, GPS receivers, and inter-vehicle modem communication.

Computational Fluid Dynamics Laboratory
The Computational Fluid Dynamics Laboratory contains several medium-size Beowulf linux clusters for numerical simulation of transitional, turbulent, and high speed compressible flows, with and without reaction, as well as the sound that they produce. The laboratory has access to supercomputers (large clusters of parallel processors on various platforms) at NSF PACI Centers and DoD High-Performance Computing Centers.

Energy and Propulsion Research Laboratory
The Energy and Propulsion Research Laboratory is engaged in research and education pertaining to the application of modern diagnostic methods and computational tools to the development of improved combustion, propulsion, and fluid flow systems. Research is directed toward the development of fundamental engineering knowledge as well as tools for solving critical national problems, with current applications to improved engine efficiency, reduced emissions, alternative fuels, and advanced high-speed air breathing and rocket propulsion systems.

Fluid Mechanics Research Laboratory
The Fluid Mechanics Research Laboratory includes a full line of water tunnels equipped with various advanced transducers (MEMS-based sensors and actuators, particle image anemometer, laser Doppler anemometer, hot-wire anemometers) and data acquisition systems.

Fusion Science and Technology Center
The Fusion Science and Technology Center includes a number of state-of-the-art experimental facilities for conducting research in fusion engineering. The center includes experimental facilities for (1) liquid metal magnetohydrodynamic fluid flow dynamics and heat transfer, (2) thick and thin liquid metal systems exposed to intense particle and heat flux loads, and (3) metallic and ceramic material thermomechanics.

Heat Transfer Laboratories
The Heat Transfer Laboratories are used for experimental research on heat transfer and thermal hydraulics. The laboratories are equipped with several flow loops, high-current power supplies, high-frequency induction power supplies, holography and hot-wire anemometry setups, and state-of-the-art data acquisition systems.

Materials Degradation Characterization Laboratory
The Materials Degradation Characterization Laboratory is used for the characterization of the degradation of high-strength metallic alloys and advanced composites due to corrosion and fatigue, determination of adverse effects of materials degradation on the strength of structural components, and for research on fracture mechanics and ultrasonic nondestructive evaluation.

Micro and Nano Manufacturing Laboratory
The Micro and Nano Manufacturing Laboratory is equipped with a furnace hood, wafer saw, wire bonder, electroplating setup including vacuum capability, various microscopes including fluorescent and 3D scanning, various probe stations including RF
capability, vibration-isolation and optical tables, environmental chambers, drop dispensing system, various instruments (e.g., impedance analyzer), and full video imaging capability. It is used for MEMS and nano research, and complements the HSSEAS Nanoelectronics Research Facility, the 8,500-square-foot, class 100/1000 clean room where most micromachining steps are carried out.

**Microsciences Laboratory**
The Microsciences Laboratory is equipped with advanced sensors and imaging processors for exploring fundamental physical mechanisms in MEMS-based sciences.

**Multifunctional Composites Laboratory**
The Multifunctional Composites Laboratory provides equipment necessary to develop multifunctional nanocomposites and explore their applications by integrating technologies involving composites, nanomaterials, information, functional materials, biomimetics, and concurrent engineering. Some of the equipment in the laboratory includes an autoclave, a filament winder, a resin transfer molding machine, a waterjet cutting machine, a stereo lithography machine, a laminated object manufacturing machine, a coordinate measuring machine, a field emission scanning electron microscope, a scanning probe microscope, an FTIR, a rheometer, a thermal analysis system, an RCL analyzer, a microdielectric analyzer, an X-ray radiography machine, and a variety of mechanical testing machines.

**Multiscale Thermosciences Laboratory**
The Multiscale Thermosciences Laboratory (MTSL) is equipped with a state-of-the-art atomic force microscope, an inverted optical microscope with fluorescence attachment, an ultra-long depth-of-field digital microscope, an infrared camera, a cryostat, an RF frequency lock-in amplifier, semiconductor lasers, a wide variety of electronic instruments/DAG systems, and a quad-core workstation with 32GB RAM.

**Plasma and Beam Assisted Manufacturing Laboratory**
The Plasma and Beam Assisted Manufacturing Laboratory is an experimental facility for the purpose of processing and manufacturing advanced materials by high-energy means (plasma and beam sources). It is equipped with plasma diagnostics, two vortex gas tunnel plasma guns, powder feeder and exhaust systems, vacuum and cooling equipment, high-power D.C. supplies (400kw), vacuum chambers, and large electromagnets. Current research is focused on ceramic coatings and nano-phase clusters for applications in thermal insulation, wear resistance, and high-temperature oxidation resistance.

**Plasma Propulsion Laboratory**
The Plasma Propulsion Laboratory includes vacuum systems, power supplies, and diagnostics for the study of plasma propulsion devices.

**Subsonic Wind Tunnel**
The 3 x 3-foot Subsonic Wind Tunnel is used for research on unsteady aerodynamics on oscillating airfoils and instruction.

**Thin Films, Interfaces, Composites, Characterization Laboratory**
The Thin Films, Interfaces, Composites, Characterization Laboratory consists of a Nd:YAG laser of 1 Joule capacity with three ns pulse widths, a state-of-the-art optical interferometer including an ultra high-speed digitizer, sputter deposition chamber, 56 Kip-capacity servohydraulic biaxial test frame, walk-in freezer, polishing and imaging equipment for microstructural characterization for measurement and control study of thin film interface strength, NDE using laser ultrasound, de-icing of structural surfaces, and characterization of composites under multiaxial stress state.

**Faculty Areas of Thesis Guidance**

**Professors**

Mohamed A. Abdou, Ph.D. (Wisconsin, 1973)

Fusion, nuclear, and mechanical engineering design, testing, and system analysis, thermo-mechanics; thermal hydraulics; fluid dynamics, heat, and mass transfer in the presence of magnetic fields (MHD flows); neutronics; radiation transport; plasma-material interactions; blankets and high heat flux components: experiments, modeling and analysis

Oddvar O. Bendiksen, Ph.D. (UCLA, 1980)

Classical and computational aerelasticity, structural dynamics and unsteady aerodynamics

Gregory P. Carman, Ph.D. (Virginia Tech, 1991)

Electromagnetoelasticity models, fatigue characterization of piezoelectric ceramics, magnetostatic composite, characterizing shape memory alloys, fiber-optic sensors, design of damage detection systems, micro-mechanical analysis of composite materials, experimentally evaluating damage in composites

Albert Carnesale, Ph.D. (North Carolina State, 1966)

Issues associated with nuclear weapons and other weapons of mass destruction, energy policy, American foreign policy

Ivan Catton, Ph.D. (UCLA, 1966)

Heat transfer and fluid mechanics, transport phenomena in porous media, nucleonics heat transfer and thermal hydraulics, natural and forced convection, thermal/hydraulic stability, turbulence

Jiun-Shyan (J-S) Chen, Ph.D. (Northwestern, 1989)

Finite element methods, mesh free methods, large deformation mechanics, inelasticity, contact problems, structural dynamics

Yong Chen, Ph.D. (UC Berkeley, 1996)

Nanoscale science and engineering, micro- and nano-fabrication, self-assembly phenomena, microscale and nanoscale electronic, mechanical, optical, biological, and sensing devices, circuits and systems

Vijay K. Dhir, Ph.D. (Kentucky, 1972)

Two-phase heat transfer, boiling and condensation, thermal hydraulics of nuclear reactors, microgravity heat transfer, soil remediation, high-power density electronic cooling


Mobile internet, web-based product design, wireless and collaborative engineering, CAD/visualization

Nasr M. Ghoniem, Ph.D. (Wisconsin, 1977)

Behavioral mechanics of high-temperature materials, radiation interaction with material (e.g., laser, ion, plasma, electrons, and neutrinos), material processing by plasma and beam sources, physics and mechanics of material defects, fusion energy

James S. Gibson, Ph.D. (U. Texas, Austin, 1975)

Control and identification of dynamical systems; optimal and adaptive control of distributed systems, including flexible structures and fluid flows; adaptive filtering, identification, and noise cancellation

Vijay Gupta, Ph.D. (MIT, 1989)

Experimental mechanics, fracture of engineering solids, mechanics of thin film and interfaces, failure mechanisms and characterization of composite materials, ice mechanics

H. Thomas Hahn, Ph.D. (Pennsylvania State, 1971)

Nanocomposites, multifunctional composites, nanomechanics, rapid prototyping, information systems

Chih-Ming Ho, Ph.D. (Johns Hopkins, 1974)

Molecular fluidic phenomena, microelectromechanical systems (MEMS), bionanotechnology, biomolecular sensor arrays, control of cellular complex systems, rapid search of combinatorial medicine

Tetsuya Iwasaki, Ph.D. (Purdue, 1993)

Dynamical systems, robust and optimal control, nonlinear oscillators, resonance entrainment, modeling and analysis of neuronal control circuits for animal locomotion, central pattern generators, body-fluid interaction during undulatory and obesity swimming

Ann R. Karagözian, Ph.D. (Caltech, 1982)

Fluid mechanics and combustion with applications to improved engine efficiency, reduced emissions, alternative fuels, and advanced high-speed air breathing and rocket propulsion systems

Chang-Jin (C-J) Kim, Ph.D. (UC Berkeley, 1991)

Microelectromechanical systems; micro/nano fabrication technologies, structures, actuators, devices, and systems; microfluidics involving surface tension (especially droplets)

J. John Kim, Ph.D. (Stanford, 1978)

Turbulence, numerical simulation of turbulent and transitional flows, application of control theories to flow control

Adrienne Lavine, Ph.D. (UC Berkeley, 1984)

Heat transfer: thermomechanical behavior of shape memory alloys, thermal aspects of...
manufacturing processes, natural and mixed convection
Radiative transfer and satellite remote sensing with application to clouds and aerosols in the earth’s atmosphere
Christopher S. Lynch, Ph.D. (UC Santa Barbara, 1992)
Field coupled materials, constitutive behavior, thermo-electro-mechanical properties, sensor and actuator applications, fracture mechanics and failure analysis
Ajit K. Mal, Ph.D. (Calculta U., 1964)
Mechanics of solids, fractures and failure, wave propagation, nondestructive evaluation, composite materials
Robert T. M’Closkey, Ph.D. (Caltech, 1995)
Nonlinear control theory and design with application to mechanical and aerospace systems, real-time implementation
Anthony F. Mills, Ph.D. (UC Berkeley, 1965)
Convective heat and mass transfer, condensation heat transfer, turbulent flows, ablation and transpiration cooling, perforated plate heat exchangers
Owen I. Smith, Ph.D. (UC Berkeley, 1977)
Combustion and combustion-generated air pollutants, hydrodynamics and chemical kinetics of combustion systems, semiconductor chemical vapor deposition
Jason Speyer, Ph.D. (Penn State, 1968)
Stochastic and deterministic optimal control and estimation with application to aerospace systems, guidance, flight control, and flight dynamics
Tsung-Chin Tsao, Ph.D. (UC Berkeley, 1988)
Modeling and control of dynamic systems with applications in mechanical systems, manufacturing processes, automotive systems, and energy systems, digital control, repetitive and learning control, adaptive and optimal control, mechatronics
Dan H. Yang, Ph.D. (Rutgers, 1982)
Robotics and mechanisms; CAD/CAM systems, computer-controlled machines
Xiaolin Zhong, Ph.D. (Stanford, 1991)
Computational fluid dynamics, hypersonic flow, rarefied gas dynamics, numerical simulation of transient hypersonic flow with nonequilibrium real gas effects, instability of hypersonic boundary layers

Professors Emeriti
Andrew F. Charwat, Ph.D. (UC Berkeley, 1952)
Experimental fluid mechanics, two-phase flow, ocean thermal energy conversion
Aeroelasticity of helicopters and fixed-wing aircraft, structural dynamics of rotating systems, rotor dynamics, unsteady aerodynamics, active control of structural dynamics, structural optimization with aerelastic constraints
Thermal convection, thermocapillary convection, stability of shear flows, stratified and rotating flows, interfacial phenomena, microgravity fluid dynamics
Michel A. Melkanoff, Ph.D. (UCAL, 1955)
Programming languages, data structures, database design, relational models, simulation systems, robotics, computer-aided design and manufacturing, numerical-controlled machinery
D. Lewis Mingori, Ph.D. (Stanford, 1966)
Dynamics and control, stability theory, nonlinear methods, applications to space and ground vehicles
Peter A. Monkewitz, Ph.D. (E.T.H., Federal Institute of Technology, Zurich, 1977)
Fluid mechanics, internal acoustics and noise produced by turbulent jets
Philip F. O’Brien, M.S. (UCLA, 1949)
Industrial engineering, environmental design, thermal and luminous engineering systems
David Okrent, Ph.D. (Harvard, 1951)
Fast reactors, reactor physics, nuclear reactor safety, nuclear fuel element behavior, risk-benefit studies, nuclear environmental safety, fusion reactor technology
Lucien A. Schmitt, Jr., M.S. (MIT, 1950)
Structural mechanics, optimization, automated design methods for structural systems and components, application of finite element analysis techniques and mathematical programming algorithms in structural design, analysis and synthesis methods for fiber composite structural components
Richard Stern, Ph.D. (UCLA, 1964)
Experimentation in noise control, physical acoustics, engineering acoustics, medical acoustics
Russell A. Westmann, Ph.D. (UC Berkeley, 1962)
Structural mechanics, adhesives, mechanical materials, theoretical soil mechanics, mixed boundary value problems

Associate Professors
Jeff D. Eldredge, Ph.D. (Caltech, 2002)
Numerical simulations of fluid dynamics, bio-inspired locomotion in fluids, transition and turbulence control, aerodynamically generated sound, vorticity-based numerical methods, simulations of biomedical flows
Y. Sungtaek Ju, Ph.D. (Stanford, 1999)
Heat transfer, thermodynamics, microelectromechanical and nanoelectromechanical systems (MEMS/NEMS), magnetism, nano-bio technologies
Laurent Pilon, Ph.D. (Purdue, 2002)
Interfacial and transport phenomena, radiation transfer, materials synthesis, multi-phase flow, heterogeneous media

Assistant Professors
Pei-Yu Chio, Ph.D. (UC Berkeley, 2005)
BioMEMS, biophotonics, electrokinetics, optical manipulation, optoelectronic devices
H. Pirouz Kavehpour, Ph.D. (MIT, 2003)
Microscale fluid mechanics, transport phenomena in biological systems, physics of contact line phenomena, complex fluids, nonisothermal flows, micro- and nano-heat guides, microthermobiology
Computational structural and solid mechanics, finite element methods, computational biomechanics, nanomechanics of biological systems
Richard E. Wirz, Ph.D. (Caltech, 2005)
Space and plasma propulsion, partially ionized plasma discharges, behavior of miniature plasma devices, spacecraft and space mission design, wind energy, solar thermal energy

Lecturers
Ravesh Amir, Ph.D. (UCLA, 1974)
Heat transfer and thermal science
C.H. Chang, M.S. (UCLA, 1985), Emeritus
Computer-aided manufacturing and numerical control
Amiya K. Chatterjee, Ph.D. (UCLA, 1976)
Elastic wave propagation and penetration dynamics
Carl F. Rooff, Ph.D. (Caltech, 1993)
Robotics, computing, mechanical design, instrument technology, technology management
Alexander Samson, Ph.D. (U. New South Wales, 1968), Emeritus
Electromechanical system design, mechanical design, design of mechanical energy systems

Adjoint Professors
Leslie M. Lackman, Ph.D. (UC Berkeley, 1967)
Structural analysis and design, composite structures, engineering management
Wilbur J. Marner, Ph.D. (South Carolina, 1969)
Thermal sciences, system design
Neil B. Morley, Ph.D. (UCLA, 1994)
Experimental and computational fluid mechanics
Robert S. Shaefer, Ph.D. (UCLA, 1985)
Radiation interaction with materials, microstructure evolution modeling, plasma and laser processing, fusion technology research, fusion reactor component design, material property RDBMS databases
Xiang Zhang, Ph.D. (UC Berkeley, 1996)
Nanomicro-fabrication and MEMS, laser microtechnology, nano-micro devices (electronic, mechanical, photonic, and biomedical), rapid prototyping and microstereolithography, design and manufacturing in nano-microscale, semiconductor manufacturing, physics and chemistry in nano-micro devices and fabrication.

Lower Division Courses

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.

Upper Division Courses

19. Flat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

94. Introduction to Computer-Aided Design and Drafting. (4) Lecture, two hours; laboratory, four hours. Fundamentals of computer graphics and two- and three-dimensional modeling on computer-aided design and drafting systems. Students use one or more online computer systems to design and display various objects. Letter grading.

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.

94. Introduction to Computer-Aided Design and Drafting. (4) Lecture, two hours; laboratory, four hours. Fundamentals of computer graphics and two- and three-dimensional modeling on computer-aided design and drafting systems. Students use one or more online computer systems to design and display various objects. Letter grading.

19. Flat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.
102. Dynamics of Particles and Rigid Bodies. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 101, Mathematics 33A, Physics 1A. Fundamental concepts of Newtonian mechanics. Kinematics and kinetics of particles and rigid bodies in two and three dimensions. Impulse-momentum and work-energy relationships. Applications. Letter grading. Mr. Klug (F.W.Sp)

103. Elementary Fluid Mechanics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: Mathematics 32B, 33A, Physics 1B. Introductory course dealing with application of principles of mechanics to flow of compressible and incompressible fluids. Letter grading. Mr. Kavehpour, Mr. J. Kim (F.W.Sp)

105A. Introduction to Engineering Thermodynamics. (4) (Formerly numbered M105A.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: Chemistry 20B, Mathematics 32B. Phenomenological thermodynamics. Concepts of equilibrium, temperature, energy, work, entropy. First law and concept of energy; second law and concept of entropy. Equations of state and thermodynamic properties. Engineering applications of these principles in analysis and design of closed and open systems. Letter grading. Mr. Pilon (F.W.Sp)


107. Introduction to Modeling and Analysis of Dynamic Systems. (4) Lecture, three hours; discussion, one hour; laboratory, two hours; outside study, four hours. Requisites: Computer Science 31, Electrical Engineering 100. Introduction to modeling of physical systems, with examples of mechanical, fluid, thermal, and electrical systems. Description of these systems with coverage of impulse response, convolution, frequency response, first- and second-order system transient response analysis, and numerical solution. Nonlinear differential equation descriptions with discussion of equilibrium solutions, small signal linearization, large signal response. Block diagram representation and response of interconnections of systems. Hands-on experiments reinforce lecture material. Letter grading. Mr. M’Closkey, Mr. Tsao (F.W.Sp)


131AL. Thermodynamics and Heat Transfer Laboratory. (4) Laboratory, eight hours; outside study, four hours. Requisites: courses 131A, and 157 or 157S. Experimental study of physical phenomena and engineering systems using modern data acquisition and processing techniques. Experiments include studies of heat transfer phenomena and testing of cooling tower, heat exchanger, and internal combustion engine. Students take and analyze data and discuss physical phenomena. Letter grading. Mr. Mills (Not offered 2009-10)


133A. Engineering Thermodynamics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 103, 105A. Applications of thermodynamic principles to engineering processes. Energy conversion systems. Rankine cycle and other cycles, refrigeration, psychrometry, reactive and nonreactive fluid flow systems. Letter grading. Mr. Matton (W)

133AL. Power Conversion Thermodynamics Laboratory. (4) Laboratory, eight hours; outside study, four hours. Requisites: courses 133A, and 157 or 157S. Experimental study of power conversion and heat transfer systems using state-of-the-art process instrumentation and equipment. Experiments include studies of thermodynamic operating characteristics of actual Brayton cycle, Rankine cycle, compressive refrigeration cycle, and absorption refrigeration unit. Letter grading. Mr. Matton (Not offered 2009-10)

134. Design and Operation of Thermal Hydraulic Power Systems. (4) Lecture, three hours; laboratory, three hours; outside study, six hours. Requisites: courses 133A, 133B. Thermal hydraulic design, maintenance and operation of power systems, gas turbines, steam turbines, centrifugal refrigeration units, absorption refrigeration units, compressors, valves and piping systems, and instrumentation and control systems. Letter grading. Mr. Matton (Not offered 2009-10)

135. Fundamentals of Nuclear Science and Engineering. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: Chemistry 20A, Mathematics 33B. Review of nuclear physics, radioactivity and decay, and radiation interaction with matter. Nuclear fission and fusion processes and mass defect, chain reactions, criticality, neutron diffusion and multiplication, heat transfer processes, and applications. Introduction to nuclear power plants for commercial electric power, space propulsion, spacecraft propulsion, nuclear fusion, and nuclear science for medical uses. Letter grading. Mr. Morley (F)

136. Energy and Environment. (4) Lecture, four hours; outside study, eight hours. Requisites: course 105D. Recommended: courses 131A, 133A. Global energy use and supply, electrical power generation, fossil fuel and nuclear power plants, renewable energy such as hydropower, biomass, geothermal, solar, wind, and ocean, fuel cells, transportation, energy conservation, air and water pollution, global warming. Letter grading. Mr. Mills (W)

137M-140. Introduction to Biomechanics. (4) Same as Biomedical Engineering CM 140M.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 101, 102, 156A. Introduction to the mechanical body; skeleton-muscle-system adaptations to optimize load transfer, mobility, and function. Dynamics and kinematics. Fluid mechanics applications. Heat and mass transfer. Power generation, locomotion, and control. Concurrently scheduled with course CM 240. Letter grading. Mr. Mills (W)


150B. Aerodynamics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 103, 150A. Advanced aspects of potential flow theory. Incompressible flow around thin airfoils (lift and moment coefficients) and wings (lift, induced drag). Gas dynamics: oblique shocks, Prandtl-Meyer expansion. Linearized subsonic and supersonic flows around thin airfoils and wings. Wave drag. Transonic flow. Letter grading. Mr. Zhong (Sp)

150C. Combustion Systems. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 103, 105A. Chemical thermodynamics of ideal gas mixtures, premixed and diffusion flames, explosions and detonations, combustion chemistry, high explosives. Combustion processes in rocket, turbine, and internal combustion engines; heating applications. Letter grading. Ms. Karagözian, Mr. Smith (Not offered 2009-10)

C150G. Fluid Dynamics of Biological Systems. (4) (Formerly numbered 150D.) Lecture, four hours; outside study, eight hours. Requisite: course 103. Mechanics of aquatic locomotion; insect and bird flight aerodynamics; pulsatile flow in circulatory system; rheology of blood; transport in microcirculation; role of fluid dynamics in arterial diseases. Letter grading. Ms. Karagözian, Mr. Smith (F)

150P. Rocket Propulsion Systems. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 103, 105A. Rocket propulsion concepts, including chemical rockets (liquid, gas, and solid propellants), hybrid rocket engines, electric (ion, plasma) rockets, nuclear rockets, and solar-powered vehicles. Current issues in launch vehicle technologies. Letter grading. Mr. Eldredge (Sp, alternate years)

154A. Preliminary Design of Aircraft. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 154S. Classical preliminary design of aircraft, including weight estimation, performance and stability and control considerations. Term assignment consists of preliminary design of high-speed aircraft. Letter grading. Mr. Bendiksen (W)


154S. Flight Mechanics, Stability, and Control of Aircraft. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 150A, 150B. Aircraft performance, flight mechanics, stability and control; some basic ingredients needed for design of aircraft. Effects of airplane flexibility on stability derivatives. Letter grading. Mr. Bendiksen (F)
15. Intermediate Dynamics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 102. Axioms of Newtonian mechanics, generalized coordinates, Lagrangian equa-
tion, variational principles; central force motion; kinem-
atics and dynamics of rigid bodies. Euler equations, motion of rotating bodies, oscillatory motion, normal coordinates, orthogonality relations. Letter grading. Mr. Gibson (F)

16. Advanced Strength of Materials. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: courses 101, 182A. Not open to students with credit for course 166A. Concepts of stress, strain, and material behavior. Stresses in loaded beams with symmetric and asymmetric cross sections. Torsion of cylinders and thin-walled struc-

17. Basic Mechanical Engineering Laboratory. (4) Laboratory, four hours; outside study, eight hours. Requisites: courses 101, 103, 105, 105A, 105D, Electrical Engineering 100. Methods of measurement of basic quantities and performance of basic experiments in fluid mechanics and thermodynamics. Primary sensors, transducers, record-
ing equipment. Experiments on: pressure, temperature, and data analysis. Letter grading. Mr. Gholiemi, Mr. Mills (F, FW)

18. Fluid Mechanics and Aerodynamics Laboratory. (4) Laboratory, eight hours; outside study, four hours. Requisites: courses 150A, 150B, and 157. Experimental illustration of important physical phenomena in area of fluid mechanics/aerodynamics, as well as hands-on experience with design of experimental programs and use of modern experimental tools and techniques in field. Letter grading. Mr. Kavehpour, Mr. Smith (Sp)

19. Basic Aerospace Engineering Laboratory. (4) Laboratory, six hours; outside study, four hours. Requisites: courses 101, 102, 103, 105A, Electrical Engineering 100. Recommended: course 15. Mea-
urement of basic physical quantities in fluid me-
chanics, thermodynamics, and structures. Operation of primary transducers, computer-aided data acquisi-
tion, signal processing, and data analysis. Perform-
ance of experiments to enhance understanding of basic physical principles and characteristics of struc-
tures relevant to aerospace engineering. Letter grading. Mr. Ju (W, Sp)

161A. Introduction to Aeronautics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 102. Recommended: course 182A. Space environment of Earth, trajectories and orbits, step rockets and staging, two-body problem, orbital transfer and rendezvous, problem of three bodies, elementary perturbation theory, influence of Earth's oblateness. Letter grading. Mr. Wirz (F)

161B. Introduction to Space Technology. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Recommended preparation: courses 102, 150F, 161A. Propulsion requirements for typical space mission, thermochimistry of propellants, in-
ternal ballistics, regenerative cooling, liquid propel-
ant systems, POGO instability. Electric propulsion. Multi-
mission dynamic simulation of space structures and materials, loads and vibrations. Thermal control of spacecraft. Letter grading. Mr. Wirz (W)

161C. Spacecraft Design. (4) Lecture, four hours; outside study, eight hours. Requisite: course 161B. Coverage of preliminary design, by students, of small spacecraft carrying lightweight scientific payload with modest requirements for electric power, lifetime, and attitude control. Work in groups of three or four, with each student responsible primarily for one subsystem and for integration with whole. Letter grading. Mr. Wirz (Sp)

161D. Space Technology Hardware Design. (4) Lecture, two hours; laboratory, three hours; outside study, seven hours. Recommended requisite or corequisite: course 161B. Design, by students, of hardware with applications to space technology. De-
signs are then built by HSSEAS professional ma-
chine shop and tested by students. New project car-
ried out each year. Letter grading. Mr. Wirz (Not offered 2009-10)

162A. Introduction to Mechanics and Mechani-

162B. Mechanical Product Design. (4) Lecture, two hours; laboratory, four hours; outside study, six hours. Requisites: courses 94, 156A, 162A, 183, Electrical Engineering 110L. Lecture and laboratory (design) course involving modern design theory and methodol-
ogy for development of mechanical products. Eco-
nomics, marketing, manufacturability, quality, and pat-
ettability. Design considerations taught and applied to hands-on design project. Letter grading.

162C. Electromechanical System Design Laboratory. (4) Lecture, one hour; laboratory, eight hours; outside study, three hours. Requisite: course 162B. Laboratory and design course consisting of design, development, construction, and testing of complex mechanical and electromechanical systems. Assem-
bled machine is instrumented and monitored for op-
erational characteristics. Letter grading. Mr. Tsao (Sp)

162M. Senior Mechanical Engineering Design. (4) Lecture, one hour; laboratory, six hours; outside study, five hours. Requisites: courses 131A or 133A, 162B, 171A. Must be taken in last two academic terms of students' programs. Analytical course of large engineering system. Design factors include functionality, efficiency, economy, safety, reliability, aesthetics, and social impact. Final report of engi-
neering specifications and drawings to be presented by design teams. Letter grading. Mr. Yang (W, Sp)

163A. Introduction to Computer-Controlled Ma-
chines. (4) Lecture, four hours; discussion, one hour; outside study, four hours. Digital and analog compre-
son course 171A. Modeling of computer-controlled ma-
chines, including electrical and electronic elements, mechanical elements, actuators, sensors, and overall electromechanical systems. Motion and command generation, servo-controller design, and computer/ machine interfacing. Letter grading. Mr. Tsao (Not offered 2009-10)

166A. Analysis of Flight Structures. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 101, 182A. Not open to students with credit for course 156A. Introduction to two-dimensional elasticity, stress-strain laws, field and fatigue; bending of beams; torsion of beams; warping; torsion of thin-walled cross sections: shear flow, shear-lag; combined bending torsion of thin-
wall plates and cylindrical shells; static deflection of ver-
cles; elements of plate theory; buckling of columns. Letter grading. Mr. Carman (F)

166C. Design of Composite Structures. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 156A or 166A. History of composites, stress-strain relations for composite ma-
terials, bending and extension of symmetric lami-
nates, failure analysis, design examples and design stud-
ies, graphite fiber reinforced composites, nonSYM-
matic laminates, micromechanics of composites. Letter grading. Mr. Carman (W)

1M68. Introduction to Finite Element Methods. (4) Formerly numbered 168.) (Same as Civil Engi-
neering M135C.) Lecture, four hours; discussion, one hour; outside study, seven hours. Course 156A or 166A or Civil Engineering 130. Introduction to basic concepts of finite element methods (FEM) and applications to structural and solid mechanics and heat transfer. Direct matrix structural analysis; weighted residual, least squares, and Ritz approxi-
mation methods; shape functions; convergence prop-
erties; isoparametric formulation of multidimensional heat flow and elasticity; numerical integration. Practical use of FEM software; geometric and analytical modeling; preprocessing and postprocessing tech-
niques; term projects with computers. Letter grading. Mr. Chen (F, Sp)

169A. Introduction to Mechanical Vibrations. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 101, 102, 107. Fundamentals of vibration theory and applica-
tions. Free, forced, and transient vibration of one and two degrees of freedom systems, including damping. Normal modes, coupling, and normal coordinates. Vi-
bation isolation devices, vibrations of continuous systems. Letter grading. Mr. Bendiksen (F)

171A. Introduction to Feedback and Control Sys-
tems: Dynamic Systems Control I. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enrolled restricted to students in Aerospace and Mechanical Engineering 102), and 181A or 182A. Introduction to feedback principles, control systems design, and sys-
tem stability. Modeling of physical systems in engi-
neering and other fields. Basic feedback control-
ner design using Nyquist, Bode, and root locus meth-
ods; compensation; computer-aided analysis and design. Letter grading. Mr. M’Closkey (F, Sp)

171B. Digital Control of Physical Systems. (4) Lecture, four hours; outside study, eight hours. Requi-
site: course 171A or Electrical Engineering 141. Analysis and design of digital control systems. Sam-
ping theory. Z-transformation. Discrete-time system representation. Design using classical methods: per-
formance specifications, root locus, frequency re-
sponse, loop-shaping compensation. Design using state-space methods: state feedback, state estimate-
ors, estimator feedback control. Simulation of sam-
pled data systems and practical aspects: roundoff er-
rors, sampling rate selection, computation delay. Let-
ter grading. Mr. Tsao (Sp)

172. Control System Design Laboratory. (4) Labo-
ratory, eight hours; outside study, four hours. Requi-

course 171A. Application of frequency domain design techniques for control of mechanical systems. Successful control design requires students to for-
mulate performance measures for control problem, experimentally identify mechanical systems, and de-
velop uncertainty descriptors for design models. Ex-
ploration of issues concerning model uncertainty and sensor/actuator placement. Students implement control
t designs on flexible structures, rate gyroscope, and inverted pendulum. Detailed reports required. Letter grading. Mr. M’Closkey (Not offered 2009-10)

174. Probability and Its Applications to Risk, Reli-
ability, and Quality Control. (4) Lecture, four hours; dis-
cussion, two hours; outside study, six hours. Requ-
iste: Mathematics 33A. Introduction to probability theory; random variables, distributions, functions of random variables, models of failure of components, reliability, redundancy, complex systems, stress-
strength models, fault tree analysis, statistical quality control by variables and by attributes, acceptance sampling. Letter grading. Ms. Lavine (Not offered 2009-10)
181A. Complex Analysis and Integral Transforms. (4) Lecture, four hours; outside study, eight hours. Requisite: course 182A. Complex variables, analytic functions, conformal mapping, contour mapping, singularities, residues, Cauchy's integral theorem. Laplace transform: properties, convolution, inversion; Fourier transform: properties, convolution, FFT, applications in dynamics, vibrations, structures, and heat conduction. Letter grading. Mr. Gadh (Not offered 2009-10)


182B. Mathematics of Engineering. (4) Lecture, four hours; discussion, two hours; outside study, seven hours. Requisite: course 182A. Analytical methods for solving partial differential equations arising in engineering. Separation of variables, eigenvalue eigenfunction expansions. Fourier series and Fourier transforms. Applications to Fourier methods, introduction to transport theory. Letter grading. Mr. Eldredge, Mr. J. Kim (W)


184. Introduction to Geometry Modeling. (4) Lecture, four hours; laboratory, four hours; outside study, four hours. Requisites: course 94, Computer Science 31. Surface modeling, parametric spaces, blending functions, conics, splines and Bezier curve, coordinate transformations, algebraic and geometric form of surfaces, analytical properties of curve and surface, hand-on computer experience with CAD/CAM systems design and implementation. Letter grading.

185. Introduction to Radio Frequency Identification and Its Application in Manufacturing and Supply Chain. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 162B, Computer Science 31. Manufacturing today requires assembling of individual components into assembled products, shipping of such products, and eventually use, maintenance, and recycling of such products. The identification of components, subassemblies, and assemblies of products allow them to be tracked automatically as they move and transform through manufacturing supply chains. RFID technology and small CPU that allows information about product status to be written, stored, and transmitted wirelessly. Tag data can then be forwarded by reader to enterprisewide software to record and report product history. Study of how RFID is being utilized in manufacturing, with focus on automotive and aerospace. Letter grading. Mr. Gadh (W)


C187L. Nanoscale Fabrication, Characterization, and Biodetection Laboratory. (4) Lecture, four hours; laboratory, two hours; outside study, eight hours. Multidisciplinary course that introduces laboratory techniques, such as nanocharacterization, and biodetection. Basic physical, chemical, and biological principles related to these techniques, top-down and bottom-up (self-assembly) nanofabrication, nanocharacterization (AFM, SEM, etc.), and optical and electrochemical biosensors. Students encouraged to create their own ideas in self-designed experiments. Concurrently scheduled with course C287L. Letter grading. Mr. Chen (F)

188. Special Courses in Mechanical and Aerospace Engineering. (2 to 4) Lecture, two to four hours; outside study, four to eight hours. Special topics. Letter grade. May be repeated for credit with topic or instructor change. P/NP or letter grading.

194. Research Group Seminars: Mechanical and Aerospace Engineering. (2 to 4) Seminar, two to four hours. Designed for undergraduate students who are part of research group. Letter grade. Required. Letter grading. Mr. Zhong (Spring 2010)

199. Directed Research in Mechanical and Aerospace Engineering. (2 to 8) Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation under guidance of faculty mentor. Culminating paper or project required. May be repeated for credit with school approval. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading. (F,W,Sp)

Mr. Abduo (Sp, alternate years)

239B. Seminar: Current Topics in Transport Phenomena. (2 to 4) Lecture, two to four hours; outside study, four to eight hours. Designed for graduate mechanical and aerospace engineering students. Lectures, discussions, student presentations, and projects in areas of current interest in transport phenomena. May be repeated for credit. S/U grading.

239F. Special Topics in Transport Phenomena. (2 to 4) Lecture, two to four hours; outside study, four to eight hours. Designed for graduate mechanical and aerospace engineering students. Advanced and current study of one or more aspects of heat and mass transfer, such as turbulence, stability and transition, buoyancy effects, variational methods, and measurement techniques. May be repeated for credit with topic change. S/U grading.

239G. Special Topics in Nuclear Engineering. (2 to 4) Lecture, two to four hours; outside study, four to eight hours. Designed for graduate mechanical and aerospace engineering students. Advanced study in areas of current interest in nuclear engineering, such as reactor safety, risk-benefit trade-offs, nuclear materials, and reactor design. May be repeated for credit with topic change. S/U grading.

239H. Special Topics in Fusion Physics, Engineering, and Technology. (2 to 4) Seminar, two to four hours; outside study, four to eight hours. Designed for graduate mechanical and aerospace engineering students. Advanced treatment of subjects selected from research areas in fusion science and engineering, such as instabilities in burning plasmas, alternate fusion confinement concepts, inertial confinement fusion, fission-fusion hybrid systems, and fusion reactor safety. May be repeated for credit with topical change. S/U grading.

CM240. Introduction to Biomechanics. (4) Same as Biomedical Engineering CM240.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 101, 102, 156A. Introduction to biomechanical functions of human body; skeletal adaptation to external loads, transfer, mobility, and function. Dynamics and kinematics. Fluid mechanics applications. Heat and mass transfer. Power generation. Laboratory simulations and tests. Concurrently scheduled with course CM140. Letter grading. 

Mr. Gupta (W)

250A. Foundations of Fluid Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 150A. Corequisite: course 182B. Development and application of fundamental principles of fluid mechanics at graduate level, with emphasis on incompressible flow. Flow kinematics, basic equations, constitutive relations, exact solutions on the Navier-Stokes equations, vorticity dynamics, decomposition of flow fields, potential flow. Letter grading.

Mr. Eldredge, Mr. J. Kim (W)

250B. Viscous and Turbulent Flows. (4) Lecture, four hours; outside study, eight hours. Requisite: course 150A. Fundamental principles of fluid dynamics applied to study of fluid resistance. States of fluid motion discussed in order of advancing Reynolds number. Boundary layers, instability, transition, and turbulent shear flows. Letter grading. 

Ms. Karagozian, Mr. J. Kim (Sp)

250C. Compressible Flows. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 150A, 150B. Coverage of compressible flow phenomena in viscous and inviscid flows. Steady and unsteady inviscid subsonic and supersonic flows; method of characteristics; small disturbance theories (linearized and hypersonic); shock dynamics. Letter grading.

Ms. Karagozian, Mr. Zhong (F)

250D. Computational Aerodynamics. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 150A, 150B, 182C. Introduction to useful methods for computation of aerodynamic flow fields. Coverage of potential, Euler, and Navier-Stokes equations for subsonic to hypersonic speeds. Letter grading.

Ms. Peng (W, alternate years)

250E. Spectral Methods in Fluid Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 182A, 182B, 182C, 250A, 250B. Introduction to basic concepts and techniques of various spectral methods applied to solving partial differential equations. Particular emphasis on techniques of solving unsteady three-dimensional Navier-Stokes equations. Topics include spectral representation of functions, discrete Fourier transform, etc. Letter grading.

Mr. J. Kim (Sp, alternate years)

250F. Hypersonic and High-Temperature Gas Dynamics. (4) Lecture, four hours; outside study, eight hours. Recommended requisite: course 250C. Molecular and chemical description of equilibrium and nonequilibrium hypersonic and high-temperature gas flows, chemical thermodynamics and statistical thermodynamics for calculation gas properties, equilibrium flows of real gases, vibrational and chemical rate processes, nonequilibrium flows of real gases, and computational fluid dynamics methods for nonequilibrium hypersonic flows. Letter grading.

Mr. Zhong (W)

C250G. Fluid Dynamics of Biological Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 103. Mechanics of aquatic locomotion; insect and bird flight aerodynamics; pulsatile flow in circulatory system; rheology of blood; transport in micror circulation; role of fluid dynamics in arterial diseases. Concurrently scheduled with course C150G. Letter grading.

Mr. Eldredge (W)


Mr. Kavehpour

252A. Stability of Fluid Motion. (4) Lecture, four hours; outside study, eight hours. Requisite: course 150A. Mechanisms by which laminar flows can become unstable and lead to turbulence of secondary motions. Linear stability theory; thermal, centrifugal, and shear instabilities; boundary layer instability. Nonlinear aspects: sufficient criteria for stability, subcritical instabilities, supercritical states, transition to turbulence. Letter grading.

Mr. Zhong


Mr. J. Kim


Ms. Karagozian (F, odd years)

252D. Combustion Rate Processes. (4) Lecture, four hours; outside study, eight hours. Requisite: course 252C. Basic concepts in chemical kinetics: molecular collisions, distribution functions and reaction rates. Classical or intermediate kinetic treatment of selected problems. Letter grading.

Mr. Smith (Sp, even years)

253A. Advanced Engineering Acoustics. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students interested in advanced studies in engineering acoustics, including three-dimensional wave propagation; propagation in bounded media; Ray acoustics; attenuation mechanisms in fluids. Letter grading.

Mr. Eldredge


Mr. M'Closkey (Sp, odd years)

254A. Special Topics in Aerodynamics. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 150A, 150B, 182A, 182B, 182C. Special topics of current interest in advanced aerodynamics. Examples include transonic flow, supersonic flow, sonic booms, and unsteady aerodynamics. Letter grading.

Mr. Zhong

255A. Advanced Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 155, 169A. Variational principles and Lagrange equations. Kinematics and dynamics of rigid bodies; procession and nutation of spinning bodies. Letter grading.

Mr. Gibson

255B. Mathematical Methods in Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 255A. Concepts of stability; state-space interpretation; stability determination by simulation, linearization, and Lyapunov direct method; the Hamiltonian as a Lyapunov function; nonautonomous systems; averaging and perturbation methods of nonlinear analysis; parametric excitation and nonlinear resonance. Application to mechanical systems. Letter grading. 

Mr. M'Closkey (Sp, odd years)

M256A. Linear Elasticity. (4) (Same as Civil Engineering M230A.) Lecture, four hours; outside study, eight hours. Requisite: course 156A or 166A. Linear elasticity. Cartesian and curvilinear strain tensor; Cauchy stress tensor; strain energy; equilibrium equations; linear constitutive relations; plane elastostatic problems, holes, corners, inclusions, cracks, three-dimensional problems of Kelvin, Boussinesq, and Cerruti. Introduction to boundary integral equation method. Letter grading. 

Mr. Mal (F)

M256B. Nonlinear Elasticity. (4) (Same as Civil Engineering M230B.) Lecture, four hours; outside study, eight hours. Requisite: course M256A. Kinematics of deformation, material and spatial coordinates, deformation gradient tensor, nonlinear and strain tensors, strain displacement relations; balance laws, Cauchy and Piola stresses, Cauchy equations of motion, balance of energy, stored energy; constitutive relations, elasticity, hyperelasticity, thermoplasticity; linearization of field equations; solution of selected problems. Letter grading. 

Mr. Dong, Mr. Mal (W)

M256C. Plasticity. (4) (Same as Civil Engineering M230C.) Lecture, four hours; outside study, eight hours. Requisites: courses M256A, M256B. Classical rate-independent plasticity/thermoelasticity; flow rules and thermodynamics. Classical rate-dependent viscoplasticity, Perzyna and Duanv/Lions types of viscoplasticity. Thermoplasticity and creep. Reduced model for incompressible viscoplasticity and viscoelasticity: Finite element implementations. Letter grading.

Mr. Gupta (Sp)
M256. Analytical Fracture Mechanics. (4) Lecture, four hours; outside study, eight hours. Requisite: course M256A. Review of modern fracture mechanics, elementary stress analyses, analytical and numerical methods for calculation of crack tip stress intensity factors; engineering applications in stiffened structures, pressure vessels, plates, and shells. Letter grading. Mr. Gupta (Sp)

M257A. Elastodynamics. (4) (Same as Earth and Space Sciences M224A.) Lecture, four hours; outside study, eight hours. Requisites: courses M256A, M256B. Elasticity, Cauchy stress, plane motion of material, constitutive equations, free vibrations of beams, plates, shells. Letter grading. Mr. Gupta (W)

M257B. Analytical Foundations of Motion Controlers. (4) Lecture, four hours; outside study, eight hours. Requisite: courses M256A, M256D. Theory of motion control for modern computer-controlled machines; multiaxis computer-controlled machines; machine kinematics and dynamics; multiaxis motion coordination; coordinated motion with desired speed and acceleration; jerk analysis; motion command generation; theory and design of controller interpolators; motion trajectory design and analysis; geometry-speed-sampling time relationships. Letter grading. Mr. Yang

M258. Seminar: Advanced Topics in Fluid Mechanics. (4) Seminar, four hours; outside study, eight hours. Advanced study of topics in fluid mechanics, with intensive student participation involving assignments leading to term papers. Letter grading. Mr. Mal

M259A. Nanomechanics and Micromechanics. (4) Lecture, four hours; outside study, eight hours. Requisite: course M256A. Analytical and computational modeling methods to describe mechanics of materials at scales ranging from atomic through microstructure to continuum. Application of atomistic simulation methods (e.g., molecular dynamics, Langevin dynamics, and kinetic Monte Carlo) and their applications at nanoscale. Development and application of statistical mechanics methods in areas of nanostucture and microstructure self-organization, heterogeneous plastic deformation, material instabilities, and failure phenomena. Presentation of technical applications of these emerging modeling techniques to surfaces and interfaces, grain boundaries, dislocations and defects, surface growth, quantum dots, nanotubes, nanoclusters, thin films (e.g., optical thermal barrier coatings and ultrastable nanolayer materials), nano-identification, smart (active) materials, nanobending and microbending. Letter grading. Mr. Smith (Sp)

M259B. Seminar: Advanced Topics in Solid Mechanics. (4) Seminar, four hours; outside study, eight hours. Advanced study of topics in solid mechanics, introducing the continuum. Topics include dynamics, elasticity, plasticity, and stability of solids. Letter grading. Mr. Mal

M260. Current Topics in Mechanical Engineering. (2 to 4) Seminar, two to four hours; outside study, four to eight hours. Designed for graduate mechanical and aerospace engineering students. Lectures, discussions, and student presentations and projects in areas of current interest in mechanical engineering. May be repeated for credit. S/U grading.


M261B. Stochastic Processes in Dynamical Sysyms. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 171A, 174. Probability space, random variables, stochastic processes, Brownian motion, Markov processes, stochastic integrals and differential equations, power spatial density, and Kolmogorov equations. Letter grading. Mr. Speyer

M261C. Control Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 155. Frequency-domain methods, root locus, stability criteria, Lyapunov theory, state-space methods, state feedback and observers. Letter grading. Mr. Gibson (F)

M261D. Aeroelastic Effects in Structures. (4) Lecture, four hours; outside study, eight hours. Requisite: course M270A or Electrical Engineering M240A. Existence and uniqueness of solutions to linear quadratic (LQ) optimal control problems for continuous-time and discrete-time systems, finite-time and infinite-time problems; Hamiltonian systems and optimal control; algebraic and differential Riccati equations; implications of controllability, observability, and detectability solutions. Letter grading. Mr. Gibson (W)

M270A. Linear Dynamic Systems. (4) (Same as Chemical Engineering M280A and Electrical Engineering M240A.) Lecture, four hours; outside study, eight hours. Requisite: course 171A or Electrical Engineering 141. State-space description of linear time-invariant (LTI) and time-varying (LTV) systems in continuous and discrete time. Linear algebra concepts such as eigenvalues and eigenvectors, singular values, Cayley-Hamilton theorem, Jordan form; solution of state equations; stability, controllability, observability, realizability, and minimality. Stabilization design via state feedback and observers; separation principle. Connections with transfer function techniques. Letter grading. Mr. Gibson (F)

M270B. Linear Optimal Control. (4) Lecture, four hours; outside study, eight hours. Requisite: course M270A or Electrical Engineering M240A. Existence and uniqueness of solutions to linear quadratic (LQ) optimal control problems for continuous-time and discrete-time systems, finite-time and infinite-time problems; Hamiltonian systems and optimal control; algebraic and differential Riccati equations; implications of controllability, observability, and detectability solutions. Letter grading. Mr. Gibson (W)

M270C. Optimal Control. (4) (Same as Chemical Engineering M280C and Electrical Engineering M240C.) Lecture, four hours; outside study, eight hours. Requisite: course 270B. Applications of variational methods, Pontryagin maximum principle, Hamiltonian/Jacobi/Bellman equation (dynamic programming) to optimal control of dynamic systems modeled by nonlinear ordinary differential equations. Letter grading. Mr. Speyer

M271A. Stochastic Processes in Dynamical Sysyms. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 171A, 174. Probability space, random variables, stochastic processes, Brownian motion, Markov processes, stochastic integrals and differential equations, power spatial density, and Kolmogorov equations. Letter grading. Mr. Speyer

M271B. Stochastic Estimation. (4) Lecture, four hours; outside study, eight hours. Requisite: course 271A. Linear and nonlinear estimation theory, orthogonal projection lemma, Bayesian filtering theory, conditional mean and risk estimators. Letter grading. Mr. Speyer


M271D. Seminar: Special Topics in Dynamic Sysyms Control. (4) Seminar, four hours; outside study, eight hours. Seminar on current research topics in dynamic systems modeling, control, and applications. Topics selected from process control, differential games, nonlinear estimation, adaptive filtering, industrial and aerospace applications, etc. Letter grading. Mr. Speyer

M272A. Nonlinear Dynamic Systems. (4) (Same as Chemical Engineering M282A and Electrical Engineering M242A.) Lecture, four hours; outside study, eight hours. Requisite: course M270A or Chemical Engineering M280A or Electrical Engineering M240A. State-space techniques for studying solutions of time-invariant and time-varying nonlinear dynamic systems with emphasis on stability. Lyapunov theory (including converse theorems), invariance, center manifold theorem, input-to-state stability and small-gain theorem. Letter grading. Mr. Speyer
273A. Robust Control System Analysis and Design. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 171A, M270A. Graduate-level introduction to analysis and design of multivariable control systems. Multivariable loop-shaping, performance requirements, model uncertainty representations, and robustness covered in detail from frequency domain perspective. Structured singular value and its application to controller synthesis. Letter grading. Mr. M’Closkey

275A. System Identification. (4) Lecture, four hours; outside study, eight hours. Methods for identification of dynamical systems from input/output data, with emphasis on identification of discrete-time (digital) models of sampled-data systems. Coverage of concepts, principles, and estimation methods. Examples include transfer functions and state-space models. Discussion of applications in mechanical and aerospace engineering, including identification of flexible structures, microelectromechanical systems (MEMS) devices, and acoustic ducts. Letter grading. Mr. Gibson

M276. Dynamic Programming. (4) (Same as Electrical Engineering M237.) Lecture, four hours; outside study, eight hours. Recommended requisite: Electrical Engineering 232A or 236A or 236B. Introduction to mathematical analysis of sequential decision processes. Finite horizon model in both deterministic and stochastic (state-space) frameworks. Model-free and model-based methods of solution. Examples from inventory theory, finance, optimal control and estimation, Markov decision processes, combinatorial optimization, dynamic resource allocation, and optimal pathfinding. Letter grading. Mr. Yang (W)

277. Advanced Digital Control for Mechatronic Systems. (4) Lecture, four hours; laboratory, two hours; outside study, six hours. Requisites: courses 171B, M270A. Digital signal processing and control analysis of mechatronic systems. System inversion-based digital control algorithms and robustness properties. Youla parameterization of stabilizing controllers, passivity, high-gain, state feedback, and repetitive and learning control, and adaptive control. Real-time control investigation of topics to selected mechatronic systems. Letter grading. Mr. Tsao (W)

CM280A. Introduction to Micromachining and Microelectromechanical Systems (MEMS). (4) (Formerly numbered M280.) (Same as Biomedical Engineering CM250A and Electrical Engineering CM250A.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Chemistry 20A, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Corequisite: course CM280L. Introduction to micromachining technologies and microelectromechanical systems (MEMS) laboratory. Methods of micromachining and how these methods can be used to produce variety of MEMS, including microstructures, microsensors, and micro-actuators. Students design microfabrication processes capable of achieving desired MEMS device. Concurrently scheduled with course CM180L. Letter grading. Mr. C.-J. Kim (F)

281. Microsensors. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 131A, 150A. Basic science issues in micro domain. Topics include micro fluid micro, fluidic micro, microfluidic, fluid flow, fluidic behavior of microstructures, as well as dynamics and control of micro devices. Letter grading. Mr. Ho, Mr. C.-J. Kim (W)

M282. Microelectromechanical Systems (MEMS) Device Physics and Design. (4) (Same as Biomedical Engineering M252 and Electrical Engineering M252.) Lecture, four hours; outside study, eight hours. Introduction to MEMS design. Design methods of device physics, material science, mechanical systems for engineering applications. Letter grading. Mr. Chiou (Sp)

283. Experimental Mechanics for Microelectromechanical Systems (MEMS). (4) Lecture, four hours; outside study, eight hours. Methods, techniques, and philosophies being used to characterize microelectromechanical systems for engineering applications. Material characterization, mechanical/material properties, mechanical characterization. Topics include fundamentals of crystallography, anisotropic material properties, and mechanical behavior (e.g., strength/fatigue) as they relate to microscale. Considerable emphasis on assessing experimental approaches to assess design-relevant mechanical properties. Letter grading. Mr. Carman (Sp, alternate years)

284. Sensors, Actuators, and Signal Processing. (4) Lecture, four hours; outside study, eight hours. Principles and performance of micro transducers. Applications of using unique properties of micro transducers for distributed and real-time control of engineering problems. Associated signal processing requirements for these applications. Letter grading. Mr. Ho (Sp)

285. Interfacial Phenomena. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 103, 105A, 105D, 182A. Introduction to fundamental physical phenomena occurring at interfaces and application of their knowledge to engineering problems. Fundamental concepts of interfacial phenomena, including surface tension, surfactants, interfacial thermodynamics, interfacial forces, interfacial hydrodynamics, and dynamics of triple line. Presentation of various applications, including wetting, change of phase (boiling and condensation), forms and emulsions, microelectromechanical systems, and biological systems. Letter grading. Mr. Carman (Sp, alternate years)

286. Molecular Dynamics Simulation. (4) Lecture, four hours; outside study, eight hours. Preparation: computer programming experience. Requisites: courses 182A, 182C. Introduction to basic concepts and methodology of micro scale molecular simula- tion. Advantages and disadvantages of this approach for various situations. Emphasis on systems of engineering interest, especially microscale fluid mechanics, heat transfer, and solid mechanics. Letter grading. Mr. Kavehpour


M287. Nanoscience and Technology. (4) (Same as Electrical Engineering M257,) Lecture, four hours; outside study, eight hours. Introduction to fundamentals of nanoscale science and technology. Basic physical principles, quantum mechanics, chemical bonding and nanostructures, top-down and bottom-up (self-assembly) nanotechnology, nanomaterials, nanoelectronics, and nanobioelectronics. Introduction to new knowledge and techniques in nanoscale science and technology. Letter grading. Mr. Y. Chen (W)

C287L. Nanoscale Fabrication, Characterization, and Biodetection Laboratory. (4) Lecture, two hours; laboratory, two hours; outside study, eight hours. Multidisciplinary course that introduces laboratories to techniques of nanoscale fabrication, characterization, and biodetection. Basic physical, chemical, and biological principles. Equipment and techniques techniques, top-down and bottom-up (self-assembly) nanofabrication, nanocharacterization (AFM, SEM, etc.), and optical and electrochemical biosensors. Students are encouraged to create their own ideas in self-designed experiments. Concurrently scheduled with course C187L. Letter grading. Mr. Y. Chen (Sp)

288. Laser Microfabrication. (4) Lecture, four hours; outside study, eight hours. Requisites: Materials Science 104, Physics 17. Science and engineer- ing of laser microscopic fabrication of advanced materials, including semiconductors, metals, and insulators. Topics include fundamentals of advanced materials, transport issues (thermo, mass, chemical, carrier, etc.) in laser microfabrication, state-of-art optics and instrumentation for laser microfabrication, applications of rapid prototyping, surface modifications (physical/chemical), micro-machines for three-dimensional MEMS (microelectromechanical systems) and data storage, up-to-date research activities. Student term projects. Letter grading.


294. Computational Geometry for Design and Manufacturing. (4) Lecture, four hours; outside study, eight hours. Requisites: course 294A. Computational geometry for design and manufacturing, with special emphasis on curve and surface theory, geometry modeling of curves and surfaces, B-splines and NURBS, composites, geometric modeling and surface extraction, computer methods for surface design and manufacture, and current research topics in computational geometry for CAD/CAM systems. Letter grading. Mr. Yang (W)

Mechanical and Aerospace Engineering / 107

295B. Internet-Based Collaborative Design. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 94, 184. Exploration of advanced state-of-the-art concepts in Internet-based collaborative design, including software environments to connect designers over Internet, networked variable media graphics environments such as high-end virtual reality systems, mid-range graphics, and low-end mobile device-based systems, and multifunctional design collaboration and software tools to support it. Letter grading.

295C. Radio Frequency Identification Systems: Analysis, Design, and Applications. (4) Lecture, four hours; outside study, eight hours. Designed for graduate engineering students. Examination of emerging discipline of radio frequency identification (RFID), including basics of RFID, how RFID systems function, design and analysis of RFID systems, and applications to fields such as supply chain, manufacturing, retail, and homeland security. Letter grading. Mr. Yang

296A. Damage and Failure of Materials in Mechanical Design. (4) Lecture, four hours; outside study, eight hours. Requisites: course 156A, Materials Science 143A. Role of failure prevention in mechanical design and case studies. Mechanics and physics of material imperfections: voids, dislocations, cracks, and inclusions. Statistical and deterministic design methods. Plastic, fatigue, and creep damage. Letter grading. Mr. Ghoniem (Sp, alternate years)

296B. Thermochemical Processing of Materials. (4) Lecture, four hours; outside study, eight hours. Requisites: course 166C, Materials Science 151. Matrix materials, fibers, fiber preforms, elements of processing, autoclave/ compression molding, filament winding, pultrusion, resin transfer molding, automation, material removal and assembly, metal and ceramic matrix composites, quality assurance. Letter grading. Mr. Ghoniem, Ms. Lavine (Sp, alternate years)

297. Composites Manufacturing. (4) Lecture, four hours; outside study, eight hours. Requisites: course 166C, Materials Science 151. Matrix materials, fibers, fiber preforms, elements of processing, autoclave/ compression molding, filament winding, pultrusion, resin transfer molding, automation, material removal and assembly, metal and ceramic matrix composites, quality assurance. Letter grading. Mr. Hahn (Sp)

298. Seminar: Engineering. (2 to 4) Seminar, to be arranged. Limited to graduate mechanical and aerospace engineering students. Seminars may be organized in advanced technical fields. If appropriate, field trips may be arranged. May be repeated with topic change. Letter grading.

M299A. Seminar: Systems, Dynamics, and Control Topics. (2) Same as Chemical Engineering M297 and Electrical Engineering M248S. Seminar, two hours; outside study, six hours. Limited to graduate engineering students. Presentations of research topics by leading academic researchers from fields of systems, dynamics, and control. Students who work in these fields present their papers and results. S/U grading.

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: apprentice personnel employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision. 184. Exemption of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading.

M.S. in Engineering Online Program

The program consists of nine courses that make up a program of study. At least five
courses must be at the 200 level, and one must be a directed study course. The latter course satisfies the University of California requirement for a capstone event (in the on-campus program the requirement is covered by a comprehensive examination or a thesis); the directed study course consists of an engineering design project that is better suited for the working engineer/computer scientist.

The program is structured in a manner that allows employed engineers/computer scientists to complete the requirements at a part-time pace (e.g., one 100/200-level course per term). Courses are scheduled so that the program can be completed within two academic years plus one additional term.

Advanced Structural Materials
Jenn-Ming Yang, Ph.D. (Materials Science and Engineering), Director; jyang@seas.ucla.edu

The program provides students with a broad knowledge of advanced structural materials. Courses cover fundamental concepts of science and engineering of lightweight advanced metallic and composite materials, fracture mechanics, damage tolerance and durability, failure analysis and prevention, nondestructive evaluation, structural integrity and life prediction, and design of aerospace structures. Students are required to complete a project on a topic related to structural materials.

Aerospace Engineering
Xiaolin Zhong, Ph.D. (Mechanical and Aerospace Engineering), Director; xiaolin@seas.ucla.edu

The main objective of the program is to provide students with broad knowledge of the major technical areas of aerospace engineering to fulfill the current and future needs of the aerospace industry. Major technical areas include aerodynamics and computational fluid dynamics (CFD), systems and control, and structures and dynamics. Courses cover fundamental concepts of science and engineering of aerodynamics, compressible flow, computational aerodynamics, digital control of physical systems, linear dynamic systems, linear optimal control, design of aerospace structures, and dynamics of structures. Through a graduate course, students also gain skills in the development and application of CFD codes for solving practical aerospace problems. If students have taken Mechanical and Aerospace Engineering 150B, 154B, and 171B or the equivalent at their undergraduate institutions, they can take other online-offered courses, approved by the area director, as substitute courses. In addition, students are required to complete a project on a topic related to the three major areas of this program.

Computer Networking
Mario Gerla, Ph.D. (Computer Science), Director; gerla@cs.ucla.edu

Three undergraduate elective courses complement the basic background of the undergraduate electrical engineering or computer science degree with concepts in security, sensors, and wireless communications. The graduate courses expose students to key applications and research areas in the network and distributed systems field. Two required graduate courses cover the Internet and emerging sensor embedded systems. The electives probe different applications domains, including wireless mobile networks, security, network management, distributed P2P systems, and multimedia applications.

Electronic Materials
Ya-Hong Xie, Ph.D. (Materials Science and Engineering), Director; yhx@ucla.edu

The electronic materials program provides students with a knowledge set that is highly relevant to the semiconductor industry. The program has four essential attributes: theoretical background, applied knowledge, exposure to theoretical approaches, and introduction to the emerging field of microelectronics, namely organic electronics. All faculty members have industrial experience and are currently conducting active research in these subject areas.

Integrated Circuits
Dejan Markovic, Ph.D. (Electrical Engineering), Director; dejan@ee.ucla.edu

The integrated circuits program includes analog integrated circuit (IC) design, design and modeling of VLSI circuits and systems, RF circuit and system design, signal and synchronization, VLSI signal processing, and communication system design. Summer courses are not yet offered in this program; therefore it cannot currently be completed in two calendar years.

Manufacturing and Design
Daniel C.H. Yang, Ph.D. (Mechanical and Aerospace Engineering), Director; dyang@seas.ucla.edu

The manufacturing and design program covers a broad spectrum of fundamental and advanced topics, including mechanical systems, digital control systems, microdevices and nanodevices, wireless systems, failure of materials, composites, and computational geometry. The program prepares students with the higher education background that is necessary for today’s rapidly changing technology needs.

Mechanics of Structures
Ajit K. Mal, Ph.D. (Mechanical and Aerospace Engineering), Director; ajit@seas.ucla.edu

The mechanics of structures program provides students with the knowledge required for the analysis and synthesis of modern engineered structures. The fundamental concepts of linear and nonlinear elasticity, plasticity, fracture mechanics, finite element analysis, and mechanics of composites and structural vibrations are developed in a series of undergraduate and graduate courses. These concepts are then applied in solving industry-relevant problems in a number of graduate-level courses. Students develop hands-on experience in using finite element packages for solving realistic structural analysis problems.

Signal Processing and Communications
Kung Yao, Ph.D. (Electrical Engineering), Director; yao@ee.ucla.edu

The program provides training in a set of related topics in signal processing and communications. Students receive advanced training in multimedia systems from the fundamentals of media representation and compression through transmission of signals over communications links and networks.

System Engineering
Peter S. Pao, Ph.D. (Computer Science), Director; peterspao@ucla.edu

System engineering has broad applications that include software, hardware, materials, and electrical and mechanical systems. A set of four core courses is offered that form the foundation of the system engineering program. The sequence of courses is designed for working professionals who are faced with design, development, support, and maintenance of complex systems. For students who already hold an M.S. degree, a separate certificate of completion of the system engineering program can be earned by completing three of the core courses. See http://msengrol.seas.ucla.edu/programs/areas.html for further information.
Schoolwide Programs, Courses, and Faculty

UCLA
6426 Boelter Hall
Box 951801
Los Angeles, CA 90095-1601
(310) 825-2826
http://www.engineer.ucla.edu

Professors Emeriti
Edward P. Coleman, Ph.D.
Allen B. Rosenstein, Ph.D.
Bonham Spence-Campbell, E.E.

Faculty Areas of Thesis Guidance

Professors Emeriti
Edward P. Coleman, Ph.D. (Columbia U., 1951)
Design of experimentation; operations management, environment; process of product reliability and quality

Allen B. Rosenstein, Ph.D. (UCLA, 1958)
Educational delivery systems, computer-aided design, design, automatic controls, magnetic controls, nonlinear electronics

Bonham Spence-Campbell, E.E. (Cornell, 1939)
Development of interdisciplinary engineering/social science teams and their use in planning and management of projects and systems

Lower Division Courses

19. Flat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

87. Introduction to Engineering Disciplines. (4) Lecture, four hours; discussion, four hours; outside study, four hours. Introduction to engineering as a professional opportunity for freshman students by exploring differences between engineering disciplines and functions engineers perform. Development of skills and techniques for academic excellence through team process. Investigation of national need underlying current effort to increase participation of underrepresented groups in U.S. technological workforce. Letter grading. Mr. Wesel (F)

98. What Students Need to Know about Careers in Engineering. (2) Seminar, two hours. Introduction to skills and aptitudes that most engineers require in their careers and description of big picture of engineering careers. Integrating framework provided to relate specific of engineering courses to real world of engineer and roadmap of extracurricular activity that strengthens skills needed to acquire good jobs and achieve career success. P/NP grading. (FW,Sp)

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower-division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated, P/NP grading.

Upper Division Courses

M101. Principles of Nanoscience and Nanotechnology (4) (Same as Materials Science M101.) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: Chemistry 20, and Electrical Engineering 1 or Physics 1C. Introduction to underlying science encompassing structures, properties, and fabrication of technologically important nanoscale systems. New phenomena that emerge in very small systems (typically with feature sizes below few hundred nanometers) explained using basic concepts from physics and chemistry. Chemical, optical, and electronic properties, electron transport, structural stability, self-assembly, templated assembly and applications of various nanostructures such as quantum dots, nanoparticles, quantum wires, quantum wells and multilayers, carbon nanotubes. Letter grading. Mr. Ozolins (F)

102. Synthetic Biosystems and Nanosystems Design. (4) Lecture, four hours; outside study, eight hours. Requisites: course M101, Life Sciences 3. Introduction to current progress in engineering to integrate biosciences and nanosciences into synthetic systems, where living systems are re-engineered and rewired to perform desirable functions in both intracellular and cell-free environments. Discussion of basic technologies and systems analysis that deal with dynamic change, form, noise, and uncertainties. Design project in which students are challenged to design novel biosystems and nanosystems for non-trivial task required. Letter grading. Mr. Liao (W)

103. Environmental Nanotechnology: Implications and Applications. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Recommended requisite: course M101. Introduction to potential implications of nanotechnology to environmental systems as well as potential application of nanotechnology to environmental protection. Technical content includes three multidisciplinary areas: (1) physical, chemical, and biological properties of nano-materials, (2) transport, reactivity, and toxicity of nanoscale materials in natural environmental systems, and (3) use of nanotechnology for energy and water production, plus environmental protection, monitoring, and remediation. Letter grading. Mr. Hoek (Sp)

110. Introduction to Technology Management and Economics for Engineers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Fundamental principles of micro-level (individual, firm, and industry) and macro-level (government, international) economics as they relate to technology management. How individuals, firms, and government impact successful commercialization of high technology products and services. Letter grading. Mr. Monbouquette (F,Sp)

111. Introduction to Finance and Marketing for Engineers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Critical components of finance and marketing research and practice as they impact management of technology commercialization. Internal (within firm) and external (in marketplace) marketing and financing of high-technology innovation. Concepts include present value, future value, discounted cash flow rate of return, return on assets, return on equity, return on investment, interest rates, cost of capital, and product, price, positioning, and promotion. Use of market research, segmentation, and forecasting in management of technological innovation. Letter grading. Mr. Monbouquette (FW)

112. Laboratory to Market, Entrepreneurship for Engineers. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Critical components of entrepreneurship, finance, marketing, human resources, and accounting disciplines as they impact management of technology commercialization. Topics include intellectual property management, team building, market forecasting, and entrepreneurial finance. Students work in small teams studying technology management plans to bring new technologies to market. Students select from set of available technology concepts, many generated at UCLA, that are in need of plans for movement from laboratory to market. Letter grading.

113. Product Strategy. (4) Lecture, four hours; outside study, eight hours. Designed for juniors/seniors. Introduction to current management concept of product development. Topics include product strategy, product platform, and product lines; competitive strategy, vectors of differentiation, product pricing, first-to-market versus fast-follower; growth strategy, growth through acquisition, and new ventures; product portfolio management. Case studies, class projects, group discussions, and guest lectures by speakers from industry. Letter grading. Mr. Pao (Sp)

180. Engineering of Complex Systems. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Designed for juniors/seniors. Holistic view of engineering discipline, covering lifecycle of engineering, processes, and techniques used in industry today. Multidisciplinary systems engineering perspective in which aspects of electrical, mechanical, material, and software engineering are incorporated. Three specific case studies in communications, sensing, and processing systems included to help students understand these concepts. Special attention paid to link material covered to engineering curriculum offered by UCLA to help students integrate and enhance their understanding of knowledge already acquired. Motivates engineers to continue their learning and reinforce lifelong learning habits. Letter grading. Mr. Wesel (W)

183. Engineering and Society. (4) (Formerly numbered 183) Lecture, four hours; discussion, three hours; outside study, five hours. Limited to sophomore/junior/senior engineering students. Professional and ethical considerations in practice of engineering. Impact of technology on society and development of moral and ethical values. Contemporary environmental, biological, legal, and other issues created by new technologies. Emphasis on research and writing within engineering. Enrollment is limited to 30 students; writing and revision of about 20 pages total, including two individual technical essays and one team-written research report. Readings address technical issues and writing form. Satisfies engineering writing requirement. Letter grading. Mr. Wesel (FW,Sp)

185. Art of Engineering Endeavors. (4) (Formerly numbered 185) Lecture, four hours; discussion, three hours; outside study, five hours. Designed for juniors/senior engineering students. Non-technical skills and experiences necessary for engineering career success. Importance of group dynamics in engineering practice. Teamwork and effective group skills in engineering environments. Concepts in control of multidisciplinary complex engineering projects. Forms of leadership and qualities and characteristics of effective leaders. How engineering, computer sciences, and technology relate to major ethical and social issues. Societal demands on practice of engineering. Emphasis on research and writing in engineering environments. Satisfies engineering writing requirements. Letter grading. Mr. Monbouquette (F,Sp)

188. Special Courses in Engineering. (4) Seminar, four hours; outside study, eight hours. Special topics in engineering for undergraduate students that are taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated for credit with topic or instructor change. Letter grading.
Graduate Courses

200. Program Management Principles for Engineers and Professionals. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Practical review of necessary processes and procedures to successfully manage technology programs. Review of fundamentals of program planning, organizational structure, implementation, and performance tracking methods to provide program managers with necessary information to support decision-making process that provides high-quality products on time and within budget. Letter grading. Mr. Wesel (F,W,Sp).

201. Systems Engineering. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Practical review of major elements of system engineering process. Coverage of key elements: system requirements and flow down, product development cycle, functional analysis, system synthesis and trade studies, budget allocations, risk management metrics, review and audit activities and documentation. Letter grading. (W).

202. Reliability, Maintainability, and Supportability. (4) Lecture, four hours; outside study, eight hours. Requisite: course 201. Designed for graduate students with one to two years work experience. Integrated logistic support (ILS) is major driver of system life-cycle cost and one key element of system engineering activities. Overview of engineering disciplines critical to this function — reliability, maintainability, and supportability — and their relationships, taught using probability theory. Topics also include fault detections and isolations and parts obsolescence. Discussion of B-sigma process, one effective design and manufacturing methodology, to ensure system reliability, maintainability, and supportability. Letter grading. Mr. Lynch, Mr. Wesel.

203. System Architecture. (4) Lecture, four hours; outside study, eight hours. Requisite: course 201. Designed for graduate students with B.S. degrees in engineering or science and one to two years work experience in selected domain. Art and science of architecting. Introduction to architecting methodology — paradigm and tools. Principles of architecting through analysis of architecture designs of major existing systems. Discussion of selected elements of architectural practices, such as representation models, design progression, and architecture frameworks. Examination of professionalization of system architecting. Letter grading. Mr. Lynch, Mr. Wesel.

215. Entrepreneurship for Engineers (Formerly numbered 210.) Lecture, four hours. Limited to graduate engineering students. Topics in starting and developing high-tech enterprises and intended for students who wish to complement their technical education with introduction to entrepreneurship. Letter grading. Mr. Abe, Mr. Cong, Mr. Wesel (W).

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: apprentice personnel employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. (F,W,Sp).


471A-471B-471C. Engineer in General Environment. (3-3-1.5) Lecture, three hours (courses 471A, 471B) and 90 minutes (course 471C). Limited to Engineering Executive Program students. Influences of human relations, laws, social sciences, humanities, and fine arts on development and utilization of natural and human resources. Interaction of technology and society past, present, and future. Change agents and resistance to change. S/U or letter grading. In Progress (471B) and S/U or letter (471C) grading.

472A-472B-472D. Engineer in Business Environment. (3-3-3-1.5) Lecture, three hours (courses 472A, 472B, 472C) and 90 minutes (course 472D). Limited to Engineering Executive Program students. Language of business for engineering executive. Accounting, finance, business economics, business law, and marketing. Laboratory in organization and management problem solving. Analysis of actual business problems of firm, community, and nation, provided through cooperation and participation with California business corporations and government agencies. In Progress (472C) and S/U or letter grading (credit to be given on completion of courses 472B and 472D).

473A-473B. Analysis and Synthesis of Large-Scale System. (3-3-1.5) Lecture, two and one-half hours. Limited to Engineering Executive Program students. Problem area of modern industry or government is selected as class project, and its solution is synthesized using quantitative tools and methods. Project also serves as laboratory in organization for goal-oriented technical group. In Progress (473A) and S/U (473B) grading.

495A. Teaching Assistant Training Seminar. (4) [For fully numbered 495A.] Seminar, four hours; outside study, eight hours. Preparation: appointment as teaching assistant. Limited to graduate engineering students. Seminar on communication of engineering principles, concepts, and methods, preparation, organization of material, presentation, use of visual aids, grading, advising, and rapport with students. S/U grading. (F).

495B. Supervised Teaching Preparation. (2) (Same as English Composition M495B.) Seminar, two hours. Required of all teaching assistants for Engineering writing courses not exempt by appropriate departmental or program training. Training and mentoring, with focus on composition pedagogy, assessment of student writing, guideline of student writing, guidance of revision process, and specialized writing problems that may occur in engineering writing contexts. Practical concerns of preparing students to write course assignments, marking and grading essays, and conducting peer reviews and conferences. S/U grading. (F,W,Sp).

501. Cooperative Program. (2 to 8) Tutorial, to be arranged. Preparation: consent of UCLA graduate adviser and graduate dean, and host campus instructor, department chair, and graduate dean. Used to record enrollment of UCLA students in courses taken under cooperative arrangements with USC. S/U grading.
A cell consists of millions of intracellular molecules, which serve as building blocks for its structure and functions. Interactions among these building blocks display the property of self-organization, which serves as the foundation of signaling networks and regulatory pathways. Through these interconnected networks, a cell—the basic unit of life—senses, responds, and adapts to its environment. These three characteristics are commonly observed in all complex systems. The goal of the Center for Cell Control (CCC) at UCLA is to apply an unprecedented approach toward efficiently searching for a potent drug cocktail for guiding biological systems to a directed phenotype. Nanoscale modalities and molecular sensors are used to understand the signal pathway responses under the influence of the drugs. This introduces engineering systems that can be applied toward regulation of a spectrum of cellular functions, such as cancer eradication, viral infection onset control, and stem cell differentiation.

This highly interdisciplinary approach demands strong synergistic collaboration between engineers, biologists, and clinical doctors at UCLA and UC Berkeley. Projects important to the goals of the NIH nanomedicine program are development of a smart petri dish platform with advanced nanoscale modalities, capable of studying signal pathways at the network interaction level; and demonstration of the unique capability to determine optimal multiple drug combinations and apply the resulting drug cocktail as potential therapeutics in pathogenic diseases and cancer.

Three biological systems—stem cell, cancer, and viral infection—have been proposed. Because stem cells have interesting features closely mirroring circuit reprogramming, they are used as the first system for monitoring and interrogating reactions in the network of pathways. Viral infection and cancer cells will be used in drug combinatory studies. As the program becomes more mature, networks of all three systems will be interrogated by nano tools under the potent drug cocktails.

Energy Frontier Research Center
U.S. Department of Energy, Energy Frontier Research Center
Vidvuds Ozolins, Ph.D. (Materials Science and Engineering), Director

The Energy Frontier Research Center (EFRC) will focus on the creation and production of nanoscale materials for use in converting solar energy into electricity, electrical energy storage, and capturing and separating greenhouse gases.

The center was established in 2009 and the U.S. Department of Energy plans to fund it at $11.5 million over five years. The new center brings together several faculty across the UCLA campus who have already done significant work in energy production, energy storage, and carbon capture. These faculty will explore game-changing solutions and carry these breakthroughs into real life.

The center—a goal of which is to increase societal awareness of sustainable energy issues through an integrated program of research, education, and outreach—will collaborate with scientists and faculty at the DOE’s National Renewable Energy Laboratory, Eastern Washington University, the University of Kansas, and the University of California, Davis.

As global energy demands continue, the center’s work will be essential in helping to make alternative and renewable energy a viable resource for the 21st century.

Center on Functional Engineered Nano Architectonics
Microelectronic Advanced Research Corporation Focus Center
Kang L. Wang, Ph.D. (Electrical Engineering), Director; Bruce S. Dunn, Ph.D. (Materials Science and Engineering), Co-Director; http://www.fena.org
Dramatic advances in nanotechnology, molecular electronics, and quantum computing are creating the potential for significant expansion of current semiconductor technologies. Researchers at UCLA make pioneering contributions to these fields through the Functional Engineered Nano Architectonics Focus Center (FENA) funded by the Semiconductor Research Association and the Department of Defense.

The term “architectonics” is derived from a Greek word meaning master builder—an apt description of the center’s researchers as they build a new generation of nano-scale materials, structures, and devices for the electronics industry.

The FENA team explores the challenges facing the semiconductor industry as the electronic devices and circuits that power today’s computers grow ever smaller. With more and more transistors and other components squeezed onto a single chip, manufacturers are rapidly approaching the physical limits posed by current chip-making processes. Researchers seek to resolve a number of issues related to post-CMOS technologies that allow them to extend semiconductor technology further into the realm of the nanoscale.

**Western Institute of Nanoelectronics**

*A Nanoelectronics Research Initiative National Institute of Excellence*

Kang L. Wang, Ph.D. (Electrical Engineering), Director; [http://win-nano.org](http://win-nano.org)

The Western Institute of Nanoelectronics (WIN), one of the world’s largest joint research programs focusing on spintronics, brings together nearly 30 eminent researchers to explore critically-needed innovations in semiconductor technology.

A National Institute of Excellence, WIN leverages what are considered the best interdisciplinary nanoelectronics talents in the world to explore and develop advanced research devices, circuits, and nanosystems with performance beyond conventional CMOS devices. The pioneering new technology of spintronics relies on the spin of an electron to carry information, and holds promise in minimizing power consumption for next-generation electronics.

As rapid progress in the miniaturization of semiconductor electronic devices leads toward chip features smaller than 100 nanometers in size, researchers have had to begin exploring new ways to make electronics more efficient. Today’s devices, based on CMOS standards, cannot get much smaller and still function effectively.

Information-processing technology has so far relied on charge-based devices, ranging from vacuum tubes to million-transistor microchips. Conventional electronic devices simply move these electric charges around, ignoring the spin on each electron. Spintronics aims to put that extra spin action to work—effectively corralling electrons into one smooth chain of motion.
## B.S. in Aerospace Engineering Curriculum

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1st Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td><strong>2nd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td><strong>3rd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B — Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
<tr>
<td>Physics 4AL — Mechanics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1st Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C — Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
<tr>
<td>Physics 4BL — Electricity and Magnetism Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td></td>
</tr>
<tr>
<td><strong>2nd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 104 — Science of Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 101 — Statics and Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 105A — Introduction to Engineering Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td><strong>3rd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 103 — Elementary Fluid Mechanics</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1st Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering 100 — Electrical and Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 102 — Dynamics of Particles and Rigid Bodies</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 182A — Mathematics of Engineering</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td><strong>2nd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 107 — Introduction to Modeling and Analysis of Dynamic Systems</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 150A — Intermediate Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 157S — Basic Aerospace Engineering Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td><strong>3rd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 150B — Aerodynamics</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 171A — Introduction to Feedback and Control Systems</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1st Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 150P — Aircraft Propulsion Systems</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 154S — Flight Mechanics, Stability, and Control of Aircraft</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 155 (Intermediate Dynamics) or 161A (Introduction to Astronautics) or 169A (Introduction to Mechanical Vibrations)</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 166A — Analysis of Flight Structures</td>
<td>4</td>
</tr>
<tr>
<td><strong>2nd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 154A — Preliminary Design of Aircraft</td>
<td>4</td>
</tr>
<tr>
<td>Aerospace Engineering Elective†</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td><strong>3rd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 154B — Design of Aerospace Structures</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 157A — Fluid Mechanics and Aerodynamics Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>Aerospace Engineering Elective†</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

**TOTAL** 187

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
†A total of 6 units of aerospace engineering electives (two courses) is required.
# B.S. in Bioengineering Curriculum

## FRESHMAN YEAR

**1st Quarter**
- Bioengineering 10 — Introduction to Bioengineering .................................................. 2
- Chemistry and Biochemistry 20A — Chemical Structure ............................................. 4
- English Composition 3 — English Composition, Rhetoric, and Language .................. 5
- Mathematics 31A — Differential and Integral Calculus ............................................ 4

**2nd Quarter**
- Chemistry and Biochemistry 20B — Chemical Energetics and Change ..................... 4
- Mathematics 31B — Integration and Infinite Series ................................................. 4
- Physics 1A or 1AH — Mechanics .......................................................... 5

**3rd Quarter**
- Chemistry and Biochemistry 20L — General Chemistry Laboratory ....................... 3
- Mathematics 32A — Calculus of Several Variables ................................................. 4
- Physics 1B or 1BH — Oscillations, Waves, Electric and Magnetic Fields ............. 5
- HSSEAS GE Elective* ................................................................. 5

## SOPHOMORE YEAR

**1st Quarter**
- Chemistry and Biochemistry 30A — Chemical Dynamics and Reactivity: Introduction to Organic Chemistry ............................................. 4
- Mathematics 32B — Calculus of Several Variables ................................................. 4
- Physics 1C or 1CH — Electrodynamics, Optics, and Special Relativity ............... 5
- Physics 4AL — Mechanics Laboratory .......................................................... 2

**2nd Quarter**
- Bioengineering 100 — Bioengineering Fundamentals ............................................ 4
- Life Sciences 2 — Cells, Tissues, and Organs ...................................................... 5
- Mathematics 33A — Linear Algebra and Applications ........................................... 4
- Physics 4BL — Electricity and Magnetism Laboratory ........................................... 2

**3rd Quarter**
- Bioengineering 182A — Bioengineering Capstone Design I ................................ 4
- Chemistry and Biochemistry 30AL — General Chemistry Laboratory II .................. 4
- Chemistry and Biochemistry 30B — Organic Chemistry: Reactivity and Synthesis, Part I .................................................. 4
- Mathematics 33B — Differential Equations ......................................................... 4

## JUNIOR YEAR

**1st Quarter**
- Chemistry and Biochemistry 30BL — Organic Chemistry Laboratory I .................. 3
- Chemistry and Biochemistry 153A — Biochemistry: Introduction to Structure, Enzymes, and Metabolism .................................. 4
- Electrical Engineering 100 — Electrical and Electronic Circuits ......................... 4
- Life Sciences 3 — Introduction to Molecular Biology ........................................... 5

**2nd Quarter**
- Bioengineering 120 — Biomedical Transducers ................................................... 4
- Bioengineering 165** — Bioethics and Regulatory Policies in Bioengineering .... 4
- Life Sciences 4 — Genetics ................................................................. 5
- HSSEAS GE Elective* ................................................................. 5

**3rd Quarter**
- Bioengineering 110 — Biotransport and Bioreaction Processes ............................. 4
- Bioengineering 176 — Principles of Biocompatibility .......................................... 4
- Computer Science 31 — Introduction to Computer Science I ................................ 4
- HSSEAS GE Elective* ................................................................. 5

## SENIOR YEAR

**1st Quarter**
- Bioengineering M106 — Topics in Biophysics, Channels, and Membranes .......... 4
- Bioengineering 182B — Bioengineering Capstone Design II .................................. 4
- Major Field Elective† .................................................................................. 4
- Technical Breadth Course* ................................................................. 4

**2nd Quarter**
- Bioengineering 180 — System Integration in Biology, Engineering, and Medicine I .................................................. 4
- Bioengineering 182C — Bioengineering Capstone Design III ................................ 4
- Major Field Elective† .................................................................................. 4
- Technical Breadth Course* ................................................................. 4

**3rd Quarter**
- HSSEAS GE Elective* ................................................................. 5
- Major Field Elective† .................................................................................. 4
- Technical Breadth Course* ................................................................. 4

**TOTAL** 185

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).

**Satisfies the HSSEAS ethics requirement.

†Electives include: Bioengineering M104, M105, M131, 180L, 181, 181L, 199 (8 units maximum), Biomedical Engineering C101, C102, C103, CM140, CM145, CM150, CM150L, C170, C171, CM180, C181, CM183, C185, CM186B, CM186C, C187.
B.S. in Chemical Engineering Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>1st Quarter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 10 — Introduction to Chemical and Biomolecular Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B — Chemical Energetics and Change</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20L — General Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30A — Chemical Dynamics and Reactivity: Introduction to Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C/4BL — Electrodynamics, Optics, and Special Relativity/Electricity and Magnetism Laboratory</td>
<td>7</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>1st Quarter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 100 — Fundamentals of Chemical and Biomolecular Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30AL — General Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C/4BL — Electrodynamics, Optics, and Special Relativity/Electricity and Magnetism Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>Chemical Engineering 102A — Thermodynamics I</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30B — Organic Chemistry: Reactivity and Synthesis, Part I</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd Quarter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 102B — Thermodynamics II</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>1st Quarter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 101A — Transport Phenomena I</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 109 — Numerical and Mathematical Methods in Chemical and Biological Engineering</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2nd Quarter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 101B — Transport Phenomena II: Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 113A — Physical Chemistry: Introduction to Quantum Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd Quarter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 101C — Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 103 — Separation Processes</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 104AL — Chemical and Biomolecular Engineering Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 153A — Biochemistry: Introduction to Structure, Enzymes, and Metabolism</td>
<td>4</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>1st Quarter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 104B — Chemical and Biomolecular Engineering Laboratory II</td>
<td>6</td>
</tr>
<tr>
<td>Chemical Engineering 106 — Chemical Reaction Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2nd Quarter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 107 — Process Dynamics and Control</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 108A — Process Economics and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd Quarter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering 108B — Chemical Process Computer-Aided Design and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL 185

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
# B.S. in Chemical Engineering

## Biomedical Engineering Option Curriculum

### Freshman Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemical Engineering 10 — Introduction to Chemical and Biomolecular Engineering</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemistry and Biochemistry 20B — Chemical Energetics and Change</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 31 — Introduction to Computer Science I.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Chemistry and Biochemistry 20L — General Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30A — Chemical Dynamics and Reactivity</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B/4AL — Oscillations, Waves, Electric and Magnetic Fields</td>
<td>7</td>
</tr>
</tbody>
</table>

### Sophomore Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemical Engineering 100 — Fundamentals of Chemical and Biomolecular Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30AL — General Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1C — Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemical Engineering 102A — Thermodynamics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30B — Organic Chemistry: Reactivity and Synthesis, Part I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Chemical Engineering 102B — Thermodynamics II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

### Junior Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemical Engineering 101A — Transport Phenomena I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 109 — Numerical and Mathematical Methods in Chemical and Biological Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Life Sciences 2 — Cells, Tissues, and Organs</td>
<td>5</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemical Engineering 101B — Transport Phenomena II: Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 113A — Physical Chemistry: Introduction to Quantum Mechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Life Sciences 3 — Introduction to Molecular Biology</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Chemical Engineering 101C — Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 103 — Separation Processes</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 104AL — Chemical and Biomolecular Engineering Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 153A — Biochemistry: Introduction to Structure, Enzymes, and Metabolism</td>
<td>4</td>
</tr>
</tbody>
</table>

### Senior Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemical Engineering 104B — Chemical and Biomolecular Engineering Laboratory II</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 106 — Chemical Reaction Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemical Engineering 107 — Process Dynamics and Control</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 108A — Process Economics and Analysis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Chemical Engineering 108B — Chemical Process Computer-Aided Design and Analysis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Electives (2)*</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

**Total: 189**

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).*
# B.S. in Chemical Engineering
## Biomolecular Engineering Option Curriculum

## Freshman Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemical Engineering 10 — Introduction to Chemical and Biomolecular Engineering</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemistry and Biochemistry 20B — Chemical Energetics and Change</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
</tbody>
</table>

## Sophomore Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemistry Engineering 100 — Fundamentals of Chemical and Biomolecular Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30AL — General Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemistry Engineering 102A — Thermodynamics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30B — Organic Chemistry: Reactivity and Synthesis, Part I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Chemistry Engineering 102B — Thermodynamics II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

## Junior Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemical Engineering 101A — Transport Phenomena I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 109 — Numerical and Mathematical Methods in Chemical and Biological Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Life Sciences 2 — Cells, Tissues, and Organs</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemical Engineering 101B — Transport Phenomena II; Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 113A — Physical Chemistry: Introduction to Quantum Mechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Life Sciences 3 — Introduction to Molecular Biology</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Chemical Engineering 101C — Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 104AL — Chemical and Biomolecular Engineering Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 125 — Bioseparations and Bioprocess Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 153A — Biochemistry: Introduction to Structure, Enzymes, and Metabolism</td>
<td>4</td>
</tr>
</tbody>
</table>

## Senior Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemical Engineering 104D/104DL — Molecular Biotechnology Lecture/Laboratory: From Gene to Product</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering C115 — Biochemical Reaction Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering CM145 — Molecular Biotechnology for Engineers</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemical Engineering 107 — Process Dynamics and Control</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 108A — Process Economics and Analysis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Chemical Engineering 108B — Chemical Process Computer-Aided Design and Analysis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Electives (2)*</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

**Total**: 189

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
# B.S. in Chemical Engineering
## Environmental Engineering Option Curriculum

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1st Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 10 — Introduction to Chemical and Biomolecular Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td><strong>2nd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B — Chemical Energetics and Change</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20L — General Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30A — Chemical Dynamics and Reactivity: Introduction to Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B/4AL — Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1st Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 100 — Fundamentals of Chemical and Biomolecular Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30AL — General Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C/4BL — Electrodynamics, Optics, and Special Relativity/Electricity and Magnetism Laboratory</td>
<td>7</td>
</tr>
<tr>
<td><strong>2nd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 102A — Thermodynamics I</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30B — Organic Chemistry: Reactivity and Synthesis, Part I</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td><strong>3rd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 102B — Thermodynamics II</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1st Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Atmospheric and Oceanic Sciences 104 — Fundamentals of Air and Water Pollution</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 101A — Transport Phenomena I</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 109 — Numerical and Mathematical Methods in Chemical and Biological Engineering</td>
<td>4</td>
</tr>
<tr>
<td><strong>2nd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101B — Transport Phenomena II: Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 113A — Physical Chemistry: Introduction to Quantum Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td><strong>3rd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101C — Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 103 — Separation Processes</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 104AL — Chemical and Biomolecular Engineering Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 153A — Biochemistry: Introduction to Structure, Enzymes, and Metabolism</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1st Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 104B — Chemical and Biomolecular Engineering Laboratory II</td>
<td>6</td>
</tr>
<tr>
<td>Chemical Engineering 106 — Chemical Reaction Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td><strong>2nd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 107 — Process Dynamics and Control</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 108A — Process Economics and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td><strong>3rd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 108B — Chemical Process Computer-Aided Design and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

**TOTAL** 189

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
### B.S. in Chemical Engineering
#### Semiconductor Manufacturing Engineering Option Curriculum

#### FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemical Engineering 10 — Introduction to Chemical and Biomolecular Engineering</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemistry and Biochemistry 20B — Chemical Energetics and Change</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Chemistry and Biochemistry 20L — General Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30A — Chemical Dynamics and Reactivity</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Physics 1C/4AL — Electrodynamics, Optics, and Special Relativity/Electricity and Magnetism Laboratory</td>
<td>7</td>
</tr>
</tbody>
</table>

#### SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemical Engineering 100 — Fundamentals of Chemical and Biomolecular Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30AL — General Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Physics 1C/4AL — Electrodynamics, Optics, and Special Relativity/Electricity and Magnetism Laboratory</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd Quarter</td>
<td>Chemical Engineering 102A — Thermodynamics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30B — Organic Chemistry: Reactivity and Synthesis, Part I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Chemical Engineering 102B — Thermodynamics II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematical 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

#### JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemical Engineering 101A — Transport Phenomena I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 109 — Numerical and Mathematical Methods in Chemical and Biological Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemical Engineering 101B — Transport Phenomena II; Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 113A — Physical Chemistry: Introduction to Quantum Mechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Chemical Engineering 101C — Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 103 — Separation Processes</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 104AL — Chemical and Biomolecular Engineering Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mathematics 153A — Biochemistry: Introduction to Structure, Enzymes, and Metabolism</td>
<td>4</td>
</tr>
</tbody>
</table>

#### SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemical Engineering 102C — Chemical Reaction Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering or Materials Science and Engineering Electives (2)</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemical Engineering 107 — Process Dynamics and Control</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 108A — Process Economics and Analysis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Chemical Engineering 104C/104CL — Semiconductor Processing/Laboratory</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 108B — Chemical Process Computer-Aided Design and Analysis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 1116 — Surface and Interface Engineering</td>
<td>4</td>
</tr>
</tbody>
</table>

#### TOTAL

189

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
## B.S. in Civil Engineering Curriculum

### FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemistry and Biochemistry 20A — Chemical Structure.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Civil and Environmental Engineering 1 — Introduction to Civil Engineering</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B — Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Physics 4AL — Mechanics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

### SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Civil and Environmental Engineering 101 — Statics and Dynamics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1C (Electrodynamics, Optics, and Special Relativity) or Electrical Engineering 1 (Electrical Engineering Physics I)</td>
<td>5 or 4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>4 or 5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Civil and Environmental Engineering 15 — Introduction to Computing for Civil Engineers</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Civil and Environmental Engineering 108 — Introduction to Mechanics of Deformable Solids</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Civil and Environmental Engineering 103 — Applied Numerical Computing and Modeling in Civil and Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Materials Science and Engineering 104 — Science of Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 103 — Elementary Fluid Mechanics</td>
<td>4</td>
</tr>
</tbody>
</table>

### JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Civil and Environmental Engineering 120 — Principles of Soil Mechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Civil and Environmental Engineering 135A — Elementary Structural Analysis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Civil and Environmental Engineering 153 — Introduction to Environmental Engineering Science</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 182A — Mathematics of Engineering</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemical Engineering 102A (Thermodynamics I) or Mechanical and Aerospace Engineering 105A (Introduction to Engineering Thermodynamics)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Civil and Environmental Engineering 151 — Introduction to Water Resources Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Major Field Elective†</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Civil and Environmental Engineering 110 — Introduction to Probability and Statistics for Engineers</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Major Field Electives (2)†</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course†</td>
<td>4</td>
</tr>
</tbody>
</table>

### SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Major Field Electives (2)†</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course†</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Major Field Electives (2)†</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course†</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Major Field Electives (2)†</td>
<td>8</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>188, 189, or 190</td>
</tr>
</tbody>
</table>

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
†Must include required courses for two of the major field areas listed on page 46.
## B.S. in Computer Science Curriculum

### FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 1 — Freshman Computer Science Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science 32 — Introduction to Computer Science II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Computer Science 33 — Introduction to Computer Organization</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B — Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Physics 4AL — Mechanics Laboratory</td>
<td>2</td>
</tr>
</tbody>
</table>

### SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Computer Science 35L — Software Construction Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 1 — Electrical Engineering Physics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 4BL — Electricity and Magnetism Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science M51A or Electrical Engineering M16 — Logic Design of Digital Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 61 — Introduction to Discrete Structures</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Computer Science 101 — Upper Division Computer Science Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Computer Science 131 — Programming Languages</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science M152A or Electrical Engineering M116L — Introductory Digital Design Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

### JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Computer Science M151B or Electrical Engineering M116C — Computer Systems Architecture</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 180 — Introduction to Algorithms and Complexity</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science 130 (Software Engineering) or 152B (Digital Design Project Laboratory)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Science and Technology Elective</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Computer Science 111 — Operating Systems Principles</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Statistics 110A — Applied Statistics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

### SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Computer Science 118 — Computer Network Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 181 — Introduction to Formal Languages and Automata Theory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Science and Technology Elective</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Computer Science Electives (2)</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Science and Technology Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

**TOTAL** 186

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).*
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>FRESHMAN YEAR</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Computer Science 1 — Freshman Computer Science Seminar</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science 32 — Introduction to Computer Science II</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td><strong>SOPHOMORE YEAR</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Computer Science 35L — Software Construction Laboratory</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering 1 — Electrical Engineering Physics I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Physics 4BL — Electricity and Magnetism Laboratory</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science M51A or Electrical Engineering M16 — Logic Design of Digital Systems</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Mathematics 61 — Introduction to Discrete Structures</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Computer Science 101 — Upper Division Computer Science Seminar</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Computer Science M152A or Electrical Engineering M116L — Introductory Digital Design Laboratory</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electrical Engineering 2 — Physics for Electrical Engineers</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Statistics 110A — Applied Statistics</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td><strong>JUNIOR YEAR</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Computer Science 131 — Programming Languages</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Computer Science M151B or Electrical Engineering M116C — Computer Systems Architecture</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering 10 — Circuit Analysis I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>HSSEAS Ethics Course</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science 111 — Operating Systems Principles</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science 180 — Introduction to Algorithms and Complexity</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electrical Engineering 102 — Systems and Signals</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electrical Engineering 110 — Circuit Analysis II</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Computer Science 181 — Introduction to Formal Languages and Automata Theory</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electrical Engineering 110L — Circuit Measurements Laboratory</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electrical Engineering 115A — Analog Electronic Circuits I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Technical Breadth Course*</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td><strong>SENIOR YEAR</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Computer Science 118 — Computer Network Fundamentals</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Computer Science 152B — Digital Design Project Laboratory</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering 115C — Digital Electronic Circuits</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science Elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Technical Breadth Course*</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Technical Breadth Course*</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>188</td>
</tr>
</tbody>
</table>

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
# B.S. in Electrical Engineering Curriculum

## FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Computer Science 32 — Introduction to Computer Science II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Electrical Engineering 3 — Introduction to Electrical Engineering</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B — Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Physics 4AL — Mechanics Laboratory</td>
<td>2</td>
</tr>
</tbody>
</table>

## SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Electrical Engineering M16 or Computer Science M51A — Logic Design of Digital Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>2nd</td>
<td>Electrical Engineering 1 — Electrical Engineering Physics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Electrical Engineering 2 — Physics for Electrical Engineers</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 10 — Circuit Analysis I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 102 — Systems and Signals</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 103 — Applied Numerical Computing</td>
<td>4</td>
</tr>
</tbody>
</table>

## JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Electrical Engineering 110 — Circuit Analysis II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 113 — Digital Signal Processing</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 131A — Probability</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>2nd</td>
<td>Electrical Engineering 101 — Engineering Electromagnetics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 110L — Circuit Measurements Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 115A — Analog Electronic Circuits I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 132 — Complex Analysis for Applications</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Electrical Engineering 115AL — Analog Electronics Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 121B — Principles of Semiconductor Device Design</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 132A — Introduction to Communication Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 161 — Electromagnetic Waves</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS Ethics Course</td>
<td>4</td>
</tr>
</tbody>
</table>

## SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Electrical Engineering 141 — Principles of Feedback Control</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pathway Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pathway Laboratory Course†</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course†</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Statistics 105 — Statistics for Engineers</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Pathway Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course†</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Pathway Design Course†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pathway Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course†/HSSEAS GE Elective*</td>
<td>8</td>
</tr>
</tbody>
</table>

**Total: 187**

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).†See page 74 for a list of approved pathways.
# B.S. in Electrical Engineering

## Biomedical Engineering Option Curriculum

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1st Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science 31 — Introduction to Computer Science</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td><strong>2nd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td><strong>3rd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30A — Chemical Dynamics and Reactivity: Introduction to Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30AL — General Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1st Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering M16 or Computer Science M51A — Logic Design of Digital Systems</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B/1AL — Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory</td>
<td>7</td>
</tr>
<tr>
<td><strong>2nd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering 1 — Electrical Engineering Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Electrical Engineering 3 — Introduction to Electrical Engineering</td>
<td>2</td>
</tr>
<tr>
<td>Life Sciences 2 — Cells, Tissues, and Organs</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>Physics 4BL — Electricity and Magnetism Laboratory</td>
<td>2</td>
</tr>
<tr>
<td><strong>3rd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering 2 — Physics for Electrical Engineers</td>
<td>4</td>
</tr>
<tr>
<td>Electrical Engineering 10 — Circuit Analysis I</td>
<td>4</td>
</tr>
<tr>
<td>Electrical Engineering 102 — Systems and Signals</td>
<td>4</td>
</tr>
<tr>
<td>Life Sciences 3 — Introduction to Molecular Biology</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1st Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering 103 — Applied Numerical Computing</td>
<td>4</td>
</tr>
<tr>
<td>Electrical Engineering 110 — Circuit Analysis II</td>
<td>4</td>
</tr>
<tr>
<td>Electrical Engineering 113 — Digital Signal Processing</td>
<td>4</td>
</tr>
<tr>
<td><strong>2nd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering 115A — Analog Electronic Circuits I</td>
<td>4</td>
</tr>
<tr>
<td>Electrical Engineering 131A — Probability</td>
<td>4</td>
</tr>
<tr>
<td>Pathway Course (Electrical Engineering 132A — Introduction to Communication Systems)†</td>
<td>4</td>
</tr>
<tr>
<td><strong>3rd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering 110L — Circuit Measurements Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics 132 — Complex Analysis for Applications</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Electives (2)*</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1st Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering 101 — Engineering Electromagnetics</td>
<td>4</td>
</tr>
<tr>
<td>Electrical Engineering 115AL — Analog Electronics Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>Pathway Course (Electrical Engineering 141 — Principles of Feedback Control)†</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>2</td>
</tr>
<tr>
<td><strong>2nd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>Statistics 105 — Statistics for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td><strong>3rd Quarter</strong></td>
<td></td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>Pathway Course (Electrical Engineering 176 — Lasers in Biomedical Applications or Mechanical and Aerospace Engineering 10SA — Introduction to Engineering Thermodynamics)†</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
</tbody>
</table>

**TOTAL** 188

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).†See page 74 for the biomedical engineering pathway.
# B.S. in Electrical Engineering
## Computer Engineering Option Curriculum

### FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1st Quarter</strong></td>
<td>Chemistry and Biochemistry 20A — Chemical Structure.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 31 — Introduction to Computer Science I.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td><strong>2nd Quarter</strong></td>
<td>Computer Science 32 — Introduction to Computer Science II.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3 — English Composition, Rhetoric, and Language.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td><strong>3rd Quarter</strong></td>
<td>Computer Science 33 — Introduction to Computer Organization.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 3 — Introduction to Electrical Engineering.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A — Calculus of Several Variables.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B — Oscillations, Waves, Electric and Magnetic Fields.</td>
<td>5</td>
</tr>
</tbody>
</table>

### SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1st Quarter</strong></td>
<td>Electrical Engineering M16 or Computer Science M51A — Logic Design of Digital Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B — Calculus of Several Variables.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A — Linear Algebra and Applications.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 4AL — Mechanics Laboratory.</td>
<td>2</td>
</tr>
<tr>
<td><strong>2nd Quarter</strong></td>
<td>Electrical Engineering 1 — Electrical Engineering Physics I.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B — Differential Equations.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td><strong>3rd Quarter</strong></td>
<td>Electrical Engineering 2 — Physics for Electrical Engineers.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 10 — Circuit Analysis I.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 102 — Systems and Signals.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

### JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1st Quarter</strong></td>
<td>Computer Science 35L — Software Construction Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 101 — Engineering Electromagnetics.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 103 — Applied Numerical Computing.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 110 — Circuit Analysis II.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td><strong>2nd Quarter</strong></td>
<td>Electrical Engineering 110L — Circuit Measurements Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 115A — Analog Electronic Circuits I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 131A — Probability</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Statistics 105 — Statistics for Engineers</td>
<td>4</td>
</tr>
<tr>
<td><strong>3rd Quarter</strong></td>
<td>Electrical Engineering 113 — Digital Signal Processing</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 115C — Digital Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>Pathway Course (Electrical Engineering 132A — Introduction to Communication Systems or Computer Science M117 — Computer Networks: Physical Layer)*</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

### SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1st Quarter</strong></td>
<td>Electrical Engineering M116C or Computer Science M151B — Computer Systems Architecture</td>
<td>4</td>
</tr>
<tr>
<td>Pathway Course (Computer Science 111 — Operating Systems Principles)*</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>Pathway Laboratory Course*</td>
<td>6</td>
</tr>
<tr>
<td><strong>2nd Quarter</strong></td>
<td>Mathematics 132 — Complex Analysis for Applications</td>
<td>4</td>
</tr>
<tr>
<td>Pathway Course (Computer Science 131 — Programming Languages or 132 — Compiler Construction or 180 — Introduction to Algorithms and Complexity)*</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>HSSEAS GE Elective*</td>
<td>9</td>
</tr>
<tr>
<td><strong>3rd Quarter</strong></td>
<td>Electrical Engineering 132B (Data Communications and Telecommunication Networks) or Computer Science 118 (Computer Network Fundamentals)</td>
<td>4</td>
</tr>
<tr>
<td>Pathway Design Course†</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>HSSEAS GE Elective*</td>
<td>8</td>
</tr>
</tbody>
</table>

**TOTAL 188**

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
† See page 74 for the computer engineering pathway.
# B.S. in Materials Engineering Curriculum

## FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemistry and Biochemistry 20A — Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Materials Science and Engineering 10 — Freshman Seminar: New Materials</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B — Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective</td>
<td>5</td>
</tr>
</tbody>
</table>

## SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Materials Science and Engineering 104 — Science of Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1C (Electrodynamics, Optics, and Special Relativity) or Electrical Engineering 1 (Electrical Engineering Physics I)</td>
<td>5 or 4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemical Engineering 102A (Thermodynamics I) or Mechanical and Aerospace Engineering 105A (Introduction to Engineering Thermodynamics)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 31 — Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Civil and Environmental Engineering 101 (Statics and Dynamics) or Mechanical and Aerospace Engineering 101 (Statics and Strength of Materials)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Materials Science and Engineering 100 — Phase Relations in Solids</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective</td>
<td>5</td>
</tr>
</tbody>
</table>

## JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Civil and Environmental Engineering 108 — Introduction to Mechanics of Deformable Solids</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 100 — Electrical and Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Materials Science and Engineering 110/110L — Introduction to Materials Characterization A/Laboratory</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Materials Science and Engineering 130 — Phase Relations in Solids</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Materials Science and Engineering 120 — Physics of Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Materials Science and Engineering 131/131L — Diffusion and Diffusion-Controlled Reactions/Laboratory</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Materials Science and Engineering 143A — Mechanical Behavior of Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Materials Science and Engineering 132 — Structure and Properties of Metallic Alloys</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Materials Engineering Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
</tbody>
</table>

## SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Materials Science and Engineering 160 — Introduction to Ceramics and Glasses</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Materials Engineering Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Upper Division Mathematics Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Materials Science and Engineering 150 — Introduction to Polymers</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS Ethics Course</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Materials Engineering Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Materials Engineering Laboratory Course†</td>
<td>2</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Materials Science and Engineering 140 — Materials Selection and Engineering Design</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective†</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Materials Engineering Laboratory Course†</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course</td>
<td>4</td>
</tr>
</tbody>
</table>

**Total Units:** 185 or 186

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).*

†See counselor in 6426 Boelter Hall for details.
## B.S. in Materials Engineering
### Electronic Materials Option Curriculum

### FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemistry and Biochemistry 20A — Chemical Structure.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3 — English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Materials Science and Engineering 10 — Freshman Seminar: New Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A — Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B — Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A — Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Computer Science 31 — Introduction to Computer Science I.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B — Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
</tbody>
</table>

### SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Materials Science and Engineering 104 — Science of Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B — Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemical Engineering 102A (Thermodynamics I) or Mechanical and Aerospace Engineering 105A (Introduction to Engineering Thermodynamics)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A — Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1C (Electrodynamics, Optics, and Special Relativity) or Electrical Engineering 1 (Electrical Engineering Physics I)</td>
<td>5 or 4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Materials Science and Engineering 90L — Physical Measurement in Materials Engineering</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B — Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 101 — Statics and Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

### JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering 10 — Circuit Analysis I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Materials Science and Engineering 110/110L — Introduction to Materials Characterization A/Laboratory</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Materials Science and Engineering 130 — Phase Relations in Solids</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electrical Engineering 101 — Engineering Electromagnetics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Materials Science and Engineering 120 (Physics of Materials) or Electrical Engineering 2 (Physics for Electrical Engineers)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Materials Science and Engineering 122 — Principles of Electronic Materials Processing</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electrical Engineering 121B — Principles of Semiconductor Device Design</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Materials Science and Engineering 121/121L — Materials Science of Semiconductors/Laboratory</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Electronic Materials Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS Ethics Course</td>
<td>4</td>
</tr>
</tbody>
</table>

### SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Electronic Materials Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Upper Division Mathematics Elective†</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Materials Science and Engineering 131/131L — Diffusion and Diffusion-Controlled Reactions/Laboratory</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Electronic Materials Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electronic Materials Laboratory Course†</td>
<td>2</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Materials Science and Engineering 140 — Materials Selection and Engineering Design</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electronic Materials Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electronic Materials Laboratory Course†</td>
<td>2</td>
</tr>
</tbody>
</table>

### TOTAL

187 or 188

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
†See counselor in 6426 Boelter Hall for details.
# B.S. in Mechanical Engineering Curriculum

## FRESHMAN YEAR

**1st Quarter**
- Chemistry and Biochemistry 20A — Chemical Structure .................................................. 4
- English Composition 3 — English Composition, Rhetoric, and Language .......................... 5
- Mathematics 31A — Differential and Integral Calculus ..................................................... 4

**2nd Quarter**
- Chemistry and Biochemistry 20B/20L — Chemical Energetics and Change/General Chemistry Laboratory .................................................. 7
- Mathematics 31B — Integration and Infinite Series ..................................................... 4
- Physics 1A — Mechanics ........................................................................................................... 5

**3rd Quarter**
- Mathematics 32A — Calculus of Several Variables ..................................................... 4
- Physics 1B — Oscillations, Waves, Electric and Magnetic Fields ........................................... 5
- HSSEAS GE Elective* ........................................................................................................... 2

## SOPHOMORE YEAR

**1st Quarter**
- Mathematics 32B — Calculus of Several Variables ..................................................... 4
- Mechanical and Aerospace Engineering 94 — Introduction to Computer-Aided Design and Drafting .................................................. 4
- Physics 1C — Electrodynamics, Optics, and Special Relativity ........................................... 5
- Physics 4BL — Electricity and Magnetism Laboratory ..................................................... 2

**2nd Quarter**
- Computer Science 31 — Introduction to Computer Science I .................................................. 4
- Mathematics 33A — Linear Algebra and Applications ..................................................... 4
- Mechanical and Aerospace Engineering 101 — Statics and Strength of Materials .................................................. 4

**3rd Quarter**
- Materials Science and Engineering 104 — Science of Engineering Materials .................................................. 4
- Mathematics 33B — Differential Equations ..................................................... 4
- Mechanical and Aerospace Engineering 103 — Elementary Fluid Mechanics .................................................. 4
- Mechanical and Aerospace Engineering 105A — Introduction to Engineering Thermodynamics .................................................. 4

## JUNIOR YEAR

**1st Quarter**
- Electrical Engineering 100 — Electrical and Electronic Circuits ........................................... 4
- Mechanical and Aerospace Engineering 102 — Dynamics of Particles and Rigid Bodies .................................................. 4
- Mechanical and Aerospace Engineering 105D — Transport Phenomena .................................................. 4
- Mechanical and Aerospace Engineering 182A — Mathematics of Engineering .................................................. 4

**2nd Quarter**
- Electrical Engineering 110L — Circuit Measurements Laboratory ........................................... 2
- Mechanical and Aerospace Engineering 133A (Engineering Thermodynamics) or HSSEAS GE Elective* ........................................................................................................... 4
- Mechanical and Aerospace Engineering 157 — Basic Mechanical Engineering Laboratory .................................................. 4

## SENIOR YEAR

**1st Quarter**
- Mechanical and Aerospace Engineering 131A (Intermediate Heat Transfer) or HSSEAS GE Elective* ........................................................................................................... 4
- Mechanical and Aerospace Engineering 162A — Introduction to Mechanisms and Mechanical Systems .................................................. 4
- Mechanical and Aerospace Engineering 171A — Introduction to Feedback and Control Systems .................................................. 4
- HSSEAS Ethics Course ........................................................................................................... 4

**2nd Quarter**
- Mechanical and Aerospace Engineering 162B — Mechanical Product Design .................................................. 4
- Mechanical Engineering Elective ........................................................................................................... 4
- Technical Breadth Courses (2)* ........................................................................................................... 8

**3rd Quarter**
- Mechanical and Aerospace Engineering 162M — Senior Mechanical Engineering Design .................................................. 4
- HSSEAS GE Electives (2)* ........................................................................................................... 10
- Technical Breadth Course* ........................................................................................................... 4

## TOTAL

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 20 for details).
A
Academic Residence Requirement, 19
Active Materials Laboratory, 99
Admission to the School
As a Freshman, 16
As a Graduate Student, 24
As a Transfer Student, 16
Admission to the School, 16
Advanced Placement Tests, Credit for, 16
Advanced Soil Mechanics Laboratory, 48
Advising, 21
Artificial Intelligence Laboratories, 61
Artificial Intelligence Laboratory, 61
Autonomous Vehicle Systems Instrumentation Laboratory, 99

Bachelor of Science Degrees, Requirements for, 19
Biocybernetics Laboratory, 61
Bioengineering Department, 25
Bachelor of Science Degree, 25, 115
Course Descriptions, 26
Faculty Areas of Thesis Guidance, 26
Graduate Study, 26
Biomedical Engineering Interdepartmental Program, 27
Course Descriptions, 31
Fields of Study, 29
Graduate Study, 28
Biomedical Engineering Laboratory, 61
Biomolecular Engineering Laboratories, 39
Building Earthquake Instrumentation Network, 49

C
Career Services, 8
CENS Systems Laboratory, 62
Center for Cell Control, 112
Center for Embedded Networked Sensing, 112
Center for Excellence in Engineering and Diversity (CEED), 11
Center for High-Frequency Electronics, 77
Center for Image and Vision Science (CIVS), 62
Center for Information and Computation Security (CICS), 62
Center on Functional Engineered Nanarchitectonics, 112
Ceramic Processing Laboratory, 90
CEWS Systems Laboratory, 62
Chemical and Biomedical Engineering Department, 36
Bachelor of Science Degree, 36, 116–120
Course Descriptions, 41
Facilities, 39
Faculty Areas of Thesis Guidance, 40
Graduate Study, 37
Chemical Kinetics, Catalysis, Reaction Engineering, and Combustion Laboratory, 39
Circuits Laboratories, 78
Civil and Environmental Engineering Department, 45
Bachelor of Science Degree, 46, 121
Course Descriptions, 50
Environmental Engineering Minor, 46
Facilities, 48
Faculty Areas of Thesis Guidance, 50
Fields of Study, 48
Graduate Study, 46
Instructional Laboratories, 48
Research Laboratories, 49
Cognitive Systems Laboratory, 61
Collaborative Design Laboratory, 61
Collective on Vision and Image Sciences, UCLA, 62
Compilers Laboratory, 63
Computational Cardiology Laboratory, 61
Computational Fluid Dynamics Laboratory, 99
Computational Systems Biology Laboratories, 61
Computer Communications Laboratory, 62
Computer Graphics and Vision Laboratories, 62
Computer Networks Laboratories, 62
Computer Science Department, 55
Bachelor of Science Degrees, 56, 122–123
Computing Resources, 63
Course Descriptions, 65
Facilities, 61
Faculty Areas of Thesis Guidance, 63
Fields of Study, 59
Graduate Study, 57
Computer Science Theory Laboratories, 62
Computer Systems Architecture Laboratories, 62
Concurrent Systems Laboratory, 62
Continuing Education, UCLA Extension, 7
Correspondence Directory, 6
Data Mining Laboratory, 63
Degrees
Bachelor of Science (B.S.), 19
Doctor of Philosophy (Ph.D.), 23
Engineer (Engr.), 23
Master of Engineering (M.Eng.), 23
Master of Science (M.S.), 23
Master of Science in Engineering (online), 23
Departmental Scholar Program, 13
Digital Arithmetic and Reconfigurable Architecture Laboratory, 62
Distributed Simulation Laboratory, 63

Electrical Engineering Department, 72
Bachelor of Science Degree, 73, 124–126
Computing Resources, 77
Facilities and Programs, 77
Faculty Areas of Thesis Guidance, 79
Graduate Study, 74
Research Centers and Laboratories, 77
Electrochemical Engineering and Catalysis Laboratories, 39
Electromagnetics Laboratories, 78
Electron Microscopy Laboratories, 90
Electronic Materials Processing Laboratory, 39
Embedded and Reconfigurable System Design Laboratory, 82
Endowed Chairs, 4
Energy Frontier Research Center, 112
Environmental Engineering Laboratories, 49
Environmental Engineering Minor, 46
Ethics Requirement, 20
Experimental Fracture Mechanics Laboratory, 49
Experimental Mechanics Laboratory, 49
Externally Funded Research Centers and Institutes, 112

Fees and Financial Support, 8
Graduate Students, 10
Undergraduate Students, 9
Fellowships, 10
Fluid Mechanics Research Laboratory, 99
Fusion Science and Technology Center, 99

General Education Requirements, 20
Glass and Ceramics Research Laboratories, 90
Grade Disputes, 2, 13
Grading Policy, 13
Grants, 9

Harassment, 14
Heat Transfer Laboratories, 99
High-Performance Internet Laboratory, 62
Honors
Dean's Honors List, 21
Latin Honors, 22
Human/Computer Interface Laboratory, 62

Information and Data Management Laboratories, 63
Institutes, Externally Funded, 112
Instructional Computer Facility, 7
Internet Research Laboratory, 62

Keck Laboratory for Computer Vision, 62
Knowledge-Based Multimedia Medical Distributed Database Systems Laboratory, 63

Large-Scale Structure Test Facility, 49
Library Facilities
Science and Engineering Library (SEL), 7
University Library System, 7
Living Accommodations, 8
Loans, 9

Master of Science in Engineering Online Program, 108
Graduate Study, 108
Materials and Plasma Chemistry Laboratory, 39
Materials Degradation Characterization Laboratory, 99
Materials Science and Engineering Department, 88
Bachelor of Science Degree, 89, 127–128
Course Descriptions, 91

Bachelor of Science Degree, 46
Doctor of Philosophy (Ph.D.), 23
Engineer (Engr.), 23
Master of Engineering (M.Eng.), 23
Master of Science (M.S.), 23
Master of Science in Engineering (online), 23
Departmental Scholar Program, 13
Digital Arithmetic and Reconfigurable Architecture Laboratory, 62
Distributed Simulation Laboratory, 63

Electrical Engineering Department, 72
Bachelor of Science Degree, 73, 124–126
Computing Resources, 77
Facilities and Programs, 77
Faculty Areas of Thesis Guidance, 79
Graduate Study, 74
Research Centers and Laboratories, 77
Electrochemical Engineering and Catalysis Laboratories, 39
Electromagnetics Laboratories, 78
Electron Microscopy Laboratories, 90
Electronic Materials Processing Laboratory, 39
Embedded and Reconfigurable System Design Laboratory, 82
Endowed Chairs, 4
Energy Frontier Research Center, 112
Environmental Engineering Laboratories, 49
Environmental Engineering Minor, 46
Ethics Requirement, 20
Experimental Fracture Mechanics Laboratory, 49
Experimental Mechanics Laboratory, 49
Externally Funded Research Centers and Institutes, 112
Fees and Financial Support, 8
Graduate Students, 10
Undergraduate Students, 9
Fellowships, 10
Fluid Mechanics Research Laboratory, 99
Fusion Science and Technology Center, 99

General Education Requirements, 20
Glass and Ceramics Research Laboratories, 90
Grade Disputes, 2, 13
Grading Policy, 13
Grants, 9
Harassment, 14
Heat Transfer Laboratories, 99
High-Performance Internet Laboratory, 62
Honors
Dean's Honors List, 21
Latin Honors, 22
Human/Computer Interface Laboratory, 62

Information and Data Management Laboratories, 63
Institutes, Externally Funded, 112
Instructional Computer Facility, 7
Internet Research Laboratory, 62

Keck Laboratory for Computer Vision, 62
Knowledge-Based Multimedia Medical Distributed Database Systems Laboratory, 63

Large-Scale Structure Test Facility, 49
Library Facilities
Science and Engineering Library (SEL), 7
University Library System, 7
Living Accommodations, 8
Loans, 9

Master of Science in Engineering Online Program, 108
Graduate Study, 108
Materials and Plasma Chemistry Laboratory, 39
Materials Degradation Characterization Laboratory, 99
Materials Science and Engineering Department, 88
Bachelor of Science Degree, 89, 127–128
Course Descriptions, 91
Facilities, 90
Faculty Areas of Thesis Guidance, 91
Fields of Study, 90
Graduate Study, 89
Mechanical and Aerospace Engineering Department, 95
  Bachelor of Science Degrees, 95, 114, 129
  Facilities, 99
  Faculty Areas of Thesis Guidance, 100
  Fields of Study, 98
  Graduate Study, 96
Mechanical Testing Laboratory, 90
Mechanical Vibrations Laboratory, 49
Metallographic Sample Preparation Laboratory, 90
Micro and Nano Manufacturing Laboratory, 99
Microsciences Laboratory, 100
Modeling Animation and Graphics Laboratory (MAGIX), 62
Multifunctional Composites Laboratory, 100
Multimedia Stream System Laboratory, 63
Multimedia Systems Laboratory, 63
Nanoelectronics Research Facility, 78
Nano-Materials Laboratory, 90
Nanoparticle Technology and Air Quality Engineering Laboratory, 40
Network Research Laboratory, 62
Nondestructive Testing Laboratory, 90
Nondiscrimination, 14

Official publications, 13
Optical Metrology Laboratory, 49
Organic Electronic Materials Processing Laboratory, 91
Parallel Computing Laboratory, 63
Photronics and Optoelectronics Laboratories, 78
Plasma and Beam Assisted Manufacturing Laboratory, 100
Plasma Electronics Facilities, 78
Plasma Propulsion Laboratory, 100
Polymer and Separations Research Laboratory, 40
Precollege Outreach Programs, 11
Prizes and Awards, 13
Process Systems Engineering Laboratory, 40
Reinforced Concrete Laboratory, 49
Research Centers, Externally Funded, 112
Scholarship Requirement, 19
Scholarships, 9
School Requirements, 19
Schoolwide Programs, Courses, and Faculty, 110
  Course Descriptions, 110
  Faculty Areas of Thesis Guidance, 110
  Graduate Study, 110
Semiconductor and Optical Characterization Laboratory, 91
Services for Students with Disabilities, 8
Shop Services Center, 7
Software Systems Laboratories, 63
Software Systems Laboratory, 63
Soil Mechanics Laboratory, 49
Solid-State Electronics Facilities, 78
Special Programs, Activities, and Awards, 11
Structural Design and Testing Laboratory, 49
Student and Honorary Societies, 12
Student Organizations, 12
Study List, 21
Subsonic Wind Tunnel, 100
Teaching Assistantships, 10
Technical Breadth Requirement, 20
Theory Laboratory, 62
Thin Film Deposition Laboratory, 91
Thin Films, Interfaces, Composites, Characterization Laboratory, 100
Unit Requirement, 19
University Requirements, 19
Vision Laboratory, UCLA, 62
VLSI CAD Laboratory, 63
Web Information Systems Laboratory, UCLA, 63
Western Institute of Nanoelectronics, 113
Women in Engineering, 12
Work-Study Programs, 9
Writing Requirement, 19
X-Ray Diffraction Laboratory, 91
X-Ray Photoelectron Spectroscopy and Atomic Force Microscopy Facility, 91
## Academic Calendar

<table>
<thead>
<tr>
<th>Event</th>
<th>Fall 2009</th>
<th>Winter 2010</th>
<th>Spring 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>First day for continuing students to check URSA</td>
<td>June 11</td>
<td>October 28, 2009</td>
<td>February 1, 2010</td>
</tr>
<tr>
<td>URSA enrollment appointments begin</td>
<td>June 23</td>
<td>November 10</td>
<td>February 16</td>
</tr>
<tr>
<td>Registration fee payment deadline</td>
<td>September 18</td>
<td>December 18</td>
<td>March 19</td>
</tr>
<tr>
<td>QUARTER BEGINS</td>
<td>September 21</td>
<td>January 4, 2010</td>
<td>March 29</td>
</tr>
<tr>
<td>Instruction begins</td>
<td>September 24</td>
<td>January 4</td>
<td>March 29</td>
</tr>
<tr>
<td>Last day for undergraduates to ADD courses with per-course fee through URSA</td>
<td>October 16</td>
<td>January 22</td>
<td>April 16</td>
</tr>
<tr>
<td>Last day for undergraduates to DROP nonimpacted courses without a transcript notation (with per-transaction fee through URSA)</td>
<td>October 23</td>
<td>January 29</td>
<td>April 23</td>
</tr>
<tr>
<td>Last day for undergraduates to change grading basis (optional P/NP) with per-transaction fee through URSA</td>
<td>November 6</td>
<td>February 12</td>
<td>May 7</td>
</tr>
<tr>
<td>Instruction ends</td>
<td>December 4</td>
<td>March 12</td>
<td>June 4</td>
</tr>
<tr>
<td>Final examinations</td>
<td>December 7-11</td>
<td>March 15-19</td>
<td>June 7-11</td>
</tr>
<tr>
<td>QUARTER ENDS</td>
<td>December 11</td>
<td>March 19</td>
<td>June 11</td>
</tr>
<tr>
<td>HSSEAS Commencement</td>
<td>—</td>
<td>—</td>
<td>June 12</td>
</tr>
<tr>
<td>Academic and administrative holidays</td>
<td>November 11</td>
<td>January 18</td>
<td>May 31</td>
</tr>
<tr>
<td>Winter Campus Closure</td>
<td>December 19-</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>January 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## Admission Calendar

<table>
<thead>
<tr>
<th>Event</th>
<th>Fall 2009</th>
<th>Winter 2010</th>
<th>Spring 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filing period for undergraduate applications (file with UC Undergraduate Application Processing Service, P.O. Box 23460, Oakland, CA 94623-0460)</td>
<td>November 1-30, 2008</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Last day to file application for graduate admission or readmission with complete credentials and application fee, with Graduate Admissions/Student and Academic Affairs, 1255 Murphy Hall, UCLA, Los Angeles, CA 90024-1428</td>
<td>Consult department</td>
<td>Consult department</td>
<td>Consult department</td>
</tr>
<tr>
<td>Reentering students eligible to enroll begin to receive URSA notification letter at their mailing address</td>
<td>June 16, 2009</td>
<td>October 30</td>
<td>February 5</td>
</tr>
<tr>
<td>Last day to file Undergraduate Application for Readmission form at 1113 Murphy Hall (late applicants pay a late fee)</td>
<td>August 17</td>
<td>November 25</td>
<td>February 25</td>
</tr>
</tbody>
</table>