2010-2011 Schoolwide Programs, Courses, and Faculty

UCLA
6426 Boelter Hall
Box 951601
Los Angeles, CA 90095-1601

 

(310) 825-2826
http://www.engineer.ucla.edu

 
Professors Emeriti

Edward P. Coleman, Ph.D.
Allen B. Rosenstein, Ph.D.
Bonham Spence-Campbell, E.E.

Graduate Study

For information on graduate admission to the schoolwide engineering programs and requirements for the Engineer degree and certificate of specialization, see Graduate Programs, page 23.

Faculty Areas of Thesis Guidance

Professors Emeriti

Edward P. Coleman, Ph.D. (Columbia U., 1951)

Design of experimentation; operations management, environment; process of product reliability and quality

Allen B. Rosenstein, Ph.D. (UCLA, 1958)

Educational delivery systems, computer-aided design, design, automatic controls, magnetic controls, nonlinear electronics

Bonham Spence-Campbell, E.E. (Cornell, 1939)

Development of interdisciplinary engineering/social science teams and their use in planning and management of projects and systems

Lower Division Courses

M10A. Introduction to Complex Systems Science. (5)

(Same as Human Complex Systems M10A.) Lecture, four hours. How macroscopic patterns emerge dynamically from local interactions of large number of interdependent (often heterogeneous) entities, without global design or central control. Such emergent order, whose explanation cannot be reduced to explanations at level of individual entities, is ubiquitous in biology and human social collectives, but also exists in certain physical processes such as earthquakes and some chemical reactions. Complexity also deals with how such systems undergo sudden changes, including catastrophic breakdowns, in absence of external force or central influence. Key aspect of biological and social collectives is their nature as complex adaptive systems, where individuals and groups adjust their behavior to external conditions. In biological and social systems, complexity science goes beyond traditional mathematics and statistics in its use of multiagent computational models that better capture these complex, adaptive, and self-organizing phenomena. Letter grading. Mr. Bragin (F)

19. Fiat Lux Freshman Seminars. (1)

Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

87. Introduction to Engineering Disciplines. (4)

Lecture, four hours; discussion, four hours; outside study, four hours. Introduction to engineering as professional opportunity for freshman students by exploring difference between engineering disciplines and functions engineers perform. Development of skills and techniques for academic excellence through team process. Investigation of national need underlying current effort to increase participation of historically underrepresented groups in U.S. technological work force. Letter grading. Mr. Wesel (F)

95. Internship Studies in Engineering. (2 to 4)

Tutorial, two to four hours. Limited to freshmen/sophomores. Internship studies course supervised by associate dean or designated faculty members. Further supervision to be provided by organization for which students are doing internship. Students may be required to meet on regular basis with instructor and provide periodic reports of their experience. May not be applied toward major requirements. Normally, only 4 units of internship are allowed. Individual contract with associate dean required. P/NP grading. Mr. Wesel (F,W,Sp)

98. What Students Need to Know about Careers in Engineering. (2)

Seminar, two hours. Introduction to skills and aptitudes that most engineers require in their careers and description of big picture of engineering careers. Integrating framework provided to relate specifics of engineering courses to real world of engineer and roadmap of extracurricular activity that strengthens skills needed to acquire good jobs and achieve career success. P/NP grading. Mr. Silverstein (F,W,Sp)

99. Student Research Program. (1 to 2)

Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.

Upper Division Courses

M101. Principles of Nanoscience and Nanotechnology. (4)

(Same as Materials Science M105.) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisites: Chemistry 20, and Electrical Engineering 1 or Physics 1C. Introduction to underlying science encompassing structure, properties, and fabrication of technologically important nanoscale systems. New phenomena that emerge in very small systems (typically with feature sizes below few hundred nanometers) explained using basic concepts from physics and chemistry. Chemical, optical, and electronic properties, electron transport, structural stability, self-assembly, templated assembly and applications of various nanostructures such as quantum dots, nanoparticles, quantum wires, quantum wells and multilayers, carbon nanotubes. Letter grading. Mr. Ozolins (F)

102. Synthetic Biosystems and Nanosystems Design. (4)

Lecture, four hours; outside study, eight hours. Requisites: course M101, Life Sciences 3. Introduction to current progress in engineering to integrate biosciences and nanosciences into synthetic systems, where biological components are reengineered and rewired to perform desirable functions in both intracellular and cell-free environments. Discussion of basic technologies and systems analysis that deal with dynamic behavior, noise, and uncertainties. Design project in which students are challenged to design novel biosystems and nanosystems for nontrivial task required. Letter grading. Mr. Liao

103. Environmental Nanotechnology: Implications and Applications. (4)

Lecture, four hours; discussion, two hours; outside study, six hours. Recommended requisite: course M101. Introduction to potential implications of nanotechnology to environmental systems as well as potential application of nanotechnology to environmental protection. Technical contents include three multidisciplinary areas: (1) physical, chemical, and biological properties of nanomaterials, (2) transport, reactivity, and toxicity of nanoscale materials in natural environmental systems, and (3) use of nanotechnology for energy and water production, plus environmental protection, monitoring, and remediation. Letter grading. Mr. Hoek (Sp)

110. Introduction to Technology Management and Economics for Engineers. (4)

Lecture, four hours; discussion, one hour; outside study, seven hours. Fundamental principles of micro-level (individual, firm, and industry) and macro-level (government, international) economics as they relate to technology management. How individuals, firms, and governments impact successful commercialization of high technology products and services. Letter grading. Mr. Monbouquette (F,Sp)

111. Introduction to Finance and Marketing for Engineers. (4)

Lecture, four hours; discussion, one hour; outside study, seven hours. Critical components of finance and marketing research and practice as they impact management of technology commercialization. Internal (within firm) and external (in marketplace) marketing and financing of high-technology innovation. Concepts include present value, future value, discounted cash flow, internal rate of return, return on assets, return on equity, return on investment, interest rates, cost of capital, and product, price, positioning, and promotion. Use of market research, segmentation, and forecasting in management of technological innovation. Letter grading. Mr. Monbouquette (F,W)

112. Laboratory to Market, Entrepreneurship for Engineers. (4)

Lecture, four hours; discussion, one hour; outside study, seven hours. Critical components of entrepreneurship, finance, marketing, human resources, and accounting disciplines as they impact management of technology commercialization. Topics include intellectual property management, team building, market forecasting, and entrepreneurial finance. Students work in small teams studying technology management plans to bring new technologies to market. Students select from set of available technology concepts, many generated at UCLA, that are in need of plans for movement from laboratory to market. Letter grading. Mr. Monbouquette (W,Sp)

113. Product Strategy. (4)

Lecture, four hours; outside study, eight hours. Designed for juniors/seniors. Introduction to current management concept of product development. Topics include product strategy, product platform, and product lines; competitive strategy, vectors of differentiation, product pricing, first-to-market versus fast-follower; growth strategy, growth through acquisition, and new ventures; product portfolio management. Case studies, class projects, group discussions, and guest lectures by speakers from industry. Letter grading. Mr. Pao (F)

180. Engineering of Complex Systems. (4)

Lecture, four hours; discussion, two hours; outside study, six hours. Designed for junior/senior engineering majors. Holistic view of engineering discipline, covering lifecycle of engineering, processes, and techniques used in industry today. Multidisciplinary systems engineering perspective in which aspects of electrical, mechanical, material, and software engineering are incorporated. Three specific case studies in communication, sensor, and processing systems included to help students understand these concepts. Special attention paid to link material covered to engineering curriculum offered by UCLA to help students integrate and enhance their understanding of knowledge already acquired. Motivation of students to continue their learning and reinforce lifelong learning habits. Letter grading. Mr. Wesel (W)

183EW. Engineering and Society. (4)

(Formerly numbered 183.) Lecture, four hours; discussion, three hours; outside study, five hours. Limited to sophomore/junior/senior engineering students. Professional and ethical considerations in practice of engineering. Impact of technology on society and on development of moral and ethical values. Contemporary environmental, biological, legal, and other issues created by new technologies. Emphasis on research and writing within engineering environments. Writing and revision of about 20 pages total, including two individual technical essays and one team-written research report. Readings address technical issues and writing form. Satisfies engineering writing requirement. Letter grading. Mr. Wesel (F,W,Sp)

185EW. Art of Engineering Endeavors. (4)

(Formerly numbered 185.) Lecture, four hours; discussion, three hours; outside study, five hours. Designed for juniors/senior engineering students. Nontechnical skills and experiences necessary for engineering career success. Importance of group dynamics in engineering practice. Teamwork and effective group skills in engineering environments. Organization and control of multidisciplinary complex engineering projects. Forms of leadership and qualities and characteristics of effective leaders. How engineering, computer sciences, and technology relate to major ethical and social issues. Societal demands on practice of engineering. Emphasis on research and writing in engineering environments. Satisfies engineering writing requirement. Letter grading. Mr. Wesel (F,W,Sp)

188. Special Courses in Engineering. (4)

Seminar, four hours; outside study, eight hours. Special topics in engineering for undergraduate students taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated for credit with topic or instructor change. Letter grading.

195. Internship Studies in Engineering. (2 to 4)

Tutorial, two to four hours. Limited to juniors/seniors. Internship studies course supervised by associate dean or designated faculty members. Further supervision to be provided by organization for which students are doing internship. Students may be required to meet on regular basis with instructor and provide periodic reports of their experience. May not be applied toward major requirements. Normally, only 4 units of internship are allowed. Individual contract with associate dean required. P/NP grading. Mr. Wesel (F,W,Sp)

199. Directed Research in Engineering. (2 to 8)

Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation under guidance of faculty mentor. Culminating paper or project required. May be repeated for credit with school approval. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading. (F,W,Sp)

Graduate Courses

200. Program Management Principles for Engineers and Professionals. (4)

Lecture, four hours; outside study, eight hours. Designed for graduate students. Practical review of necessary processes and procedures to successfully manage technology programs. Review of fundamentals of program planning, organizational structure, implementation, and performance tracking methods to provide program manager with necessary information to support decision-making process that provides high-quality products on time and within budget. Letter grading. Mr. Wesel

201. Systems Engineering. (4)

Lecture, four hours; outside study, eight hours. Designed for graduate students. Practical review of major elements of system engineering process. Coverage of key elements: system requirements and flow down, product development cycle, functional analysis, system synthesis and trade studies, budget allocations, risk management metrics, review and audit activities and documentation. Letter grading. (W)

202. Reliability, Maintainability, and Supportability. (4)

Lecture, four hours; outside study, eight hours. Requisite: course 201. Designed for graduate students with one to two years work experience. Integrated logistic support (ILS) is major driver of system life-cycle cost and one key element of system engineering activities. Overview of engineering disciplines critical to this function — reliability, maintainability, and supportability — and their relationships, taught using probability theory. Topics also include fault detections and isolations and parts obsolescence. Discussion of 6-sigma process, one effective design and manufacturing methodology, to ensure system reliability, maintainability, and supportability. Letter grading. Mr. Lynch, Mr. Wesel

203. System Architecture. (4)

Lecture, four hours; outside study, eight hours. Requisite: course 201. Designed for graduate students with B.S. degrees in engineering or science and one to two years work experience in selected domain. Art and science of architecting. Introduction to architecting methodology — paradigm and tools. Principles of architecting through analysis of architecture designs of major existing systems. Discussion of selected elements of architectural practices, such as representation models, design progression, and architecture frameworks. Examination of professionalization of system architecting. Letter grading. Mr. Lynch, Mr. Wesel

215. Entrepreneurship for Engineers. (4)

(Formerly numbered 210.) Lecture, four hours. Limited to graduate engineering students. Topics in starting and developing high-tech enterprises and intended for students who wish to complement their technical education with introduction to entrepreneurship. Letter grading. Mr. Abe, Mr. Cong, Mr. Wesel (W)

299. Capstone Project. (4)

Activity, 10 hours. Preparation: completion of minimum of four 200-level courses in online M.S. program. Project course that satisfies UCLA final comprehensive examination requirement of M.S. online degree in Engineering. Project is completed under individual guidance from UCLA Engineering faculty member and incorporates advanced knowledge learned in M.S. program of study. Letter grading. Mr. Lynch (F,W,Sp)

375. Teaching Apprentice Practicum. (1 to 4)

Seminar, to be arranged. Preparation: apprentice personnel employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. (F,W,Sp)

470A-470D. Engineer in Technical Environment. (3 each)

Lecture, three hours. Limited to Engineering Executive Program students. Theory and application of quantitative methods in analysis and synthesis of engineering systems for purpose of making management decisions. Optimization of outputs with respect to dollar costs, time, material, energy, information, and manpower. Case studies and individual projects. S/U or letter grading.

471A-471B-471C. Engineer in General Environment. (3-3-1.5)

Lecture, three hours (courses 471A, 471B) and 90 minutes (course 471C). Limited to Engineering Executive Program students. Influences of human relations, laws, social sciences, humanities, and fine arts on development and utilization of natural and human resources. Interaction of technology and society past, present, and future. Change agents and resistance to change. S/U or letter (471A) grading; In Progress (471B) and S/U or letter (471C) grading.

472A-472D. Engineer in Business Environment. (3-3-3-1.5)

Lecture, three hours (courses 472A, 472B, 472C) and 90 minutes (course 472D). Limited to Engineering Executive Program students. Language of business for engineering executive. Accounting, finance, business economics, business law, and marketing. Laboratory in organization and management problem solving. Analysis of actual business problems of firm, community, and nation, provided through cooperation and participation with California business corporations and government agencies. In Progress (472A, 472C) and S/U or letter grading (credit to be given on completion of courses 472B and 472D).

473A-473B. Analysis and Synthesis of Large-Scale System. (3-3)

Lecture, two and one-half hours. Limited to Engineering Executive Program students. Problem area of modern industry or government is selected as class project, and its solution is synthesized using quantitative tools and methods. Project also serves as laboratory in organization for goal-oriented technical group. In Progress (473A) and S/U (473B) grading.

495A. Teaching Assistant Training Seminar. (4)

(Formerly numbered 495.) Seminar, four hours; outside study, eight hours. Preparation: appointment as teaching assistant. Limited to graduate engineering students. Seminar on communication of engineering principles, concepts, and methods, preparation, organization of material, presentation, use of visual aids, grading, advising, and rapport with students. S/U grading. (F)

M495B. Supervised Teaching Preparation. (2)

(Same as English Composition M495E.) Seminar, two hours. Required of all teaching assistants for Engineering writing courses not exempt by appropriate departmental or program training. Training and mentoring, with focus on composition pedagogy, assessment of student writing, guidance of revision process, and specialized writing problems that may occur in engineering writing contexts. Practical concerns of preparing students to write course assignments, marking and grading essays, and conducting peer reviews and conferences. S/U grading. (F,W,Sp)

M495C. Supervised Teaching Preparation. (2)

(Same as English Composition M495F.) Seminar, one hour. Requisite: course M495B. Required of all teaching assistants in their initial term of teaching Engineering writing courses. Mentoring in group and individual meetings. Continued focus on composition pedagogy, assessment of student writing, guidance of revision process, and specialized writing problems that may occur in engineering writing contexts. Practical concerns of preparing students to write course assignments, marking and grading essays, and conducting peer reviews and conferences. S/U grading. (F,W,Sp)

501. Cooperative Program. (2 to 8)

Tutorial, to be arranged. Preparation: consent of UCLA graduate adviser and graduate dean, and host campus instructor, department chair, and graduate dean. Used to record enrollment of UCLA students in courses taken under cooperative arrangements with USC. S/U grading.