2006-2007 Henry Samueli School of Engineering and Applied Science

Officers of Administration | The Campus | The School | Endowed Chairs | The Engineering Profession

Officers of Administration

Vijay K. Dhir, Ph.D., Professor and Dean of the Henry Samueli School of Engineering and Applied Science

Stephen E. Jacobsen, Ph.D., Professor and Associate Dean, Academic and Student Affairs

Gregory J. Pottie, Ph.D., Professor and Associate Dean, Research and Physical Resources

Mary Okino, Ed.D., Assistant Dean, Chief Financial Officer

Jason (Jingsheng) Cong, Ph.D., Professor and Chair, Computer Science Department

Timothy J. Deming, Ph.D., Professor and Chair, Bioengineering Department

Mark Goorsky, Ph.D., Professor and Chair, Materials Science and Engineering Department

Adrienne Lavine, Ph.D., Professor and Chair, Mechanical and Aerospace Engineering Department

Vasilios I. Manousiouthakis, Ph.D., Professor and Chair, Chemical and Biomolecular Engineering Department

Ali H. Sayed, Ph.D., Professor and Chair, Electrical Engineering Department

William W-G. Yeh, Ph.D., Professor and Chair, Civil and Environmental Engineering Department

The Campus

UCLA is a large urban university situated between the city and the sea at the foot of the Santa Monica Mountains. Less than six miles from the Pacific, it is bordered by Sunset and Wilshire boulevards. As the city has grown physically and culturally, so has the campus, whose students and faculty mirror the cultural and racial diversity of today’s Los Angeles. UCLA is one of the most widely respected and recognized universities in the world, and its impact on society can be felt into the far reaches of the globe. Students come from around the world to receive a UCLA education, and our alumni go on to become leaders in their fields, from elected officials to heads of international corporations.

UCLA is recognized as the West’s leading center for the arts, culture, and medical research. Each year, more than half a million people attend visual and performing arts programs on campus, while more than 300,000 patients from around the world come to the UCLA Medical Center for treatment. The university has roughly 313 buildings on 419 acres that house the College of Letters and Science and 11 professional schools serving over 37,000 students. Nearly one in every 140 Californians holds a UCLA degree.

UCLA is rated one of the best public research universities in the U.S. and among a handful of top U.S. research universities, public and private. Professor Norman Abrams is Acting Chancellor of UCLA. He succeeds Chancellor Albert Carnesale, the eighth chief executive in UCLA’s 87-year history.

Southern California has grown to become one of the nation’s dominant industrial centers, and the UCLA Henry Samueli School of Engineering and Applied Science (HSSEAS) is uniquely situated as a hub of engineering research and professional training for this region.

The School

The UCLA College of Engineering (as it was known then) was established in 1943 when California Governor Earl Warren signed a bill to provide instruction in engineering at the UCLA campus. It welcomed its first students in 1945 and was dedicated as the Henry Samueli School of Engineering and Applied Science in 2000. The school ranks among the top 10 engineering schools in public universities nationwide.

UCLA engineering faculty members are active participants in many interdisciplinary research centers. The Center for Embedded Networked Sensing (CENS) develops embedded networked sensing systems and applies this revolutionary technology to critical scientific and social applications. Researchers in the Institute for Cell Mimetic Space Exploration (CMISE) identify, develop, promote, and commercialize nano-, bio-, and information technologies for sensing, control, and integration of complex natural and artificial systems. The Functional Engineered Nano-Architectonics Focus Center (FENA) leverages the latest advances in nanotechnology, molecular electronics, and quantum computing to extend semiconductor technology further into the realm of the nanoscale. The Center for Scalable and Integrated Nano-Manufacturing (SINAM) transforms laboratory science into industrial applications in nanoelectronics and biomedicine, creating the next generation of nanotools and systems that will enable cost-effective nanomanufacturing. The Center for Nanoscience Innovation for Defense (CNID) facilitates the rapid transition of research innovation in the nanosciences into applications for the defense sector. The Western Institute of Nanoelectronics (WIN), among the world’s largest joint research programs focusing on spintronics, brings together nearly 30 eminent researchers to explore critically needed innovations in semiconductor technology. Finally, the California NanoSystems Institute (CNSI) -- a joint endeavor with UC Santa Barbara -- develops the information, biomedical, and manufacturing technologies of the twenty-first century.

In addition, the school has identified critical areas for collaborative research that will have a major impact on the future of California and the world. Among these are biomedical informatics; alternative energy solutions; secure electronic transfer of information; new tools for the entertainment industry; systems, dynamics, and controls; advanced technologies for water reclamation; and new approaches and technologies for aerospace engineering.

The school offers 29 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering. The Bachelor of Science degree is offered in Aerospace Engineering, Bioengineering, Chemical Engineering, Civil Engineering, Computer Science, Computer Science and Engineering, Electrical Engineering, Materials Engineering, and Mechanical Engineering. The undergraduate curricula leading to these degrees provide students with a solid foundation in engineering and applied science and prepare graduates for immediate practice of the profession as well as advanced studies. In addition to engineering courses, students complete about one year of study in the humanities, social sciences, and/or fine arts.

Master of Science and Ph.D. degrees are offered in Aerospace Engineering, Biomedical Engineering, Chemical Engineering, Civil Engineering, Computer Science, Electrical Engineering, Manufacturing Engineering (M.S. only), Materials Science and Engineering, and Mechanical Engineering. A new schoolwide online Master of Science in Engineering degree program was approved in June 2006. The Engineer degree is a more advanced degree than the M.S. but does not require the research effort and orientation involved in a Ph.D. dissertation. For information on the Engineer degree, see Graduate Programs on page 24. A one-year program leading to a Certificate of Specialization is offered in various fields of engineering and applied science.

Endowed Chairs

Endowed professorships or chairs, funded by gifts from individuals or corporations, support the research and educational activities of distinguished members of the faculty. The following endowed chairs have been established in the Henry Samueli School of Engineering and Applied Science.

L.M.K. Boelter Chair in Engineering

Roy and Carol Doumani Chair in Biomedical Engineering

Norman E. Friedmann Chair in Knowledge Sciences

Evalyn Knight Chair in Engineering

Levi James Knight, Jr., Chair in Engineering

Nippon Sheet Glass Company Chair in Materials Science

Northrop Grumman Chair in Electrical Engineering/Electromagnetics

Northrop Grumman Chair in Microwave and Millimeter Wave Electronics

Northrop Grumman Opto-Electronic Chair in Electrical Engineering

Ralph M. Parsons Chair in Chemical Engineering

Jonathan B. Postel Chair in Computer Systems

Jonathan B. Postel Chair in Networking

Raytheon Company Chair in Electrical Engineering

Raytheon Company Chair in Manufacturing Engineering

Ben Rich Lockheed Martin Chair in Aeronautics

Rockwell International Chair in Engineering

William Frederick Seyer Term Chair in Materials Electrochemistry

The Engineering Profession

The following describes the challenging types of work HSSEAS graduates might perform based on their program of study.

Aerospace Engineering

Aerospace engineers conceive, design, develop, test, and supervise the construction of aerospace vehicle systems such as commercial and military aircraft, helicopters and other types of rotorcraft, and space vehicles and satellites, including launch systems. They are employed by aerospace companies, airframe and engine manufacturers, government agencies such as NASA and the military services, and research and development organizations.

Working in a high-technology industry, aerospace engineers are generally well versed in applied mathematics and the fundamental engineering sciences, particularly fluid mechanics and thermodynamics, dynamics and control, and structural and solid mechanics. Aerospace vehicles are complex systems. Proper design and construction involves the coordinated application of technical disciplines, including aerodynamics, structural analysis and design, stability and control, aeroelasticity, performance analysis, and propulsion systems technology.

Aerospace engineers use computer systems and programs extensively and should have at least an elementary understanding of modern electronics. They work in a challenging and highly technical atmosphere and are likely to operate at the forefront of scientific discoveries, often stimulating these discoveries and providing the inspiration for the creation of new scientific concepts.

The B.S. program in Aerospace Engineering emphasizes fundamental disciplines and therefore provides a solid base for professional career development in industry and graduate study in aerospace engineering. Graduate education, primarily at the Ph.D. level, provides a strong background for employment by government laboratories, such as NASA, and industrial research laboratories supported by the major aerospace companies. It also provides the appropriate background for academic careers.


At the interface of medical sciences, basic sciences, and engineering, bioengineering has emerged internationally as an established engineering discipline. As these disciplines converge in the twenty-first century, bioengineers solve problems in biology and medicine by applying principles of physical sciences and engineering while applying biological principles to create new engineering paradigms, such as biomimetic materials, DNA computing, and neural networking. The genomic and proteomic revolution will drive a new era in the bioengineering industry, and future bioengineers must combine proficiency in traditional engineering, basic sciences, and molecular sciences to function as effective leaders of multidisciplinary teams.

UCLA has a long history of fostering interdisciplinary training and is a superb environment for bioengineers. UCLA boasts the top hospital in the western U.S., nationally ranked medical and engineering schools, and numerous nationally recognized programs in basic sciences. Rigorously trained bioengineers are needed in research institutions, academia, and industry. Their careers may follow their bioengineering concentration (e.g., tissue engineering, bioMEMs, bioinformatics, image and signal processing, neuroengineering, cellular engineering, molecular engineering, biomechanics, nanofabrication, bioacoustics, biomaterials, etc.), but the ability of bioengineers to cut across traditional field boundaries will facilitate their innovation in new areas. For example, a bioengineer with an emphasis in tissue engineering may begin a career by leading a team to engineer an anterior cruciate ligament for a large orthopedic company, and later join a research institute to investigate the effects of zero gravity on mechanical signal transduction pathways of bone cells.

Chemical Engineering

Chemical engineers use their knowledge of mathematics, physics, chemistry, and biology to meet the needs of our technological society. They design, research, develop, operate, and manage the chemical and petroleum industries and are leaders in the fields of energy and the environment, nanoengineering/nanotechnology, systems engineering, biotechnology and biomedical engineering, and advanced materials processing. They are in charge of the chemical processes used by virtually all industries, including the pharmaceutical, food, paper, aerospace, automotive, water production and treatment, and semiconductor industries. Architectural, engineering, and construction firms employ chemical engineers for equipment and process design. It is also their mission to develop the clean and environmentally friendly technologies of the future.

Major areas of fundamental interest within chemical engineering are

  1. Applied chemical kinetics, which includes the design of chemical processes and reactors and combustion systems,
  2. Transport phenomena, which involves the exchange of momentum, heat, and mass across interfaces and has applications to the separation of valuable materials from mixtures, or of pollutants from gas and liquid streams,
  3. Thermodynamics, which is fundamental to both separation processes and chemical reactor design,
  4. Plant and process design, synthesis, optimization, simulation, and control, which provide the overall framework for integrating chemical engineering knowledge into industrial application and practice.

Civil and Environmental Engineering

Civil engineers plan, design, construct, and manage a range of physical systems, such as buildings, bridges, dams and tunnels, transportation systems, water and wastewater treatment systems, coastal and ocean engineering facilities, and environmental engineering projects, related to public works and private enterprises. Thus, civil and environmental engineering embraces activities in traditional areas and in emerging problem areas associated with modern industrial and social development.

The civil engineering profession demands rigorous scientific training and a capacity for creativity and growth into developing fields. In Southern California, besides employment in civil engineering firms and governmental agencies for public works, civil engineering graduates often choose the aerospace industry for assignments based on their structural engineering background. Graduates are also qualified for positions outside engineering where their broad engineering education is a valuable asset.

The curriculum leading to a B.S. in Civil Engineering provides an excellent foundation for entry into professional practice, as well as for graduate study in civil engineering and other related fields.

Computer Science and Engineering

Students specializing in the computer science and engineering undergraduate program are educated in a range of computer system concepts. As a result, students at the B.S. level are qualified for employment as applications programmers, systems programmers, digital system designers, digital system marketing engineers, and project engineers.

Undergraduates can major either in the computer science and engineering program or in the computer science program.

Graduate degree programs in computer science prepare students for leadership positions in the computer field. In addition, they prepare graduates to deal with the most difficult problems facing the computer science field. University or college teaching generally requires the graduate degree.

Electrical Engineering

The electrical engineering discipline deals primarily with the sensing, analysis, and processing of information. It develops circuits, devices, algorithms, and theories that can be used to sense data, analyze data, extrapolate data, communicate data, and take action in response to the data collected. The Electrical Engineering Department is a recognized leader in education and research related to these subjects.

Manufacturing Engineering

Manufacturing engineering is an interdisciplinary field that integrates the basic knowledge of materials, design, processes, computers, and system analysis. The manufacturing engineering program is part of the Mechanical and Aerospace Engineering Department.

Specialized areas are generally classified as manufacturing processes, manufacturing planning and control, and computer-aided manufacturing.

Manufacturing engineering as an engineering specialty requires the education and experience necessary to understand, apply, and control engineering procedures in manufacturing processes and production methods of industrial commodities and products. It involves the generation of manufacturing systems, the development of novel and specialized equipment, research into the phenomena of fabricating technologies, and manufacturing feasibility of new products.

Coursework, independent studies, and research are offered in the manufacturing processes area. This includes computer-aided design and computer-aided manufacturing, robotics, metal forming and metal cutting analysis, nondestructive evaluation, and design and optimization of manufacturing processes.

Materials Engineering

Materials engineering is concerned with the structure and properties of materials used in modern technology. Advances in technology are often limited by available materials. Solutions to energy problems depend largely on new materials, such as solar cells or materials for batteries for electric cars.

Two programs within materials engineering are available at UCLA:

1. In the materials engineering program, students become acquainted with metals, ceramics, polymers, and composites. Such expertise is highly sought by the aerospace and manufacturing industries. Materials engineers are responsible for the selection and testing of materials for specific applications. Traditional fields of metallurgy and ceramics have been merged in industry, and this program reflects the change.

2. In the electronic materials option of the materials engineering program, students learn the basics of materials engineering with a concentration in electronic materials and processing. The optional program requires additional coursework which includes five to eight electrical engineering courses.

In order to enter a career in research and development of new materials (such as new energy devices), an M.S. or Ph.D. degree is desirable.

Mechanical Engineering

Mechanical engineering is a broad discipline finding application in virtually all industries and manufactured products. The mechanical engineer applies principles of mechanics, dynamics, and energy transfer to the design, analysis, testing, and manufacture of consumer and industrial products. A mechanical engineer usually has specialized knowledge in areas such as design, materials, fluid dynamics, solid dynamics, heat transfer, thermodynamics, dynamics, control systems, manufacturing methods, and human factors. Applications of mechanical engineering include design of machines used in the manufacturing and processing industries, mechanical components of electronic and data processing equipment, engines and power-generating equipment, components and vehicles for land, sea, air, and space, and artificial components for the human body. Mechanical engineers are employed throughout the engineering community as individual consultants in small firms providing specialized products or services, as designers and managers in large corporations, and as public officials in government agencies.

The mechanical engineer with a specialization in power systems and thermal design is concerned with energy utilization and thermal environment control. Design of power and propulsion systems (power plants, engines) and their components is a major activity. Thermal environment control requires the design of thermal control systems having heat pumps, heat pipes, heat exchangers, thermal insulation, and ablation heat shields. Heating, ventilation, air conditioning (HVAC), vacuum technology, cryogenics, and solar thermal energy are other areas in which the mechanical engineer contributes.

Mechanical engineers with a specialization in mechanical systems design and control and in manufacturing processes are the backbone of any industry. They participate in the conception, design, and manufacture of a commercial product as is found in the automotive, aerospace, chemical, or electronics industries. With specialization in fluids engineering, mechanical engineers gain breadth in aerodynamics and propulsion systems that allows them to become ideal candidates for employment in aerospace and other related industries.

The B.S. program in Mechanical Engineering at UCLA provides excellent preparation for a career in mechanical engineering and a foundation for advanced graduate studies. Graduate studies in one of the specialized fields of mechanical engineering prepare students for a career at the forefront of technology.