A Message from the Dean

Since it welcomed its first engineering students more than 60 years ago, the UCLA Henry Samueli School of Engineering and Applied Science has been at the forefront of advanced interdisciplinary research. Among other notable achievements, the school is well-known as the birthplace of the Internet, for developing the first reverse-osmosis membrane for the desalination of water, and for other collaborative activities that have changed the way we interact with the world around us.

Our faculty and students are leaders in new frontiers of applied science and engineering research, in areas such as information technology, embedded systems and sensor networks, bioengineering, nanomanufacturing, and micro- and nanoelectromechanical systems.

The UCLA School of Engineering is ideally situated to engage in interdisciplinary research and educational initiatives with others on campus and across Southern California. It benefits from proximity to the world-renowned David Geffen School of Medicine and the John E. Anderson Graduate School of Management, as well as the Los Angeles entertainment and media industries, Silicon Valley, the defense and aerospace industries, and a growing biotechnology sector.

Our newly-revised curriculum—with its emphasis on breadth of knowledge as well as depth—will prepare our students for success in meeting the ever-changing demands of the engineering profession. In addition, undergraduate student research opportunities are widely available and we encourage our students to take advantage of them.

Students may choose to work with individual faculty or to participate in any of the school's world-class interdisciplinary research centers. These include the NSF Center for Embedded Networked Sensing, the NASA Institute for Cell Mimetic Space Exploration, the NIH Center for Cell Control, the NSF Center for Scalable and Integrated Nanomanufacturing, the MARCO Functional Engineered Nano-Architectonics Focus Center, the DARPA Center for Nanoscience Innovation for Defense, and the NRI Western Institute of Nanoelectronics. Our faculty and students are also active partners in the California NanoSystems Institute located at UCLA.

Our distinguished faculty is composed of recognized experts in their fields, including 20 members of the National Academy of Engineering, and many junior faculty who are widely acclaimed for their work. Many faculty members are award-winning educators, and every faculty member, no matter how senior, teaches at least one undergraduate course each year.

We are seeking exceptional and dedicated students who share our desire to positively contribute to the engineering profession and society. I invite you to consider becoming a UCLA engineer.

Vijay K. Dhir
Dean
UCLA Henry Samueli School of Engineering and Applied Science
A Message from the Dean Inside front cover
Henry Samueli School of Engineering
and Applied Science 3
Officers of Administration 3
The Campus 3
The School 3
Endowed Chairs 4
The Engineering Profession 4
Correspondence Directory 6
General Information 7
Facilities and Services 7
Library Facilities 7
Services 7
Continuing Education 7
Career Services 8
Ashe Student Health and Wellness Center 8
Services for Students with Disabilities 8
Fees and Financial Support 8
Fees and Expenses 8
Living Accommodations 9
Financial Aid 9
Special Programs, Activities, and Awards .10
Center for Excellence in Engineering and Diversity .10
Student Organizations 12
Women in Engineering 12
Student and Honorary Societies 12
Student Representation 13
Prizes and Awards 13
Departmental Scholar Program 13
Official Publications 13
Grade Disputes 13
Nondiscrimination 13
Harassment 14
Undergraduate Programs 16
Admission 16
Requirements for B.S. Degrees 19
Honors 22
Graduate Programs 23
Admission 24
Departments and Programs of the School .25
Biomedical Engineering 25
Biomedical Engineering 27
Chemical and Biomolecular Engineering .36
Civil and Environmental Engineering 45
Computer Science 55
Electrical Engineering 72
Materials Science and Engineering 88
Mechanical and Aerospace Engineering ..95
Schoolwide Programs, Courses, and Faculty .109
Research Centers, Laboratories, and Institutes .111
Curricula Charts 114
Index 130
Campus Map 131
Academic and Admission Calendars inside back cover

DISCLOSURE OF STUDENT RECORDS

TO ALL STUDENTS:
Pursuant to the Federal Family Educational Rights and Privacy Act (FERPA), the California Information Practices Act, and the University of California Policies Applying to the Disclosure of Information from Student Records, students at UCLA have the right to (1) inspect and review records pertaining to themselves in their capacity as students, except as the right may be waived or qualified under Federal and State Laws and University Policies, (2) have withheld from disclosure, absent their prior written consent for release, personally identifiable information from their student records, except as provided by Federal and State Laws and University Policies, (3) inspect records maintained by UCLA of disclosures of personally identifiable information from their student records, (4) seek correction of their student records through a request to amend the records or, if such request is denied, through a hearing, and (5) file complaints with the U.S. Department of Education regarding alleged violations of the rights accorded them by FERPA.

UCLA, in accordance with Federal and State Laws and University Policies, has designated the following categories of personally identifiable information as "directory information" which UCLA may release and publish without the student's prior consent: name, address (local/mailing, permanent, and/or e-mail), telephone numbers, major field of study, dates of attendance, enrollment status, graduation status, number of course units in which enrolled, degrees and honors received. The most recent previous educational institution attended, participation in officially recognized activities (including extracurricular activities), and the name, weight, and height of participants on intercollegiate athletic teams.

Students who do not wish certain items (i.e., name, local/mailing, permanent, and/or e-mail address, telephone numbers, major field of study, dates of attendance, number of course units in which enrolled, and degrees and honors received) of this "directory information" released and published may so indicate through URSAs (http://www.ursa.ucla.edu). To restrict the release and publication of the additional items in the category of "directory information," complete the UCLA FERPA Restriction Request form available from Enrollment and Degree Services, 1113 Murphy Hall.

Student records which are the subject of Federal and State Laws and University Policies may be maintained in a variety of offices, including the Registrar's Office, Office of the Dean of Students, UCLA Career Center, Graduate Division, and the offices of a student's College or school and major department. Students are referred to the UCLA Telephone Directory (http://www.directory.ucla.edu) which lists all the offices that may maintain student records, together with their campus address and telephone number. Students have the right to inspect their student records in any such office subject to the terms of Federal and State Laws and University Policies. Inspection of student records maintained by the Registrar's Office is by appointment only and must be arranged three working days in advance. Call (310) 825-3801 or inquire at Academic Record Services, 1134 Murphy Hall.

A copy of the Federal and State Laws, University Policies, and the UCLA Telephone Directory may be inspected in the office of the Information Practices Coordinator, 600 UCLA Wilshire Center. Information concerning students' hearing rights may be obtained from that office and from the Office of the Dean of Students, 1206 Murphy Hall.

In addition to the public information described above, information related to students' Social Security number, sex, and marital status, and the name(s), address(es), and telephone number(s) of their parents or next of kin are made available to the UCLA External Affairs Department for use in alumni development, and public relations activities. To restrict the release of this additional information, complete a Request for External Affairs Information Restriction form available from Enrollment and Degree Services, 1113 Murphy Hall.

Published by UCLA Academic Publications, Box 951429, Los Angeles, CA 90095-1429. © 2007 by The Regents of the University of California.

UCLA, UCLA Bruins®, University of California Los Angeles®, and all related trade-marks are the property of The Regents of the University of California.

Cover and inside front cover photography by Alan Nyiri, Atkinson Photographic Archive.

UCLA University Archives. Copyright © University of California Regents.
Henry Samuei School of Engineering and Applied Science

Officers of Administration
Vijay K. Dhir, Ph.D., Professor and Dean of the Henry Samueli School of Engineering and Applied Science
Gregory J. Pottie, Ph.D., Professor and Chair, Civil and Environmental Engineering Department
Jason (Jingsheng) Cong, Ph.D., Professor and Chair, Computer Science Department
Timothy J. Deming, Ph.D., Professor and Chair, Bioengineering Department
Mark Goorsky, Ph.D., Professor and Chair, Materials Science and Engineering Department
Adrienne Lavine, Ph.D., Professor and Chair, Mechanical and Aerospace Engineering Department
Mary Okino, Ed.D., Assistant Dean, Chief Financial Officer
Richard D. Wesel, Ph.D., Professor and Chair, Electrical Engineering Department
Mary Okino, Ed.D., Assistant Dean, Chief Financial Officer

The Campus
UCLA is a large urban university situated between the city and the sea at the foot of the Santa Monica Mountains. Less than six miles from the Pacific, it is bordered by Sunset and Wilshire boulevards. As the city has grown physically and culturally, so has the campus, whose students and faculty mirror the cultural and racial diversity of today's Los Angeles. UCLA is one of the most widely respected and recognized universities in the world, and its impact on society can be felt into the far reaches of the globe. Students come from around the world to receive a UCLA education, and our alumni go on to become leaders in their fields, from elected officials to heads of international corporations.

UCLA is recognized as the West's leading center for the arts, culture, and medical research. Each year, more than half a million people attend visual and performing arts programs on campus, while more than 300,000 patients from around the world come to the UCLA Medical Center for treatment. The university's 419-acre campus houses the College of Letters and Science and 11 professional schools. There are more than 38,000 students enrolled in 126 undergraduate and 198 graduate degree programs. Nearly one in every 140 Californians holds a UCLA degree.

UCLA is rated one of the best public research universities in the U.S. and among a handful of top U.S. research universities, public and private. The chief executive of the University is Chancellor Gene D. Block. He oversees all aspects of the University's three-part mission of education, research, and service.

Southern California has grown to become one of the nation's dominant industrial centers, and the UCLA Henry Samueli School of Engineering and Applied Science (HSSEAS) is uniquely situated as a hub of engineering research and professional training for this region.

The School
The UCLA College of Engineering (as it was known then) was established in 1943 when California Governor Earl Warren signed a bill to provide instruction in engineering at the UCLA campus. It welcomed its first students in 1945 and was dedicated as the Henry Samueli School of Engineering and Applied Science in 2000. The school ranks among the top 10 engineering schools in public universities nationwide.

UCLA engineering faculty members are active participants in many interdisciplinary research centers. The Center for Embedded Networked Sensing (CENS) develops embedded networked sensing systems and applies this revolutionary technology to critical scientific and social applications. Researchers in the Institute for Cell Mimetic Space Exploration (CMISE) identify, develop, promote, and commercialize nano-, bio-, and information technologies for sensing, control, and integration of complex natural and artificial systems. The Center for Cell Control (CCC) applies advanced engineering techniques and life sciences knowledge to control and understand how the cell works at the most basic level, with the goal of improving human health. The Functional Engineered Nano-Architectonics Focus Center (FENA) leverages the latest advances in nanotechnology, molecular electronics, and quantum computing to extend semiconductor technology further into the realm of the nanoscale. The Center for Scalable and Integrated Nano-Manufacturing (SINAM) transforms laboratory science into industrial applications in nanoelectronics and biomedicine, creating the next generation of nanotools and systems that will enable cost-effective nanomanufacturing. The Center for Nanoscience Innovation for Defense (CNID) facilitates the rapid transition of research innovation in the nanosciences into applications for the defense sector. The Western Institute of Nanoelectronics (WIN), among the world's largest joint research programs focusing on spintronics, brings together nearly 30 eminent researchers to explore critically needed innovations in semiconductor technology. Finally, the California NanoSystems Institute (CNSI)—a joint endeavor with UC Santa Barbara—develops the information, biomedical, and manufacturing technologies of the twenty-first century.

In addition, the school has identified critical areas for collaborative research that will have a major impact on the future of California and the world. Among these are biomedical informatics; alternative energy solutions; secure electronic transfer of information; new tools for the entertainment industry; systems, dynamics, and controls; advanced technologies for water reclamation; and new approaches and technologies for aerospace engineering.

The school offers 29 academic and professional degree programs, including an interdisciplinary graduate degree program in biomedical engineering. The Bachelor of Science degree is offered in Aerospace Engineering, Bioengineering, Chemical Engineering, Civil Engineering, Computer Science, Computer Science and Engineering, Electrical Engineering, Materials Engineering, Mechanical Engineering, and Mechanical Engineering. The undergraduate curricula leading to these degrees provide students with a solid foundation in engineering and applied science and prepare graduates for immediate practice of the profession as well as advanced studies. In addition to engineering courses, students complete about one
year of study in the humanities, social sciences, and/or fine arts.

Master of Science and Ph.D. degrees are offered in Aerospace Engineering, Biomedical Engineering, Chemical Engineering, Civil Engineering, Computer Science, Electrical Engineering, Manufacturing Engineering (M.S. only), Materials Science and Engineering, and Mechanical Engineering. A schoolwide online Master of Science in Engineering degree program was approved in June 2006. The Engineer degree is a more advanced degree than the M.S. but does not require the research effort and orientation involved in a Ph.D. dissertation. For information on the Engineer degree, see Graduate Programs on page 23. A one-year program leading to a Certificate of Specialization is offered in various fields of engineering and applied science.

Endowed Chairs

Endowed professorships or chairs, funded by gifts from individuals or corporations, support the research and educational activities of distinguished members of the faculty. The following endowed chairs have been established in the Henry Samueli School of Engineering and Applied Science.

- William Rockwell International Chair in Engineering
- William Frederick Seyer Term Chair in Materials Electrochemistry

The Engineering Profession

The following describes the challenging types of work HSSEAS graduates might perform based on their program of study.

Aerospace Engineering

Aerospace engineers conceive, design, develop, test, and supervise the construction of aerospace vehicle systems such as commercial and military aircraft, helicopters and other types of rotorcraft, and space vehicles and satellites, including launch systems. They are employed by aerospace companies, airframe and engine manufacturers, government agencies such as NASA and the military services, and research and development organizations.

Working in a high-technology industry, aerospace engineers are generally well versed in applied mathematics and the fundamental engineering sciences, particularly fluid mechanics and thermodynamics, dynamics and control, and structural and solid mechanics. Aerospace vehicles are complex systems. Proper design and construction involves the coordinated application of technical disciplines, including aerodynamics, structural analysis and design, stability and control, aeroelasticity, performance analysis, and propulsion systems technology.

Aerospace engineers use computer systems and programs extensively and should have at least an elementary understanding of modern electronics. They work in a challenging and highly technical atmosphere and are likely to operate at the forefront of scientific discoveries, often stimulating these discoveries and providing the inspiration for the creation of new scientific concepts.

The B.S. program in Aerospace Engineering emphasizes fundamental disciplines and therefore provides a solid base for professional career development in industry and graduate study in aerospace engineering. Graduate education prepares students for careers at the forefront of aerospace technology. The Ph.D. degree provides a strong background for employment by government laboratories, such as NASA, and industrial research laboratories supported by the major aerospace companies. It also provides the appropriate background for academic careers.

Bioengineering

At the interface of medical sciences, basic sciences, and engineering, bioengineering has emerged internationally as an established engineering discipline. As these disciplines converge in the twenty-first century, bioengineers solve problems in biology and medicine by applying principles of physical sciences and engineering while applying biological principles to create new engineering paradigms, such as biomimetic materials, DNA computing, and neural networking. The genomic and proteomic revolution will drive a new era in the bioengineering industry, and future bioengineers must combine proficiency in traditional engineering, basic sciences, and molecular sciences to function as effective leaders of multidisciplinary teams.

UCLA has a long history of fostering interdisciplinary training and is a superb environment for bioengineers. UCLA boasts the top hospital in the western U.S., nationally ranked medical and engineering schools, and numerous nationally recognized programs in basic sciences. Rigorously trained bioengineers are needed in research institutions, academia, and industry. Their careers may follow their bioengineering concentration (e.g., tissue engineering, bioMEMs, bioinformatics, image and signal processing, neuroengineering, cellular engineering, molecular engineering, biomechanics, nanofabrication, bioacoustics, biomaterials, etc.), but the ability of bioengineers to cut across traditional field boundaries will facilitate their innovation in new areas. For example, a bioengineer with an emphasis in tissue engineering may begin a career by leading a team to engineer an anterior cruciate ligament for a large orthopedic company, and later join a research institute to investigate the effects of zero gravity on mechanical signal transduction pathways of bone cells.

Chemical Engineering

Chemical engineers use their knowledge of mathematics, physics, chemistry, and biology to meet the needs of our technological society. They design, research, develop, operate, and manage the biochemical and petroleum industries and are leaders in the fields of energy and the environment, nanotechnology, systems engineering, biotechnology and biomedical engineering, and advanced materials processing. They are in charge of the chemical processes used by virtually all industries, including the
pharmaceutical, biotechnology, food, paper, aerospace, automotive, water production and treatment, and semiconductor industries. Architectural, engineering, and construction firms employ chemical engineers for equipment and process design. It is also their mission to develop the clean and environmentally friendly technologies of the future.

Major areas of fundamental interest within chemical engineering are

1. **Applied chemical kinetics**, which involves the design of chemical processes and reactors, including combustion systems,

2. **Transport phenomena**, which involves the exchange of momentum, heat, and mass across interfaces and has applications to the separation of valuable materials from mixtures, or of pollutants from gas and liquid streams,

3. **Thermodynamics**, which is fundamental to both separation processes and chemical reactor design, and

4. **Plant and process design, synthesis, optimization, simulation, and control**, which provide the overall framework for integrating chemical engineering knowledge into industrial application and practice.

Civil and Environmental Engineering

Civil engineers plan, design, construct, and manage a range of physical systems, such as buildings, bridges, dams and tunnels, transportation systems, water and wastewater treatment systems, coastal and ocean engineering facilities, and environmental engineering projects, related to public works and private enterprises. Thus, civil and environmental engineering embraces activities in traditional areas and in emerging problem areas associated with modern industrial and social development.

The civil engineering profession demands rigorous scientific training and a capacity for creativity and growth into developing fields. In Southern California, besides employment in civil engineering firms and governmental agencies for public works, civil engineering graduates often choose the aerospace industry for assignments based on their structural engineering background. Graduates are also qualified for positions outside engineering where their broad engineering education is a valuable asset.

The curriculum leading to a B.S. in Civil Engineering provides an excellent foundation for entry into professional practice, as well as for graduate study in civil engineering and other related fields.

Computer Science and Engineering

Students specializing in the computer science and engineering undergraduate program are educated in a range of computer system concepts. As a result, students at the B.S. level are qualified for employment as applications programmers, systems programmers, digital system designers, digital system marketing engineers, and project engineers.

Undergraduates can major either in the computer science and engineering program or in the computer science program.

Graduate degree programs in computer science prepare students for leadership positions in the computer field. In addition, they prepare graduates to deal with the most difficult problems facing the computer science field. University or college teaching generally requires the graduate degree.

Electrical Engineering

The electrical engineering discipline deals primarily with the sensing, analysis, and processing of information. It develops circuits, devices, algorithms, and theories that can be used to sense data, analyze data, extrapolate data, communicate data, and take action in response to the data collected. The Electrical Engineering Department is a recognized leader in education and research related to these subjects.

Manufacturing Engineering

Manufacturing engineering is an interdisciplinary field that integrates the basic knowledge of materials, design, processes, computers, and system analysis. The manufacturing engineering program is part of the Mechanical and Aerospace Engineering Department.

Specialized areas are generally classified as manufacturing processes, manufacturing planning and control, and computer-aided manufacturing.

Manufacturing engineering as an engineering specialty requires the education and experience necessary to understand, apply, and control engineering procedures in manufacturing processes and production methods of industrial commodities and products. It involves the generation of manufacturing systems, the development of novel and specialized equipment, research into the phenomena of fabricating technologies, and manufacturing feasibility of new products.

Coursework, independent studies, and research are offered in the manufacturing processes area, leading to an M.S. degree. This includes computer-aided design and computer-aided manufacturing, robotics, metal forming and metal cutting analysis, nondestructive evaluation, and design and optimization of manufacturing processes.

Materials Engineering

Materials engineering is concerned with the structure and properties of materials used in modern technology. Advances in technology are often limited by available materials. Solutions to energy problems depend largely on new materials, such as solar cells or materials for batteries for electric cars.

Two programs within materials engineering are available at UCLA:

1. In the **materials engineering** program, students become acquainted with metals, ceramics, polymers, and composites. Such expertise is highly sought by the aerospace and manufacturing industries. Materials engineers are responsible for the selection and testing of materials for specific applications. Traditional fields of metallurgy and ceramics have been merged in industry, and this program reflects the change.

2. In the **electronic materials option** of the materials engineering program, students learn the basics of materials engineering with a concentration in electronic materials and processing. The optional program requires additional coursework which includes five to eight electrical engineering courses.

In order to enter a career in research and development of new materials (such as new energy devices), an M.S. or Ph.D. degree is desirable.

Mechanical Engineering

Mechanical engineering is a broad discipline finding application in virtually all industries and manufactured products. The mechanical engineer applies principles of mechanics, dynamics, and energy transfer to the design, analysis, testing, and manufacture of consumer and industrial products. A mechanical engineer usu-
ally has specialized knowledge in areas such as design, materials, fluid dynamics, solid dynamics, heat transfer, thermodynamics, dynamics, control systems, manufacturing methods, and human factors. Applications of mechanical engineering include design of machines used in the manufacturing and processing industries, mechanical components of electronic and data processing equipment, engines and power-generating equipment, components and vehicles for land, sea, air, and space, and artificial components for the human body. Mechanical engineers are employed throughout the engineering community as individual consultants in small firms providing specialized products or services, as designers and managers in large corporations, and as public officials in government agencies.

Mechanical engineers apply their knowledge to a wealth of systems, products, and processes, including energy generation, utilization and conservation, power and propulsion systems (power plants, engines), and commercial products found in the automotive, aerospace, chemical, or electronics industries.

The B.S. program in Mechanical Engineering at UCLA provides excellent preparation for a career in mechanical engineering and a foundation for advanced graduate studies. Graduate studies in one of the specialized fields of mechanical engineering prepare students for a career at the forefront of technology. The Ph.D. degree provides a strong background for employment by government laboratories, industrial research laboratories, and academia.

Correspondence Directory

University of California, Los Angeles
Los Angeles, CA 90095-1361
http://www.ucla.edu

Dashew Center for International Students and Scholars, 106 Bradley Hall
http://www.internationalcenter.ucla.edu
Financial Aid Office, A123J Murphy Hall
http://www.fao.ucla.edu
Graduate Admissions Office, 1255 Murphy Hall
http://www.gdnet.ucla.edu
Housing: Community Housing Office, 360 De Neve Drive
http://www.cho.ucla.edu
UCLA Housing Service, 360 De Neve Drive
http://www.housing.ucla.edu/myhousing/
Office of the President, Admissions
http://www.universityofcalifornia.edu/admissions/welcome.html
Registrar’s Office, 1105 Murphy Hall
http://www.registrar.ucla.edu
Summer Sessions, 1147 Murphy Hall
http://www.summer.ucla.edu
Undergraduate Admissions and Relations with Schools, 1147 Murphy Hall
http://www.admissions.ucla.edu

Henry Samueli School of Engineering and Applied Science
http://www.engineer.ucla.edu

Office of Academic and Student Affairs, 6426 Boelter Hall
http://www.seascoa.ucla.edu
Bioengineering Department, 7523 Boelter Hall
http://www.bioeng.ucla.edu
Biomedical Engineering Interdepartmental Program, 7523 Boelter Hall
http://www.bme.ucla.edu
Chemical and Biomolecular Engineering Department, 5531 Boelter Hall
http://www.chemeng.ucla.edu
Civil and Environmental Engineering Department, 5731 Boelter Hall
http://www.cee.ucla.edu
Computer Science Department, 4732 Boelter Hall
http://www.cs.ucla.edu
Electrical Engineering Department, 58-121 Engineering IV
http://www.ee.ucla.edu
Materials Science and Engineering Department, 6532 Boelter Hall
http://www.mse.ucla.edu
Mechanical and Aerospace Engineering Department, 48-121 Engineering IV
http://www.mae.ucla.edu
Continuing Education in Engineering, 542 UNEX
http://www.uclaextension.edu
Engineering and Science Career Services, UCLA Career Center, 501 Westwood Plaza, Strathmore Building
http://career.ucla.edu

Aerospace Engineering

Aerospace Engineering, Renee Brooks, (310) 825-2889, renee@ea.ucla.edu; Matt Dingman, (310) 825-1704, dingman@ea.ucla.edu; Michel Moraga, (310) 825-5760, michel@ea.ucla.edu

Bioengineering, Mi Suk Kwon, (310) 825-0968, misuk@ea.ucla.edu; Matt Dingman, (310) 825-1704, dingman@ea.ucla.edu; Jan J. LaBuda (310) 825-2514, jan@ea.ucla.edu

Chemical and Biomolecular Engineering, Mi Suk Kwon, (310) 825-0968, misuk@ea.ucla.edu; Matt Dingman, (310) 825-1704, dingman@ea.ucla.edu

Civil Engineering, Chauncey Isom, (310) 206-2891, chauncey@ea.ucla.edu; Jan J. LaBuda (310) 825-2514, jan@ea.ucla.edu

Computer Science, Michel Moraga, (310) 825-5760, michel@ea.ucla.edu; Renee Brooks, (310) 825-2889, renee@ea.ucla.edu; Mary Anne Geber, (310) 825-2036, maryanne@ea.ucla.edu; Jan J. LaBuda (310) 825-2514, jan@ea.ucla.edu

Electrical Engineering, Mary Anne Geber, (310) 825-2036, maryanne@ea.ucla.edu; Jan J. LaBuda (310) 825-2514, jan@ea.ucla.edu; Mi Suk Kwon, (310) 825-0968, misuk@ea.ucla.edu

Materials Engineering, Chauncey Isom, (310) 206-2891, chauncey@ea.ucla.edu; Jan J. LaBuda (310) 825-2514, jan@ea.ucla.edu

Mechanical Engineering, Renee Brooks, (310) 825-2889, renee@ea.ucla.edu; Michel Moraga, (310) 825-5760, michel@ea.ucla.edu; Jan J. LaBuda (310) 825-2514, jan@ea.ucla.edu; Matt Dingman, (310) 825-1704, dingman@ea.ucla.edu
General Information

Facilities and Services

Teaching and research facilities at HSSEAS are in Boelte Hall, Engineering I, and Engineering IV, located in the south of campus. Boelte Hall houses classrooms and laboratories for undergraduate and graduate instruction, the Office of Academic and Student Affairs (http://www.seasoasa.ucla.edu), the SEASnet computer facility (http://www.seas.ucla.edu/seasnet/), and offices of faculty and administration. The SEL/Engineering and Mathematical Sciences Library is also in Boelte Hall. The Shop Services Center and the Student and Faculty Shop are in the Engineering I building. The California NanoSystems Institute (CNSI) building hosts additional HSSEAS collaborative research activities.

Library Facilities

University Library System

The UCLA Library, a campuswide network of libraries serving programs of study and research in many fields, is among the top 10 ranked research libraries in the U.S. Total collections number more than 8 million volumes, and nearly 80,000 serial titles are received regularly. Some 15,000 serials and databases are electronically available, and the UCLA Library Catalog is linked to the library's homepage at http://www.library.ucla.edu.

Science and Engineering Library

Collections and services of the Science and Engineering Library (SEL) support research and programs in all departments and related institutes of HSSEAS and the Physical Sciences Division, College of Letters and Science.

The SEL site in Boelte Hall houses the engineering, mathematics, statistics, astronomy, and atmospheric and oceanic sciences collections; most public service staff and librarians; and divisions for administration, collection development and public services. Other SEL collections covering chemistry, geology-geophysics, and physics are housed in Young Hall and the Geology Building.

The SEL collection contains over 584,000 volumes, subscriptions to almost 4,900 current serials, and over 4 million technical reports. “Questions? Ask Us” online live chat, e-mail, and in-person reference assistance is provided Monday through Friday.

Faculty, students, and staff can e-mail questions to the library at sel-ref@library.ucla.edu. Librarians are available to provide instruction for teaching assignments requiring the use of library resources.

The library provides access to a variety of resources, including e-journals, e-books, and article databases, in addition to paper equivalents. Copy machines, Internet printers, and microform readers/printers are available at each SEL location. Reserve, interlibrary loan, and document delivery, as well as other services and useful engineering and science resources, are featured on the SEL website. See http://www.library.ucla.edu/sel/.

Services

Instructional Computer Facility

HSSEAS maintains a network of 16 Sun Fire V120/V440 and Sun Enterprise 220/280 servers, 25 Sun Solaris Ultra 5 computers, six Dell Poweredge multi-processor Windows servers, two Network Appliance RAID NFS servers and four Linux RAID NFS servers connected to a high-speed backbone network. The machines function as cycle, file, and application servers to approximately 600 Unix and Microsoft Windows workstations. Four open computer laboratories and one classroom for computerized instruction house 210 of the PC workstations. Remote access to HSSEAS coursework applications is provided via Microsoft Terminal Server.

In addition, UCLA Academic Technology Services (ATS) operates a 40-node, dual-processor Beowulf cluster that is used for performing lengthy, numerically intensive computations and for programs that can utilize parallel computing resources. ATS also provides assistance to groups and individuals wishing to parallelize their codes or establish their own local Beowulf cluster.

The school's manufacturing engineering program operates a group of workstations dedicated to CAD/CAM instruction, and the Computer Science Department operates a network of SUN, PC, and Macintosh computers. The school is connected via high-speed networks to the Internet, and computing resources at the national supercomputer centers are available.

Shop Services Center

The Shop Services Center is available to faculty, staff, and students for projects.

Continuing Education

UCLA Extension

Department of Engineering, Information Systems, and Technical Management

Frank E. Burris, Ph.D., Director
William R. Goodin, Ph.D., Associate Director

The UCLA Extension (UNEX) Department of Engineering, Information Systems, and Technical Management (540 UNEX, 10995 Le Conte Avenue) provides one of the nation's largest selections of continuing engineering education programs. A short course program of 134 annual offerings draws participants from around the world for two- to five-day intensive programs. The acclaimed Technical Management Program holds its seventy-fourth offering in September 2007 and seventy-fifth in March 2008.

The Information Systems program—offering 215 classes annually, including eight certificate programs and three sequential programs in evening, day, weekend, and online formats—covers a broad range of information technologies.

Each year, the department offers 105 classes in engineering disciplines that include manufacturing engineering, electrical engineering, astronautical engineering, construction management, mechanical engineering, and PE review classes. In addition, 111 technical management offerings complement the engineering offerings. Most engineering and technical management classes are in a quarter-length, evening format. In addition, most of the technical management classes are now available online. Call (310) 825-3344 for short course programs, (310) 825-3858 for the Technical Management Program, (310) 825-4100 for information systems programs, and (310) 206-1548 for engineering or technical management classes, or fax (310) 206-2815. See http://www.uclaextension.edu.
Fees and Financial Support

Fees and Expenses

The 2007-08 annual UCLA student fees listed below are current as of publication. See the quarterly Schedule of Classes for breakdown by term or see http://www.registrar.ucla.edu/fees/ for updates.

Students who are not legal residents of California (out-of-state and international students) pay a nonresident tuition fee. See the UCLA General Catalog appendix or the frequent questions residence section at http://www.registrar.ucla.edu for information on how to determine residence for tuition purposes; further inquiries may be directed to the Residence Deputy, 1113 Murphy Hall, UCLA, Los Angeles, CA 90024-1429.

In addition to the fees below, students should be prepared to pay living expenses for the academic period.

2007-08 Annual UCLA Graduate and Undergraduate Fees

<table>
<thead>
<tr>
<th></th>
<th>Graduate Students</th>
<th>Undergraduate Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>University registration fee</td>
<td>$786.00</td>
<td>$786.00</td>
</tr>
<tr>
<td>Educational fee</td>
<td>6,654.00</td>
<td>5,850.00</td>
</tr>
<tr>
<td>Undergraduate Students Association fee</td>
<td>119.73</td>
<td>119.73</td>
</tr>
<tr>
<td>Graduate Students Association fee</td>
<td>39.00</td>
<td>39.00</td>
</tr>
<tr>
<td>Graduate Center Writing fee</td>
<td>12.00</td>
<td>12.00</td>
</tr>
<tr>
<td>Ackerman Student Union fee</td>
<td>31.50</td>
<td>31.50</td>
</tr>
<tr>
<td>Seismic fee for Ackerman/Kerckhoff</td>
<td>113.00</td>
<td>113.00</td>
</tr>
<tr>
<td>Wooden Center fee</td>
<td>45.00</td>
<td>45.00</td>
</tr>
<tr>
<td>Student Programs, Activities, and Resources Complex fee</td>
<td>93.00</td>
<td>93.00</td>
</tr>
<tr>
<td>Mandatory medical insurance</td>
<td>1,194.00</td>
<td>675.00</td>
</tr>
<tr>
<td>Nonresident tuition</td>
<td>14,694.00</td>
<td>19,068.00</td>
</tr>
<tr>
<td>Total mandatory fees</td>
<td>$8,967.50</td>
<td>$23,955.50</td>
</tr>
</tbody>
</table>
Living Accommodations

Housing in Los Angeles, both on and off campus, is in great demand. Students should make arrangements early. The Community Housing Office, 360 De Neve Drive, Box 951495, Los Angeles, CA 90095-1495, (310) 825-4491, http://www.cho.ucla.edu, provides information and current listings for University-owned apartments, cooperatives, private apartments, roommates, rooms in private homes, room and board in exchange for work, and short-term housing. A current BruinCard or a letter of acceptance and valid photo identification card are required for service.

For information on residence halls and suites, contact UCLA Housing Services, 360 De Neve Drive, Box 951381, Los Angeles, CA 90095-1381, (310) 206-7011; see http://www.housing.ucla.edu/myhousing/. Newly admitted students are sent UCLA Housing, which describes costs, locations, and eligibility for both private and UCLA-sponsored housing.

The Dashew International Center for Students and Scholars, 106 Bradley International Hall, http://www.intl.ucla.edu, provides personalized housing assistance for international students. Additionally, the center helps students adjust to the UCLA community and sponsors social activities.

Financial Aid

Undergraduate Students

Financial aid at UCLA includes scholarships, grants, loans, and work-study programs. Applications for each academic year are available in January. The priority application deadline for financial aid for the 2008-09 academic year is March 2, 2008. With the exception of certain scholarships, awards are based on need as determined by national financial aid criteria. California residents must file the Free Application for Federal Student Aid (FAFSA). International students in their first year are ineligible for aid. Continuing undergraduate international students are asked to submit a separate Financial Aid Application for International Students.

Information on UCLA financial aid programs is available at the Financial Aid Office, A129J Murphy Hall, (310) 206-0400; see http://www.fao.ucla.edu.

Scholarships

All UCLA undergraduate scholarship awards are made on a competitive basis, with consideration given to academic excellence, achievement, scholastic promise, and financial need. Scholarships are awarded to entering and continuing undergraduates. The term and amount of the award vary; students are expected to maintain academic excellence in their coursework.

Regents Scholarships are awarded to students with an outstanding academic record and a high degree of promise. Regents Scholars receive a yearly honorarium if they have no financial need. If financial need is established, other scholarships and/or grants are awarded to cover that need. Need is determined according to financial aid criteria legislated by Congress.

HSSEAS Scholarships are awarded to entering and continuing undergraduate students based on criteria including financial need, academic excellence, community service, extracurricular activities, and research achievement. The school works with alumni, industry, and individual donors to establish scholarships to benefit engineering students. Currently, HSSEAS offers more than 62 undergraduate scholarship awards totaling more than $157,000. These scholarships are advertised throughout the academic year. For more information on all available scholarships, see http://seasoasa.ea.ucla.edu/scholarships/.

Grants

Cal Grants A and B are awarded by the California Student Aid Commission to entering and continuing undergraduate students who are U.S. citizens or eligible noncitizens and California residents. Based on financial need and academic achievement, these awards are applied toward educational and registration fees.

Federal Pell Grants are federal aid awards designed to provide financial assistance to those who need funds to attend post-high school educational institutions. Undergraduate students who are U.S. citizens or eligible noncitizens are required by the University to apply. Detailed information on other grants for students with demonstrated need is available from the Financial Aid Office, A129J Murphy Hall, (310) 206-0400, http://www.fao.ucla.edu.

Federal Family Education Loan Program

Federal loans are available to undergraduate or graduate students who are U.S. citizens or eligible noncitizens and who are carrying at least a half-time academic workload. Information on loan programs is available from the Financial Aid Office, A129J Murphy Hall, or on the web at http://www.fao.ucla.edu.

When graduating, transferring, withdrawing, or taking a leave of absence, UCLA students who have received campus-based loans must complete an exit interview with Student Loan Services. The exit interview is provided to help students better understand and plan for loan repayment. Failure to complete an exit interview results in a hold being placed on all university services and records. In addition, if the campus-based loans become delinquent following separation from UCLA, all university services and records will be withheld.

For further information concerning loan repayment, visit the Student Loan Services Office, A227 Murphy Hall, (310) 825-9864; see http://www.loans.ucla.edu.

Work-Study Programs

Under Federal Work-Study, the federal government pays a portion of the hourly wage, and the employer contributes the balance. When possible, work is related to student educational objectives. Hourly pay rates comply with minimum wage laws and vary with the nature of the work, experience, and capabilities. Employment may be on or off campus. To be eligible, undergraduate and graduate students must demonstrate financial need and be a U.S. citizen or eligible noncitizen. Submission of the financial aid application is required.

Community Service is a component of the Federal Work-Study program. Students who secure a community service position are eligible to petition for an increase in work-study funds of up to $5,000 while at the same time reducing their Perkins and/or Stafford loan by the amount of the increase. Most community service positions are located off campus.

Students must be enrolled at least half-time (6 units for undergraduates, 4 for graduate students) and not be appointed at more than 50 percent time while employed at UCLA. Students not carrying the required units or who exceed 50 percent time employment are subject to Social Security or Medicare taxation.

Graduate Students

A high percentage of HSSEAS graduate students receive departmental financial support.
continuing graduate students should contact the financial aid office in December 2007 for information on 2008-09 application procedures.

International graduate students are not eligible for need-based University financial aid nor for long-term student loans.

School of Engineering Fellowships
Fellowship packages offered by HSSEAS may include fellowship contributions from the following sources:

AT&T Fellowships: Supports doctoral study in electrical engineering; must be U.S. citizen or permanent resident; optional summer research at AT&T.

Atlantic Richfield Company (ARCO) Fellowship: Department of Chemical and Biomolecular Engineering; supports study in chemical engineering.

William and Mary Beedle Fellowship: Department of Chemical Biomolecular Engineering; supports study in chemical engineering.

John J. and Clara C. Boelger Fellowship: Supports study in engineering.

Leon and Alyne Camp Fellowship: Department of Mechanical and Aerospace Engineering; supports study in engineering; must be U.S. citizen.

Deutsch Company Fellowship: Supports engineering research on problems that aid “small business” in Southern California.

GTE Fellowship: Departments of Computer Science and Electrical Engineering; supports study in computer science and electrical engineering.

IBM Doctoral Fellowship: Supports doctoral study in computer science.

Intel Fellowship: Department of Computer Science; supports doctoral study in selected areas of computer science.

Les Knesel Scholarship Fund: Department of Materials Science and Engineering; supports master’s or doctoral students in ceramic engineering.

T.H. Lin Graduate Fellowship: Department of Civil and Environmental Engineering; supports study in the area of structures.

Microelectronics Innovation and Computer Research Opportunities (MICRO): Supports students in electrical engineering, computer science, and materials science and engineering with interest in microelectronics who intend to remain in California after graduation; must be U.S. citizen or permanent resident.

Microsoft Fellowship: Supports doctoral study in computer science.

National Consortium for Graduate Degrees for Minorities in Engineering and Science (GEM) Fellowships: Supports study in engineering and science to highly qualified individuals from communities where human capital is virtually untapped.

NCR Fellowship: Department of Computer Science; supports doctoral study in computer science.

Martin Rubin Scholarship: Supports two undergraduate or graduate students pursuing a degree in civil engineering with an emphasis in structural engineering.

Henry Samueli Fellowship: Department of Electrical Engineering; supports master’s and doctoral students.

Semiconductor Research Corporation Fellowship: Department of Electrical Engineering; supports doctoral students in microelectronics; must be U.S. citizen.

Sun Microsystems Fellowship: Department of Computer Science; supports incoming graduate students in computer science.

Texaco Scholarship: Department of Civil and Environmental Engineering; supports research in the area of environmental engineering.

Many other companies in the area also make arrangements for their employees to work part-time and to study at UCLA for advanced degrees in engineering or computer science.

Special Programs, Activities, and Awards

Center for Excellence in Engineering and Diversity
The HSSEAS Center for Excellence in Engineering and Diversity (CEED) seeks to create a community of collaborative and sustainable partnerships that increase academic opportunities for urban, disadvantaged, and underrepresented students.

CEED supports students in precollege, undergraduate, and graduate science, engineering, mathematics, and technology curricula.

Precollege Outreach Programs
Science and Mathematics Achievement and Research Training for Students (SMARTS). A six-week commuter and residential summer program, SMARTS provides a diverse group of 50 ninth to twelfth graders with rigorous inquiry-based engineering, mathematics, and science enrich-
ment. Tenth and eleventh graders receive an introduction to the scientific process and to laboratory-based investigation through the Research Apprentice Program, sponsored by faculty and graduate research mentors in engineering.

MESA Schools Program (MSP). Through CEED, HSSEAS partners with middle and high school principals to implement MSP services, which focus on outreach and student development in engineering, mathematics, science, and technology. At individual school sites, four mathematics and science teachers serve as MSP advisers and coordinate the activities and instruction for 1,100 students. Advisers work as a team to deliver services that include SAT preparation. MSP prepares students for regional engineering and science competitions and provides an individual academic planning program, academic excellence workshops, CEED undergraduate mentors, field trips, and exposure to high-tech careers. The MSP goal is to increase the numbers of urban and educationally underserved students who are competitively eligible for UC admission, particularly in engineering and computer science.

Students are provided academic planning, SAT preparation, career exploration, and other services starting at the elementary school level through college. HSSEAS/CEED currently serves 15 schools in the Los Angeles Unified School District and four schools in the Inglewood Unified School District.

Undergraduate Programs
CEED currently supports some 200 underrepresented and disadvantaged engineering students. Components of the undergraduate program include

CEED Summer Bridge. A two-week intensive residential summer program, CEED Summer Bridge provides advanced preparation and exposure for Fall Quarter classes in mathematics, chemistry, and computer science.

Freshman Orientation Course. Designed to give CEED freshmen exposure to the engineering profession, "Engineering 87—Engineering Disciplines” also teaches the principles of effective study and team/community-building skills.

Academic Excellence Workshops (AEW). Providing an intensive mathematics/science approach to achieving mastery through collaborative learning and facilitated study groups, workshops meet twice a week for two hours and are facilitated by a Ph.D. student.

Bridge Review for Enhancing Engineering Students (BREES). Sponsored by Hewlett Packard. A 14-day intensive summer program designed to provide CEED students with the skills and knowledge to gain sufficient mastery, understanding, and problem solving skills in the core engineering courses. Current CEED students and incoming CEED transfer students take part in lectures and collaborative, problem-solving workshops facilitated by UCLA graduate students.

The UCLA/Hewlett-Packard Computer Science/Engineering Retention Project, coordinated by Professor William J. Kaiser and CEED, is an effort to improve student retention through the redesign of and integration of technology into core engineering courses. In particular, the effort utilized a HP-donated wireless mobile classroom (a wireless laptop cart) to facilitate instruction and interaction in special sessions of EE 10 and EE 115A. A joint effort between the Electrical Engineering Department and UCLA Center for the Study of Evaluation designed and assessed these special sessions to improve instructor feedback and engage students in a significantly enhanced instructional environment. Overall, the pilot effort has proved promising, and continued collaboration is in place to fully integrate the redesign into core engineering courses.

Academic Advising and Counseling. CEED counselors assist in the selection of course combinations, professors, and course loads and meet regularly with students to assess progress and discuss individual concerns.

Tutoring. Review sessions and tutoring are provided for several upper division engineering courses.

Career Development. Presentations by corporate representatives and field trips to major company locations are offered. Other services include summer and full-time job placement and assistance.

Cluster Systems. Common class sections that team students. Cluster Systems facilitate group study and successful academic excellence workshops.

Student Study Center. A two-room complex with a study area open 24 hours a day, the Student Study Center also houses academic workshop rooms and a computer room and is used for tutoring, presentations, and engineering student organizations. The center has an electronic message board for campus, student organization, and CEED activities and numerous bulletin boards for scholarships and employment opportunities.

Step-Up. Funded by the National Science Foundation, STEP for Underutilized Populations (STEP-UP) is a regional initiative designed to increase the number of students from Los Angeles urban core populations obtaining baccalaureate degrees in science, technology, engineering, and mathematics (STEM). Awarded in Fall 2004, this five-year, $1.8 million inter-institutional and multi-disciplinary initiative is led by the UCLA Center for Excellence in Engineering and Diversity in the Henry Samueli School of Engineering and Applied Sci-
ence. Regional partners include California State University, Los Angeles (CSULA) and a number of community colleges in the Los Angeles metropolitan area. The U.S. production of domestic engineers and physical scientists has declined since the high point of the mid-1980s, while that of other countries has increased dramatically. The fastest-growing segments of the U.S. population need to be prepared to enter these vital fields.

Nearly 82 percent of the 740,000 K-12 students in the Los Angeles Unified School District are African-American and Latino, yet a miniscule number of these students attempt post-secondary STEM fields, and fewer enroll in and complete degrees in these areas. The UCLA STEP-UP project provides academic learning communities and career-oriented intervention programs to improve access, counseling, and preparation for students with high interest in these subjects. The NSF has funded over 30 STEP projects across the country to address the growing imbalance between the need for technical talent and the U.S. production of engineers and computer and physical scientists. The NSF goal is to strengthen national and economic security by increasing the number of engineers from populations that under-participate in these fields.

Graduate Programs

OMEGA. The last letter in the Greek alphabet, OMEGA symbolizes the highest level of educational achievement. The organization is a partnership with engineering faculty and CEED to increase the number of UCLA CEED and other engineering undergraduates who are interested in graduate study.

The OMEGA Research Program provides stipends for CEED undergraduates to conduct engineering research with engineering faculty mentors.

Scholarships/Financial Aid

The Henry Samueli School of Engineering and Applied Science also participates in the NACME and GEM scholarships. The CEED Industry Advisory Board and support network provide significant contributions to program services and scholarships. Information may be obtained from the CEED director.

Student Organizations

UCLA CEED supports student chapters of three engineering organizations: the American Indian Science and Engineering Society (AISES), the National Society of Black Engineers (NSBE), and the National Society of Hispanic Professional Engineers (SHPE). These organizations are vital elements of the program.

American Indian Science and Engineering Society

Entering its 18th year on campus, AISES encourages American Indians to pursue careers as scientists and engineers while preserving their cultural heritage. The goal of AISES is to promote unity and cooperation and to provide a basis for the advancement of American Indians while providing financial assistance and educational opportunities. AISES devotes most of its energy to its outreach program where members conduct monthly science academies with elementary and precollege students from Indian Reservations. Serving as mentors and role models for younger students enables UCLA AISES students to further develop professionalism and responsibility while maintaining a high level of academics and increasing cultural awareness.

National Society of Black Engineers

Chartered in 1980 to respond to the shortage of blacks in science and engineering fields and to promote academic excellence among black students in these disciplines, NSBE provides academic assistance, tutoring, and study groups while sponsoring ongoing activities such as guest speakers, company tours, and participation in UCLA events such as Career Day and Engineers Week. NSBE also assists students with employment. Through the various activities sponsored by NSBE, students develop leadership and interpersonal skills while enjoying the college experience. See http://www.seas.ucla.edu/nsbe/.

Society of Latino Engineers and Scientists

Recognized as the national Chapter of the Year five times over the past ten years by the Society of Hispanic Professional Engineers (SHPE), SOLES promotes engineering as a viable career option for Latino students. SOLES is committed to the advancement of Latinos in engineering and science through endeavors to stimulate intellectual pursuit through group studying, tutoring, and peer counseling for all members. This spirit is carried into the community with active recruitment of high school students into the field of engineering. SOLES also strives to familiarize the UCLA community with the richness and diversity of the Latino culture and the scientific accomplishments of Latinos. SOLES organizes cultural events such as Latinos in Science, Cinco de Mayo, and cosponsors the Women in Science and Engineering (WISE) Day with AISES, NSBE, and SWE. By participating in campus events such as Career Day and Engineers Week, the organization’s growing membership strives to fulfill the needs of the individual and the community. See http://www.seas.ucla.edu/soles/.

Women in Engineering

Women make up about 19 percent of the undergraduate and 20 percent of HSSEAS graduate enrollment. Today’s opportunities for women in engineering are excellent, as both employers and educators try to change the image of engineering as a “males only” field. Women engineers are in great demand in all fields of engineering. The Society of Women Engineers (SWE), recognizing that women in engineering are still a minority, has established a UCLA student chapter that sponsors field trips and engineering-related speakers (often professional women) to introduce the various options available to women engineers. The UCLA chapter of SWE, in conjunction with other Los Angeles schools, also publishes an annual résumé book to help women students find jobs and presents a career day for women high school students. See http://www.seas.ucla.edu/swe/.

Student and Honorary Societies

Professionally related societies and activities at UCLA provide valuable experience in leadership, service, recreation, and personal satisfaction. The faculty of the school encourages students to participate in such societies and activities where they can learn more about the engineering profession in a more informal setting than the classroom. For more information, see http://www.engineer.ucla.edu/academics/organization.html.

EGSA Engineering Graduate Students Association

ESUC Engineering Society, University of California. Umbrella organi-
zation for all the engineering and technical societies at UCLA

ACM Association for Computing Machinery
AIAA American Institute of Aeronautics and Astronautics
AICHE American Institute of Chemical Engineers
AISES American Indian Science and Engineering Society
AMERS Amateur Radio Club
ASCE American Society of Civil Engineers
ASME American Society of Mechanical Engineers
BMES Biomedical Engineering Society
Chi Epsilon Civil Engineering Honor Society
ENGINuity Engineering project group
Eta Kappa Nu Electrical engineering honor society
EWB Engineers Without Borders
IEEE Institute of Electrical and Electronic Engineers
LUG Linux Users Group
MRS Materials Research Society
NSBE National Society of Black Engineers
Phi Sigma Rho Engineering social sorority
PIE Pilipinos in Engineering Robotics Club
SAE Society of Automotive Engineers
SAMPLE Society for the Advancement of Materials and Process Engineering
SBE Society for Biological Engineering
SOLES Society of Latino Engineers and Scientists
SWE Society of Women Engineers
Tau Beta Pi Engineering honor society
Triangle Social fraternity of engineers, architects, and scientists
Upsilon Pi Epsilon International honor society for the computing and information disciplines

Student Representation
The student body takes an active part in shaping the policies of the school through elected student representatives on the school’s Executive Committee.

Prizes and Awards
Each year, certificates and award monies are presented at the HSSEAS annual commencement ceremony to recognize outstanding students who have contributed to the school.

The Russell R. O’Neill Distinguished Service Award is presented annually to an upper division student in good academic standing who has made outstanding contributions through service to the undergraduate student body, student organizations, and furtherance of the undergraduate engineering program, with emphasis on extracurricular activities.

The Harry M. Shownman Engineering Prize is awarded to a UCLA engineering student or students who most effectively communicate the achievements, research results, or social significance of any aspect of engineering to a student audience, the engineering professions, or the general public.

The Engineering Achievement Award for Student Welfare is given to undergraduate and graduate engineering students who have made outstanding contributions to student welfare through participation in extracurricular activities and who have given outstanding service to the campus community.

Additional awards may be given to those degree candidates who have achieved academic excellence. Criteria may include such items as grade-point average, creativity, research, and community service.

Departmental Scholar Program
The school may nominate exceptionally promising juniors and seniors as Departmental Scholars to pursue bachelor’s and master’s degree programs simultaneously.

Minimum qualifications include the completion of 24 courses (96 quarter units) at UCLA, or the equivalent at a similar institution, the current minimum grade-point average required for honors at graduation, and the requirements in preparation for the major. To obtain both the bachelor’s and master’s degrees, Departmental Scholars fulfill the requirements for each program. Students may not use any one course to fulfill requirements for both degrees.

For details, consult the Office of Academic and Student Affairs in 6426 Boelter Hall well in advance of application dates for admission to graduate standing.

Official Publications
This Announcement of the Henry Samueli School of Engineering and Applied Science contains detailed information about the school, areas of study, degree programs, and course listings. The UCLA General Catalog (http://www.registrar.ucla.edu/catalog/), however, is the official and binding document for the guidance of students. UCLA students are responsible for complying with all University rules, regulations, policies, and procedures described in the catalog. Engineering students are advised to purchase it from the UCLA Store.

For rules and regulations on graduate study, see http://www.gdnet.ucla.edu.

Grade Disputes
If students believe that they have been graded unfairly, they should first discuss the issue with the instructor of the course. If the dispute cannot be resolved between the student and the instructor, the student may refer the issue to the Associate Dean for Academic and Student Affairs, 6426 Boelter Hall.

The associate dean may form an ad hoc committee to review the complaint. The ad hoc committee members are recommended by the appropriate department chair and the associate dean. The student receives a copy of the ad hoc committee’s report as well as a copy of the associate dean’s recommendation. The student’s file will contain no reference to the dispute.

The associate dean informs the students of their rights with respect to complaints and appeals at UCLA.

Nondiscrimination
The University of California, in accordance with applicable Federal and State Laws and University Policies, does not discriminate on the basis of race, color, national origin, religion, sex, gender identity, pregnancy (including pregnancy, childbirth, and medical conditions related to pregnancy and childbirth), disability, age, medical condition (cancer-related), ancestry, marital status, citizenship, sexual orientation, or status as a Vietnam-era veteran or special disabled veteran. The University also prohibits sexual harassment. This nondiscrimination policy covers admission,
access, and treatment in University programs and activities.

Inquiries regarding the University’s student-related nondiscrimination policies may be directed to the UCLA Campus Counsel, 3149 Murphy Hall, Box 951405, Los Angeles, CA 90095–1405, (310) 825–4042. Speech- and hearing-impaired persons may call TTY (310) 206-6083.

Inquiries regarding nondiscrimination on the basis of disability covered by the Americans with Disabilities Act (ADA) of 1990 or Section 504 of the Rehabilitation Act of 1973 may be directed to Karen Henderson-Winge, Coordinator of ADA and 504 Compliance, A239 Murphy Hall, UCLA, Box 951405, Los Angeles, CA 90095–1405, voice (310) 825–7906, TTY (310) 206-3349; http://www.saonet.ucla.edu/ada.htm.

Students may complain of any action which they believe discriminates against them on the ground of race, color, national origin, marital status, sex, sexual orientation, disability, or age and may contact the Office of the Dean of Students, 1206 Murphy Hall, and/or refer to Section 111.00 of the University of California Policies Applying to Campus Activities, Organizations, and Students (available in 1206 Murphy Hall or at http://www.ucop.edu/ucophome/coordrev/ucpolicies/aos/toc160.html) for further information and procedures.

Harassment

Sexual Harassment

Every member of the University community should be aware that the University is strongly opposed to sexual harassment and that such behavior is prohibited both by law and by University policy. The University will respond promptly and effectively to reports of sexual harassment and will take appropriate action to prevent, correct and, if necessary, discipline behavior that violates this policy. See http://www.sexualharassment.ucla.edu.

Definitions

Sexual harassment, as defined in the University of California Policies Applying to Campus Activities, Organizations, and Students (Section 160.00), reads in part: Sexual harassment is unwelcome sexual advances, requests for sexual favors, and other verbal or physical conduct of a sexual nature, when submission to or rejection of this conduct explicitly or implicitly affects a person’s employment or education, unreasonably interferes with a person’s work or educational performance, or creates an intimidating, hostile, or offensive working or learning environment. In the interest of preventing sexual harassment, the University will respond to reports of any such conduct.

Refer to the Policy on Sexual Harassment and Complaint Resolution Procedures (section 160.00) for the entire definition. The Policy on Sexual Harassment and Complaint Resolution Procedures (http://www.ucop.edu/ucophome/coordrev/ucpolicies/aos/toc160.html) is incorporated into the Policy on Student Conduct and Discipline.

Complaint Resolution

Experience has demonstrated that many complaints of sexual harassment can be effectively resolved through informal intervention. Individuals who experience what they consider to be sexual harassment are advised to confront the alleged offender immediately and firmly.

Additionally, an individual who believes that she or he has been sexually harassed may contact the Sexual Harassment Coordinator in 2241 Murphy Hall or a Sexual Harassment Information Center counselor for help and information regarding sexual harassment complaint resolution or grievance procedures at one of the locations listed below as determined by the complainant’s status at the University at the time of the alleged incident:

1. Campus Human Resources/Employee and Labor Relations, Manager, 200 UCLA Wilshire Center, (310) 794-0860
2. Campus Human Resources/Staff and Faculty Counseling Center, Coordinator, 380 UCLA Wilshire Center, (310) 794-0248
3. Center for Student Programming, Associate Director, 105 Kerckhoff Hall, (310) 825-5941
4. Center for Women and Men, Director, B44 Student Activities Center, (310) 825-3945
5. Chancellor’s Office, Sexual Harassment Coordinator, 2241 Murphy Hall, (310) 206-3417
6. David Geffen School of Medicine, Senior Associate Dean of Student Affairs/Graduate Medical Education, 12-139 Center for the Health Sciences, (310) 825-6774; Dean’s Office, Special Projects Director, 12-139 Center for the Health Sciences, (310) 794-1958
7. Graduate Division, Office Manager, 1237 Murphy Hall, (310) 206-3269
8. Healthcare Human Resources, Employee Relations Manager, 400 UCLA Wilshire Center, (310) 794-0500
9. Lesbian Gay Bisexual Transgender Campus Resource Center, Director, B36 Student Activities Center, (310) 206-3628
10. Neuropsychiatric Hospital, Administration/Human Resources Associate Director, B7-370 Semel Institute, (310) 206-5258
11. Office of the Dean of Students, Assistant Dean of Students, 1206 Murphy Hall, (310) 825-3871
12. Office of Ombuds Services, 105 Strathmore Building, (310) 825-7627; 52-025 Center for the Health Sciences, (310) 206-2427
13. Office of Residential Life, Judicial Affairs Coordinator, Residential Life Building, 370 De Neve Drive, (310) 206-2895
14. School of Dentistry, Assistant Dean, Student Affairs, 10-135A Dentistry, (310) 825-2615
15. Student Legal Services, Director, 70 Dodd Hall, (310) 825-9894
16. Student Psychological Services, Director, Wooden Center West, (310) 825-0768
17. UCLA Extension, Human Resources Director, 629 UNEX Building, (310) 825-4287; Student Services Director, 214 UNEX Building, (310) 825-2656

Other Forms of Harassment

The University strives to create an environment that fosters the values of mutual respect and tolerance and is free from discrimination based on race, ethnicity, sex, religion, sexual orientation, disability, age, and other personal characteristics. Certainly harassment, in its many forms, works against those values and often corrodes a person’s sense of worth and interferes with one’s ability to participate in University programs or activities. While the University is committed to the free exchange of ideas and the full protection of free expression, the University also recognizes that words can be used in such a way that they no longer express an idea, but rather injure and intimidate, thus undermining the ability of individuals to participate in the University community.
University of California Policies Applying to Campus Activities, Organizations, and Students (hereafter referred to as Policies; http://www.ucop.edu/ucophome/coordrev/ucpolicies/aos/toc.html) presently prohibit a variety of conduct by students which, in certain contexts, may be regarded as harassment or intimidation.

For example, harassing expression which is accompanied by physical abuse, threats of violence, or conduct that threatens the health or safety of any person on University property or in connection with official University functions may subject an offending student to University discipline under the provisions of Section 102.08 of the Policies. Similarly, harassing conduct, including symbolic expression, which also involves conduct resulting in damage to or destruction of any property of the University or property of others while on University premises may subject a student violator to University discipline under the provisions of Section 102.04 of the Policies.

Further, under specific circumstances described in the Universitywide Student Conduct Harassment Policy (http://www.deanofstudents.ucla.edu), students may be subject to University discipline for misconduct which may consist solely of expression. Copies of this Policy are available in the Office of the Dean of Students, 1206 Murphy Hall, or in any of the Harassment Information Centers listed below:

1. Center for Women and Men, B44 Student Activities Center, (310) 825-3945, http://www.thecenter.ucla.edu
2. Dashew Center for International Students and Scholars, 106 Bradley Hall, (310) 825-1681, http://www.internationalcenter.ucla.edu

Complaint Resolution

One of the necessary measures in our efforts to assure an atmosphere of civility and mutual respect is the establishment of procedures which provide effective informal and formal mechanisms for those who believe that they have been victims of any of the above misconduct. Many incidents of harassment and intimidation can be effectively resolved through informal means. For example, an individual may wish to confront the alleged offender immediately and firmly. An individual who chooses not to confront the alleged offender and who wishes help, advice, or information is urged to contact any of the Harassment Information Centers listed immediately above.

In addition to providing support for those who believe they have been victims of harassment, Harassment Information Centers offer persons the opportunity to learn about the phenomena of harassment and intimidation; to understand the formal and informal mechanisms by which misunderstandings may be corrected and, when appropriate, student perpetrators may be disciplined; and to consider which of the available options is the most useful for the particular circumstances.

With regard to the Universitywide Student Conduct Harassment Policy, complainants should be aware that not all conduct which is offensive may be regarded as a violation of this Policy and may, in fact, be protected expression. Thus, the application of formal institutional discipline to such protected expression may not be legally permissible. Nevertheless, the University is committed to reviewing any complaint of harassing or intimidating conduct by a student and intervening on behalf of the complainant to the extent possible.
Undergraduate Programs

The Henry Samueli School of Engineering and Applied Science (HSSEAS) offers nine four-year curricula listed below (see the departmental listings for complete descriptions of the programs).

1. Bachelor of Science in Aerospace Engineering, B.S. A.E.
2. Bachelor of Science in Bioengineering, B.S. B.E.
3. Bachelor of Science in Chemical Engineering, B.S. Ch.E.
4. Bachelor of Science in Civil Engineering, B.S. C.E.
5. Bachelor of Science in Computer Science, B.S. C.S.
6. Bachelor of Science in Computer Science and Engineering, B.S. C.S.&E.
7. Bachelor of Science in Electrical Engineering, B.S. E.E.
8. Bachelor of Science in Materials Engineering, B.S. Mat.E.
9. Bachelor of Science in Mechanical Engineering, B.S. M.E.

The following curricula are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET), the nationally recognized accrediting body for engineering programs: aerospace engineering, chemical engineering, civil engineering, computer science and engineering, electrical engineering, materials engineering, and mechanical engineering. The computer science and computer science and engineering curricula are accredited by the Computing Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, (410) 347-7700.

Admission

Applicants to HSSEAS must satisfy the general admission requirements of the University. See the Office of Admissions and Relations with Schools (UARS) website at http://www.admissions.ucla.edu for details. Applicants must select a major within the school when applying for admission. In the selection process many elements are considered, including grades, test scores, and academic preparation.

Students applying as freshmen must submit their applications during the November 1 through 30 filing period. Transfer applicants may apply for Fall, Winter, or Spring Quarter subject to the deadlines posted at http://www.admissions.ucla.edu. In addition, it is essential that official test scores be received no later than the date in January when the December test scores are normally reported.

Effective for students entering the University of California as freshman applicants in Fall Quarter 2006: each applicant must submit scores from an approved core test of mathematics, language arts, and writing. This requirement may be satisfied by taking either (1) the ACT Assessment plus ACT Writing Test or (2) the SAT Reasoning Test. In addition, all applicants must complete two SAT Subject Tests in two different subject areas selected from history/social science, mathematics (Mathematics Level 2 only), laboratory science, and a language other than English.

Applicants to the school are strongly encouraged to take the following SAT Subject Tests: Mathematics Level 2 and a laboratory science test (Biology E/M, Chemistry, or Physics) that is closely related to the intended major.

Fulfilling the admission requirements, however, does not assure admission to the school. Limits have had to be set for the enrollment of new undergraduate students. Thus, not every applicant who meets the minimum requirements can be admitted.

Although applicants may qualify for admission to HSSEAS in freshman standing, many students take their first two years in engineering at a community college and apply to the school at the junior level. Students who begin their college work at a California community college are expected to remain at the community college to complete the lower division requirements in chemistry, computer programming, English composition, mathematics, physics, and the recommended engineering courses before transferring to UCLA.

Admission as a Freshman

University requirements specify a minimum of three years of mathematics, including the topics covered in elementary and advanced algebra and two- and three-dimensional geometry. Additional study in mathematics, concluding with calculus or precalculus in the senior year, is strongly recommended and typical for applicants to HSSEAS.

Freshman applicants must meet the University subject, scholarship, and examination requirements described at http://www.admissions.ucla.edu.

Credit for Advanced Placement Tests

Students may fulfill part of the school requirements with credit allowed at the time of admission for College Board Advanced Placement (AP) Tests with scores of 3, 4, or 5. Students with AP Test credit may exceed the 213-unit maximum by the amount of this credit. AP Test credit for freshmen entering Fall Quarter 2007 fulfills HSSEAS requirements as indicated on the AP chart. Students who have completed 36 quarter units after high school graduation at the time of the examination receive no AP Test credit.

Admission as a Transfer Student

Admission as a junior-level transfer student is competitive. The University requires applicants to have completed a minimum of 60 transferable semester units (90 quarter units) and two transferable English courses prior to enrolling at UCLA. In addition, to be considered all applicants to HSSEAS majors must have at least a 3.2 grade-point average in their college work. Many of the majors in the school are impacted. Excellent grades, especially for courses in preparation for the major, are expected.

Completion of the required courses in preparation for the major is critical for admission. Articulation agreements between California community colleges and HSSEAS include college-specific course numbers for these requirements and can be found at http://www.assist.org. Applicants who are lacking two or more of the courses are unlikely to be admitted.

Required preparation for HSSEAS majors:

1. Mathematics, including calculus I and II, calculus III (multivariable), differential equations, and linear algebra
2. Calculus-based physics courses in mechanics, electricity and magnetism,
Henry Samueli School of Engineering and Applied Science
Advanced Placement Credit

All units and course equivalents to AP Tests are lower division. If an AP Test has been given UCLA course equivalency (e.g., Economics 2), it may not be repeated at UCLA for units or grade points.

<table>
<thead>
<tr>
<th>AP Test</th>
<th>Score</th>
<th>UCLA Lower Division Units and Course Equivalents</th>
<th>Credit Allowed for University and GE Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art History</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Art, Studio</td>
<td></td>
<td>8 units maximum for all tests</td>
<td></td>
</tr>
<tr>
<td>Drawing Portfolio</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Two-Dimensional Design Portfolio</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Three-Dimensional Design Portfolio</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Biology</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Chemistry</td>
<td>3</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>4 units (may petition for Chemistry 20A) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Computer Science</td>
<td></td>
<td>4 units maximum for both tests</td>
<td></td>
</tr>
<tr>
<td>Computer Science (A Test)</td>
<td>3, 4, or 5</td>
<td>2 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Computer Science (AB Test)</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Economics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroeconomics</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Economics 2 (4 excess units)</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Economics 2 (4 units)</td>
<td>4 units toward social analysis GE</td>
</tr>
<tr>
<td>Microeconomics</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Economics 1 (4 excess units)</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Economics 1 (4 units)</td>
<td>4 units toward social analysis GE</td>
</tr>
<tr>
<td>English</td>
<td>8</td>
<td>8 units maximum for both tests</td>
<td></td>
</tr>
<tr>
<td>Language and Composition</td>
<td>3</td>
<td>8 excess units</td>
<td>Satisfies Entry-Level Writing Requirement</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>English Composition 3 (5 units) plus 3 excess units</td>
<td>Satisfies Entry-Level Writing Requirement</td>
</tr>
<tr>
<td>Literature and Composition</td>
<td>3</td>
<td>8 excess units</td>
<td>Satisfies Entry-Level Writing Requirement</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>English Composition 3 (5 units) plus 3 excess units</td>
<td>Satisfies Entry-Level Writing Requirement</td>
</tr>
<tr>
<td>Environmental Science</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Geography, Human</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Government and Politics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparative</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>United States</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>Satisfies American History and Institutions Requirement</td>
</tr>
<tr>
<td>History</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>United States</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>Satisfies American History and Institutions Requirement</td>
</tr>
<tr>
<td>World</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Languages and Literatures</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Chinese Language and Culture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>French Language</td>
<td>3</td>
<td>French 4 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>French 5 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>French 6 (4 units) plus 4 excess units</td>
<td>4 units toward philosophical and linguistic analysis GE</td>
</tr>
<tr>
<td>French Literature</td>
<td>3 or 4</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5 GE units plus 3 excess units</td>
<td>5 units toward literary and cultural analysis GE</td>
</tr>
<tr>
<td>German Language</td>
<td>3</td>
<td>German 3 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>German 4 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>German 5 (4 units) plus 4 excess units</td>
<td>4 units toward philosophical and linguistic analysis GE</td>
</tr>
<tr>
<td>Japanese Language and Culture</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Latin</td>
<td></td>
<td>8 units maximum for both tests</td>
<td></td>
</tr>
<tr>
<td>Latin Literature</td>
<td>3</td>
<td>Latin 1 (4 units)</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Latin 3 (4 units)</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Latin 3 (4 units)</td>
<td>4 units toward literary and cultural analysis GE</td>
</tr>
<tr>
<td>Vergil</td>
<td>3</td>
<td>Latin 1 (4 units)</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Latin 3 (4 units)</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Latin 3 (4 units)</td>
<td>4 units toward literary and cultural analysis GE</td>
</tr>
<tr>
<td>Spanish Language</td>
<td>3</td>
<td>Spanish 4 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Spanish 5 (4 units) plus 4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Spanish 6 (4 units) plus 4 excess units</td>
<td>4 units toward philosophical and linguistic analysis GE</td>
</tr>
<tr>
<td>Spanish Literature</td>
<td>3 or 4</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5 GE units plus 3 excess units</td>
<td>5 units toward literary and cultural analysis GE</td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
<td>8 units maximum for both tests</td>
<td></td>
</tr>
<tr>
<td>Mathematics (AB Test: Calculus)</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4 units</td>
<td>May be applied toward Mathematics 31A</td>
</tr>
<tr>
<td>Mathematics (BC Test: Calculus)</td>
<td>3</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4 excess units plus 4 units</td>
<td>4 units may be applied toward Mathematics 31A</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8 units</td>
<td>Mathematics 31A plus 4 units that may be applied toward Mathematics 31B</td>
</tr>
<tr>
<td>Music Theory</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Physics</td>
<td></td>
<td>8 units maximum for all tests</td>
<td></td>
</tr>
<tr>
<td>Physics (B Test)</td>
<td>3, 4, or 5</td>
<td>8 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Physics (C Test: Mechanics)</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td>4 units (may petition for Physics 1A)</td>
<td>No application</td>
</tr>
<tr>
<td>Physics (C Test: Electricity and Magnetism)</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td>Psychology</td>
<td>3</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Psychology 10 (4 excess units)</td>
<td>No application</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Psychology 10 (4 units)</td>
<td>4 units toward social analysis GE</td>
</tr>
<tr>
<td>Statistics</td>
<td>3, 4, or 5</td>
<td>4 excess units</td>
<td>No application</td>
</tr>
</tbody>
</table>
and waves, sound, heat, optics, and modern physics

3. Chemistry, including two terms of general chemistry. The Computer Science and Computer Science and Engineering majors and the electrical engineering and computer engineering options of the Electrical Engineering major require only one term of chemistry.

4. Computer programming, including either Fortran, Java, C, or C++. Applicants to the Computer Science, Computer Science and Engineering, and Electrical Engineering majors should take C++.

5. Biology, including one year of biology only for applicants to the Bioengineering major.

6. English composition courses, including one course equivalent to UCLA's English Composition 3 and a second UC-transferable English composition course.

Transfer applicants may complete courses in addition to those above that satisfy degree requirements. Engineering and computer science courses appropriate for each major may be found at http://www.assist.org.

Lower Division Courses in Other Departments

Chemistry and Biochemistry 20A. Chemical Structure (4 units)
Chemistry and Biochemistry 20B. Chemical Energetics and Change (4 units)
Chemistry and Biochemistry 20L. General Chemistry Laboratory (3 units)
English Composition 3. English Composition, Rhetoric, and Language (5 units)
Mathematics 31A. Differential and Integral Calculus (4 units)
Mathematics 31B. Integration and Infinite Series (4 units)
Mathematics 32A, 32B. Calculus of Several Variables (4 units each)
Mathematics 33A. Linear Algebra and Applications (4 units)
Mathematics 33B. Differential Equations (4 units)
Physics 1A. Physics for Scientists and Engineers: Mechanics (5 units)
Physics 1B. Physics for Scientists and Engineers: Oscillations, Waves, Electric and Magnetic Fields (5 units)
Physics 1C. Physics for Scientists and Engineers: Electrodynamics, Optics, and Special Relativity (5 units)

Physics 4AL. Physics Laboratory for Scientists and Engineers: Mechanics (2 units)
Physics 4BL. Physics Laboratory for Scientists and Engineers: Electricity and Magnetism (2 units)

The courses in chemistry, mathematics, and physics are those required as preparation for majors in these subjects. Transfer students should select equivalent courses required for engineering or physical sciences majors.

Requirements for B.S. Degrees

The Henry Samueli School of Engineering and Applied Science awards B.S. degrees to students who have satisfactorily completed four-year programs in engineering studies.

Students must meet three types of requirements for the Bachelor of Science degree:

1. University requirements
2. School requirements
3. Department requirements

University Requirements

The University of California has two requirements that undergraduate students must satisfy in order to graduate: (1) Entry-Level Writing or English as a Second Language and (2) American History and Institutions. These requirements are discussed in detail in the Undergraduate Study section of the UCLA General Catalog.

School Requirements

The Henry Samueli School of Engineering and Applied Science has five requirements that must be satisfied for the award of the degree: unit, scholarship, academic residence, technical breadth, and general education.

Unit Requirement

The minimum units allowed for HSSEAS students is between 185 and 192, depending on the program. The maximum allowed is 213 units.

After 213 quarter units, enrollment may not normally be continued in the school without special permission from the associate dean. This regulation does not apply to Departmental Scholars.

Scholarship Requirement

In addition to the University requirement of at least a C (2.0) grade-point average in all courses taken at any University of California campus, students must achieve at least a 2.0 grade-point average in all upper division University courses offered in satisfaction of the subject and elective requirements of the curriculum. A 2.0 minimum grade-point average in upper division mathematics, upper division core courses, and the major field is also required for graduation.

Academic Residence Requirement

Of the last 48 units completed for the B.S. degree, 36 must be earned in residence at HSSEAS on this campus. No more than 16 of the 36 units may be completed in Summer Sessions at UCLA.

Technical Breadth Requirement

The technical breadth requirement consists of a set of three courses providing sufficient breadth outside the student's core program. A list of HSSEAS Faculty Executive Committee-approved technical breadth requirement courses is available in the Office of Academic and Student Affairs, and deviations from that list are subject to approval by the associate dean for Academic and Student Affairs. None of the technical breadth requirement courses selected by students can be used to satisfy other major course requirements.

General Education Requirements

General education (GE) is more than a checklist of required courses. It is a program of study that (1) reveals to students the ways that research scholars in the arts, humanities, social sciences, and natural sciences create and evaluate new knowledge, (2) introduces students to the important ideas and themes of human cultures, (3) fosters appreciation for the many perspectives and the diverse voices that may be heard in a democratic society, and (4) develops the intellectual skills that give students the dexterity they need to function in a rapidly changing world.

This entails the ability to make critical and logical assessments of information, both traditional and digital; deliver reasoned and persuasive arguments; and identify, acquire, and use the knowledge necessary to solve problems.

Students may take one HSSEAS GE course per term on a Passed/Not Passed
basis if they are in good academic standing and are enrolled in at least three and one-half courses (14 units) for the term. For details on P/NP grading, see Grading in the Academic Policies section of the UCLA General Catalog or consult the Office of Academic and Student Affairs.

Requirements for Students Who Entered Fall Quarter 2005 and Thereafter

Writing Requirement
Students must complete the University’s Entry-Level Writing or English as a Second Language (ESL) requirement prior to completing the school writing requirement.

Students admitted to the school are required to complete a two-term writing requirement—Writing I and Writing II. Two courses in English composition are required for graduation. Both courses must be taken for a letter grade, and students must receive grades of C or better (C—grades are not acceptable).

Writing I
The Writing I requirement must be satisfied by completing English Composition 3 or 3H with a grade of C or better (C— or a Passed grade is not acceptable) by the end of the second year of enrollment. The Writing I requirement may also be satisfied by scoring 4 or 5 on one of the College Board Advanced Placement Tests in English or a combination of a score of 720 or better on the SAT Reasoning Test Writing Section and superior performance on the English Composition 3 Proficiency Examination.

Students whose native language is not English may satisfy the Writing I requirement by completing English as a Second Language 36 with a grade of C or better (C—or a Passed grade is not acceptable). Admission into the course is determined by completion of English as a Second Language 35 with a passing grade or proficiency demonstrated on the English as a Second Language Placement Examination (ESLPE).

Writing II
The Writing II requirement is satisfied by selecting one approved writing (W) course from the HSSEAS GE foundations course list. Writing II course lists are also available in the Office of Academic and Student Affairs. The course must be completed with a grade of C or better (C—or a Passed grade is not acceptable).

Ethics Requirement
HSSEAS majors are required to satisfy the ethics and professionalism requirement by completing one course from Engineering 183 or 185 for a letter grade.

Foundations of Knowledge
General education courses are grouped into three foundational areas: Foundations of the Arts and Humanities, Foundations of Society and Culture, and Foundations of Scientific Inquiry.

Five courses (24 units minimum) are required. One of the five courses must be a GE-approved Writing II (W) course. Students must meet with a counselor in the Office of Academic and Student Affairs to determine the applicability of GE Cluster courses toward Writing II or GE requirements.

Courses listed in more than one category can fulfill GE requirements in only one of the cross-listed categories.

Foundations of the Arts and Humanities
Two 5-unit courses selected from two different subgroups:

- Literary and Cultural Analysis
- Philosophical and Linguistic Analysis
- Visual and Performance Arts Analysis and Practice

The aim of courses in this area is to provide perspectives and intellectual skills necessary to comprehend and think critically about our situation in the world as human beings. In particular, the courses provide the basic means to appreciate and evaluate the ongoing efforts of humans to explain, translate, and transform their diverse experiences of the world through such media as language, literature, philosophical systems, images, sounds, and performances. The courses introduce students to the historical development and fundamental intellectual and ethical issues associated with the arts and humanities and may also investigate the complex relations between artistic and humanistic expression and other facets of society and culture.

Foundations of Society and Culture
Two 5-unit courses, one from each subgroup:

- Historical Analysis
- Social Analysis

The aim of courses in this area is to introduce students to the ways in which humans organize, structure, rationalize, and govern their diverse societies and cultures over time. The courses focus on a particular historical question, societal problem, or topic of political and economic concern in an effort to demonstrate how issues are objectified for study, how data is collected and analyzed, and how new understandings of social phenomena are achieved and evaluated.

Foundations of Scientific Inquiry
One course (4 units minimum) from the Life Sciences subgroup or one course from Biomedical Engineering CM145/Chemical Engineering CM145, Chemistry and Biochemistry 153A, or Civil and Environmental Engineering M166/Environmental Health Sciences M166: Life Sciences

This requirement is automatically satisfied for Bioengineering majors, Chemical Engineering majors, and the biomedical engineering option of the Electrical Engineering major. The requirement may be satisfied for Civil Engineering majors if students select an approved major field elective that is also a course approved under Foundations of Scientific Inquiry.

The aim of courses in this area is to ensure that students gain a fundamental understanding of how scientists formulate and answer questions about the operation of both the physical and biological world. The courses also deal with some of the most important issues, developments, and methodologies in contemporary science, addressing such topics as the origin of the universe, environmental degradation, and the decoding of the human genome. Through lectures, laboratory experiences, writing, and intensive discussions, students consider the important roles played by the laws of physics and chemistry in society, biology, Earth and environmental sciences, and astrophysics and cosmology.

Foundations Course Lists
Creating and maintaining a general education curriculum is a dynamic process; consequently, courses are frequently added to the list. For the most current list of approved courses that satisfy the Foundations of Knowledge GE plan, consult an academic counselor or see http://www.registrar.ucla.edu/ge/GE-EngrNew07-08.pdf.

Requirements for Students Who Entered Prior to Fall Quarter 2005
For the approved list of courses, see http://www.seasoasa.ucla.edu/ge.html.
Department Requirements

Henry Samueli School of Engineering and Applied Science departments generally set two types of requirements that must be satisfied for the award of the degree: (1) Preparation for the Major (lower division courses) and (2) the Major (upper division courses). Preparation for the Major courses should be completed before beginning upper division work.

Preparation for the Major

A major requires completion of a set of courses known as Preparation for the Major. Each department sets its own Preparation for the Major requirements; see the Departments and Programs section of this announcement.

The Major

Students must complete their major with a scholarship average of at least a 2.0 (C) in all courses in order to remain in the major. All courses in the major department must be taken for a letter grade. See the Departments and Programs section of this announcement for details on each major.

Policies and Regulations

Degree requirements are subject to policies and regulations, including the following:

Student Responsibility

Students should take advantage of academic support resources, but they are ultimately responsible for keeping informed of and complying with the rules, regulations, and policies affecting their academic standing.

Study List

Study Lists require approval of the dean of the school or a designated representative. It is the student’s responsibility to present a Study List that reflects satisfactory progress toward the Bachelor of Science degree, according to standards set by the faculty. Study Lists or programs of study that do not comply with these standards may result in enforced withdrawal from the University or other academic action. Undergraduate students in the school are expected to enroll in at least 12 units each term. Students enrolling in less than 12 units must obtain approval by petition to the dean prior to enrollment in courses. The normal program is 16 units per term. Students may not enroll in more than 21 units per term unless an Excess Unit Petition is approved in advance by the dean.

Minimum Progress

Full-time HSSEAS undergraduate students must complete a minimum of 36 units in three consecutive terms in which they are registered.

Credit Limitations

Some portions of Advanced Placement (AP) Test credit are evaluated by corresponding UCLA course number. If students take the equivalent UCLA course, a deduction of UCLA unit credit is made prior to graduation. See the AP chart. Credit earned through the College Level Examination Program (CLEP) may not be applied toward the bachelor’s degree.

After students have completed 105 quarter units (regardless of where the units are completed), they do not receive unit credit or subject credit for courses completed at a community college.

No credit is granted toward the bachelor’s degree for college foreign language courses equivalent to quarter levels one and two if the equivalent of level two of the same language was completed with satisfactory grades in high school.

Double Majors

Students in good academic standing may be permitted to have a double major consisting of a major within HSSEAS and a major outside the school (e.g., Electrical Engineering and Economics). Students are not permitted to have a double major within the school (e.g., Chemical Engineering and Civil Engineering). Contact the Office of Academic and Student Affairs for details.

Advising

It is mandatory for all students entering undergraduate programs to have their course of study approved by an academic counselor. After the first term, curricular and career advising is accomplished on a formal basis. Students are assigned a faculty adviser in their particular specialization in their sophomore year or earlier.

In addition, all undergraduate students are assigned, by major, to an academic counselor in the Office of Academic and Student Affairs who provides them with advice regarding general requirements for the degrees and University and school regulations and procedures. It is the students’ responsibility to periodically meet with their academic counselor in the Office of Academic and Student Affairs, as well as with their faculty adviser, to discuss curriculum requirements, programs of study, and any other academic matters of concern.

Curricula Planning Procedure

1. Students normally follow the curriculum in effect when they enter the school. California community college transfers may also select the curriculum in the catalog in effect at the time they began their community college work in an engineering program, providing attendance has been continuous since that time.

2. HSSEAS undergraduate students following a catalog year prior to 2006-07 may use the computerized HSSEAS Academic Program Planner (APP), an interactive self-advising system that informs users if their academic programs meet the requirements for graduation. Students beginning upper division coursework in the major are required to submit an Academic Program Proposal to the Office of Academic and Student Affairs for approval by the associate dean. Students following the 2006-07 catalog year and thereafter will be notified by the Office of Academic and Student Affairs of a new program called Degree Audit Reporting System (DARS).

The student’s regular faculty adviser is available to assist in planning electives and for discussions regarding career objectives. Students should discuss their elective plan with the adviser and obtain the adviser’s approval. Students should also see any member or members of the faculty specially qualified in their major for advice in working out a program of major courses.

Students are assigned to advisers by majors and major fields of interest. A specific adviser or an adviser in a particular engineering department may be requested by submitting a Request for Assignment to Faculty Adviser form available in the Office of Academic and Student Affairs.

Academic counselors in the Office of Academic and Student Affairs assist students with University procedures and answer questions related to general requirements.
Honors

Dean’s Honors List
Students following the engineering curricula are eligible to be named to the Dean’s Honors List each term. Minimum requirements are a course load of at least 15 units (12 units of letter grade) with a grade-point average equal to or greater than 3.7. Students are not eligible for the Dean’s Honors List if they receive an Incomplete (I) or Not Passed (NP) grade or repeat a course. Only courses applicable to an undergraduate degree are considered toward eligibility for Dean’s Honors.

Latin Honors
Students who have achieved scholastic distinction may be awarded the bachelor’s degree with honors. Students eligible for 2007-08 University honors at graduation must have completed 90 or more units for a letter grade at the University of California and must have attained a cumulative grade-point average at graduation which places them in the top five percent of the school (GPA of 3.892 or better) for summa cum laude, the next five percent (GPA of 3.742 or better) for magna cum laude, and the next 10 percent (GPA of 3.615 or better) for cum laude. The minimum GPAs required are subject to change on an annual basis. Required GPAs in effect in the graduating year determine student eligibility.

Based on grades achieved in upper division courses, engineering students must have a 3.892 grade-point average for summa cum laude, a 3.742 for magna cum laude, and a 3.615 for cum laude. For all designations of honors, students must have a minimum 3.25 GPA in their major field courses. To be eligible for an award, students should have completed at least 80 upper division units at the University of California.
Graduate Programs

The Henry Samueli School of Engineering and Applied Science (HSSEAS) offers courses leading to the Master of Science and Doctor of Philosophy degrees, to the Master of Science in Engineering online degree, to the Master of Engineering degree, and to the Engineer degree. The school is divided into seven departments that encompass the major engineering disciplines: aerospace engineering, bioengineering, chemical engineering, civil engineering, computer science, electrical engineering, manufacturing engineering, materials science and engineering, and mechanical engineering. It also offers a graduate interdepartmental degree program in biomedical engineering. Graduate students are not required to limit their studies to a particular department and are encouraged to consider related offerings in several departments.

Also, a one-year program leading to a Certificate of Specialization is offered in various fields of engineering and applied science.

Master of Science Degrees

The Henry Samueli School of Engineering and Applied Science offers the M.S. degree in Aerospace Engineering, Biomedical Engineering, Chemical Engineering, Civil Engineering, Computer Science, Electrical Engineering, Manufacturing Engineering, Materials Science and Engineering, and Mechanical Engineering. The thesis plan requires seven formal courses and a thesis, which may be written while the student is enrolled in two individual study courses. The comprehensive examination plan requires nine formal courses and a comprehensive examination. In some fields students may be allowed to use the Ph.D. major field examination to satisfy the M.S. comprehensive examination requirement. Full-time students complete M.S. programs in an average of five terms of study (about a year and a half). To remain in good academic standing, an M.S. student must obtain a 3.0 grade-point average overall and a 3.0 GPA in graduate courses.

Master of Science in Engineering Online Degree

The primary purpose of the new Master of Science in Engineering online degree program is to enable employed engineers and computer scientists to augment their technical education beyond the baccalaureate level and to enhance their value to the technical organizations in which they are employed. For further information, see http://www.engineer.ucla.edu.

Master of Engineering Degree

The Master of Engineering (M.Engr.) degree is granted to graduates of the Engineering Executive Program, a two-year work-study program consisting of graduate-level professional courses in the management of technological enterprises. For details, write to the HSSEAS Office of Academic and Student Affairs, 6426 Boelter Hall, UCLA, Box 951601, Los Angeles, CA 90095-1601, (310) 825-2514.

Engineer Degree

The Engineer (Engr.) degree is similar to the Ph.D. degree in that the program of study is built around a major and two minor fields, and the preliminary written and oral examinations are the same. However, a dissertation is not required. Unlike the Ph.D. degree, the Engineer degree does have a formal course requirement of a minimum of 15 (at least nine graduate) courses beyond the bachelor’s degree, with at least six courses in the major field (minimum of four graduate courses) and at least three in each minor field (minimum of two graduate courses in each).

Ph.D. Degrees

The Ph.D. programs prepare students for advanced study and research in the major areas of engineering and computer science. To complete the Ph.D. all candidates must fulfill the minimum requirements of the Graduate Division. Major and minor fields may have additional course and examination requirements. For further information, contact the individual departments. To remain in good academic standing, a Ph.D. student must obtain an overall grade-point average of 3.25.

Established Fields of Study for the Ph.D.

Students may propose other fields of study when the established fields do not meet their educational objectives.

Biomedical Engineering Interdepartmental Program

Bioacoustics, speech, and hearing
Biocybernetics
Biomechanics, biomaterials, and tissue engineering
Biomedical instrumentation
Biomedical signal and image processing and bioinformatics
Medical imaging informatics
Molecular and cellular bioengineering
Neuroengineering

Chemical and Biomolecular Engineering Department

Chemical engineering

Civil and Environmental Engineering Department

Environmental engineering
Geotechnical engineering
Hydrology and water resources engineering
Structures (structural mechanics and earthquake engineering)

Computer Science Department

Artificial intelligence
Computational systems biology
Computer networks
Computer science theory
Computer system architecture
Graphics and vision
Information and data management
Software systems

Electrical Engineering Department

Circuits and embedded systems
Physical and wave electronics
Signals and systems

Materials Science and Engineering Department

Ceramics and ceramic processing
Electronic and optical materials
Structural materials
Mechanical and Aerospace Engineering Department

Applied mathematics (established minor field only)
Applied plasma physics (minor field only)
Dynamics
Fluid mechanics
Heat and mass transfer
Manufacturing and design
Nanoelectromechanical/microelectromechanical systems (NEMS/MEMS)
Structural and solid mechanics
Systems and control

For more information on specific research areas, contact the individual faculty member in the field that most closely matches the area of interest.

Admission

Applications for admission are invited from graduates of recognized colleges and universities. Selection is based on promise of success in the work proposed, which is judged largely on the previous college record.

Candidates whose engineering background is judged to be deficient may be required to take additional coursework that may not be applied toward the degree. The adviser helps plan a program to remedy any such deficiencies, after students arrive at UCLA.

Entering students normally are expected to have completed the B.S. degree requirements with at least a 3.0 grade-point average in all coursework taken in the junior and senior years.

Students entering the Engineer/Ph.D. program normally are expected to have completed the requirements for the master's degree with at least a 3.25 grade-point average and to have demonstrated creative ability. Normally the M.S. degree is required for admission to the Ph.D. program. Exceptional students, however, can be admitted to the Ph.D. program without having an M.S. degree.

For information on the proficiency in English requirements for international graduate students, see Graduate Admission in the Graduate Study section of the UCLA General Catalog or refer to http://www.gdnet.ucla.edu/gasaa/admissions/INTLREQT.HTM.

To submit a graduate application, see http://www.seasoasa.ucla.edu/adm_grad.html. From there connect to the site of the preferred department or program and go to the online graduate application.

Graduate Record Examination

Applicants to the HSSEAS graduate programs are required to take the General Test of the Graduate Record Examination (GRE). Specific information about the GRE may be obtained from the department of interest.

Obtain applications for the GRE by contacting the Educational Testing Service, P.O. Box 6000, Princeton, NJ 08541-6000; http://www.gre.org.
Bioengineering

UCLA
7523 Boelter Hall
Box 951600
Los Angeles, CA 90095-1600

(310) 267-4985
tel: (310) 794-5956
e-mail: bioeng@ea.ucla.edu
http://www.bioeng.ucla.edu

Timothy J. Deming, Ph.D., Chair

Professors
Denise Aberle, M.D.
Timothy J. Deming, Ph.D.
Warren S. Grundfest, M.D., FACS
Edward R.B. McCabe, M.D., Ph.D.

Associate Professors
James Dunn, M.D., Ph.D.
Benjamin M. Wu, D.D.S., Ph.D.

Assistant Professors
Daniel T. Kamei, Ph.D.
Andrea M. Kasko, Ph.D.
Jacob J. Schmidt, Ph.D.

Adjunct Professor
Alfred Mann, M.S.

Adjunct Assistant Professor
Bill J. Tawil, M.B.A., Ph.D.

Scope and Objectives
Faculty members in the Department of Bioengineering believe that the interface between biology and the physical sciences represents an exciting area for science in the twenty-first century. Bioengineering has established itself as an independent field and engineering discipline, resulting in the formation of many new bioengineering departments and the redefinition of established programs. Faculty members have embraced this unique opportunity by developing an innovative curriculum, creating state-of-the-art facilities, and performing cutting-edge research.

Instead of treating bioengineering as an application of traditional engineering, it is taught as an applied science discipline in its own right. The bioengineering program is a structured compilation of unique forward-looking courses dedicated to producing graduates who are well-grounded in the fundamental sciences and highly proficient in rigorous analytical engineering tools necessary for lifelong success in the wide range of possible bioengineering careers. The program provides a unique educational experience that responds to the growing needs and demands of bioengineering.

Department Mission
Bioengineering is a diverse multidisciplinary field that has established itself as an independent engineering discipline. The school is developing a small yet innovative Bioengineering Department that is dedicated to producing graduates who are well-grounded in fundamental sciences and the rigorous analytical engineering tools necessary for lifelong success in the many possible bioengineering careers.

Undergraduate Program Objectives
The goal of the bioengineering curriculum is to provide students with the fundamental scientific knowledge and engineering tools necessary for graduate study in engineering or scientific disciplines, continued education in health professional schools, or employment in industry. There are three main objectives: (1) to provide students with rigorous training in engineering and fundamental sciences, (2) to provide knowledge and experience in state-of-the-art research in bioengineering, and (3) to provide problem-solving and team-building skills to succeed in a career in bioengineering.

Undergraduate Study
Bioengineering B.S.

Preparation for the Major
Required: Bioengineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B, 30BL; Computer Science 31; Life Sciences 2 (satisfies HSSEAS GE life sciences requirement), 3, 4; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL, 4BL.

The Major
Required: Bioengineering 100, 110, 120, 165, 176, 180, 180L, 181, 181L, 182A, 182B, 182C, Chemistry and Biochemistry 153A; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and two major field elective courses (8 units) from Biomedical Engineering C101, CM102, CM103, CM145, CM150, CM150L, C170, C171, CM180, C181, C185, C187.

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/GE-EngrNew07-08.pdf.

Graduate Study
Although the graduate program in bioengineering is currently being developed, individuals who would like to conduct research...
in the laboratories of the professors in the Bioengineering Department should apply to the graduate program in the Biomedical Engineering Interdepartmental Program (http://www.bme.ucla.edu).
M183. Targeted Drug Delivery and Controlled Drug Release. (4) (Same as Biomedical Engineering CM183.) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 20A, 20B, 20L. New therapeutics require comprehensive understanding of modern biology, physiology, biotechnology, and engineering. Targeted delivery of genes and drugs and their controlled release are important in treatment of challenging diseases and relevant to tissue engineering and regenerative medicine. Drug pharmacodynamics and clinical pharmacokinetics. Application of engineering principles (diffusion, transport, kinetics) to problems in drug formulation and delivery to establish rationale for design and development of novel drug delivery systems that can provide spatial and temporal control of drug release. Introduction to biomaterials with specialized structural and interfacial properties. Exploration of both chemistry of materials and physical presentation of devices and compounds used in delivery and release. Letter grading. Ms. Kasoko (F)

188. Special Courses in Bioengineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Special topics in bioengineering for undergraduate students that are taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated once for credit with topic or instructor change. Letter grading.

194. Research Group Seminars: Bioengineering. (4) Seminar, three hours. Limited to bioengineering undergraduate students who are part of research group. Study and analysis of current topics in bioengineering. Discussion of current research literature in research specialty of faculty member teaching course. Student presentation of projects in research specialty. May be repeated for credit. Letter grading.

199. Directed Research in Bioengineering. (2 to 8) Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation under guidance of faculty mentor. Culminating paper or project required. May be repeated for credit with school approval. Individual contract required; enrollment permissions available in Office of Academic and Student Affairs. Letter grading.

Biomedical Engineering

Interdepartmental Program

UCLA
7523 Boelter Hall
Box 951600
Los Angeles, CA 90095-1600
(310) 267-4985
fax: (310) 794-5956
e-mail: bme@ea.ucla.edu
http://www.bme.ucla.edu

Timothy J. Deming, Ph.D., Chair

Faculty Advisory Committee

Timothy J. Deming, Ph.D. (Bioengineering, Chemistry and Biochemistry)
Bruce S. Dunn, Ph.D. (Materials Science and Engineering)
Chih-Ming Ho, Ph.D. (Mechanical and Aerospace Engineering)
Hooshang Kangarloo, M.D. (Pediatrics, Radiological Sciences)
John D. Mackenzie, Ph.D. (Materials Science and Engineering)
Ichiro Nishimura, D.D.S., D.M.Sc., D.M.D. (Dentistry)
James N. Weiss, M.D. (Cardiology)

Professors

Denise Aberle, M.D. (Bioengineering, Radiological Sciences)
Abeer A.H. Atwan, Ph.D. (Electrical Engineering)
Rajive Bagrodia, Ph.D. (Computer Science)
Francisco Bezanilla, Ph.D. (Physiology)
Arnold J. Berk, M.D. (Microbiology, Immunology, and Molecular Genetics)
Angelo Caputo, Ph.D. (Dentistry)
Gregory P. Carman, Ph.D. (Mechanical and Aerospace Engineering)
Tony F.C. Chan, Ph.D. (Mathematics)
Peng-Shen Chen, Ph.D., in Residence (Medicine)
Yong Chen, Ph.D. (Mechanical and Aerospace Engineering)
Samson Chow, Ph.D. (Molecular and Medical Pharmacology)
Mark Cohen, Ph.D. (Neurology, Psychiatry and Biobehavioral Sciences, Radiological Sciences)
Jean B. deKernion, M.D. (Urology)
Joseph L. Demer, M.D., Ph.D. (Neurology, Ophthalmology)
Linda L. Demer, M.D., Ph.D. (Cardiology, Physiology)
Timothy J. Deming, Ph.D. (Bioengineering, Chemistry and Biochemistry)
Vijay K. Dhir, Ph.D. (Mechanical and Aerospace Engineering)
Joseph J. DiStefano III, Ph.D. (Computer Science, Medicine)
Bruce H. Dobkin, M.D. (Neurology)
Gary Duckweiler, M.D., Ph.D. (Radiological Sciences)
Bruce S. Dunn, Ph.D. (Materials Science and Engineering)
V. Reggie Edgerton, Ph.D. (Physiological Science)
Jack L. Feldman, Ph.D. (Neurobiology, Physiological Science)

Harold R. Fettermann, Ph.D. (Electrical Engineering)
Gerald A.M. Finerman, M.D. (Orthopaedic Surgery)
C. Fred Fox, Ph.D. (Microbiology, Immunology, and Molecular Genetics)
C.R. Gallistel, Ph.D. (Psychology)
Alan Garfinkel, Ph.D. (Cardiology, Physiological Science)
Robin L. Garrell, Ph.D. (Chemistry and Biochemistry)
Bruce R. Gerratt, Ph.D. (Head and Neck Surgery)
Warren S. Grundfest, M.D. FACS (Bioengineering, Electrical Engineering, Surgery)
Robert F. Gunsalus, Ph.D. (Microbiology, Immunology, and Molecular Genetics)
Vijay Gupta, Ph.D. (Mechanical and Aerospace Engineering)
Chih-Ming Ho, Ph.D. (Mechanical and Aerospace Engineering, Ben Rich Lockheed Martin Professor of Aeronautics, Center for Micro Systems Director)
Edward J. Hoffman, Ph.D. (Molecular and Medical Pharmacology, Radiological Sciences)
Henry S.C. Huang, D.Sc. (Biomechanics, Molecular and Medical Pharmacology)
Stephen E. Jacobsen, Ph.D. (Electrical Engineering)
J-Woody Ju, Ph.D. (Civil and Environmental Engineering)
William J. Kaiser, Ph.D. (Electrical Engineering)
Hooshang Kangarloo, M.D. (Pediatrics, Radiological Sciences)
Patricia A. Keating, Ph.D. (Linguistics)
Chang-Jin Kim, Ph.D. (Mechanical and Aerospace Engineering)
J. John Kim, Ph.D. (Mechanical and Aerospace Engineering)
H. Phillip Koeffler, M.D. (Medicine)
Jess F. Kraus, Ph.D., M.P.H. (Epidemiology)
Jody E. Kreiman, Ph.D., in Residence (Surgery)
Elliot M. Landaw, M.D., Ph.D. (Biomechanics)
Andrew F. Leuchter, M.D. (Psychiatry and Biobehavioral Sciences)
James C. Liao, Ph.D. (Chemical and Biomolecular Engineering)
Jia-Ming Liu, Ph.D. (Electrical Engineering)
Edythe London, Ph.D. (Psychiatry and Biobehavioral Sciences)
Ajit K. Mal, Ph.D. (Mechanical and Aerospace Engineering)
Keith Markolf, Ph.D. (Orthopaedic Surgery)
Edward McCabe, M.D. (Pediatrics)
Harry McKeelop, Ph.D., in Residence (Orthopaedic Surgery)
Istvan Mody, Ph.D. (Neurology, Physiology)
Harold G. Monbouquette, Ph.D. (Chemical and Biomolecular Engineering)
Sherie L. Morrison, Ph.D. (Microbiology, Immunology, and Molecular Genetics)
Peter M. Narins, Ph.D. (Ecology and Evolutionary Biology, Physiological Science)
Stanley Nelson, M.D. (Human Genetics)
Ichiro Nishimura, D.D.S., D.M.Sc., D.M.D. (Dentistry)
D. Stott Parker, Jr., Ph.D. (Computer Science)
Yahya Rahmat-Samii, Ph.D. (Electrical Engineering)
Shlomo Raz, M.D. (Urology)
Iwani Roychowdhury, Ph.D. (Electrical Engineering)
Michael Sofroniew, M.D., Ph.D. (Neurobiology)
Biomedical Engineering Interdepartmental Program trains specially qualified engineers and scientists to work on engineering applications in either medicine or biotechnology. Graduates apply engineering principles to current needs and contribute to future advances in the fields of medicine and biotechnology. Fostering careers in industry or academia, the program offers students the choice of an M.S. or Ph.D. degree in eight distinct fields of biomedical engineering. In addition to selected advanced engineering courses, students are required to take specially designed biomedical engineering courses to ensure a minimal knowledge of the appropriate biological sciences. Students receive practical training via an M.S. or Ph.D. research thesis or dissertation in biomedical engineering. Faculty members have principal appointments in departments across campus and well-equipped laboratories for graduate student research projects.

Graduate Study
For information on graduate admission, see Graduate Programs, page 23. The following introductory information is based on the 2007-08 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnet.ucla.edu/gasaa/library/pgmrqintro.htm. Students are subject to the detailed degree requirements as published in Program Requirements for the year in which they matriculate.

The Biomedical Engineering Program offers Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Biomedical Engineering.

Biomedical Engineering M.S.
Students are expected to complete 42 units, which in most cases include Biomedical Engineering C201, CM202, CM203, and two courses from their area of study. The M.S. degree is offered under both the thesis plan and comprehensive examination plan. Under the thesis plan, 8 units of thesis work may be applied toward the unit requirements for the degree. The comprehensive examination plan consists entirely of coursework (12 courses) and a comprehensive examination. Eight of the 12 courses must be graduate (200-level) courses, and students must maintain a grade-point average of 3.25 or better in both upper division and graduate courses. Three Biomedical Engineering 299 courses (6 units total) are also required.

Biomedical Engineering Ph.D.
The Ph.D. program prepares students for advanced study and research in biomedical engineering. The Ph.D. preliminary examination typically consists of both written and oral parts. To receive a pass on the examination, students must receive a pass on both parts. An oral qualifying/advancement to candidacy examination, coursework for two minor fields of study, and defense of the dissertation are also required. The major field consists of six courses, and each minor field consists of three 4-unit courses, of which two must be graduate (200-level) courses. One minor must be in another field of biomedical engineering. Students must maintain a grade-point average of 3.25 or better in all courses.

Fields of Study

Bioacoustics, Speech, and Hearing
The bioacoustics, speech, and hearing field trains biomedical engineers to apply concepts and methods of engineering and physical and biological sciences to solve problems in speech and hearing. To meet this goal, the program combines a rigorous
curriculum in quantitative methods for studying speech and hearing and an exposure to biomedical issues.

Course Requirements

Core Courses (Required). Biomedical Engineering C201, CM202, CM203, M214A, 230.

Remedial courses are taken as necessary. For students without previous exposure to signal processing, Electrical Engineering 102 and 113 are recommended.

Biocybernetics

Graduate study in biocybernetics is intended for science or engineering students interested in systems biology systems or biomedical systems, with an emphasis on systems and integration. This encompasses the systems engineering/cybernetics-based integrative properties or behavior of living systems, including their regulation, control, integration, and intercommunication mechanisms, and their associated measurement, visualization, and mathematical and computer modeling.

The program provides directed interdisciplinary biosystem studies to establish a foundation in system and information science, mathematical modeling, measurement and integrative biosystem science, as well as related specialized life sciences domain studies. It fosters careers in research and teaching in systems biology engineering, medicine, and/or the biomedical sciences, or research and development in the biomedical or pharmaceutical industry. At the system and integration level, biocybernetics methodology is quite broadly applicable to a large spectrum of biomedical problems.

Typical research areas include basic and clinical problems in biomedical systems, systems biology, all types of biocontrol systems, imaging systems, pharmaceutical systems, biotechnology systems, bioinformatics, genomics, neuroscience, and remote sensing systems for the life sciences.

Faculty research areas include computational biology, computational biochemistry, and metabolism; computational cardiology and neuroendocrinology; biomodeling of diseases, cellular processes, metabolic control systems, and gene networks; modeling in genomics, pharmacokinetics, and pharmacodynamics; vision, robotics, speech processing, neuroscience, artificial and real neural network modeling, normative expert systems, wireless remote sensing systems, telemedicine, visualization, and virtual clinical environments.

Course Requirements

Biocybernetics can serve as a minor field for other Ph.D. majors if students complete the following courses with a grade-point average of B+: Biomedical Engineering CM286B, M296A, and one additional graduate-level elective from the additional foundations or electives list.

Core Courses (Required). Biomedical Engineering C201, CM202, CM203, CM286B, and either M296A or Biomatics 220.

Biomechanics, Biomaterials, and Tissue Engineering

Three subfields—biomechanics, biomaterials, and tissue engineering—comprise this broad field. The properties of bone, muscles, and tissues, the replacement of natural materials with artificial compatible and functional materials such as polymer composites, ceramics, and metals, and the complex interactions between implants and the body are studied.

Course Requirements

Core Courses (Required). Biomedical Engineering C201, CM202, CM203, and two courses from CM240, CM280, C281, 282, C285.

Biomedical Instrumentation

The biomedical instrumentation field trains biomedical engineers in the applications and development of instrumentation used in medicine and biotechnology. Examples include the use of lasers in surgery and diagnostics, sensors for detection and monitoring of disease, and microelectromechanical systems (MEMS) devices for controlled drug delivery, surgery, or genetics. The principles underlying each instrument and the specific needs in medical applications are emphasized.

Course Requirements

Core Courses (Required). Biomedical Engineering C201, CM202, CM203, CM250A, CM250L.

Biomedical Signal and Image Processing and Bioinformatics

The biomedical signal and image processing and bioinformatics field encompasses techniques for the acquisition, processing, classification, and analysis of digital biomedical signals, images, and related information, classification and analysis of biomedical data, and decision support of clinical processes. Sample applications include (1) digital imaging research utiliz-
ing modalities such as X-ray imaging, computed tomography (CT), and magnetic resonance (MR), positron emission tomography (PET) and SPECT, optical microscopy, and combinations such as PET/MR, (2) signal processing research on hearing to voice recognition to wireless sensors, and (3) bioinformatics research ranging from image segmentation for content-based retrieval from databases to correlating clinical findings with genomic markers. Graduates of the program integrate advanced digital processing and artificial intelligence technologies with healthcare activities and biomedical research. They are prepared for careers involving innovation in the fields of signal processing, medical imaging, and medical-related informatics in either industry or academia.

Course Requirements
Students selecting biomedical signal and image processing and bioinformatics as a minor field must take three courses, of which at least two must be graduate (200-level) courses.

Core Courses (Required). Biomedical Engineering C201, CM202, CM203, M214A, Electrical Engineering 113, 211A.

Remedial Courses. Electrical Engineering 102, Program in Computing 10A, 10B.

Medical Imaging Informatics
The objective of the medical imaging informatics field is to train students in imaging-based medical informatics. Specifically, the program’s aims are to enable (1) students from engineering backgrounds to become familiar with aspects of clinical and medical environments, such that they are able to appropriately apply their skills and knowledge in these domains, (2) students from medical backgrounds to learn sufficient expertise in current information and engineering technologies to address specific problems within clinical environments, (3) all students to be experts within the field of imaging-based medical informatics, becoming experienced in dealing with diverse biomedical data (imaging and text), and (4) all students to learn to work in a multidisciplinary group of researchers and individuals, enabling new developments within the field.

The underlying goal is to foster a community for students and faculty members from multiple disciplines (represented by individuals from the Schools of Engineering, Education and Information Studies, Medicine, and Public Health) to participate in the growing area of medical imaging informatics.

Course Requirements

Molecular and Cellular Bioengineering
The field of molecular and cellular bioengineering encompasses the engineering of enzymes, cellular metabolism, biological signal transduction, and cell-cell interactions. Research emphasizes the fundamental basis for diagnosis, disease treatment, and redesign of cellular functions at the molecular level. The field interacts closely with the fields of bioinstrumentation (MEMS), tissue engineering, and neuroengineering. Graduates of the program are targeted principally for employment in academia, in government research laboratories, and in the biotechnology, pharmaceutical, and biomedical industries.

Course Requirements
Core Courses (Required). Biomedical Engineering C201, CM202, CM203, and two courses from M215, M225, CM245.

Neuroengineering
The neuroengineering field is a joint endeavor between the Neuroscience Interdepartmental Ph.D. Program in the Geffen School of Medicine and the Biomedical Engineering Interdepartmental Graduate Program in HSSEAS, with the active involvement of scientists and technologies from the Jet Propulsion Laboratory (JPL).

The objectives of the neuroengineering field are to enable (1) students with a background in engineering to develop and execute projects that address problems that have a neuroscientific base, including locomotion and pattern generation, central control of movement, and the processing of sensory information; (2) students with a background in biological sciences to develop and execute projects that make use of state-of-the-art technology, including MEMS, signal processing, and photonics. In preparing students to use new technologies, the program also introduces them to basic concepts in engineering that are applicable to the study of systems neuroscience, including signal processing, communication, and information theory; and (3) all trainees to develop the capacity for the multidisciplinary teamwork that is necessary for new scientific insights and dramatic technological progress. Courses and research projects are cosponsored by faculty members in both HSSEAS and the Brain Research Institute (BRI).

Requisites for Admission. Students entering the neuroengineering program have graduated with undergraduate degrees in engineering, physics, chemistry, or one of the life sciences (for example, biology, microbiology, immunology, and molecular genetics, molecular, cell, and developmental biology, neuroscience, physiology, or psychology). Engineering students must have taken at least one undergraduate course in biology, at least one course in chemistry, and a year of physics. Students from non-engineering backgrounds are required to have taken courses in undergraduate calculus, differential equations, and linear algebra, in addition to at least a year of undergraduate courses in each of the following: organic chemistry and biochemistry, physics, and biology. Students lacking one or more requisite courses, if they are otherwise admissible, are provided an opportunity for appropriate coursework or tutorial during the summer before they enter the neuroengineering program.

Written Preliminary Examination. The Ph.D. preliminary examination typically consists of two written parts—one in neuroscience and one in neuroengineering. To receive a pass on the examination, students must receive a pass on both parts. Students who fail the examination may repeat it only once, subject to approval of the faculty examination committee.
Students who are in a field other than neuroscience and who select neuroengineering as a minor must take Biomedical Engineering M260, M263, and Neuroscience 205.

Electives. During the first and second years, students take at least three courses selected from a menu of new and existing courses.

Biomedical engineering category: Biomedical Engineering C201.
Neuroscience category: Neuroscience M201, M263, M273, 274.

Seminars (First-Year). Two seminars in problem-based approaches to neuroengineering are required. All first-year students take a new graduate seminar series in Winter and Spring Quarters which is co-taught each quarter by one instructor from HSSEAS and one from the Brain Research Institute. Each seminar introduces students to a single area of neuroengineering and challenges them to develop critical skills in evaluating primary research papers and to design new approaches to current problems. Topics include pattern generation, sensory signal processing, initiation and control of movement, microsensors, neural networks, photonics, and robotics.

Research Seminars. In addition to the formal coursework listed above, all students attend a series of weekly research seminars that allow both students and faculty members to become more conversant with the broad range of subjects in neuroengineering. In Fall Quarter, a series called “Meet the Professors” consists of informal talks by UCLA faculty members and collaborative researchers from the surrounding area. The series introduces the faculty to the students and vice versa, and helps faculty in neuroscience and engineering discover opportunities for collaboration that engage students in the neuroengineering program. In Winter and Spring Quarters, seminar speakers are selected from commercial, academic, and government organizations.

Seminars (Second-Year). All second-year students take a seminar course each quarter specifically designed for the neuroengineering program. Each course is co-taught by one faculty member from the Brain Research Institute and one from HSSEAS and often include outside UCLA faculty speakers or members of the Industrial Advisory Board.

Lower Division Courses

19. Fiat Lux Freshman Seminars. (1 Seminar, one hour) Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

99. Student Research Program. (1 to 2) Tutorial supervised research or other scholarly work; three hours per week per unit. Entry-level research for lower division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.

Upper Division Courses

C101. Introduction to Biomedical Engineering. (4) Lecture, three hours; laboratory, three hours; outside study, six hours. Designed for physical sciences, life sciences, and engineering students. Introduction to wide scope of biomedical engineering via treatment of selected important individual topics by small team of specialists. Concurrently scheduled with course C201. Letter grading.

CM102. Basic Human Biology for Biomedical Engineers I. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Requisites: Chemistry 20A, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Concentration in chemical engineering, chemical engineering CM150, and Aerospace Engineering CM140. Preparation: human molecular biology, biochemistry, and cell biology. Not open for credit to Physiology Science majors. Broad overview of basic biological activities and organization of human body in system (organ/tissue) to system basis, with particular emphasis on molecular basis. Modeling/simulation of functional aspect of biological system included. Actual demonstration of biomedical instruments, as well as visits to biomedical facilities. Concurrently scheduled with course CM202. Letter grading.

CM131. Nanopore Sensing. (4) (Same as Bioengineering M131.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Biomedical Engineering 100, 120, Life Sciences 2, 3, Physics 1A, 1B, 1C. Analysis of sensors based on measurements of fluctuating ionic conductance through artificial or protein nanopores. Physics of pore conductance. Applications of single molecule detection and DNA sequencing. Review of current literature and technological applications. History and instrumentation of resistive pulse sensing, theory and instrumentation of electrical measurement, nanopore fabrication, ionic conductance through pores and GHK equation, patch clamp and single channel measurements and instrumentation, noise issues, protein engineering, amplifiers, and post-DNA sequencing, membrane engineering, and future directions of field. Concurrently scheduled with course C231. Letter grading.

MR. Schmidt (F)

CM140. Introduction to Biomechanics. (4) (Same as Mechanical and Aerospace Engineering CM140.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: Mechanical and Aerospace Engineering 101, 102, 156A. Introduction to mechanical functions of human body, skeletal adaptations to optimize load transfer, mobility, and function. Dynamics and kinematics. Fluid mechanics applications. Heat and mass transfer. Power generation. Laboratory simulations and tests. Concurrently scheduled with course CM240. Letter grading.

MR. Gupta (W)

C141L. Biomechanics Laboratory. (4) Lecture, one hour; laboratory, three hours; outside study, eight hours. Requisites: course CM140 or Mechanical and Aerospace Engineering 156A. Hands-on laboratory pertaining to mechanical testing and analysis of long bone specimens. Students, working in pairs, engage in all aspects of procedures. Fundamentals include design and fabrication of signal processing circuitry for use in data acquisition process, including bridge circuits, operational amplifiers, and pulse filters; computerized data acquisition using Lab View and A/D input/output (I/O) board; strain measurements on metallic and bone specimens. Finite element analysis of structure under investigation; comparison of experimental, theoretical, and computational results. Concurrently scheduled with course C241L. Letter grading.

CM145. Molecular Biotechnology for Engineers. (4) (Same as Chemical Engineering CM145.) Lecture, four hours; discussion, one hour; outside study, eight hours. Selected topics in molecular biology that form foundation of biotechnology and biomedical industry today. Topics include recombinant DNA technology, molecular research tools, manipulation of gene expression, directed mutagenesis and protein engineering, DNA-based diagnostics and DNA microarrays, antibody and protein-based diagnostics, genomics and bioinformatics, isolation of human genes, gene therapy, and tissue engineering. Concurrently scheduled with course CM245. Letter grading.

MR. Liao (F)

CM150. Introduction to Micromachining and Microelectromechanical Systems (MEMS). (4) (Formerly numbered M150.) (Same as Electrical Engineering CM150 and Mechanical and Aerospace Engineering CM180.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Chemistry 20A, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Corequisite: course CM150L. Introduction to micromachining technologies and microelectromechanical systems (MEMS). Methods of micromachining and how these methods can be used to produce variety of MEMS, including microstructures, microsensors, and micromotors. Students design microfabrication processes capable of achieving desired MEMS devices. Concurrently scheduled with course CM250A. Letter grading.

MR. Judy (F)
CM150L. Introduction to Micromachining and Microelectromechanical Systems (MEMS) Laboratory. (2) (Formerly numbered M150L.) (Same as Electrical Engineering CM150L and Mechanical and Aerospace Engineering CM180L.) Lecture, one hour; laboratory, four hours; outside study, one hour. Requisites: Chemistry 20A, 20B, Physics 1A, 1B, 1C, 4AL, 4BL. Concurrently scheduled with course CM150. Introduction to micromachining technologies and microelectromechanical systems (MEMS) laboratory. Methods of micromachining and how these methods can be used to produce variety of MEMS, including microstructures, microsensors, and microactuators. Students go through process of fabricating MEMS device. Concurrently scheduled with course CM250L. Letter grading. Mr. Judy (F)

C170. Energy-Tissue Interactions. (4) Lecture, three hours; outside study, nine hours. Requisites: Electrical Engineering 172, 175, Life Sciences 3, Physics 17. Corequisite: course C170L. Introduction to therapeutic and diagnostic use of energy delivery devices in medical and dental applications, with emphasis on understanding fundamental mechanisms underlying various types of energy-tissue interactions. Concurrently scheduled with course C270L. Letter grading.

C170L. Introduction to Techniques in Studying Laser-Tissue Interaction. (2) Laboratory. four hours; outside study, two hours. Corequisite: course C170. Introduction to simulation and experimental techniques used in studying laser-tissue interactions. Topics include computer simulations of light propagation in tissue, measuring absorption spectra of tissue/tissue phantoms, making tissue phantoms, determining optical properties of different tissues, techniques of temperature distribution measurements. Concurrently scheduled with course C270L. Letter grading.

CM172. Design of Minimally Invasive Surgical Tools. (4) (Same as Bioengineering M172.) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 30B, Life Sciences 2, 3, Mathematics 32A. Introduction to design principles and engineering concepts used in design and manufacture of tools for minimally invasive surgery. Coverage of FDA regulatory policy and surgical procedures. Topics include optical devices, endoscopes and laparoscopes, biopsy devices, laparoscopic tools, cardiovascular and interventional radiology devices, orthopedic instrumentation, and integration of devices with therapy. Examination of complex process of tool design, fabrication, testing, and validation. Preparation of drawings and consideration of development of new and novel devices. Concurrently scheduled with course C272. Letter grading. Mr. Grundfest (F)

CM180. Introduction to Biomaterials. (4) (Same as Materials Science CM180.) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisite: course CM110. Methods of micromachining and microelectromechanical systems (MEMS) laboratory. Methods of micromachining and how these methods can be used to produce variety of MEMS, including microstructures, microsensors, and microactuators. Students go through process of fabricating MEMS device. Concurrently scheduled with course CM250L. Letter grading. Mr. Wu (W)

C181. Biomaterials-Tissue Interactions. (4) Lecture, three hours; outside study, nine hours. Requisite: course CM180. In-depth exploration of host cellular response to biomaterials: vascular response, interface, and clotting, biocompatibility, animal models, inflammation, infection, extracellular matrix, cell adhesion, and role of mechanical forces. Concurrently scheduled with course C281. Letter grading. Mr. Wu (Sp)

CM183. Targeted Drug Delivery and Controlled Drug Release. (4) (Same as Bioengineering M183.) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 20A, 20B, 20L. New therapeutic strategies, including drug delivery and tissue engineering, are examples of drug development that can provide spatial and temporal control of drug release. Introduction to biomaterials and their use in tissue engineering applications. Exploration of biocompatibility and performance of tissue and organ biocompatibility. Concurrently scheduled with course C283. Letter grading. Ms. Kasco (F)

C185. Introduction to Tissue Engineering. (4) Lecture, three hours; outside study, nine hours. Requisites: course CM102 or CM202, Chemistry 20A, 20B, 20L. Tissue engineering applies principles of biology and physical sciences with engineering approach to regenerate tissues and organs. Guiding principles for proper selection of three basic components for tissue engineering: cells, scaffolds, and signals. Concurrently scheduled with course C285. Letter grading. Mr. Wu (Sp)

M186A. Introduction to Cybernetics, Biomodeling, and Biomedical Computing. (2) (Formerly numbered M196A.) (Same as Computational and Systems Biology M186A and Computer Science M186C.) Lecture, two hours. Requisites: Mathematics 31A, 31B, Program in Computing 10A. Strongly recommended for students with potential interest in biomedical engineering/biocomputing fields or in Computational and Systems Biology as a major. Introduction and survey of topics in cybernetics, biomodeling, biocomputing, and related bioengineering disciplines. Lectures presented by faculty currently performing research in one of the areas; some sessions include laboratory tours. P/NP grading. Mr. DiStefano (F)

CM186B. Computational Systems Biology: Modelling and Simulation of Biological Systems. (5) (Formerly numbered M186B.) (Same as Computational and Systems Biology M186C and Computer Science M186B.) Lecture, four hours; laboratory, three hours. Corequisite: Electrical Engineering 102. Dynamic biosystems modeling and computer simulation techniques for studying biological/biomedical processes and systems at multiple levels of organization. Control system, compartmental, predator-prey, pharmacokinetic (PK), pharmacodynamic (PD), and other DDS modeling methods applied to life sciences problems at molecular, cellular (biochemical pathways/networks), organ, and organismic levels. Both theory- and data-driven modeling, with focus on translating biomodels into hypotheses. Development of computational mathematics models and implementing them for simulation and analysis. Basics of numerical simulation algorithms, with model software exercises in class and PC laboratory assignments. Concurrently scheduled with course CM286B. Letter grading. Mr. DiStefano (F)

C187. Applied Tissue Engineering: Clinical and Industrial Perspectives. (4) (Same as Biomedical Engineering CM187 and Electrical Engineering CM187.) Lecture, four hours; outside study, seven hours. Requisites: course CM102, Chemistry 20A, 20B, 20L, Life Sciences 1 or 2. Overview of central topics of tissue engineering, with focus on how to build artificial tissues into regulated clinically viable products. Topics include biomaterials selection, cell source, delivery methods, FDA approval processes, and physical/chemical and biological testing. Case studies include skin and artificial skin, bone and cartilage, blood vessels, neurotissue engineering, and kidney, liver, and other organs. Clinical and industrial perspectives of tissue engineering products. Manufacturing constraints, clinical limitations, and regulatory challenges in design and development of tissue-engineering devices. Concurrently scheduled with course C297. Letter grading. Mr. Wu (Sp)

188. Special Courses in Biomedical Engineering. (4) (Formerly numbered 198.) Lecture, four hours; outside study, eight hours. Special topics in biomedical engineering for undergraduate students that are taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated for credit. Letter grading.

Graduate Courses

C201. Introduction to Biomedical Engineering. (4) Lecture, three hours; laboratory, three hours; outside study, six hours. Designed for physical sciences, life sciences, and engineering students. Introduction to wide scope of biomedical engineering via treatment of selected important individual topics by small team of specialists. Concurrently scheduled with course C101. Letter grading. Mr. Kamei (F)
CM202. Basic Human Biology for Biomedical Engineers I. (4) (Same as Physiological Science CM202.) Lecture, three hours; laboratory, two hours. Preparation: human molecular biology, biochemistry, and cell biology. Not open for credit to Physiological Science majors. Broad overview of basic biological activities and organization of human body in system (organizational) and cellular basis, with particular emphasis on molecular basis. Modeling/simulation of functional aspect of biological system included. Actual demonstration of biomedical instruments, as well as visits to biomedical research laboratories. Concurrently scheduled with course CM102. Letter grading.

Mr. Grundfest (F)

Mr. Grundfest (W)

Ms. Alwan (W)

M215. Biochemical Reaction Engineering. (4) (Same as Chemical Engineering CM215.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Chemical Engineering 101C and 106, or Chemistry 156. Use of previously learned concepts of biophysical chemistry, thermodynamics, transport phenomena, and reaction kinetics to develop tools needed for technical design and economic analysis of biological reactors. Letter grading.

Mr. Liao (Sp)

M217. Biomedical Imaging. (4) (Same as Electrical Engineering M217.) Lecture, three hours; laboratory, two hours; outside study, seven hours. Requisite: Electrical Engineering 114 or 211A. Mathematical principles of medical imaging modalities: X-ray, computed tomography, positron-emission tomography, single photon emission computed tomography, magnetic resonance imaging. Topics include basic principles of each imaging system, image reconstruction algorithms, system configurations and their effects on reconstruction algorithms, specialized imaging techniques for specific applications such as flow imaging. Letter grading.

220. Introduction to Medical Informatics. (2) Lecture, two hours; outside study, four hours. Designed for graduate students. Introduction to research topics and issues in medical informatics for students new to field. Definition of this emerging field of study, current research efforts, and future directions in research. Key issues in medical informatics to expose students to different application domains, such as information system architectures, data and process modeling, information extraction and representations, information retrieval and visualization, health services research, telemedicine. Emphasis on current research endeavors and applications. S/U grading.

Mr. Kangarloo (F)

221. Human Anatomy and Physiology for Medical Informatics. (4) Lecture, four hours; outside study, eight hours. Corequisite: course 222. Designed for graduate students. Introduction to fundamental anatomy and physiology, with particular emphasis on visualization of anatomy and physiology from imaging perspective. Topics include chest, cardiac, neurology, gastrointestinal/guinary, and musculoskeletal systems. Examination of basic imaging physics (magnetic resonance, computed tomography, ultrasound, computed radiography) to provide context for imaging modality processes. Concurrently scheduled with course CM102. Letter grading.

Mr. El-Saden (F)

222. Clinical Rotation Medical Informatics. (2) Lecture, two hours; laboratory, four hours. Corequisite: course 221. Designed for graduate students. Clinical rotation through medical imaging modalities and clinical environments. Exposure to challenges of medical practice today and clinical usage of imaging, including computed tomography, magnetic resonance, and other traditional forms of image acquisition. Designed to provide students with real-world exposure to clinical environments to gain appreciation of current practices, imaging, and information systems. Participation in clinical noon conferences to further broaden exposure and understanding of medical problems. S/U grading.

223A-223B-223C. Programming Laboratories for Medical Informatics I, II, III. (4-4-4) Lecture, two hours; laboratory, two hours. Designed for graduate students. Introduction to medical image analysis and visualization tools. Basic coursework in other medical informatics core curriculum courses. Exposure to programming concepts for medical applications, with focus on abstract algorithmic techniques used in image processing and medical information system infrastructures (HL7, DICOM). Letter grading.

223A. Integrated with course 226 to reinforce concepts presented with practical experience. Projects focus on understanding medical networking issues and implementation of basic protocols for healthcare environment, with emphasis on use of DICOM. Requisite: course 223A. Integrated with courses 224A and 227 to reinforce concepts presented with practical experience. Projects focus on medical image manipulation and decision support systems. Requisite: course 223B. Integrated with courses 224B and 229B to reinforce concepts presented with practical experience. Projects focus on medical image storage and retrieval.

Mr. Meng (F.W.Sp)

224A. Physics and Informatics of Medical Imaging. (4) Lecture, four hours; laboratory, eight hours. Requisites: Mathematics 33A, 33B. Designed for graduate students. Introduction to principles of medical imaging and imaging informatics for nonphysicists. Overview of core imaging modalities: computed radiography (CR), computed tomography (CT), magnetic resonance (MR), and ultrasound (US). Emphasis on physics of image formation and image reconstruction methods. Overview of DICOM data models, basic medical image processing, content-based image retrieval, PACS, and image data management. Current research efforts, with focus on clinical applications and new types of information available. Geared toward nonphysicists to provide basic understanding of issues related to basic medical image acquisition and to understand functionality of imaging databases and image models facilitating sharing of imaging data for clinical and research purposes. Letter grading.

Mr. Sinha (W)

224B. Advanced Imaging for Informatics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 224A. Additional modalities and current research in imaging. Topics include nuclear medicine, functional magnetic resonance imaging (fMRI), MR diffusion/perfusion, and optical imaging, with focus on image analysis and visualization tools. Basic physics principles behind imaging concepts, with exposure to seminal works. Current research efforts, with focus on clinical applications and new types of information available. Geared toward nonphysicists to provide basic understanding of issues related to advanced medical image acquisition and to understand functionality of imaging databases and image models facilitating sharing of imaging data for clinical and research purposes. Letter grading.

Mr. Sinha (Sp)

M225. Bioseparations and Bioprocess Engineering. (4) (Same as Chemical Engineering CM225.) Lecture, four hours; discussion, one hour; outside study, eight hours. Designed for graduate students. Issues related to medical knowledge representation and its application in healthcare environments. Topics include data structures used for representing knowledge (conceptual graphs, frame-based models), different data models for representing spatio-temporal information, rule-based implementations, current statistical methods for discovering, knowledge analysis tools, and hierarchical classification), and basic information retrieval. Overview of work in constructing ontologies, with focus on problems in implementation and definition. Common medical ontologies, coding schemes, and standardized terminologies (SNOMED, UMLS, MeSH, LOINC). Letter grading.

Mr. Taira (Sp)

227. Medical Information Infrastructures and Internet Technologies. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Introduction to networking, communications, and information infrastructures in medical environment. Exposure to basic concepts related to networking at several levels: low-level (TCP/IP, services), mediumlevel (network topologies), and high-level (distributed computing, Web-based services) implementations. Commonly used medical communication protocols (HL7, DICOM) and current medical information systems (HIS, RIS, PACS). Advances in networking, such as wireless, Internet2/gigabit networks, peer-to-peer technologies. Introduction to security and encryption in networked environments. Letter grading.

Mr. Bui (F)

228. Medical Decision Making. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Overview of issues related to medical decision making. Introduction to concept of evidence-based medicine and decision processes related to process of care and outcomes. Basic probability and statistics, decision trees, regression analysis, and evaluation. Logical model for decision-making processes (Bayes theorem, decision trees). Study design, hypothesis testing, and estimation. Focus on technical advances in medical decision systems and expert systems with, review of classic and current research. Introduction to common statistical and decision-making software packages to familiarize students with current tools. Letter grading.

Mr. Kangarloo (W)

33
230. Engineering Principles of Ultrasound. (4)
Lecture, three hours; discussion, one hour; outside study, eight hours. Introduction to science and technology of acoustics in biological systems, starting with physical acoustics, acoustic wave (Helmholtz) equation, acoustic propagation and scattering in homogeneous and inhomogeneous media, and acoustic attenuation. Measurements of physical parameters of biological systems, such as acoustic impedance, equivalent circuits, and network models. Electroacoustic transducers (piezoelectric and MEMS) and radiators. Acoustic generation, modulation, and transmission. Fundamentals of receiving and processing of acoustic waves in presence of noise. Letter grading.
Mr. Brown (F)

C231. Nanopore Sensing. (4)
Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Bioengineering 100, 120; Life Sciences 2, 3, Physics 1A, 1B, 1C. Analysis of sensors based on measurements of fluctuating ionic conductance through artificial or protein nanopores. Physics of pore conductance. Applications to single molecule detection and DNA sequencing. Review of current literature and technological applications. History and instrumentation of resistive pulse sensing, theory and instrumentation of electrical measurements in electrolytes, nanopore fabrication, ionic conductance through pores and GHK equation, patch clamp and single channel measurements and instrumentation, noise issues, protein engineering, molecular sensing, DNA sequencing, membrane engineering, and future directions of field. Concurrently scheduled with course CM247. Letter grading.
Mr. Schmidt (F)

CM240. Introduction to Micromachining. (4)
(Same as Mechanical and Aerospace Engineering CM240.)
Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: Mechanical and Aerospace Engineering 101A, 101B, 156A. Introduction to mechanical functions of human body; skeletal adaptations to optimize load transfer, mobility, and function. Dynamics and kinematics. Fluid mechanics applications. Heat and mass transfer. Power generation. Laboratory simulations and tests. Concurrently scheduled with course CM140. Letter grading.
Mr. Gupta (W)

C241L. Biomechanics Laboratory. (4)
Lecture, one hour; laboratory, three hours; outside study, eight hours. Requisite: course CM140 or Mechanical and Aerospace Engineering 156A. Hands-on laboratory pertaining to mechanical testing and analysis of long bone specimens. Students, working in pairs, engage in all aspects of procedures. Fundamentals include design and fabrication of signal processing circuitry for use in data acquisition process, including bridge completion circuits, amplifiers, and passive filters; computerized data acquisition using Lab View and A/D input/output (I/O) board; strain measurements on metallic and bone specimens. Finite element analysis of structure under investigation; comparison of experimental, theoretical, and computational results. Concurrently scheduled with course C141L. Letter grading.
CM245. Molecular Biotechnology for Engineers. (4)
(Same as Chemical Engineering CM245.)
Lecture, four hours; discussion, one hour; outside study, eight hours. Selected topics in molecular biology that current applications to optimizing load transfer, mobility, and function. Dynamics and kinematics. Fluid mechanics applications. Heat and mass transfer. Power generation. Laboratory simulations and tests. Concurrently scheduled with course CM140. Letter grading.
Mr. Liao (F)

CM247. Introduction to Biological Imaging. (4)
(Same as Biomedical Physics M247 and Pharmacology M248.)
Lecture, three hours; laboratory, one hour; outside study, seven hours. Exploration of role of biological imaging in modern biology and medicine, including imaging physics, instrumentation, image processing, and applications of imaging for a range of topics. Course provided through a series of imaging laboratories. Letter grading.
CM250A. Introduction to Micromachining and Micromechanical Systems (MEMS). (4)
(Formerly numbered M250A.) (Same as Electrical Engineering E250A and Mechanical and Aerospace Engineering CM250A.)
Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Physics 4A, 4B, 4C, 4DL. Corequisite: course CM250L. Introduction to micromachining technologies and microelectromechanical systems (MEMS). Methods of micromachining and how these methods can be used to produce variety of MEMS, including microstructures, microsensors, and microactuators. Students design microfabrication processes capable of achieving desired MEMS device. Concurrently scheduled with course CM150. Letter grading.
Mr. Judy (W)

CM250B. Microelectromechanical Systems (MEMS) Fabrication. (4)
(Same as Electrical Engineering M250BL and Mechanical and Aerospace Engineering M250BL.)
Lecture, three hours; discussion, one hour; outside study, eight hours. Enforced requisite: course CM150 or CM250A. Advanced discussion of microfabrication processes used to construct MEMS. Coverage of many of lithographic, deposition, and etching processes, as well as their combination in process integration. Materials issues such as chemical resistibility, corrosion, mechanical properties, and residual/intrinsic stress. Letter grading.
Mr. Judy (Sp)

CM250L. Introduction to Micromachining and Micromechanical Systems (MEMS) Laboratory. (2)
(Same as Electrical Engineering CM250L and Mechanical and Aerospace Engineering M250L.)
Lecture, one hour; laboratory, four hours; outside study, one hour. Requisites: Chemistry 20A, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Corequisite: course CM250A. Hands-on introduction to micromachining technologies and microelectromechanical systems (MEMS) laboratory. Methods of micromachining and how these methods can be used to produce variety of MEMS, including microstructures, microsensors, and microactuators. Students go through process of fabricating MEMS device. Concurrently scheduled with course CM150L. Letter grading.
Mr. Judy (F)

C251. Nanofabrication of Biomedical Systems Using Nonconventional Materials. (4)
Lecture, four hours; outside study, eight hours. Requisites: courses CM150L (or Electrical Engineering CM150L), M252. Use of nontraditional substrates and materials in fabrication of biomedical nanosystems. Materials and fabrication issues, post-processing integration, compatibility with standard processes, and standard fabrication environment. Packaging concerns. Imaging and diagnostic techniques. Relevance issues. Concurrently scheduled with course C151L. Letter grading.
CM252. Microelectromechanical Systems (MEMS) Device Physics and Design (Formerly numbered M252BL.)
(Same as Electrical Engineering M252 and Mechanical and Aerospace Engineering M252BL.)
Lecture, four hours; outside study, eight hours. Introduction to MEMS design. Design methods, design rules, sensing and actuation mechanisms, microsensors, and microactuators. Designing MEMS to be produced with both foundry and nonfoundry processes. Computer-aided design for MEMS design project required. Letter grading.
Mr. Wu (Sp)

Lecture, four hours; outside study, eight hours. Requisites: Mathematics 32A, 32B, 33A, 33B; Life Sciences 3, Physics 1A, 1B, 1C. Introduction to physics of motor proteins and cytoskeleton: mass, stiffness and damping of proteins, thermal forces and diffusion, chemical forces, polymer mechanics, structures of cytoskeleton, mechanisms of cytoskeleton, polymerization of cytoskeletal filaments, force generation by cytoskeletal filaments, active polymerization, motor protein structure and operation. Emphasis on engineering perspective. Letter grading.

M259H. Biomechanics of Traumatic Injury. (4)
(Same as Environmental Health Sciences M259H.)
Lecture, four hours; outside study, eight hours. Discussion of biomechanics of accidental injury causation and prevention; discussion of mechanisms of injury that result in bone and soft tissue trauma; discussion of mechanisms of healing for effective rehabilitation after traumatic injury. Letter grading.
Mr. Liu (W)

M260. Neuroengineering. (4)
(Same as Neuroscience M260.)
Lecture, four hours; laboratory, three hours. Requisites: Neuroscience 33A, Molecular, Cellular, and Developmental Biology 100, 171. Introduction to principles and technologies of neural recording and stimulation. Neurophysiology; clinical electrophysiology (EEG, evoked potentials, inverse problem, single-electrode brain recording), extracellular microelectrodes and recording (field potentials and single units), chronic recording with extracellular electrodes; electrode biocompatibility, tissue damage, electrode and cable survival; intracellular recording and glass pipettes electrodes, iontophoresis; imaging neural activity (Ca imaging, voltage-sensitive dyes), intrinsic optical imaging; MRI, FMRI. Letter grading.
Mr. Judy (Sp)

M261A-M261B-M261C. Evaluation of Research Literature in Neuroengineering. (2-2-2)
(Same as Neuroscience M212A-M212B-M212C.)
Discussion, two hours; outside study, nine hours. Requisites: Neuroscience M205L. Examination of current literature related to neuroengineering research. S/U grading.

(Same as Neuroscience M203.)
Lecture, three hours; discussion/laboratory, three hours. Anatomy of central and peripheral nervous system at cellular, histological, and regional systems level, with emphasis on contemporary applications to morphological study of nervous system in discussions of connectivity and neurochemical anatomy of major brain regions. Consideration of representative vertebrate and invertebrate nervous systems. Letter grading.

C270L. Introduction to Techniques in Studying Laser-Tissue Interaction. (2)
Laboratory, four hours; outside study, nine hours. Requisites: Electrical Engineering 172, 175, Life Sciences 3, Physics 17. Introduction to therapeutic and diagnostic use of energy delivery devices in medical and dental applications, with emphasis on understanding fundamental mechanisms underlying various types of energy-tissue interactions. Concurrently scheduled with course C170L. Letter grading.
Mr. Grundfest (F)

C270L. Introduction to Techniques in Studying Laser-Tissue Interaction. (2)
Laboratory, four hours; outside study, two hours. Corequisite: course C270. Introduction to simulation and experimental techniques used in studying laser-tissue interactions. Topics include computer simulations of light propagation in tissue, measuring absorption spectra of tissue/ tissue phantoms, making tissue phantoms, determination of optical properties of different tissues, techniques of temperature distribution measurements. Concurrently scheduled with course C170L. Letter grading.
C271. Laser-Tissue Interaction II: Biologic Spectroscopy. (4) Lecture, four hours; outside study, eight hours. Requisite: course C270. Designed for physical scientists, life scientists, and engineering majors. Introduction to optical spectroscopy principles, design of spectroscopic measurement devices, optical properties of tissues, and fluorescence spectroscopy biologic applications. Concurrently scheduled with course CM172. Letter grading. Mr. Grundfest (W)

C272. Design of Minimally Invasive Surgical Tools. (4) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 30B, Life Sciences 2, 3, Mathematics 32A. Introduction to design principles and engineering concepts used in design and manufacture of tools for minimally invasive surgery. Coverage of FDA regulatory processes, computer-aided design, materials, mechanical design, optical devices, endoscopes and laparoscopes, bioprostheses, laparoscopic tools, cardiovascular and interventional radiology devices, orthopedic instrumentation, and integration of devices with therapy. Examination of complex process of tool design, fabrication, testing, and validation. Preparation of drawings and consideration of development of new and novel devices. Concurrently scheduled with course CM172. Letter grading. Mr. Grundfest (F)

CM280. Introduction to Biomaterials. (4) (Same as Materials Science CM280.) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisites: Chemistry 20A, 20B, and 20L, or Materials Science 104. Engineering materials used in medicine and dentistry for repair and/or restoration of damaged tissues. Includes relation of micro and mesoscale to biocompatibility. Topics include biocompatibility and tissue-material interfaces, and role of mechanical forces. Concurrently scheduled with course CM180. Letter grading. Mr. Wu (Sp)

C281. Biomaterials-Tissue Interactions. (4) Lecture, three hours; outside study, nine hours. Requisite: course CM280. In-depth exploration of host cell response to biomaterials: vascular response, interface chemistry, cellular adhesion, and role of mechanical forces. Concurrently scheduled with course C181. Letter grading. Mr. Wu (Sp)

CM286A. Hybrid Device Research. (4) Lecture, four hours; outside study, eight hours. Requisite: course CM280. Review of the development and design of novel drug delivery methods, FDA approval processes, and physiological, biomedical, and pharmacological tests. Focus on current trends in drug delivery, and future clinical development. Concurrently scheduled with course CM186C. Letter grading. Mr. DiStefano (Sp)

CM286B. Computational Systems Biology: Modeling and Simulation of Biological Systems. (5) (Same as Computer Science CM286B.) Lecture, four hours; laboratory, three hours. Corequisite: Electrical Engineering 102. Dynamic biosystems modeling and computer simulation methods for studying biological/ biomedical processes and systems at multiple levels of organization. Control system, multicompartamental, predator-prey, pharmacokinetic (PK), pharmacodynamic (PD), and other structural modeling methods applied to life sciences problems at molecular, cellular (biochemical pathways/networks), organ, and organismic levels. Both theory- and data-driven modeling, with focus on translating biomodeling goals and data into mathematics models and implementing them for simulation and analysis. Basics of numerical simulation algorithms, with modeling software exercises in class and PC laboratory assignments. Concurrently scheduled with course CM186C. Letter grading. Mr. DiStefano (Sp)

CM286C. Biomodeling Research and Research Communication Workshop. (2 to 4) Formerly numbered CM295C. (Same as Computer Science CM286C.) Lecture, one hour; discussion, two hours; laboratory, one hour; outside study, eight hours. Requisite: course CM286B. Closed, directed, and individual. Topics include computer modeling and descriptive systems biology research laboratory. Direction on how to focus on topics of current interest in scientific community, appropriate to student interests and capabilities. Critiques of oral presentations and written progress reports explain how to proceed with search for research results. Major emphasis on effective researching and writing, both oral and written. Concurrently scheduled with course CM186C. Letter grading. Mr. DiStefano (Sp)

C287. Applied Tissue Engineering: Clinical and Industrial Perspectives. (4) Lecture, three hours; discussion, two hours; outside study, seven hours. Requisite: course CM180 or CM280. Function, utility, and biocompatibility of biomaterials depend critically on their surface and interfacial properties. Topics include relations between material properties, suitability to task, surface chemistry, processing and treatment methods, and biocompatibility. Concurrently scheduled with course CM180. Letter grading. Mr. Wu (Sp)

C295A-295Z. Seminars: Research Topics in Biomedical Systems Modeling and Computing. (4) (Same as Computer Science CM295A-295Z.) Lecture, four hours; outside study, eight hours. Requisite: course CM296A. Introduction to mathematical modeling and computer parameter estimation algorithms for fitting dynamic system models to biomedical data. Model discrimination methods. Theory and algorithms for designing and testing computer experiments for developing and quantifying models, with special focus on optimal sampling design to fit kinetic models. Exploration of parallel software for model building and optimal experiments. Learning and testing in a variety of domains, including chemistry, biology and pharmacology. Letter grading. Mr. DiStefano (W)

C296A. Advanced Modeling Methodology for Dynamic Biomedical Systems. (4) (Same as Computer Science M296A and Medicine M270C.) Lecture, four hours; outside study, eight hours. Requisite: course Electrical Engineering 141 or 142 or Mathematics 115A or Mechanical and Aerospace Engineering 171A. Development of dynamic systems modeling methods for biomedical systems and models of human and animal systems. Data driven, artificial intelligence, and control methods. Systems biology and control theory for biomedical systems. Letter grading. Mr. DiStefano (F)

C296B. Optimal Parameter Estimation and Experiment Design for Biomedical Systems. (4) (Same as Biostatistics M270, Computer Science M296B, and Medicine M270D.) Lecture, four hours; outside study, eight hours. Requisite: course CM296A or Biostatistics 220. Introduction to mathematical and model parameter estimation algorithms for fitting dynamic system models to biomedical data. Model discrimination methods. Theory and algorithms for designing and testing computer experiments for developing and quantifying models, with special focus on optimal sampling design to fit kinetic models. Exploration of parallel software for model building and optimal experiments. Learning and testing in a variety of domains, including chemistry, biology and pharmacology. Letter grading. Mr. DiStefano (W)

C296C. Advanced Topics and Research in Biomedical Systems Modeling and Computing. (4) (Same as Computer Science M296C.) Lecture, four hours; outside study, eight hours. Requisite: course CM296A. Recommended: course CM296B. Research techniques and experience on special topics involving high level programming languages, tools, and model/computing in biomedical and medical sciences. Review and critique of literature. Research problem solving and formulation. Approaches to solutions. Individual M.S.- and Ph.D.-level project training. Letter grading. Mr. DiStefano (Sp)

C296D. Introduction to Computational Cardiology. (4) (Same as Computer Science M296D.) Lecture, four hours; outside study, eight hours. Requisite: course CM186B. Introduction to computer modeling and computer simulation of cardiac electrophysiological process, ionic models of action potential (AP), Theory of AP propagation in one-dimensional and two-dimensional cardiac tissue. Orientation on sequential and parallel supercomputers, choice of numerical algorithms, to optimize accuracy and to provide computational stability. Letter grading. Mr. Wu (W)

C296E. Introduction to Biocomputational Genomics. (4) Corequisites: Biochemistry M296E, Computer Science M296E, and Computer Science M296F. Lecture, one to four hours; discussion, two hours; outside study, four hours. Corequisites: Biophysics M296E, Computer Science M296E, and Computer Science M296F. Lecture, one to four hours; discussion, two hours; outside study, four hours. Letter grading. Mr. Kogan (F, Sp)

C298. Special Studies in Biomedical Engineering. (4) Lecture, four hours; outside study, eight hours. Study of selected topics in biomedical engineering taught by resident and visiting faculty members. Letter grading.

C299. Seminar: Biomedical Engineering Topics. (2) Seminar, two hours; outside study, four hours. Designed for graduate biomedical engineering students. Seminar by leading academic and industrial biomedical engineers from UCLA, other universities, and biomedical engineering companies such as Baxter, Amgen, Medtronic, and Guidant on development and applications of recent technology trends in the discipline. Exploration of cutting-edge developments and challenges in wound healing models, stem cell biology, angiogenesis, signal transduction, gene therapy, DNA microarray technology, biotificial cultivation, nanoscale- and micro hybrid devices, scaffold engineering, and bioinformatics. S/U grading.

C375. Teaching Physics Laboratory. (4) Seminar, to be arranged. Preparation for work as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading.
596. Directed Individual or Tutorial Studies. (2 to 8) Tutorial, to be arranged. Limited to graduate biomedical engineering students. Petition forms to request enrollment may be obtained from program office. Supervised investigation of advanced technical problems. S/U grading.

597A. Preparation for M.S. Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate biomedical engineering students. Reading and preparation for M.S. comprehensive examination. S/U grading.

597B. Preparation for Ph.D. Preliminary Examinations. (2 to 16) Tutorial, to be arranged. Limited to graduate biomedical engineering students. Preparing for Ph.D. preliminary examinations. S/U grading.

597C. Preparation for Ph.D. Oral Qualifying Examination. (2 to 16) Tutorial, to be arranged. Limited to graduate biomedical engineering students. Preparing for oral qualifying examination, including preliminary research on dissertation. S/U grading.

598. Research for and Preparation of M.S. Thesis. (2 to 12) Tutorial, to be arranged. Limited to graduate biomedical engineering students. Supervised independent research for M.S. candidates, including thesis prospectus. S/U grading.

599. Research for and Preparation of Ph.D. Dissertation. (2 to 16) Tutorial, to be arranged. Limited to graduate biomedical engineering students. Usually taken after students have been advanced to candidacy. S/U grading.

Chemical and Biomolecular Engineering

UCLA
5531 Boelter Hall
Box 951592
Los Angeles, CA 90095-1592

(310) 825-2046
fax: (310) 206-4107
http://www.chemeng.ucla.edu

Harold G. Monbouquette, Ph.D., Chair
Jane P. Chang, Ph.D., Vice Chair

Professors
Jane P. Chang, Ph.D. (William Frederick Seyer Professor of Materials Electrochemistry)
Panagiotis D. Christofides, Ph.D.
Yoram Cohen, Ph.D.
James F. Davis, Ph.D., Associate Vice Chancellor
Robert F. Hicks, Ph.D.
Louis J. Ignarro, Ph.D. (Nobel laureate, Jerome J. Belzer Professor of Medical Research)
James C. Liao, Ph.D.
Yunfeng Lu, Ph.D.
Vasilios I. Manousiouthakis, Ph.D.
Harold G. Monbouquette, Ph.D.
Selim M. Senkan, Ph.D.

Professors Emeriti
Eldon L. Knuth, Ph.D.
Ken Nobe, Ph.D.
William D. Van Vorst, Ph.D.
A.R. Frank Wazzan, Ph.D., Dean Emeritus

Assistant Professors
Gerassimos Orkoulas, Ph.D.
Tatiana Segura, Ph.D.
Yi Tang, Ph.D.

Scope and Objectives

The Department of Chemical and Biomolecular Engineering conducts undergraduate and graduate programs of teaching and research that focus on the areas of cellular and biomolecular engineering, systems engineering, and semiconductor manufacturing and span the general themes of energy/environment and nanotechnology. Aside from the fundamentals of chemical engineering (applied mathematics, thermodynamics, transport phenomena, kinetics, reactor engineering and separations), particular emphasis is focused on metabolic engineering, protein engineering, systems biology, synthetic biology, bio-nano-technology, biomaterials, air pollution, water production and treatment, combustion, environmental multimedia modeling, pollution prevention, aerosol processes, combinatorial catalysis, molecular simulation, process modeling/simulation/control/optimization/integration/synthesis, membrane science, semiconductor processing, chemical vapor deposition, plasma processing and simulation, electrochemistry and corrosion, polymer engineering, and hydrogen production. Students are trained in the fundamental principles of these fields while acquiring sensitivity to society’s needs—a crucial combination needed to address the challenge of continued industrial growth and innovation in an era of economic, environmental, and energy constraints.

The undergraduate curriculum leads to a B.S. in Chemical Engineering, is accredited by ABET and AIChE, and includes the
standard core curriculum, as well as biomedical engineering, biomolecular engineering, environmental engineering, and semiconductor manufacturing engineering options. The department also offers graduate courses and research leading to M.S. and Ph.D. degrees. Both graduate and undergraduate programs closely relate teaching and research to important industrial problems.

Undergraduate Mission and Program Objectives

The mission of the undergraduate program is to educate future leaders in chemical and biomolecular engineering who effectively combine their broad knowledge of mathematics, physics, chemistry, and biology with their engineering analysis and design skills for the creative solution of problems in chemical and biological technology and for the synthesis of innovative (bio)chemical processes and products. This goal is achieved by producing chemical and biomolecular engineering alumni who (1) draw readily on a rigorous education in mathematics, physics, chemistry, and biology in addition to the fundamentals of chemical engineering to creatively solve problems in chemical and biological technology as evidenced by contributions to new or improved products and processes and/or to publications, presentations, and patents, (2) incorporate social, ethical, environmental, and economical considerations, including the concept of sustainable development, into chemical and biomolecular engineering practice, (3) lead or participate successfully on multidisciplinary teams assembled to tackle complex multifaceted problems that may require implementation of both experimental and computational approaches and a broad array of analytical tools, and (4) pursue graduate study and achieve an M.S. or Ph.D. degree in the sciences and engineering and/or achieve success as professionals in diverse fields, including business, medicine, and environmental protection, as well as chemical and biomolecular engineering, as evidenced by professional position, responsibilities, and salary, as well as salary increases and promotion.

Undergraduate Study

Chemical Engineering B.S.

The ABET-accredited chemical engineering curricula provide a high quality, professionally oriented education in modern chemical engineering. The biomedical engineering, biomolecular engineering, environmental engineering, and semiconductor manufacturing engineering options provide students an opportunity for exposure to a subfield of chemical and biomolecular engineering. In all cases, balance is sought between engineering science and practice.

Chemical Engineering Core Option

Preparation for the Major

Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Computer Science 31; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL, 4BL.

The Major

Required: Chemical Engineering 100, 101A, 101B, 101C, 102A, 102B, 103, 104AL, 104B, 106, 107, 108A, 108B, 109, Chemistry and Biochemistry 113A, 153A; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and two elective courses (8 units) from Chemical Engineering 110, C111, C112, 113, C114, C115, C116, C118, C119, C125, C140.

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/GE-EngrNew07-08.pdf.

Biomedical Engineering Option

Preparation for the Major

Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Computer Science 31; Life Sciences 2, 3; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL.

The Major

Required: Chemical Engineering 100, 101A, 101B, 101C, 102A, 102B, 103, 104AL, 104B, 106, 107, 108A, 108B, 109, Chemistry and Biochemistry 113A, 153A; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and one biomedical elective course (4 units) from Chemical Engineering C115, C125, CM145 (another chemical engineering elective may be substituted for one of these with approval of the faculty adviser).

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/GE-EngrNew07-08.pdf.

Biomolecular Engineering Option

Preparation for the Major

Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Computer Science 31; Life Sciences 2, 3; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL.

The Major

Required: Chemical Engineering 100, 101A, 101B, 101C, 102A, 102B, 103, 104AL, 104B, 106, 107, 108A, 108B, 109, Atmospheric and Oceanic Sciences 104, Chemistry and Biochemistry 113A, 153A; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and two elective courses (8 units) from Chemical Engineering 113, C118, C119, C140 (another chemical engineering elective may be substituted with approval of the faculty adviser).

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/GE-EngrNew07-08.pdf.

Environmental Engineering Option

Preparation for the Major

Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Computer Science 31; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL, 4BL.

The Major

Required: Chemical Engineering 100, 101A, 101B, 101C, 102A, 102B, 103, 104AL, 104B, 106, 107, 108A, 108B, 109, Atmospheric and Oceanic Sciences 104, Chemistry and Biochemistry 113A, 153A; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and two elective courses (8 units) from Chemical Engineering 113, C118, C119, C140 (another chemical engineering elective may be substituted with approval of the faculty adviser).

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/GE-EngrNew07-08.pdf.
for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/GE-EngrNew07-08.pdf.

Semiconductor Manufacturing Engineering Option

Preparation for the Major

Required: Chemical Engineering 10; Chemistry and Biochemistry 20A, 20B, 20L, 30A, 30AL, 30B; Computer Science 31; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C, 4AL, 4BL.

The Major

Required: Chemical Engineering 100, 101A, 101B, 101C, 102A, 102B, 103, 104AL, 104C, 104CL, 106, 107, 108A, 108B, 109, C116, Chemistry and Biochemistry 113A, 153A; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and one elective course (4 units) from Materials Science and Engineering 104, 120, 121, 122, or 150 plus one elective course (4 units) from Electrical Engineering 2, 100, 121B, 123A, or 123B.

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/GE-EngrNew07-08.pdf.

Graduate Study

For information on graduate admission, see Graduate Programs, page 23.

For additional information regarding the B.S., M.S., and Ph.D. in Chemical Engineering, refer to the Chemical and Biomolecular Engineering Department brochure.

The following introductory information is based on the 2007-08 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnet.ucla.edu/gasaa/library/pgmrqintro.htm. Students are subject to the detailed degree requirements as published in Program Requirements for the year in which they matriculate.

The Department of Chemical and Biomolecular Engineering offers Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Chemical Engineering.

Chemical Engineering M.S.

Areas of Study

Consult the department.

For the semiconductor manufacturing field, the program requires that students have advanced knowledge, assessed in a comprehensive examination, of processing semiconductor devices on the nanoscale.

Course Requirements

The requirements for an M.S. degree are a thesis, nine courses (36 units), and a 3.0 grade-point average in the graduate courses. Chemical Engineering 200, 210, and 220 are required for all M.S. degree candidates. Two courses must be taken from offerings in the Chemical and Biomolecular Engineering Department, while two Chemical Engineering 598 courses involving work on the thesis may also be selected. The remaining two courses may be taken from those offered by the department or any other field in life sciences, physical sciences, mathematics, or engineering. At least 24 units must be in letter-graded 200-level courses.

All M.S. students are required to enroll in the seminar, Chemical Engineering 299, during each term in residence.

A program of study that encompasses these requirements must be submitted to the departmental Student Affairs Office for approval before the end of the student’s second term in residence.

Undergraduate Courses. No lower division courses may be applied toward graduate degrees. In addition, the following upper division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199; Civil and Environmental Engineering 106A, 108, 199; Computer Science M152A, 152B, 199; Electrical Engineering 100, 101, 102, 103, 110L, M116L, 199; Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 150, 160, 161L, 199; Mechanical and Aerospace Engineering 102, 103, 105A, 105D, 199.

Semiconductor Manufacturing

The requirements for the M.S. degree in the field of semiconductor manufacturing are 10 courses (44 units) and a minimum 3.0 grade-point average overall and in the graduate courses. Students are required to take Chemical Engineering 104C/104CL, C216, 270, 270R, Electrical Engineering 123A, Materials Science and Engineering 121. In addition, two departmental elective courses and two electrical engineering or materials science and engineering electives must be selected, with a minimum of two at the 200 level. A total of at least five graduate (200-level) courses is required. Approved elective courses include Chemical Engineering C214, C218, C219, 223, C240, Electrical Engineering 124, 221A, 221B, 223, 224, Materials Science and Engineering 210, 223.

Courses taken by students who are not enrolled in the semiconductor manufacturing field may not be applied toward the 10-course requirement for the degree. A program of study encompassing the course requirements and/or substitutions must be submitted to the graduate adviser for approval before the end of the first term in residence.

Field Experience. Students may take Chemical Engineering 270R in the field, working at an industrial semiconductor fabrication facility. This option must meet all course requirements and must be approved by the graduate adviser and the industrial sponsor of the research.

Comprehensive Examination Plan

The comprehensive examination plan is not available for fields other than semiconductor manufacturing.

For the semiconductor manufacturing field, when all coursework is completed, students should enroll in Chemical Engineering 597A to prepare for the comprehensive examination, which tests their knowledge of the engineering principles of semiconductor manufacturing. In case of failure, the examination may be repeated once with the consent of the graduate adviser.

Thesis Plan

Consult the graduate adviser. The thesis plan is not available for the semiconductor manufacturing field.

Chemical Engineering Ph.D.

Major Fields or Subdisciplines

Consult the department.

Course Requirements

All Ph.D. students must take six courses (24 units), including Chemical Engineering 200, 210, and 220. Two additional courses must be taken from those offered by the Chemical and Biomolecular Engineering Department. The third course can be selected from offerings in life sciences, physical sciences, mathematics, or engineering. All of these units must be in letter-graded 200-level courses. Students are encouraged to take more courses in their field of specialization. The minor field
courses should be selected in consultation with the research adviser. A 3.33 grade-point average in graduate courses is required. A program of study to fulfill the course requirements must be submitted for approval to the departmental Student Affairs Office no later than one term after successful completion of the preliminary oral examination.

All Ph.D. students are required to enroll in the seminar, Chemical Engineering 299, during each term in residence. For information on completing the Engineer degree, see Engineering Schoolwide Programs.

Preliminary and Qualifying Examinations

All Ph.D. students must take a preliminary oral examination that tests their understanding of chemical engineering fundamentals in the areas of thermodynamics, transport phenomena, and chemical kinetics and reactor design. The examination normally is taken during the second term in residence, and a 3.33 grade-point average in graduate coursework is required to be eligible to take the examination. Students are asked to solve the examination problems in writing and then present them orally to a faculty committee. Students whose first degree is not in chemical engineering may petition to postpone the examination to the following year. Any student failing the Ph.D. preliminary examination may petition to reenter the Ph.D. program after successfully completing the requirements for the M.S., including an M.S. thesis. If the petition is granted, the student may be approved to take the preliminary examination concurrently with the master's thesis defense.

After successfully completing the required courses and the preliminary oral examination, students must pass the written and oral qualifying examinations. These examinations focus on the dissertation research and are conducted by a doctoral committee consisting of at least four faculty members nominated by the Department of Chemical and Biomolecular Engineering, in accordance with University regulations.

The written qualifying examination consists of a dissertation research proposal that provides a clear description of the problem considered, a literature review of the current state of the art, and a detailed research plan of how to be followed to solve the problem. Students submit their dissertation research proposals to their doctoral committees. The written examination is due in the seventh week of the Winter Quarter of the second year in residence.

The University Oral Qualifying Examination consists of an oral defense of the dissertation research proposal and is administered by the doctoral committee. The oral examination is held no less than two weeks after submitting the written examination.

Note: Doctoral Committees. A doctoral committee consists of a minimum of four members. Three members, including the chair, are "inside" members and must hold appointments in the Chemical and Biomolecular Engineering Department at UCLA. The "outside" member must be a UCLA faculty member outside the Chemical and Biomolecular Engineering Department.

Facilities

Biomolecular Engineering Laboratories

The Biomolecular Engineering laboratories are equipped for cutting-edge genetic, biomolecular, and cellular engineering teaching and research. Facilities and equipment include (1) DNA microarray printing and scanning facility, (2) fluorescence microscopy, (3) real-time PCR thermocycler, (4) UV-visible and fluorescence spectrophotometers, (5) HPLC and LC-mass spectrometer, (6) aerobic and anaerobic bioreactors from bench top to 100-liter pilot scale, (7) protein purification facility, (8) potentiostat/galvanostat and impedance analyzer for electroenzymology, (9) membrane extruder and multilayer laser light scattering for production and characterization of biological and semi-synthetic colloids such as micelles and vesicles, and (10) phosphoinimager for biochemical assays involving radiolabeled compounds.

Microbial cells are genetically and metabolically engineered to produce novel compounds that are used as drugs, specialty chemicals, and food additives. Novel gene-metabolic circuits are designed and constructed in microbial cells to perform complex and non-native cellular behavior. These designer cells are cultured in bioreactors, and intracellular states are monitored using DNA microarrays and RT-PCR. Such investigations are coupled with genomic and proteomic efforts, and mathematical modeling, to achieve system-wide understanding of the cell.

Protein engineering is being used to generate completely novel compounds that have important pharmaceutical value. Bacteria are being custom-designed to synthesize important therapeutic compounds that have anticancer, cholesterol-lowering, and/or antibiotic activities. Biosensors are being micromachined for detecting neurotransmitters in vivo. New biosensing schemes also are being invented for the detection of endocrine disrupting chemicals in the environment and for the high-throughput screening of drug candidates. Naturally occurring protein nanocapsules are being redesigned at the genetic level for applications in drug delivery and materials synthesis. Finally, the enzymology of extremely thermophilic microbes is being explored for applications in specialty chemical synthesis.

Chemical Kinetics, Catalysis, Reaction Engineering, and Combustion Laboratory

The Chemical Kinetics, Catalysis, Reaction Engineering, and Combustion Laboratory is equipped with advanced research tools for experimental and computational studies in chemical kinetics, catalytic materials, and combustion, including quadrupole mass spectrometer (QMS) systems to sample reactive systems with electron impact and photoionization capabilities; several fully computerized gas chromatograph/mass spectrometer (GC/MS) systems for gas analysis; fully computerized array channel microreactors for catalyst discovery and optimization; several flat premixed and diffusion flame burners and flow reactors to study combustion and other fast reactions; a laser photoionization (LP) time-of-flight (TOF) mass spectrometer for the ultrasensitive, real-time detection of trace pollutants in the gas phase; a gravimetric microbalance to study heterogeneous reactions; and several state-of-the-art supermicro workstations for numerical investigations in fluid mechanics, detailed chemical kinetic modeling, and computational quantum chemistry.

Electrochemical Engineering and Catalysis Laboratories

With instrumentation such as rotating ring-disk electrodes, electrochemical packed-bed flow reactors, gas chromatographs, potentiostats, and function generators, the Electrochemical Engineering and Catalysis Laboratories are used to study metal, alloy, and semiconductor corrosion processes, electro-deposition and electroless deposition of metals, alloys, and semiconductors for GMR and MEMS applications, electrochemical energy conversion (fuel cells) and
storage (batteries), and bioelectrochemical processes and biomedical systems.

The electroorganic synthesis facility is for the development of electrochemical processes to transform biomass-derived organic compounds into useful chemicals, fuels, and pharmaceuticals. The catalysis facility is equipped to support various types of catalysis projects, including catalytic hydrocarbon oxidation, selective catalytic reduction of NOx, and Fischer-Tropsch synthesis.

Electronic Materials Processing Laboratory

The Electronic Materials Processing Laboratory focuses on the synthesis and patterning of multifunctional complex oxide films with tailored electronic, chemical, thermal, mechanical, and biological properties. Experimental and theoretical studies are combined to understand the process chemistry and surface kinetics in atomic layer deposition, plasma etching and deposition processes, and gas-phase surface functionalization processes. Novel devices including advanced microelectronics, optoelectronics, and chemical sensors are realized at nano-dimensions as the technologies become more enabling based on these fundamental studies.

The laboratory is equipped with a state-of-the-art advanced rapid thermal processing facility with in-situ vapor phase processing and atomic layer deposition capabilities; advanced plasma processing tools including thin film deposition and etching; and diagnostics including optical emissions spectroscopy, Langmuir probe, and quadrupole mass spectrometry; a surface analytical facility including X-ray photoelectron spectroscopy, Auger electron spectroscopy, ultra-violet photoelectron spectroscopy, reflection high energy electron diffraction, spectroscopic ellipsometry, photoluminescence, and infrared spectroscopy; and a complete set of processing tools available for microelectronics and MEMS fabrication in the Nanoelectronic Research Facility. With the combined material characterization and electronic device fabrication, the reaction kinetics including composition and morphology, and the electrical property of these materials can be realized for applications in the next generation electronic devices and chemical or biological MEMS.

Materials and Plasma Chemistry Laboratory

The Materials and Plasma Chemistry Laboratory is equipped with state-of-the-art instruments for studying the molecular processes that occur during chemical vapor deposition (CVD) and plasma processing. CVD is a key technology for synthesizing advanced electronic and optical devices, including solid-state lasers, infrared, visible, and ultraviolet detectors and emitters, solar cells, heterojunction bipolar transistors, and high-electron mobility transistors. The laboratory houses a commercial CVD reactor for the synthesis of III-V compound semiconductors. This tool is interfaced to an ultrahigh vacuum system equipped with scanning tunneling microscopy, low-energy electron diffraction; infrared spectroscopy and X-ray photoelectron spectroscopy. This apparatus characterizes the atomic structure of compound semiconductor heterojunction interfaces and determines the kinetics of CVD reactions on these surfaces.

The atmospheric plasma laboratory is equipped with multiple plasma sources and state-of-the-art diagnostic tools. The plasmas generate, at low temperature, beams of atoms and radicals well-suited for surface treatment, cleaning, etching, deposition, and sterilization. Applications are in the biomedical, electronics, and aerospace fields. The laboratory is unique in that it characterizes the reactive species generated in atmospheric plasmas and their chemical interactions with surfaces.

Nanoparticle Technology and Air Quality Engineering Laboratory

Modern particle technology focuses on particles in the nanometer (nm) size range with applications to air pollution control and commercial production of fine particles. Particles with diameters between 1 and 100 nm are of interest both as individual particles and in the form of aggregate structures. The Nanoparticle Technology and Air Quality Engineering Laboratory is equipped with instrumentation for online measurement of aerosols, including optical particle counters, electrical aerosol analyzers, and condensation particle counters. A novel low-pressure impactor designed in the laboratory is used to fractionate particles for morphological analysis in size ranges down to 50 nm (0.05 micron). Also available is a high-volumetric flow rate impactor suitable for collecting particulate matter for chemical analysis. Several types of specially designed aerosol generators are also available, including a laser ablation chamber, tube furnaces, and a specially designed aerosol microreactor.

Concern with nanoscale phenomena requires the use of advanced systems for particle observation and manipulation. Students have direct access to modern facilities for transmission and scanning electron microscopy. Located near the laboratory, the Electron Microscopy facilities staff provide instruction and assistance in the use of these instruments. Advanced electron microscopy has recently been used in the laboratory to make the first systematic studies of atmospheric nanoparticle chain aggregates. Such aggregate structures have been linked to public health effects and to the absorption of solar radiation. A novel nanostructure manipulation device, designed and built in the laboratory, makes it possible to probe the behavior of nanoparticle chain aggregates of a type produced commercially for use in nanocomposite materials; these aggregates are also released by sources of pollution such as diesel engines and incinerators.

Polymer and Separations Research Laboratory

The Polymer and Separations Research Laboratory is equipped for research on membranes, water desalination, adsorption, chemical sensors, polymerization kinetics, surface engineering with polymers and the behavior of polymeric fluids in confined geometries. Instrumentation includes a high resolution multiprobe Atomic Force Microscope (AFM) and a quartz crystal microbalance system for membrane and sensor development work. An atmospheric plasma surface structuring system is available for nano-structuring ceramic and polymeric surfaces for a variety of applications that include membrane performance enhancement and chemical sensor arrays. Analytical equipment for polymer characterization includes several high-pressure liquid chromatographs for size exclusion chromatography equipped with different detectors, including refractive index, UV photodiode array, conductivity, and a photodiode array laser light scattering detector. The laboratory has a research-grade FTIR with a TGA interface, a thermogravimetric analysis system, and a dual column gas chromatograph. Equipment for viscometric analysis includes high- and low-pressure capillary viscometer, narrow gap cylindrical couette viscometer, cone-and-plate viscometer, intrinsic
viscosity viscometer system and associated equipment. Flow equipment is also available for studying fluid flow through channels of different geometries (e.g., capillary, slit, porous media). The evaluation of polymeric and novel ceramic-polymer membranes, developed in the laboratory, is made possible with reverse osmosis, pervaporation, and cross-flow ultrafiltration systems equipped with online detectors. Studies of high recovery membrane desalination are carried out in a membrane concentrator/crystallizer system. Resin sorption and regeneration studies can be carried out with a fully automated system.

Process Systems Engineering Laboratory

The Process Systems Engineering Laboratory is equipped with state-of-the-art computer hardware and software used for the simulation, design, optimization, control, and integration of chemical processes. Several personal computers and workstations, as well as an 8-node dual-processor cluster, are available for teaching and research. SEASnet and campuswide computational facilities are also available to the laboratory’s members. Software for simulation and optimization of general systems includes MINOS, GAMS, MATLAB, CPLEX, and LINDO. Software for simulation of chemical engineering systems includes HYSYS for process simulation and CACHE-FUJITSU for molecular calculations. UCLA-developed software for heat/power integration and reactor network attainable region construction are also available.

Faculty Areas of Thesis Guidance

Professors

Jane P. Chang, Ph.D. (MIT, 1998)
- Materials processing, gas-phase and surface reaction, plasma enhanced chemistries, atomic layer deposition, chemical microelectromechanical systems, and computational surface chemistry

Panagiotis D. Christofides, Ph.D. (Minnesota, 1996)
- Process modeling, dynamics and control, computational and applied mathematics

Yoram Cohen, Ph.D. (Delaware, 1981)
- Separation processes, graft polymerization, surface nanostructuring, macromolecular dynamics, pollutant transport and exposure assessment

James F. Davis, Ph.D. (Northwestern, 1981)
- Intelligent systems in process, control operations and design, decision support, management of abnormal situations, data interpretation, knowledge databases, pattern recognition

Robert F. Hicks, Ph.D. (UC Berkeley, 1984)
- Chemical vapor deposition and atmospheric plasma processing

Louis J. Ignarro, Ph.D. (Minnesota, 1966)
- Regulation and modulation of NO production

James C. Liao, Ph.D. (Wisconsin, Madison, 1987)
- Biochemical engineering, metabolic reaction engineering, reaction pathway analysis and control

Yunfeng Lu, Ph.D. (University of New Mexico, 1996)
- Semiconductor manufacturing and nanotechnology

Vasilios I. Manousiouthakis, Ph.D. (Rensselaer, 1986)
- Process systems engineering: modeling, simulation, design, optimization, and control

Harold G. Monbouquette, Ph.D. (North Carolina State, 1987)
- Biochemical engineering, biosensors, biotechnology of extreme thermophiles, nanotechnology

Selim M. Serber, Ph.D. (MIT, 1977)
- Reaction engineering, combinatorial catalysis, combustion, laser photoionization, real-time detection, quantum chemistry

Professors Emeriti

Eldon L. Knuth, Ph.D. (Cal Tech, 1953)
- Molecular dynamics, thermodynamics, combustion, applications to air pollution control and combustion efficiency

Ken Nohe, Ph.D. (UCLA, 1956)
- Electrochemistry, corrosion, electrochemical kinetics, electrochemical energy conversion, electrodeposition of metals and alloys, electrochemical treatment of toxic wastes, bioelectrochemistry

William D. Van Vorst, Ph.D. (UCLA, 1953)
- Chemical engineering: thermodynamics, energy conversion, alternative energy systems, hydrogen- and alcohol-fueled engines

A.R. Frank Wazzan, Ph.D. (UC Berkeley, 1963)
- Fast reactors, nuclear fuel element modeling, stability and transition of boundary layers, heat transfer

Assistant Professors

Gerasimos Orkoulas, Ph.D. (Cornell, 1998)
- Molecular simulation, critical phenomena in ionic fluids, thermodynamics of complex fluids

Tatiana Segura, Ph.D. (Northwestern, 2004)
- Gene therapy, tissue engineering, substrate-mediated non-viral DNA delivery

Yi Tang, Ph.D. (Cal Tech, 2002)
- Biosynthesis of proteins/polypeptides with unnatural amino acids, synthesis of novel antibiotics/antitumor products

Lower Division Courses

2. Technology and the Environment

(4) Lecture, four hours; discussion, eight hours. Natural and anthropogenic flows of materials at global and regional scales. Case studies of natural cycles include global warming (CO2 cycles), stratospheric ozone depletion (chlorine and ozone cycles), and global nitrogen cycles. Flow of materials in industrial economies compared and contrasted with natural flows; preservation of life-cycle methods for evaluating environmental impact of processes and products. P/NP or letter grading.

10. Introduction to Chemical and Biomolecular Engineering

(1) Lecture, one hour. General introduction to field of chemical and biomolecular engineering. Description of how chemical and biomolecular engineering analysis and design skills are applied for creative solution of current technological problems in production of microelectronic devices, design of chemical plants for minimum environmental impact, application of nanotechnology to chemical sensing, and genetic-level design of recombinant microbes for chemical synthesis. Letter grading.

19. Fiat Lux Freshman Seminars. (1 Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

99. Student Research Program.** (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.

Upper Division Courses

100. Fundamentals of Chemical and Biomolecular Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Chemistry 20B, 20L, Mathematics 32B (may be taken concurrently), Physics 1A. Introduction to analysis and design of industrial chemical processes. Material and energy balances. Introduction to programming in MATLAB. Letter grading.

101C. Mass Transfer. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 100, 101B, 102B. Introduction to analysis of mass transfer in systems of interest to chemical engineering practice. Fundamentals of mass species transport, Fick law of diffusion, diffusion in chemically reacting flows, interphase mass transfer, multicomponent systems. Letter grading.

102A. Thermodynamics I. (4) Formerly numbered M105A.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Mathematics 33A, 33B. Introduction to thermodynamics of chemical and biological processes. Work, energy, heat, and first law of thermodynamics. Second law, extremum principles, entropy, and free energy. Ideal and real gases, property evaluation. Thermodynamics of flow systems. Applications of first and second laws in biological processes and living organisms. Letter grading.

102B. Thermodynamics II. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 102A. Molecular simulation, critical phenomena in ionic fluids, thermodynamics of complex fluids. Letter grading.

103. Separation Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 100, 101B. Application of principles of heat, mass, and momentum transport to design and operation of separation processes such as distillation, gas absorption, filtration, and reverse osmosis. Letter grading. Ms. Chang, Mr. Senkan (Sp)

104A. Chemical Engineering Laboratory I. (6) Lecture, two hours; laboratory, eight hours; outside study, four hours; other, four hours. Requisites: courses 100, 101B, 102B. Measurements of temperature, pressure, flow rate, viscosity, and fluid composition in chemical processes. Methods of data acquisition, equipment selection and fabrication, and laboratory safety. Development of written and oral communication skills. Letter grading. Mr. Monbouquette (W,Sp)

104B. Chemical and Biomolecular Engineering Laboratory II. (6) Lecture, two hours; laboratory, eight hours; outside study, four hours; other, four hours. Requisites: courses 101C, 103, 104A. Course consists of four experiments in chemical engineering unit operations, each of two weeks duration. Students present their results both written and orally. Written report includes sections on theory; experimental procedures, scaleup and process design, and error analysis. Letter grading. Mr. Senkan (FW)

104C. Semiconductor Processing. (3) Lecture, four hours; outside study, six hours. Requisite: course 101C. Corequisite: course 104C. Series of experiments that emphasize basic engineering principles of semiconductor unit operations, including fabrication and characterization of semiconductor devices. Investigation of processing steps used in the fabrication of CMOS devices, including wafer cleaning, oxidation, diffusion, lithography, chemical vapor deposition, plasma etching, metallization, and statistical design of experiments and error analysis. Presentation of student results in both written and oral form. Letter grading. Ms. Chang, Mr. Hicks (Sp)

104CL. Semiconductor Processing Laboratory. (3) Laboratory, four hours. Requisite: course 101C. Corequisite: course 104C. Experimental work on processing CMOS devices, including wafer cleaning, oxidation, diffusion, lithography, chemical vapor deposition, plasma etching, and metallization. Hands-on device testing includes transistors, diodes, and capacitors. Letter grading. Ms. Chang, Mr. Hicks (Sp)

106. Chemical Reaction Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 100, 101C, 102B. Fundamentals of chemical kinetics and catalysis. Introduction to analysis and design of homogeneous and heterogeneous chemical reactors. Letter grading. Mr. Manousiouthakis (F)

107. Process Dynamics and Control. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 103 or C125, 106 or C115. Principles of dynamics modeling and start-up behavior of chemical engineering processes. Chemical process control elements. Design and applications of chemical process computer control. Letter grading. Mr. Christofides, Mr. Manousiouthakis (W)

108A. Process Economics and Analysis. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 103 or C125, 104B, 106 or C115. Integration of chemical engineering fundamentals such as transport phenomena, thermodynamics, separation operations, and reaction engineering and simple economic principles for purpose of designing chemical processes and evaluating alternatives. Letter grading. Mr. Manousiouthakis (W)

108B. Chemical Process Computer-Aided Design and Analysis. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 103 or C125, 106 or C115, 108A, and either Chemical Engineering 15 or Mechanical and Aerospace Engineering 17. Use of some mathematical and computing methods to chemical engineering design problems; use of simulation programs as automated method of performing steady state material and energy balance calculations. Letter grading. Mr. Manousiouthakis (Sp)

109. Numerical and Mathematical Methods in Chemical and Biological Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Preparation: basic knowledge of MATLAB programming. Numerical methods for computation of solution of systems or linear and nonlinear algebraic equations, ordinary differential equations, and partial equations. Chemical and biomolecular engineering examples used throughout to illustrate application of these methods. Use of MATLAB as platform (programming environment) to write programs based on sound mathematical and numerical techniques to solve various problems arising in chemical engineering. Letter grading. Mr. Christofides (F)

110. Intermediate Engineering Thermodynamics. (4) Lecture, four hours; outside study, eight hours. Requisites: course 102B. Principles and engineering applications of statistical and phenomenological thermodynamics. Determination of partition function in terms of simple molecular models and spectroscopic data; nonideal gases; phase transitions and adsorption; nonequilibrium thermodynamics and coupled transport processes. Letter grading. Mr. Nobe (Sp)

111. Cryogenics and Low-Temperature Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 102A, 102B (or Materials Science 130). Fundamentals of cryogenics and cryogenic engineering science pertaining to industrial low-temperature processes. Basic approaches to analysis of cryofluids and envelopes needed for operation of cryogenic systems; low-temperature behavior of matter, optimization of cryosystems and other special conditions. Concurrently scheduled with course C211. Letter grading. Mr. Manousiouthakis (F)

C112. Polymer Processes. (Formerly numbered 112.) Lecture, four hours. Requisites: course 101A, Chemistry 30A. Formation of polymers, criteria for selecting a reaction scheme, polymerization techniques, surface finishing, passivity, electrochemical processes, rheology of macromolecules, polymer process engineering. Diffusion in polymeric systems. Polymers in biomedical applications and microelectronics. Concurrently scheduled with course C212. Letter grading. Mr. Cohen (Sp)

113. Air Pollution Engineering. (4) Lecture, four hours; preparation, two hours; outside study, six hours. Requisites: courses 101C, 102B. Integrated approach to air pollution, including concentrations of atmospheric pollutants, air pollution standards, air pollution sources and control technology, and relationship of air quality to emission sources. Links air pollution to multimedia environmental assessment. Letter grading. (F)

C114. Electrochemical Processes and Corrosion. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 101A, 101C, 104B, 107, 110. Principles of electrochemical and engineering applications to industrial electrochemical processes and metallic corrosion. Primary emphasis on fundamentals of electrochemical processes and analysis of electrochemical and corrosion processes. Specific topics include corrosion of metals and semiconductors, electrochemical metal and semiconductors, surface finishing, passivity, electroplating, electroless deposition, batteries and fuel cells, electrosynthesis and biocatalyst processes. May be concurrently scheduled with course C214. Letter grading. Mr. Liao, Ms. Segura (Sp)

C115. Biochemical Reaction Engineering. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Requisites: courses 101C and 106, or Chemistry 156. Use of previously learned concepts of chemical engineering, biochemical engineering, and biophysical chemistry, thermodynamics, transport phenomena, and reaction kinetics to develop tools needed for technical design and economic analysis of biological reactors. May be concurrently scheduled with course CM215. Letter grading. Mr. Liao, Ms. Segura (Sp)

C116. Surface and Interface Engineering. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Requisite: Chemistry 113A. Introduction to surfaces and interfaces of engineering materials, particularly catalytic surface and thin films for solid-state electronic devices. Topics include classification of crystals and surfaces, analysis of structure and composition of crystals and their surfaces and interfaces. Examination of engineering applications, including catalytic surfaces, interfaces in microelectronics, and solid-state laser. May be concurrently scheduled with course C216. Letter grading. Ms. Chang, Mr. Hicks (F)

C119. Pollution Prevention for Chemical Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 108A. Systematic methods for design of environmentally friendly processes. Development of the methods at the molecular, unit-operation, and network levels. Synthesis of mass exchange, heat exchange, and reaction network methodologies, with emphasis on separations at micro, nano, and molecular/angstrom scale with membranes. Special topics include corrosion, catalysis, and separations at the nanoscale. Concurrently scheduled with course C118. Letter grading. Mr. Manousiouthakis (Sp)

C121. Membrane Science and Technology. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 101A, 101C, 103. Fundamentals of membrane science and technology, with emphasis on separations at micro, nano, and molecular/angstrom scale with membranes. Relationship between structure/morphology of dense and porous membranes and separation characteristics. Use of nanotechnology for design of selective membranes and models of membrane transport (flux and selectivity). Examples provided from various fields/applications, including biotechnology, microelectronics, chemical processes, sensors, and biomedical devices. Concurrently scheduled with course C221. Letter grading. Mr. Cohen (W)

C124. Cell Material Interactions. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course CM145, Life Sciences 2, 3. Introduction to design and synthesis of biomaterials for regenerative medicine in vitro. Use of materials for tissue engineering, drug delivery. Biological principles of cellular microenvironment and design of extracellular matrix analogs using biological and engineering principles. Biomaterials and tissue engineering, one hour. Labeled delivery as therapeutics and to facilitate tissue regeneration. Use of stem cells in tissue engineering. Concurrently scheduled with course C224. Letter grading. Mr. Monbouquette (W)

C125. Bioseparations and Bioprocess Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 101C and 103, or Chemistry 156. Separation strategies, membrane, chromatographic, and economic factors used to design processes for isolating and purifying materials like whole cells, enzymes, food additives, or pharmaceuticals that are products of biological reactors. Concurrently scheduled with course CM225. Letter grading. Mr. Mombouquette (W)

C135. Advanced Process Control. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 107. Introduction to advanced process control. Topics include (1) Lyapunov stability for autonomous nonlinear systems including converse theorems, (2) input to state stability, interconnected systems, and small gain theorems, (3) design of nonlinear and robust controllers for various classes of nonlinear systems, (4) model predictive control of linear and nonlinear systems, (5) advanced methods for tuning of classical controllers, and (6) introduction to control of distributed parameter systems. Concurrently scheduled with course C235. Letter grading. Mr. Christofides (Sp)

C140. Fundamentals of Aerosol Technology. (4) Lecture, four hours; outside study, eight hours. Requisite: course 101C. Technology of particle/gas systems with applications to gas cleaning, commercial production of fine particles, and catalysis. Particle transport and deposition, optical properties, experimental methods, dynamics and control of particle formation processes. Concurrently scheduled with course C240. Letter grading. (F or W)

CM145. Molecular Biotechnology for Engineers. (4) Same as Biomedical Engineering CM145.) Lecture, four hours; discussion, one hour; outside study, eight hours. Supervised individuals researching in molecular biology that form foundation of biotechnology and biomedical industry today. Topics include recombinant DNA technology, molecular research tools, manipulation of gene expression, directed mutations of genetic engineering, DNA-based diagnostics and DNA microarrays, antibody and protein-based diagnostics, genomics and bioinformatics, isolation of human genes, gene therapy, and tissue engineering. Concurrently scheduled with course CM245. Letter grading. Mr. Liao, Mr. Tang (F)

188. Special Courses in Chemical Engineering. (4) Seminar, four hours; outside study, eight hours. Special topics in chemical engineering for undergraduate students that are taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated once for credit with topic or instructor change. Letter grading.

194. Research Group Seminars: Chemical Engineering. (4) Seminar, four hours; outside study, eight hours. Designed for undergraduate students who are part of research group. Discussion of research methods and current literature in field. May be repeated for credit. Letter grading.

199. Directed Research in Chemical Engineering. (2 to 8) Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation of selected topic under guidance of faculty mentor. Culminating paper or project required. May be repeated for credit with school approval. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading. (F,W,Sp)

Graduate Courses

200. Advanced Engineering Thermodynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 102B. Phenomenological and statistical thermodynamics of chemical and physical systems with engineering applications. Presentation of role of atomic and molecular spectra and intermolecular forces in interpretation of thermodynamic properties of gases, liquids, solids, and plasmas. Letter grading. Mr. Nobe (F)

201. Methods of Molecular Simulation. (4) Lecture, four hours; outside study, eight hours. Requisite: course 200 or Chemistry 223A or Physics 215A. Modern molecular simulation techniques for classical and quantum mechanical systems. Monte Carlo and molecular dynamics in various ensembles. Applications to liquids, solids, and polymers. Letter grading.

210. Advanced Chemical Reaction Engineering. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 101C, 106. Principles of chemical reactor analysis and design. Particular emphasis on simultaneous effects of chemical reaction and mass transfer on noncatalytic and catalytic reactions in fixed and fluidized beds. Letter grading. Mr. Senkan (W)

C211. Cryogenics and Low-Temperature Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 102A, 102B (or Materials Science 130). Fundamentals of cryogenics and cryogenic engineering science pertaining to industrial low-temperature processes. Basic approaches to analysis of refrigerants and envelopes needed for operation of cryogenic systems; low-temperature behavior of matter, optimization of cryosystems and other special conditions. Concurrently scheduled with course C111. Letter grading. Mr. Manousiouthakis (F)

C214. Electrochemical Processes and Corrosion. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Requisite: course 102B. Fundamentals of electrochemistry and polymer applications to industrial electrochemical processes and metallic corrosion. Primary emphasis is devoted to fundamentals and to analysis of electrochemical and corrosion processes. Specific topics include corrosion of metals and semiconductors, electrochemical metal and semiconductors, wearable devices, batteries and fuel cells, electrocatalysis, and bioelectrochemical processes. May be concurrently scheduled with course C114. Letter grading. Mr. Nobe (F)

C215. Biochemical Reaction Engineering. (4) Same as Biomedical Engineering M215.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 101B, 106, or Chemistry 156. Use of previously learned concepts of biophysical chemistry, thermodynamics, transport phenomena, and reaction kinetics to develop tools needed for technical design and economic analysis of biological reactors. May be concurrently scheduled with course C115. Letter grading. Mr. Liao, Ms. Segura (W)

C216. Surface and Interface Engineering. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Requisite: Chemistry 113A. Introduction to surfaces and interfaces of engineering materials, particularly catalytic surface and thin films for solid-state electronic devices. Stress on electronic device fabrication and classification of crystals and surfaces, analyses of structure and composition of crystals and their surfaces and interfaces. Examination of engineering applications, including catalytic surfaces, interfaces in microelectronics, and solid-state laser. May be concurrently scheduled with course C116. Letter grading. Ms. Chang, Mr. Hicks (F)

217. Electrochemical Engineering. (4) Lecture, four hours; outside study, eight hours. Requisite: course C114. Transport phenomena in electrochemical systems; relationships between molecular transport, convection, and electrode kinetics, along with applications to industrial electrochemistry, fuel cell design, and modern battery technology. Letter grading. Mr. Nobe (F)

C219. Pollution Prevention for Chemical Processes. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 108A. Systematic methods for design of environmentally friendly processes. Development of the methods at the molecular, unit-operation, and network levels. Synthesis of mass exchange, heat exchange, and reactor network. Concurrently scheduled with course C119. Letter grading. Mr. Manousiouthakis (Sp)
220. Advanced Mass Transfer. (4) Lecture, four hours; outside study, eight hours. Requisites: course 101C. Advanced treatment of mass transfer, with applications to industrial separation processes, gas cleaning, pulmonary bioengineering, controlled release systems, and reactor design; molecular and constitutive theories of diffusion, interfacial transport, membrane transport, convective-mass transfer, concentration boundary layers, turbulent transport. Letter grading.

Mr. Cohen (F)

C221. Membrane Science and Technology. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 101A, 101C, 103. Fundamentals of membrane science and technology, with emphasis on separations at micro, nano, and molecular/angstrom scale with membranes. Relationships between structural properties and transport characteristics. Use of nanotechnology for design of selective membranes and models of membrane transport (flux and selectivity). Example provided from various fields/applications, including biotechnology, microelectronics, chemical processes, sensors, and biomedical devices. Concurrently scheduled with course C121. Letter grading.

Mr. Cohen (W)

Mr. Manousiouthakis (W)

Mr. Manousiouthakis (W)

C223. Design for Environment. (4) Lecture, four hours; outside study, eight hours. Limited to graduate chemical engineering, materials science and engineering, or Master of Engineering program students. Design of products for meeting environmental objectives; life-cycle inventories; life-cycle impact assessment; design for energy efficiency; design for waste minimization, computer-aided design tools, materials selection methods. Letter grading.

C224. Cell Material Interactions. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course CM145, Life Sciences 2, 3. Introduction to design and synthesis of biomaterials for regenerative medicine, in vitro cell culture, and drug delivery. Biological principles of cellular microenvironment and design of extracellular matrix analogs using biological and engineering principles. Biomaterials for growth factor, and DNA and siRNA delivery as therapeutics and to facilitate tissue regeneration. Use of stem cells in tissue engineering. Concurrently scheduled with course C124. Letter grading.

Ms. Segura (W)

CM225. Bioseparations and Bioprocess Engineering. (4) Same as Biomedical Engineering M225. Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 101C and 103, or Chemistry 156. Separation strategies, unit operations, and economic factors used to design processes for isolating and purifying materials like whole cells, enzymes, food additives, or pharmaceuticals that are products of biological reactors. Concurrently scheduled with course C125. Letter grading.

Mr. Monbouquette (Sp)

Mr. Senkan (Sp)

231. Molecular Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 106 or 110. Analysis and design of molecular-beam systems. Molecular-beam sampling of reactive mixtures in combustion chambers or gas jets. Molecular-beam studies of gas-surface interactions, including energy accommodations and heterogeneous reactions. Applications to air pollution control and to catalysis. Letter grading.

Mr. Senkan (Sp)

234. Plasma Chemistry and Engineering. (4) Lecture, four hours; outside study, eight hours. Designed for graduate chemistry or engineering students. Application of chemistry, physics, and engineering principles to design and operation of plasma and ion-beam reactors used in etching, deposition, oxidation, and cleaning of materials. Examination of atomic, molecular, and ionic phenomena involved in plasma and ion-beam processing of semiconductors, etc. Letter grading.

Ms. Chang, Mr. Hicks (Sp)

C235. Advanced Process Control. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Enforced requisite: course 107. Introduction to advanced process control. Topics include (1) Lyapunov stability for autonomous nonlinear systems including converse theorems, (2) input to state stability, interconnected systems, and small gain theorems, (3) design of nonlinear and robust controllers for various classes of nonlinear systems, (4) model predictive control of linear and nonlinear systems, (5) advanced methods for tuning of classical controllers, and (6) introduction to control of distributed parameter systems. Concurrently scheduled with course C135. Letter grading.

Mr. Christofides (Sp)

236. Chemical Vapor Deposition. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 210, 221C. Chemical vapor deposition is widely used to deposit thin films that comprise advanced electronic devices. Topics include reactor design, transport phenomena, gas and surface chemical kinetics, structure and composition of deposited films, and relationship between process conditions and film properties. Letter grading.

Mr. Hicks (Sp)

C245. Molecular Biotechnology for Engineers. (4) Same as Biomedical Engineering CM245. Lecture, four hours; discussion, one hour; outside study, eight hours. Selected topics in molecular biology that form foundation of biotechnology and biomedical industry today. Topics include recombinant DNA technology, molecular research tools, manipulation of gene expression, directed mutagenesis and protein engineering, DNA-based diagnostics and DNA microarrays, antibody and protein-based diagnostics, genomics and bioinformatics, isolation of human genes, gene therapy, and tissue engineering. Concurrently scheduled with course CM145. Letter grading.

Mr. Liao, Mr. Tang (F)

Mr. Liao (W)

250. Computer-Aided Chemical Process Design. (4) Lecture, four hours; study, outside eight hours. Requisites: course 106 or 108B. Application methods in chemical process design; computer aids in process engineering; process modeling; systematic flowsheet invention; process synthesis; optimal design and operation of large-scale chemical processing systems. Letter grading. Mr. Manousiouthakis (F)

270. Principles of Reaction and Transport Phenomena. (4) Lecture, four hours; laboratory, eight hours. Fundamentals in transport phenomena, chemical reaction kinetics, and thermodynamics at molecular level. Topics include Boltzmann equation, microscopic chemical kinetics, transition state theory, and statistical analysis. Examination of engineering applications related to state-of-the-art research areas in chemical engineering. Letter grading.

Ms. Chang (W)

270R. Advanced Research in Semiconductor Manufacturing. (6) Laboratory, nine hours; outside study, eight hours. Limited to graduate chemical engineering students in M.S. semiconductor manufacturing option. Supervised research in processing semiconductor materials and devices. Letter grading.

M280A. Linear Dynamic Systems. (4) Same as Electrical Engineering M240A and Mechanical and Aerospace Engineering M270A. Lecture, four hours; outside study, eight hours. Requisite: Electrical Engineering 141 or Mechanical and Aerospace Engineering 171A. State-space description of linear time-invariant (LTI) and time-variant (LTV) systems in continuous and discrete time. Linear algebra concepts such as eigenvalues and eigenvectors, singular values, Cayley/Hamilton theorem, Jordan form; solution of state equations; stability, controllability, observability, realizability, and minimality. Stabilization design via state feedback and observers; separation principle. Conclusions with transfer function techniques. Letter grading.
M280C. Optimal Control. (4) Same as Electrical Engineering M240C and Mechanical and Aerospace Engineering M270C.) Lecture, four hours; outside study, eight hours. Prerequisites: Electrical Engineering 240B or Mechanical and Aerospace Engineering 270B. Applications of variational methods, Pontryagin maximum principle, Hamilton/Jacobi/Bellman equation (dynamic programming) to optimal control of dynamic systems modeled by nonlinear ordinary differential equations. Letter grading.

283C. Analysis and Control of Infinite Dimensional Systems. (4) Lecture, four hours; outside study, eight hours. Prerequisites: courses M280A, M282A. Design for graduate students. Introduction to advanced dynamical analysis and control systems methods for nonlinear infinite dimensional systems. Topics include (1) linear operator and stability theory (basic results on Banach and Hilbert spaces, semi-group theory, convergence theory in function spaces), (2) nonlinear model reduction (linear and nonlinear Galerkin method, proper orthogonal decomposition), (3) nonlinear and robust control of nonlinear hyperbolic and parabolic partial differential equations (PDEs), (4) applications to transport-reaction processes. Letter grading. Mr. Christodoulides

290. Special Topics. (2 to 4) Seminar, four hours. Prerequisites for each offering announced in advance by department. Advanced and current study of one or more aspects of chemical engineering, such as chemical process dynamics and control, fuel cells and batteries, membrane transport, advanced chemical engineering analysis, polymers, optimization in chemical process design. May be repeated for credit with topic change. Letter grading.

M297. Seminar: Systems, Dynamics, and Control Topics. (2) Same as Electrical Engineering M248S and Mechanical and Aerospace Engineering M299A.) Seminar, two hours; outside study, six hours. Limited to graduate engineering students. Presentations of research topics by leading academic researchers from fields of systems, dynamics, and control. Students who work in these fields present their papers and results. S/U grading.

298A-298Z. Research Seminars. (2 to 4 each) Seminar, to be arranged. Prerequisites for each offering announced in advance by department. Lectures, discussions, student presentations, and projects in areas of current interest. May be repeated for credit. S/U grading. (F,W,Sp)

299. Departmental Seminar. (2) Seminar, two hours. Limited to graduate chemical engineering students. Seminars by leading academic and industrial chemical engineers on development or application of recent technological advances in the discipline. May be repeated for credit. S/U grading. (F,W,Sp)

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Prerequisites: appropriate personnel employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. (F,W,Sp)

495A. Teaching Assistant Training Seminar. (2) Seminar, two hours; outside study, four hours; one-day intensive training at beginning of Fall Quarter. Limited to graduate chemical engineering students. Required of all new teaching assistants. Special seminar on communicating chemical engineering principles, concepts, and methods; teaching assistant preparation, organization, and presentation of material, including use of grading, advising, and rapport with students. S/U grading.

495B. Teaching with Technology for Teaching Assistants. (2) Seminar, two hours; outside study, four hours. Limited to graduate chemical engineering students. Designed for teaching assistants interested in learning more about effective use of technology and ways to incorporate that technology into their classrooms for benefit of student learning. S/U grading.

596. Directed Individual or Tutorial Studies. (2 to 8) Tutorial, to be arranged. Limited to graduate chemical engineering students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies. Supervised investigation of advanced technical problems. S/U grading.

597A. Preparation for M.S. Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate chemical engineering students in M.S. semiconductor manufacturing option. Reading and preparation for M.S. comprehensive examination. S/U grading.

597B. Preparation for Ph.D. Preliminary Examinations. (2 to 16) Seminar, to be arranged. Limited to graduate chemical engineering students. S/U grading.

597C. Preparation for Ph.D. Oral Qualifying Examination. (2 to 16) Tutorial, to be arranged. Limited to graduate chemical engineering students. Supervised independent research for M.S. candidates, including thesis prospectus. S/U grading.

599. Research for and Preparation of Ph.D. Dissertation. (2 to 16) Tutorial, to be arranged. Limited to graduate chemical engineering students. Usually taken after students have been advanced to candidacy. S/U grading.

Civil and Environmental Engineering

UCLA
5731 Boelter Hall
Box 951593
Los Angeles, CA 90095-1593
(310) 825-1346
fax: (310) 206-2222
http://www.cee.ucla.edu

Professors
Jiun-Shyan (J-S) Chen, Ph.D., Chair
Jonathan P. Stewart, Ph.D., Vice Chair
Keith D. Stolzenbach, Ph.D., Vice Chair

Associate Professor
Ertugrul Taciroglu, Ph.D.

Assistant Professors
Scott J. Brandenberg, Ph.D.,
Eric M.V. Hoek, Ph.D.,
Terri S. Hogue, Ph.D.,
Jennifer A. Jay, Ph.D.,
Steven A. Margulis, Ph.D.,
Jian Zhang, Ph.D.,
Poul V. Lade, Ph.D.,
Tung Hua Lin, D.Sc.,
Chung Yen Liu, Ph.D.,
Samuel T. Perrine, Ph.D.,
Moshfegh Rubinstein, Ph.D.,
Lucien A. Schmit, Jr., M.S.,
Lawrence G. Selina, Ph.D.

Senior Lecturer
Sim-Lin Lau, Ph.D.,
Christopher Tu, Ph.D.

Adjunct Professors
Thomas C. Harmon, Ph.D.,
Ne-Zheng Sun, Ph.D.

Adjunct Associate Professors
Donald R. Kendall, Ph.D.,
Issam Najm, Ph.D.,
Daniel E. Pradel, Ph.D.

Scope and Objectives
The civil and environmental engineering programs at UCLA include structural engineering, structural mechanics, geotechnical engineering, earthquake...
engineering, hydrology and water resources engineering, and environmental engineering.

The ABET-accredited civil engineering curriculum leads to a B.S. in Civil Engineering, a broad-based education in structural engineering, geotechnical engineering, hydrology and water resources engineering, and environmental engineering. This program is an excellent foundation for entry into professional practice in civil engineering or for more advanced study.

At the graduate level, M.S. and Ph.D. degree programs are offered in the areas of structures (including structural/earthquake engineering and structural mechanics), geotechnical engineering, hydrology and water resources engineering, and environmental engineering. In these areas, research is being done on a variety of problems ranging from basic physics and mechanics problems to critical problems in earthquake engineering and in the development of new technologies for pollution control and water distribution and treatment.

Department Mission

The Civil and Environmental Engineering Department seeks to exploit its subfield teaching and research strengths as well as to engage in multidisciplinary collaboration. This occurs within the context of a central guiding theme: engineering sustainable infrastructure for the future. Under this theme the department is educating future engineering leaders, most of whom will work in multidisciplinary environments and confront a host of twenty-first-century challenges. With an infrastructure-based vision motivating its teaching and research enterprise, the department conceptualizes and orients its activity toward broadening and deepening fundamental knowledge of the interrelationships among the built environment, natural systems, and human agency.

Undergraduate Program Objectives

The objectives of the ABET-accredited civil engineering curriculum at UCLA are to (1) provide graduates with a solid foundation in basic mathematics, science, and humanities, as well as fundamental knowledge of relevant engineering principles, (2) provide students with the capability for critical thinking, engineering reasoning, problem solving, experimentation, and teamwork, (3) prepare graduates for advanced study and/or professional employment within a wide array of industries or governmental agencies, (4) produce graduates who understand ethical issues associated with their profession and who are able to apply their acquired knowledge and skills to the betterment of society, and (5) foster in students a respect for the educational process that is manifest by a lifelong pursuit of learning.

Undergraduate Study

Civil Engineering B.S.

Preparation for the Major

Required: Chemistry and Biochemistry 20A, 20B, 20L; Civil and Environmental Engineering 1, 15; Computer Science 31 (or another programming course approved by the Faculty Executive Committee); Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C (or Electrical Engineering 1), 4AL.

The Major

Required: Chemical Engineering 102A or Mechanical and Aerospace Engineering 105A, Civil and Environmental Engineering 101, 103, 108, 110, 120, 135A, 151, 153, Materials Science and Engineering 104, Mechanical and Aerospace Engineering 103, 182A; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and at least nine major field elective courses (36 units) that must include the required courses in two of the following tracks:

Environmental Engineering: One laboratory course from Civil and Environmental Engineering 156A or 156B or M166L and one major project design course from 157B or 157C; recommended: courses 154, 155, 163, 164, M166

Geotechnical Engineering: Civil and Environmental Engineering 121 and 128L; recommended: courses 123, 125, 135B, 137, 142

Structural Engineering and Mechanics:

Civil and Environmental Engineering 135B, one lecture course from 130, 135C, 137, 141, or 142, one laboratory course from 130L, 135L, 137L, or 142L (must select 130L or 137L or 142L if 135L is selected from structures major project design list), and one structures major project design course from 135L or 144 or 147 (must select 144 or 147 if 135L is selected from laboratory list); recommended: courses 121, 125, 130, 130L, 135L, 137, 137L, 141, 142, 142L, 143, 144, 147

Water Resources Engineering: Civil and Environmental Engineering 150 and 157L; recommended: courses 154, 156A

Additional Elective Options: Civil and Environmental Engineering 106A, 180, 181, Earth and Space Sciences 100, 139, Mechanical and Aerospace Engineering 166C, M168
For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/GE-EngrNew.

Graduate Study

For information on graduate admission, see Graduate Programs, page 23.
The following introductory information is based on the 2007-08 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnet.ucla.edu/gasaa/library/pgmrqintro.htm. Students are subject to the detailed degree requirements as published in Program Requirements for the year in which they matriculate.
The Department of Civil and Environmental Engineering offers Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Civil Engineering.

Civil Engineering M.S.

Course Requirements

Students may select either the thesis plan or comprehensive examination plan. At least nine courses are required, a majority of which must be in the Civil and Environmental Engineering Department. At least five of the courses must be at the 200 level. In the thesis plan, seven of the nine must be formal 100- or 200-series courses. The remaining two may be 598 courses involving work on the thesis. In the comprehensive examination plan, 500-series courses may not be applied toward the nine-course requirement. A minimum 3.0 grade-point average is required in all coursework.

Each major field has a set of required preparatory courses which are normally completed during undergraduate studies. Equivalent courses taken at other institutions can satisfy the preparatory course requirements. The preparatory courses cannot be used to satisfy course requirements for the M.S. degree; courses must be selected in accordance with the lists of required graduate and elective courses for each major field.

Undergraduate Courses. No lower division courses may be applied toward graduate degrees. In addition, the following upper division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199; Civil and Environmental Engineering 106A, 108, 199; Computer Science M152A, 152B, M171L, 199; Electrical Engineering 100, 101, 102, 103, 110L, M116L, M171L, 199; Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 140, 141L, 150, 160, 161L, 199; Mechanical and Aerospace Engineering 102, 103, 105A, 105D, 199.

The M.S. degree offers four fields of specialization that have specific course requirements.

Environmental Engineering

Required Preparatory Courses. Chemistry and Biochemistry 20A, 20B, 20L; Civil and Environmental Engineering 150 or 151, 153; Mathematics 32A, 32B, 33A; Mechanical and Aerospace Engineering 103, 105A; Physics 1A, 1B, 4AL, 4BL.

Required Graduate Courses. Civil and Environmental Engineering 254A, 255A, 255B.

Geotechnical Engineering

Required Preparatory Courses. Civil and Environmental Engineering 108, 120, 121.

Required Graduate Courses. Civil and Environmental Engineering 220, 221, 223, 224.

Major Field Elective Courses. Minimum of three courses must be selected from Civil and Environmental Engineering 123, 125, 128L, 222, 225, 226, 227, 228L.

Elective Courses. General: Earth and Space Sciences 139, 222, Mechanical and Aerospace Engineering M256A; earthquake/structural engineering: Civil and Environmental Engineering 135A, 135B, 137, 235A, 235B, 235C, 244, 246; Mechanical and Aerospace Engineering 174; environmental engineering: Civil and Environmental Engineering 153, 164, 250B, 250C.

Hydrology and Water Resources Engineering

Required Preparatory Courses. Chemistry and Biochemistry 20A, 20B, 20L; Civil and Environmental Engineering 150 or 151, 153; Mathematics 32A, 32B, 33A; Mechanical and Aerospace Engineering 103, 105A; Physics 1A, 1B, 4AL, 4BL.

Required Graduate Courses. Minimum of five courses must be selected from Civil and Environmental Engineering 250A, 250B, 250C, 250D, 252, 253, 260, 265A, 265B.

Elective Courses. Civil and Environmental Engineering 150, 164, 254A, 255A, 255B, 263A; a maximum of two of the following courses for students electing the thesis plan or a maximum of three of the following courses for students electing the comprehensive examination plan: Atmospheric and Oceanic Sciences M203A, 218, Computer Science 270A, 271A, 271B, Electrical Engineering 236A, 236B, 236C, M237, Mathematics 269A, 269B, 269C.

Students may petition the department for permission to pursue programs of study that differ from the above norms.

Structural/Earthquake Engineering

Required Preparatory Courses. Civil and Environmental Engineering 135A, 135B, 141, 142.

Required Graduate Courses. Civil and Environmental Engineering 235A, 246; at least three of the following courses: Civil and Environmental Engineering 241, 242, 243A, 243B, 244, 247, 248.

Structural Mechanics

Required Preparatory Courses. Civil and Environmental Engineering 130, 135A, 135B.

Required Graduate Courses. Civil and Environmental Engineering 232, 235A, 235B, 236, M237A.

Comprehensive Examination Plan
In addition to the course requirements, under this plan there is a comprehensive written examination covering the subject matter contained in the program of study. The examination is administered by a comprehensive examination committee, which may conduct an oral examination in addition to the written examination. In case of failure, the examination may be repeated once with the consent of the graduate adviser.

Thesis Plan
In addition to the course requirements, under this plan students are required to write a thesis on a research topic in civil and environmental engineering supervised by the thesis adviser. An M.S. thesis committee reviews and approves the thesis. No oral examination is required.

Civil Engineering Ph.D.

Major Fields or Subdisciplines
Environmental engineering, geotechnical engineering, hydrology and water resources engineering, structural/earthquake engineering, and structural mechanics.

Course Requirements
There is no formal course requirement for the Ph.D. degree, and students may theoretically substitute coursework by examinations. However, students normally take courses to acquire the knowledge needed for the required written and oral preliminary examinations. The basic program of study for the Ph.D. degree is built around one major field and two minor fields. After mastering the body of knowledge contained in a detailed Ph.D. field syllabus available on request from the department office. Each minor field normally embraces a body of knowledge equivalent to three courses from the selected field, at least two of which are graduate courses. Grades of B— or better with a grade-point average of at least 3.33 in all courses included in the minor field, are required. If students fail to satisfy the minor field requirements through coursework, a minor field examination may be taken (once only). The minor fields are chosen to support the major field and are usually subsets of other major fields.

Written and Oral Qualifying Examinations
After mastering the body of knowledge defined in the major field, students take a written preliminary examination. When the examination is passed and all coursework is completed, students take an oral preliminary examination that encompasses the major and minor fields. Both preliminary examinations should be completed within the first two years of full-time enrollment in the Ph.D. program. Students may not take an examination more than twice.

After passing both preliminary examinations, students take the University Oral Qualifying Examination. The nature and content of the examination are at the discretion of the doctoral committee, but ordinarily include a broad inquiry into the student’s preparation for research. The doctoral committee also reviews the prospectus of the dissertation at the oral qualifying examination.

Note: Doctoral Committees. A doctoral committee consists of a minimum of four members. Three members, including the chair, must be “inside” members who hold full-time faculty appointments in the Civil and Environmental Engineering Department at UCLA. The “outside” member must be a UCLA faculty member outside the Civil and Environmental Engineering Department.

Fields of Study

Environmental Engineering
Research in environmental engineering focuses on the understanding and management of physical, chemical, and biological processes in the environment and in engineering systems. Areas of research include process development for water and wastewater treatment systems and the investigation of the fate and transport of contaminants in the environment.

Geotechnical Engineering
Research in geotechnical engineering focuses on understanding and advancing the state of knowledge on the effects that soils and soil deposits have on the performance, stability, and safety of civil engineering structures. Areas of research include laboratory investigations of soil behavior under static and dynamic loads, constitutive modeling of soil behavior, behavior of structural foundations under static and dynamic loads, soil improvement techniques, response of soil deposits and earth structures to earthquake loads, and the investigation of geotechnical aspects of environmental engineering.

Hydrology and Water Resources Engineering
Ongoing research programs deal with hydrologic processes, statistics related to climate and hydrology, multiobjective water resources planning and management, numerical modeling of solute transport in groundwater, remediation studies of contaminated soil and groundwater, and optimization of conjunctive use of surface water and groundwater.

Structures (Structural Mechanics and Earthquake Engineering)
Research in structural mechanics is directed toward improving the ability of engineers to understand and interpret structural behavior through experiments and computer analyses. Areas of special interest include computer analysis using finite-element techniques, structural dynamics, nonlinear behavior, plasticity, micromechanics of composites, damage and fracture mechanics, structural optimization, probabilistic static and dynamic analysis of structures, and experimental stress analysis.

Designing structural systems capable of surviving major earthquakes is the goal of experimental studies on the strength of full-scale reinforced concrete structures, computer analysis of soli/structural systems, design of earthquake resistant masonry, and design of seismic-resistant buildings and bridges.

Teaching and research areas in structural/earthquake engineering involve assessing the performance of new and existing structures subjected to earthquake ground motions. Specific interests include assessing the behavior of reinforced concrete buildings and bridges, as well as structural steel, masonry, and timber structures. Integration of analytical studies with laboratory and field experiments is emphasized to assist in the development of robust analysis and design tools, as well as design recommendations. Reliability-based design and performance assessment methodologies are also an important field of study.
Facilities
The Civil and Environmental Engineering Department has a number of laboratories to support its teaching and research:

Instructional Laboratories
Advanced Soil Mechanics Laboratory
The Advanced Soil Mechanics Laboratory is used for preparing and performing advanced triaxial, simple shear, and consolidation soil tests. It is also used for demonstration of cyclic soil testing techniques and advanced data acquisition and processing.

Environmental Engineering Laboratories
The Environmental Engineering Laboratories are used for the study of basic laboratory techniques for characterizing water and wastewaters. Selected experiments include measurement of biochemical oxygen demand, suspended solids, dissolved oxygen hardness, and other parameters used in water quality control.

Experimental Fracture Mechanics Laboratory
The Experimental Fracture Mechanics Laboratory is used for preparing and testing specimens using modern dynamic testing machines to develop an understanding of fracture mechanics and to become familiar with experimental techniques available to study crack tip stress fields, strain energy release rate, surface flaws, and crack growth in laboratory samples.

Mechanical Vibrations Laboratory
The Mechanical Vibrations Laboratory is used for conducting free and forced vibration and earthquake response experiments on small model structures such as a three-story building, a portal frame, and a water intake/outlet tower for a reservoir. Two electromagnetic exciters, each with a 30-pound dynamic force rating, are available for generating steady state forced vibrations. A number of accelerometers, LVDTs (displacement transducers), and potentiometers are available for measuring the motions of the structure. A laboratory view-based computer-controlled dynamic data acquisition system, an oscilloscope, and a spectrum analyzer are used to visualize and record the motion of the model structures.

Two small electromagnetic and servohydraulic shaking tables (1.5 ft. x 1.5 ft. and 2 ft. x 4 ft.) are available to simulate the dynamic response of structures to base excitation such as earthquake ground motions.

Reinforced Concrete Laboratory
The Reinforced Concrete Laboratory is available for students to conduct monotonic and cyclic loading to verify analysis and design methods for moderate-scale reinforced concrete slabs, beams, columns, and joints, which are tested to failure.

Soil Mechanics Laboratory
The Soil Mechanics Laboratory is used for performing experiments to establish data required for soil classification, soil compaction, shear strength of soils, soil settlement, and consolidation characteristics of soils.

Structural Design and Testing Laboratory
The Structural Design and Testing Laboratory is used for the design/optimization, construction, instrumentation, and testing of small-scale structural models to compare theoretical and observed behavior. Projects provide integrated design/laboratory experience involving synthesis of structural systems and procedures for measuring and analyzing response under load.

Research Laboratories
Building Earthquake Instrumentation Network
The Building Earthquake Instrumentation Network consists of more than 100 earthquake strong motion instruments in three campus buildings to measure the response of actual buildings during earthquakes. When combined with over 50 instruments placed in four Century City high-rises and retail buildings, this network, which is maintained by the U.S. Geological Society and State of California Division of Mines and Geology Strong Motion Program, represents the most detailed building instrumentation network in the world. The goal of the research conducted using the response of these buildings is to improve computer modeling methods and the ability of structural engineers to predict the performance of buildings during earthquakes.

Environmental Engineering Laboratories
The Environmental Engineering Laboratories are used for conducting water and wastewater analysis, including instrumental techniques such as GC, GC/MS, HPLC, TOC, IC, and particle counting instrumentation. A wide range of wet chemical analysis can be made in this facility with 6,000 square feet of laboratory space and an accompanying 4,000-square-foot rooftop facility where large pilot scale experiments can be conducted. Additionally, electron microscopy is available in another laboratory.

Recently studies have been conducted on oxygen transfer, storm water toxicity, transport of pollutants in soil, membrane fouling, removal from drinking water, and computer simulation of a variety of environmental processes.

Experimental Mechanics Laboratory
The Experimental Mechanics Laboratory supports two major activities: the Optical Metrology Laboratory and the Experimental Fracture Mechanics Laboratory. In the Optical Metrology Laboratory, tools of modern optics are applied to engineering problems. Such techniques as holography, speckle-interferometry, Moiré analysis, and fluorescence-photo mechanics are used for obtaining displacement, stress, strain, or velocity fields in either solids or liquids. Recently, real-time video digital processors have been combined with these modern optical techniques, allowing direct interfacing with computer-based systems such as computer-aided testing or robotic manufacturing.

The Experimental Fracture Mechanics Laboratory is currently involved in computer-aided testing (CAT) of the fatigue fracture mechanics of ductile material. An online dedicated computer controls the experiment as well as records and manipulates data.

Large-Scale Structure Test Facility
The Large-Scale Structure Test Facility allows investigation of the behavior of large-scale structural components and systems subjected to gravity and earthquake loadings. The facility consists of a high-bay area with a 20 ft. x 50 ft. strong floor with anchor points at 3 ft. on center. Actuators with servohydraulic controllers are used to apply monotonic or cyclic loads. The area is serviced by two cranes. The facilities are capable of testing large-scale structural components under a variety of axial and lateral loadings.

Associated with the laboratory is an electrohydraulic universal testing machine with force capacity of 100 tons. The machine is used mainly to apply tensile and compressive loads to specimens so that the properties of the materials from which the
specimens are made can be determined. It can also be used in fatigue-testing of small components.

Soil Mechanics Laboratory
The Soil Mechanics Laboratory is used for standard experiments and advanced research in geotechnical engineering, with equipment for static and dynamic triaxial and simple shear testing. Modern computer-controlled servo-hydraulic closed-loop system supports triaxial and simple shear devices. The system is connected to state-of-the-art data acquisition equipment. The laboratory also includes special simple shear apparatuses for small-strain static and cyclic testing and for one-dimensional or two-dimensional cyclic loading across a wide range of frequencies. A humidity room is available for storing soil samples.

Faculty Areas of Thesis Guidance

Professors
- Jinn-Shyan (J-S) Chen, Ph.D. (Northwestern, 1989)
 - Finite element methods, meshfree methods, large deformation mechanics,inelasticity, contact problems, structural dynamics
- Jian-Wen Ju, Ph.D. (UC Berkeley, 1986)
 - Damage mechanics, mechanics of composite materials, computational plasticity, micromechanics, concrete modeling and durability, computational mechanics
- Michael K. Stenstrom, Ph.D. (Clemson, 1976)
 - Process development and control for water and wastewater treatment plants
- Jonathan P. Stewart, Ph.D. (UC Berkeley, 1996)
 - Geotechnical engineering, earthquake engineering
- Keith D. Stolzenbach, Ph.D. (MIT, 1971)
 - Environmental fluid mechanics, fate and transport of pollutants, dynamics of particles
- Mladen Vucetic, Ph.D. (Rensselaer, 1986)
 - Geotechnical engineering, soil dynamics, geotechnical earthquake engineering, experimental studies of static and cyclic soil properties
- John W. Wallace, Ph.D. (UC Berkeley, 1988)
 - Earthquake engineering, design methodologies, seismic evaluation and retrofit, large-scale testing laboratory and field testing
- William W.-G. Yeh, Ph.D. (Stanford, 1967)
 - Hydrology and optimization of water resources systems

Professors Emeriti
- Stanley B. Dong, Ph.D. (UC Berkeley, 1962)
 - Structural mechanics, structural dynamics, finite element methods, numerical methods and mechanics of composite materials
- Lewis P. Felton, Ph.D. (Carnegie Institute of Technology, 1964)
 - Structural analysis, structural mechanics, automated optimum structural design, including reliability-based design
- Michael E. Fourney, Ph.D. (Cal Tech, 1963)
 - Experimental mechanics, special emphasis on application of modern optical techniques

Graduate Faculty Areas of Thesis Guidance

Professors
- Michael C. Hart, Ph.D. (Stanford, 1968)
 - Structural engineering analysis and design of buildings for earthquake and wind loads, structural dynamics, and uncertainty and risk analysis of structures
- Pou W. Lade, Ph.D. (UC Berkeley, 1972)
 - Soil mechanics, stress-strain and strength characteristics of soils, deformation and stability analyses of foundation engineering problems
- Chung Yen Liu, Ph.D. (Cal Tech, 1962)
 - Fluid mechanics, environmental, numerical
- Richard L. Perrine, Ph.D. (Stanford, 1953)
 - Resource and environmental problems-chemical, petroleum, or hydrological, physics of flow through porous media, transport phenomena, kinetics
- Moshe F. Rubinstein, Ph.D. (UCLA, 1961)
 - Systems analysis and design, problem-solving and decision-making models
- Lucien A. Schmit, Jr., M.S. (MIT, 1950)
 - Structural mechanics, optimization, automated design methods for structural systems and components, application of finite element analysis techniques and mathematical programming algorithms in structural design, analysis and synthesis methods for fiber composite structural components
- Lawrence G. Selna, Ph.D. (UC Berkeley, 1967)
 - Reinforced concrete, earthquake engineering

Associate Professor
- Ertugrul Taciroglu, Ph.D. (Illinois, Urbana-Champaign, 1998)
 - Computational structural and solid mechanics and constitutive modeling of materials

Assistant Professors
- Scott J. Brandenburg, Ph.D. (UCLA, 2005)
 - Geotechnical earthquake engineering, soil-structure interaction, liquefaction, data acquisition and processing, numerical analysis
- Eric M. V. Hoek, Ph.D. (Yale, 2001)
 - Physical and chemical environmental processes, colloidal and interfacial phenomena, environmental membrane separations, bio-adhesion and bio-fouling
- Terri S. Hogue, Ph.D. (Arizona, 2003)
 - Surface hydrodynamics, hydroclimatology, rainfall-runoff modeling, operational flood forecasting, parameter estimation, model optimization techniques, sensitivity analysis, land-surface-atmosphere interactions, surface vegetation atmosphere transfer schemes (SVATs), and carbon flux modeling
- Jennifer A. Jay, Ph.D. (MIT, 1999)
 - Aquatic chemistry, environmental microbiology
- Steven A. Margulis, Ph.D. (MIT, 2002)
 - Surface hydrology, hydrometeorology, remote sensing, data assimilation
- Jian Zhang, Ph.D. (UC Berkeley, 2002)
 - Earthquake engineering, structural dynamics and mechanics, seismic protective devices and strategies, soil-structure interaction, and bridge engineering

Senior Lecturer
- Christopher Tu, Ph.D. (UCLA, 1975)
 - Groundwater movement and surface water hydrology

Adjunct Professors
- Thomas C. Harmon, Ph.D. (Stanford, 1992)
 - Physical and chemical treatment processes, mass transfer in aqueous systems, contaminant transport in porous media

Adjunct Associate Professors
- Donald R. Kendall, Ph.D. (UCLA, 1989)
 - Water resource management, engineering economics analysis of water and environmental planning, drought analysis
- Issam Najm, Ph.D. (Illinois, Urbana-Champaign, 1990)
 - Water chemistry: physical and chemical processes in drinking water treatment
- Daniel E. Pradel, Ph.D. (U. Tokyo, 1987)
 - Soil mechanics and foundation engineering
- Thomas Sabol, Ph.D. (UCLA, 1985)
 - Seismic performance and structural design issues for steel and concrete seismic force resisting systems; application of probabilistic methods to earthquake damage quantification

Lower Division Courses

1. Introduction to Civil Engineering. (2) Lecture, two hours. Introduction to scope of civil engineering profession, including earthquake, environmental, geotechnical, structural, transportation, and water resources engineering. P/NP grading. Mr. Yeh (F)
2. Introduction to Computing for Civil Engineers. (2) Lecture, two hours: laboratory, two hours; outside study, two hours. Introduction to computer programming using MATLAB. Selected topics in programming, with emphasis on numerical techniques and methodology as applied to civil engineering programs. Letter grading. Mr. Chen, Mr. Ju (F,WSp)
3. Fiat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

58SL. Wetlands and Water Quality Service Learning Course. (4) Lecture, three hours. Learning and teaching of basic water quality concepts and wetland functions in one of two middle school classrooms in Los Angeles. Topics include photosynthesis, respiration, basic water quality parameters (pH, dissolved oxygen, salinity, turbidity), basic contaminant chemistries and methodology as applied to civil engineering programs. Letter grading. Ms. Jay (W)

85. Professional Practice Issues in Structural Engineering. (2) Seminar, two hours; outside study, four hours. Introduction to issues of professional practice in structural engineering. Content and organization of model building codes and material-specific code reference standards. Interpretation of architectural and structural design drawings and specifications. Material-independent structural calculations such as tributary area, multistory column loads, and estimation of simple seismic and wind loads. P/NP grading. Mr. Wallace (F)

97. Variable Topics in Civil and Environmental Engineering. (2 to 4) Seminar, two hours. Current topics and research methods in civil and environmental engineering. May be repeated for credit. Letter grading.

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in a minimum of 12 units excluding this course. Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.
120. Principles of Soil Mechanics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 135. Soil as a foundation for structures and as a material of construction. Soil formation, classification, physical and mechanical properties, soil compaction, earth pressures, consolidation, and shear strength. Letter grading.

121. Design of Foundations and Earth Structures. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 120. Design methods for foundations and earth structures. Site investigation, including evaluation of soil properties for design. Design of footings and piles, including stability and settlement calculations. Design of slopes and earth retaining structures. Letter grading.

123. Advanced Geotechnical Design. (4) Lecture, four hours; outside study, eight hours. Requisite: course 121. Analysis and design of earth dams, including seepage, piping, and slope stability analyses. Case history studies involving landslides, settlement, and expansive soil problems, and design of repair methodologies for those problems. Within context of above technical problems, emphasis on preparation of professional design proposals, work acknowledgements, figures, plans, and reports. Letter grading.

125. Fundamentals of Earthquake Engineering. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 121 and either 137 or 222. Representations of earthquake ground motion, including response and Fourier spectra. Seismic design codes for building structures. Ground motion hazard analysis, including fault characterization, attenuation relationships, and site effects. Near fault ground motions. Time history selection. Letter grading. Mr. Stewart (Sp)

128L. Soil Mechanics Laboratory. (4) Lecture, one hour; laboratory, eight hours; outside study, three hours. Requisite or corequisite: course 120. Laboratory exercises to be performed by students to obtain soil parameters required for assigned design problems. Soil classification, grain size distribution, Atterberg limits, specific gravity, compaction, expansion index, consolidation, shear strength determination. Design problems, laboratory report writing. Letter grading. Mr. Brandenberg (F-Sp)

130. Elementary Structural Mechanics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 130. Stress and strain, phenomenological material behavior, extension, bending, and transverse shear stresses in beams with general cross-sections, shear center, deflection of beams, tension of beams, warping, column instability and failure. Letter grading. Mr. Taciroglu (W)

130L. Experimental Structural Mechanics. (4) Lecture, two hours; laboratory, six hours; outside study, four hours. Requisite or corequisite: course 130. Lectures and laboratory experiments in various structural mechanics testing of metals, plastics, and concrete. Direct tension. Direct compression. Ultrasonic nondestructive evaluation. Elastic buckling of columns. Fracture mechanics testing and fracture toughness. Splitting and flexural tension. Elastic, plastic, and fracture behavior. ASTM, RILEM, and USBR. Cyclic loading of structures of concrete. Size effects. Letter grading. Mr. Ju (W)

135A. Elementary Structural Analysis. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 15, 103, 108. Introduction to structural analysis; classification of structural elements; analysis of statically determinate trusses, beams, and frames; deflections in elementary structures; virtual work; analysis of indeterminate structures and as a material of construction. Soil formation, classification, physical and mechanical properties, soil compaction, earth pressures, consolidation, and shear strength. Letter grading.

135B. Intermediate Structural Analysis. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 135A. Analysis of trusses and frame structures using matrix methods; matrix force methods; matrix displacement method; analysis concepts based on theorem of virtual work; moment distribution. Letter grading. Mr. Ju (W)

M135C. Introduction to Finite Element Methods. (4) Formerly numbered 135C; (same as Mechanical and Aerospace Engineering M168.) Lecture, four hours; discussion; one hour; outside study, seven hours. Requisite: course 130 or Mechanical and Aerospace Engineering 156A. Introduction to basic concepts of finite element methods (FEM) and applications to structural and solid mechanics and heat transfer. Direct matrix structural analysis; weighted residual, least squares, and Ritz approximation methods; shape functions; convergence properties; isoparametric formulation of multidimensional heat flow and elasticity; numerical integration. Practical use of FEM software; geometric and analytical modeling; preprocessing and postprocessing techniques; term projects with computers. Letter grading. Mr. Chen, Mr. Klug (Sp)

135L. Structural Design and Testing Laboratory. (4) Lecture; two hours; laboratory; four hours; outside study, six hours. Requisites: courses 15, 135A. Limited enrollment. Computer-aided optimum design, construction, instrumentation, and testing of a small-scale model structure. Use of computer-based data acquisition and interpretation systems for comparison of experimental and theoretically predicted behavior. Letter grading. Mr. Ju (F)

137. Elementary Structural Dynamics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 135B. Basic structural dynamics course for civil engineering students. Elastic, free forced vibration, and earthquake response spectra analysis for single and multidegree of freedom systems. Axial, bending, and torsional vibration of beams. Letter grading. Mr. Ju (F)

137L. Structural Dynamics Laboratory. (4) Lecture; two hours; laboratory; six hours; outside study, four hours. Requisite or corequisite: course 137. Calibration of instrumentation for dynamic measurements. Determination of natural frequencies and damping factors from free vibrations. Determination of natural frequencies, mode shapes, and damping factors from forced vibrations. Dynamic similitude. Letter grading.

141. Strength of Structures. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: course 135A. Introduction to building codes. Fundamentals of load and resistance factor design of steel elements. Design using American Institute of Steel Construction members. Design of beams and beam columns. Simple connection design. Introduction to computer modeling methods and design process. Letter grading. Mr. Wallace (F)

142L. Reinforced Concrete Structural Laboratory. (4) Lecture, two hours; laboratory, six hours; outside study, four hours. Requisites: courses 135B, 142. Limited enrollment. Design considerations used for reinforced concrete beams, columns, slabs, and joints evaluated using analysis and experiments. Links between theory, building codes, and experimental results. Students will analyze codes and limitations of calculation procedures used in design of reinforced concrete structures. Development of skills for written and oral presentations. Letter grading. Mr. Wallace (Sp)
143. Design of Prestressed Concrete Structures. (4) Lecture, four hours; discussion, two hours; out- side study, six hours. Requisites: courses 135A, 142. Prestressing and post-tensioning techniques. Prop- erties of concrete and prestressing steels. Design con- siderations: anchorage/ bonding of cables/wire, flex- ure analysis by superposition and strength methods, draping of cables/stiffness, interactions between pre- nate structures, limitation of prestressing. Letter grading. Mr. Wallace (Sp)

150. Introduction to Hydrology. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite: Mechanical and Aerospace Engineering 103. Recommended: course 15. Study of hydrologic cycle and relevant atmospheric processes, water and energy balance, radiation, precipitation for- mation, infiltration, evaporation, vegetation transpira- tion, groundwater flow, storm runoff, and flood pro- cesses. Letter grading. Mr. Maguire (W)

151. Introduction to Water Resources Engineer- ing. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Recommended requisite: Mechanical and Aerospace Engineering 103. Prin- ciples of hydraulics, flow of water in open channels and pressure conduits, reservoirs and dams, hydraulic machinery, hydroelectric power. Introduction to sys- tem analysis and design applied to water resources engineering. Letter grading. Ms. Hogue (W)

153. Introduction to Environmental Engineering Science. (4) Lecture, four hours; outside study, eight hours. Recommended requisite: Mechanical and Aerospace Engineering 103. Water, air, soil, solid waste manage- ment; sources, transformations, effects, and pro- cesses for removal of contaminants. Water quality, water and wastewater treatment, waste disposal, air pollution, global environmental problems. Field problems. Letter grading. Mr. Stolzenbach (F)

154. Chemical Fate and Transport in Aquatic Envi- ronments. (4) Lecture, four hours; outside study, eight hours. Recommended requisite: course 153. Fundamental physical, chemical, and biological prin- ciples governing movement and fate of chemicals in surface waters and groundwater. Topics include physical transport in various aquatic environments, air-water exchange, acid-base equilibria, oxidation- reduction chemistry, chemical sorption, biodegrada- tion, and bioaccumulation. Practical quantitative problems solved considering both reaction and trans- port of chemicals in environment. Letter grading. Ms. Jay (F)

155. Unit Operations and Processes for Water and Wastewater Treatment. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requ- isite: course 153. Biological, chemical, and physical methods used to modify water quality. Fundamentals of phenomena governing design of engineered sys- tems for water and wastewater treatment systems. Field trip. Letter grading. Mr. Stenstrom (F)

156A. Environmental Chemistry Laboratory. (4) Lecture, four hours; laboratory, four hours; outside study, four hours. Requisites: course 153 (may be taken concurrently). Chemistry 20A, 20B. Basic labo- ratory techniques in analytical chemistry related to water and wastewater analysis. Selected experi- ments include gravimetric analysis, titrimetry spectro- photometry, and GC/MS. Evaluation of methods, re- sults, tables, graphs. Letter grading. Mr. Wagner (F)

156B. Environmental Engineering Unit Opera- tions and Processes Laboratory. (4) Lecture, four hours; discussion, two hours; outside study, four hours. Requisites: Chemistry 20A, 20B. Character- ization and analysis of typical natural waters and wastewaters for inorganic and organic constituents. Selected experiments include analysis of solids, ni- trogen species, oxygen demand, and chlorine residu- al, which are used in unit operation experiments that include reactor dynamics, aeration, gas stripping, co- agulation/flocculation, and membrane separation. Letter grading. Mr. Stenstrom (W)

157A. Design of Water Treatment Plants. (4) Le- cture, two hours; discussion, two hours; laboratory, four hours; outside study, six hours. Requisites: course 150. Water quality standards and regulations, overview of water treatment plants, design of unit operations, pre- design of water treatment plants, plant operations, process control, and cost estimation. Letter grading. Mr. Stenstrom (W)

157B. Design of Wastewater Treatment Plants. (4) Lecture, four hours; outside study, eight hours. Requ- isite: course 153. Process design of wastewater treatment plants, including primary and secondary treatment, detailed design review of existing plants, process control, and economics. Letter grading. Mr. Stenstrom (W)

157C. Design of Wastewater Treatment Plants. (4) Lecture, four hours; outside study, eight hours. Requ- isite: course 153. Process design of wastewater treatment plants, including primary and secondary treatment, detailed design review of existing plants, process control, and economics. Letter grading. Mr. Stenstrom (W)

157L. Hydrologic Analysis and Design. (4) Le- cture, two hours; laboratory, four hours; outside study, six hours. Requisites: courses 150 and/or 151. Col- lection, compilation, and interpretation of data for qua- ntification of surface water components of hydro- logic cycle, including precipitation, evaporation, infil- tration, and runoff. Use of hydrologic variables and parameters for development, construction, and appli- cation of analytical models for selected problems in hydrology and water resources. Field trip required. Letter grading. Mr. Hogue (W,Sp)

157M. Hydrology of Mountain Watersheds. (2) Fieldwork, three hours; laboratory, four hours; outside study, one hour; one field trip. Requisite: course 150 or 157L. Advanced field-based course with focus on study of catchment processes in snow-dominated and mountainous regions. Measurement and quantify snowpack properties and watershed fluxes, investigate geochemical properties of surface and groundwater systems, and classify mountain streams and flooding potential. Letter grading. Ms. Hogue (Sp)

163. Introduction to Atmospheric Chemistry and Air Pollution. (4) Lecture, four hours; outside study, eight hours. Requisites: course 153, Chemistry 20A, 20B, Mathematics 31A, 31B, Physics 1A, 1B. De- scription of processes affecting chemical composition of troposphere: air pollutant concentrations/stand- ards, urban and regional ozone, aerosol pollution, formation/deposition of secondary aerosols, acid precipitation, fate of an- trogenic/toxic/natural organic and inorganic com- pounds, selected global chemical cycle(s). Control technologies. Letter grading. Mr. Stolzenbach (Sp)

M166. Environmental Microbiology. (4) Same as Environmental Health Sciences M166.) Lecture, four hours; discussion, two hours; outside study, six hours. Recommended requisite: course 165. Microbi- al cell and its metabolic capabilities, microbial genet- ics and its potentials, growth of microbes and kinetics of growth, microbial ecology and diversity, microbiol- ogy of wastewater treatment, probing of microbes, public health microbiology, pathogen control. Letter grading. Ms. Jay (F)

M166L. Environmental Microbiology and Biotech- nology Laboratory. (1) Formerly numbered 166L. (Same as Environmental Health Sciences M166L.) Laboratory, two hours; outside study, two hours. Corequisite: course M166. General laboratory prac- tice within environmental microbiology, sampling of environmental samples, classical and high tech- nical techniques for enumeration of microbes from en- vironmental samples, techniques for determination of microbial activity in environmental samples, labora- tory setups for studying environmental biotechnology. Letter grading. Ms. Jay (Sp)

180. Introduction to Transportation Engineering. (4) Lecture, four hours; discussion, two hours; out- side study, six hours. Designed for juniors/seniors. General characteristics of transportation systems, in- cluding streets and highways, rail, transit, air, and wa- ter. Capacity considerations including time-space di- magRAMS queuing. Components of transportation system design, including horizontal and vertical alignment, cross sections, earthwork, drainage, and pavements. Letter grading. Mr. Stewart (Sp)

181. Traffic Engineering Systems: Operations and Control. (4) Lecture, four hours; fieldwork/laborato- ry, two hours; outside study, six hours. Designed for juniors/seniors. Applications of traffic flow theories; data collection and analyses; intersection capacity analyses; signal timing design; identification, and perfor- mance evaluation; Intelligent Transportation Systems concept, architecture, and integration. Letter grading. Mr. Stewart (Sp)

188. Special Courses in Civil and Environmental Engineering. (4) Formerly numbered 198.) Le- cture, four hours; outside study, eight hours. Special topics in civil engineering for undergraduate students that are taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated once for credit with topic or instructor change. Letter grading. Ms. Fong (W,Sp)

194. Research Group Seminars: Civil and Envi- ronmental Engineering. (2 to 8) Seminar, two to eight hours; outside study, four to 16 hours. Designed for undergraduate students who are part of research group. Discussion of research methods and current literature in field or of research of faculty members or students. May be repeated for credit. Letter grading.

199. Directed Research in Civil and Environmen- tal Engineering. (2 to 8) Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual re- search or investigation under guidance of faculty mentor. Culminating paper or project required. May be repeated for credit with school approval. Individual contract required; enrollment petitions available in Of- fice of Academic and Student Affairs. Letter grading. (F,WSp)

Graduate Courses

222. Introduction to Soil Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 120. Review of engineering problems involving soil dynamics. Fundamentals of theoretical soil dynamics, response of soils to slippage on a plane, cyclic earthquake loads, application of theories of single degree-of-freedom (DOF) system, multiple DOF system and one-dimensional wave propagation. Fundamentals of soil behavior, stress-strain relationships, water pressure behavior, shear moduli and damping, cyclic settlement and concept of volumetric cyclic threshold shear strain. Introduction to modeling of cyclic soil behavior. Letter grading. Mr. Vucetic (W)

223. Earth Retaining Structures. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 120, 121. Basic concepts of theory of earth pressures behind retaining structures, with special application to design of retaining walls, bulkheads, culverts, and excavation bracing. Effects of flexibility, creep in soils, and construction techniques on stability of various retaining wall types. Calculation of active and passive earth pressures on structures. Eccentric loads, effects of water table, and slope stability. Letter grading. Mr. Vucetic (W)

224. Advanced Cyclic and Monotonic Soil Behavior. (4) Lecture, four hours; outside study, eight hours. Requisite: course 220. In-depth study of behavior under cyclic and monotonic loads. Relationships between stresses, strain, pore water pressure, and volume change in range of very small and large strain deformations. Stress-strain cycles, effective stress, and effective stress path. Creep and time-dependent behavior of soils, such as with soil nails and geosynthetics. Letter grading. Mr. Vucetic (W)

225. Geotechnical Earthquake Engineering. (4) Lecture, four hours; outside study, eight hours. Requisite: course 120. Field of geotechnical engineering involves application of geotechnical principles to environmental problems. Topics include environmental regulations, waste characterization, geosynthetics, solid waste landfills, subsurface barrier walls, and disposal of hazardous waste materials. Letter grading. Mr. Stewart (Sp)

226. Geoenvironmental Engineering. (4) Lecture, four hours; outside study, eight hours. Requisite: course 120. Field of geoenvironmental engineering involves application of geotechnical principles to environmental problems. Topics include environmental regulations, waste characterization, geosynthetics, solid waste landfills, subsurface barrier walls, and disposal of hazardous waste materials. Letter grading. Mr. Stewart, Mr. Vucetic (Sp)

227. Numerical Methods in Geotechnical Engineering. (4) Lecture, four hours; outside study, eight hours. Requisite: course 220. Introduction to basic concepts of computer modeling of soils using finite element method, and to constitutive modeling based on elasticity and plasticity theories. Special emphasis on numerical applications and identification of modeling concerns such as instability, bifurcation, nonexistence, and nonuniqueness of solutions. Letter grading. Mr. Stewart, Mr. Vucetic (Sp)

228L. Advanced Soil Mechanics Laboratory. (4) Lecture, one hour; laboratory, six hours; outside study, five hours. Requisites: courses 120, 121. Lectures and laboratory studies covering more advanced aspects of laboratory determination of soil properties and their application to design. Tests to determine permeability, consolidation, and shear strength. Review of laboratory equipment and instrumentation. Letter grading. Mr. Vucetic (W)

230A. Linear Elasticity. (4) Same as Mechanical and Aerospace Engineering M256A.) Lecture, four hours; outside study, eight hours. Requisite: Mechanical and Aerospace Engineering 156A or 166A. Linear elastostatics. Cartesian tensors; infinitesimal strain tensor; Cauchy stress tensor; strain energy; equilibrium equations; linear constitutive relations; plane strain problems; shear moduli; effects of cracks; three-dimensional problems of Kelvin, Boussinesq, and Cerrutti. Introduction to boundary integral equation method. Letter grading. Mr. Ju, Mr. Mal (F)

230B. Nonlinear Elasticity. (4) (Formerly numbered M220.) (Same as Mechanical and Aerospace Engineering M225B.) Lecture, four hours; outside study, eight hours. Requisite: course M250A. Kinematics of deformation; Cauchy stress; Cauchy strain; stress-strain relations; linear and nonlinear elasticity; shear moduli; volumetric dilation; Cauchy equations of motion, balance of energy, stored energy; constitutive relations, elasticity, hyperelasticity, thermoelasticity; linearization of field equations; solution of selected problems. Letter grading. Mr. Ju, Mr. Mal (W)

230C. Plasticity. (4) (Formerly numbered M229.) (Same as Mechanical and Aerospace Engineering M225C.) Lecture, four hours; outside study, eight hours. Requisites: Mechanical and Aerospace Engineering M256A, M256B. Classical rate-independent plasticity theory, yield functions, flow rules and thermodynamics. Classical rate-dependent viscoplasticity, plastic strain energy function, flow rules and viscosity models. Thermoplasticity and creep. Return mapping algorithms for plasticity and viscoplasticity. Finite element implementations. Letter grading. Mr. Ju, Mr. Mal (Sp)

232. Theory of Plates and Shells. (4) Lecture, four hours; outside study, eight hours. Requisite: course 130. Small and large deformation theories of thin plates; energy methods; free vibrations; membrane theory of shells; axisymmetric deformations of cylindrical shells; spherical shells, including bending. Letter grading. Mr. Ju (F)

234. Advanced Topics in Structural Mechanics. (4) Lecture, four hours; outside study, eight hours. Limited to graduate engineering students. Current topics in composite materials, computational methods, finite element analysis, structural synthesis, nonlinear mechanics, and structural mechanics in general. Topics may vary from term to term. Letter grading. Mr. Ju (Sp)

235A. Advanced Structural Analysis. (4) Lecture, four hours; outside study, eight hours. Requisite: course 135A. Recommended: course 135B. Review of matrix force and displacement methods of structural analysis; virtual work theorem, virtual forces, and displacements; theorems on stationary value of total and complementary potential energy, minimum total potential energy, Maxwell/Betti theorems, effects of approximations, introduction to finite element analysis. Letter grading. Mr. Ju (F)

235B. Finite Element Analysis of Structures. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 130, 235A. Direct energy formulation for deformable systems; solution methods for matrix force, and displacement methods of structural analysis; analysis of structural systems with one-dimensional elements; introduction to variation-calculus; discrete element displacement, force, and displacement methods for structural analysis; effects of approximations, introduction to finite element analysis. Letter grading. Mr. Chen (W)

235C. Nonlinear Structural Analysis. (4) Lecture, four hours; outside study, eight hours. Requisite: course 235B. Classification of nonlinear effects; material nonlinearities; conservative, nonconservative material behavior; geometric nonlinearities, Lagrangian, Eulerian description of motion; finite element methods in geometrically nonlinear problems; postbuckling behavior of structures; solution of nonlinear equations; incremental, iterative, programming methods. Letter grading. Mr. Ju, Mr. Taciorglu (Sp)

241. Advanced Steel Structures. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 130, 235A. Performance of thin-walled steel structures for static and earthquake loads. Behavior state analysis and building code provisions for special moment resisting, braced, and eccentric braced frame structures. Composite steel-concrete structures. Letter grading. Mr. Ju (Sp)

243A. Behavior and Design of Reinforced Concrete Structural Elements. (4) Lecture, four hours; outside study, eight hours. Requisite: course 142. Advanced topics on design of reinforced concrete structures, including stress-strain relationships for plain and confined concrete, moment-curvature analysis of sections, and design for shear. Design of slender and low-rise walls, as well as design of beam-column joints. Introduction to displacement-based design and applications of strut-and-tie models. Letter grading. Mr. Wallace (F)
243B. Response and Design of Reinforced Concrete Structural Systems. (4) Lecture; four hours; outside study, eight hours. Requisites: courses 243A, 246. Information on response and behavior of reinforced concrete buildings to earthquake ground motions. Topics include use of elastic and inelastic response spectra, role of strength, stiffness, and ductility in the design of earthquake-resistant structures, and design based on general principles. Letter grading. Mr. Ju (W)

244. Structural Loads and Safety for Civil Structures. (4) Lecture; four hours; outside study, eight hours. Requisite: course 137 or 141 or 142 or 226A. Spectral analysis of ground motions; response time, and Fourier spectra. Response of structures to ground motions due to earthquakes. Computer methods to evaluate structural response. Response analysis, including safety features for design standards. Limitations due to idealizations. Letter grading. Mr. Ju (W)

247. Earthquake Hazard Mitigation. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 130, and M237A or 246. Concept of seismic isolation, linear theory of base isolation, visco-elastic and hysteretic behavior, elastomeric bearings under compression and tension, buckling of beams, sliding bearings, passive energy dissipation devices, response of structures with isolation and passive energy dissipation devices, static and dynamic analysis procedures, code provisions, design methods for seismically isolated structures. Letter grading. Ms. Zhang (Sp)

249. Selected Topics in Structural Engineering and Mechanics. (2) Lecture, two hours; outside study, six hours. Review of recent research and developments in structural engineering and mechanics. Structural analysis, finite elements, structural stability, dynamics of structures, structural design, earthquake engineering, ground motion, elasticity, plasticity, stress analysis, mechanisms of composites, and constitutive modeling. May be repeated for credit. S/U grading. Mr. Ju, Mr. Wallace (F, W, Sp)

250A. Surface Water Hydrology. (4) Lecture, four hours; outside study, eight hours. Requisite: course 150. In-depth study of surface water hydrology, including discussion and interrelationship of major topics such as rainfall and evaporation, soils and infiltration properties, runoff and snowmelt processes. Introduction to response and modeling, floods, and policy issues involved in water resource engineering and management. Letter grading. Ms. Hogue (F)

250C. Hydrometeorology. (4) Lecture, four hours. Requisite: course 250A. In-depth study of hydrometeorological processes. Role of hydrology in climate systems. Description and response of atmospheric conditions, atmospheric radiation, exchange of mass, heat, and momentum between soil and vegetation surface and overlying atmosphere, flux and transport in turbulent boundary layer, basic remote sensing concepts. Letter grading. Mr. Margulis (W)

250D. Water Resources Systems Engineering. (4) Formerly numbered 251.) Lecture, four hours; outside study, eight hours. Requisite: course 151. Application of mathematical programming techniques to water resources systems. Topics include reservoir management and operation; optimal timing, sequencing and sizing of water resources projects; and multiobjective planning and conjunctive use of surface water and groundwater. Emphasis on management of water quantity. Letter grading. Mr. Yeh (Sp)

251A. Rainfall-Runoff Modeling. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 250A, 251B. Introduction to hydrologic modeling concepts, including rainfall-runoff analysis, input data, uncertainty analysis, lumped and distributed modeling parameter estimation and sensitivity analysis, and techniques for validation and verification. Letter grading. Ms. Hogue (Sp)

251B. Contaminant Transport in Groundwater. (4) Formerly numbered 251C.) Lecture, four hours; outside study, eight hours. Requisites: courses 250B, 253. Phenomena and mechanisms of hydrodynamic dispersion, governing equations of mass transport in porous media, various analytical and numerical solutions, determination of dispersion parameters by laboratory and field experiments, biological and reactive transport in multiphase flow, remediation design, software packages and applications. Letter grading. Mr. Margulis

251C. Remote Sensing with Hydrologic Applications. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 250A, 250C. Introduction to basic physical concepts of remote sensing as they relate to surface and atmospheric hydrologic processes. Applications include radiative transfer modeling and retrieval of hydrologically relevant parameters like topography, soil moisture, snow properties, vegetation, and precipitation. Letter grading. Mr. Margulis

251D. Hydrologic Data Assimilation. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 250A, 250C. Phenomena and mechanisms of hydrodynamic dispersion, governing equations of mass transport in porous media, various analytical and numerical solutions, determination of dispersion parameters by laboratory and field experiments, biological and reactive transport in multiphase flow, remediation design, software packages and applications. Letter grading. Mr. Margulis

252. Engineering Economic Analysis of Water and Environmental Planning. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 108A, one or more courses from Economics 1, 2, 11, 100, 101. Economic theory and applications in analysis and management of water and environmental problems; application of price theory to water resource management and renewable resources; benefit-cost analysis with applications to water resources and environmental planning. Letter grading. Mr. Yeh

254A. Environmental Aquatic Inorganic Chemistry. (4) Lecture, four hours; outside study, eight hours. Requisites: Chemistry 20B, Mathematics 31A, 31B, Physics 1A, 1B. Equilibrium and reaction descrip- tions of chemical behavior of metals and inorganic ions in natural fresh-marine surface waters and in wa- ter treatment. Processes include acid-base chemistry and alkalinity (carbonate system), precipitation/dissolution, adsorption oxidation/reduction, and photochemistry. Letter grading. Mr. Stenstrom (F)

255A. Physical and Chemical Processes for Water and Wastewater Treatment. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 155, 254A, 255A. Fundamentals of environmental engineering microbiology; kinetics of microbial growth and biological oxi- dation; mechanisms for water and wastewater treatment; fixed-film processes, aerobic and anaerobic digestion, sludge disposal, and biological nutrient removal. Letter grading. Mr. Stenstrom (Sp)

258A. Membrane Separations in Aquatic Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 254A. Applications of mem- brane separations to desalination, water reclamation, brine disposal, and ultrapure water systems. Discuss- sion of reverse osmosis, ultrafiltration, electrodialysis, and ion exchange technologies from both practical and theoretical standpoints. Letter grading. Mr. Stenstrom (W)

259A. Selected Topics in Environmental Engi- neering. (2) Lecture, two hours; outside study, four hours. Review of recent research and developments in environmental engineering. Water and wastewater treatment systems, nonpoint pollution, multimedia impacts. May be repeated for credit. S/U grading. Mr. Stolzenbach (F, W, Sp)

259B. Selected Topics in Water Resources. (2 to 4) Lecture, four hours; outside study, eight hours. Re- view of recent research and developments in water resources. Water supply and hydrology, global cli- mate change, economic planning, optimization of wa- ter resources development may be taken for a maxi- mum of 4 units. Letter grading. Mr. Stenstrom (F, W, Sp)

260. Advanced Topics in Hydrology and Water Re- sources. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 254A, 255A. Colloidal interac- tions, colloidal stability, colloidal hydrodynamics, surface chemistry, adsorption of pollutants on colloidal surfaces, transport of colloids in porous media, coag- ulation, and particle deposition. Consideration of ap- plications to colloidal processes in aquatic environ- ments. Letter grading. Mr. Stenstrom (Sp)

261. Advanced Biological Processes for Water and Wastewater Treatment. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 254A, 255A. In-depth treatment of selected topics related to bio- logical treatment of waters and wastewaters, such as biodegradation of xenobiotics, emerging pollutants, toxicity, and nutrients. Discuss- sion of theoretical aspects, experimental observa- tions, and recent literature. Application to important and emerging environmental problems. Letter grade- ing. Mr. Stenstrom (Sp)
263A. Physics of Environmental Transport. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Transport processes - surface water, groundwater, and atmosphere. Emphasis on exchanges across phase boundaries: sediment/water interface; air/water gas exchange; particles, droplets, and bubbles; small-scale dispersion and mixing; effect of reactions on transport; linkages between physical, chemical, and biological processes. Letter grading. Mr. Stolzenbach (W)

263B. Advanced Topics in Transport at Environmental Interfaces. (4) Lecture, four hours; outside study, eight hours. Requisite: course 263A. In-depth treatment of selected topics involving transport phenomena at environmental interfaces between solid, fluid, and gas phases, such as aquatic sediments, porous aggregates, and vegetative canopies. Discussion of theoretical models and experimental observations. Application to important environmental engineering problems. Letter grading. Mr. Stolzenbach (Sp)

265A. Mass Transfer in Environmental Systems. (4) Lecture, four hours; computer applications, two hours; outside study, eight hours. Designed for graduate environmental engineering program students. Physical chemistry and mass transfer fundamentals related to contaminant fate and transport in soil, air, and water systems, including soil/water sorption and desorption, contaminant retardation, vaporization and dissolution of nonaqueous phase liquids (NAPL), and other environmental systems. Letter grading.

265B. Contaminant Transport in Soils and Groundwater. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 250B, 265A. Principles of mass transfer as they apply in soil and groundwater, independent estimation of transport model parameters; remediation of hazardous waste sites. Letter grading. Mr. Stolzenbach (F)

266. Environmental Biotechnology. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 153, 254A. Environmental biotechnology - concept and potential, biotechnology of pollutant control, bioremediation, biomass conversion: composting, biogas and bioethanol production. Letter grading. Ms. Jay (Sp)

297. Seminar: Current Topics in Civil Engineering. (2 to 4) Seminar, to be arranged. Lectures, discussions, and student presentations and projects in areas of current interest in civil engineering. May be repeated for credit. S/U grading. (F,W,Sp)

298. Seminar: Engineering. (2 to 4) Seminar, to be arranged. Limited to graduate civil engineering students. Seminars may be organized in advanced technical fields. If appropriate, field trips may be arranged. May be repeated with topic change. Letter grading.

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: apprentice personnel employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. (F,W,Sp)

495. Teaching Assistant Training Seminar. (2) Seminar, two hours. Requisite: apprentice personnel appointment as teaching assistant in an undergraduate course. Letter grading.

596. Directed Individual or Tutorial Studies. (2 to 8) Tutorial, to be arranged. Limited to graduate civil engineering students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies. Supervised investigation of advanced technical problems. S/U grading.

597A. Preparation for M.S. Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate civil engineering students. Preparation for M.S. comprehensive examination. S/U grading.

597B. Preparation for Ph.D. Preliminary Examinations. (2 to 16) Tutorial, to be arranged. Limited to graduate civil engineering students. Reading and preparation for M.S. comprehensive examination. S/U grading.

599. Research for and Preparation of Ph.D. Dissertation. (2 to 16) Tutorial, to be arranged. Limited to graduate civil engineering students. Usually taken after students have been advanced to candidacy. S/U grading.
Scope and Objectives

Computer science is concerned with the design, modeling, analysis, and applications of computer-related systems. Its study at UCLA provides education at the undergraduate and graduate levels necessary to understand, design, implement, and use the software and hardware of digital computers and digital systems. The programs provide comprehensive and integrated studies of subjects in computer system architecture, computer networks, distributed computer systems, programming languages and software systems, information and data management, artificial intelligence, computer science theory, computational systems biology and bioinformatics, and computer vision and graphics.

The undergraduate and graduate studies and research projects in computer science are supported by significant computing resources. In addition to the departmental computing facility, there are over a dozen research laboratories specializing in areas such as distributed systems, multimedia computer communications, distributed sensor networks, VLSI systems, VLSI CAD, embedded and reconfigurable systems, computer graphics, bioinformatics, and artificial intelligence. Also, the Cognitive Systems Laboratory is engaged in studying computer systems that emulate or support human reasoning. The Biocybernetics Laboratory is devoted to multidisciplinary research involving the application of engineering and computer science methods to problems in biology and medicine.

The B.S. degree may be attained either through the Computer Science and Engineering major or through the Computer Science major described below.
Computer Science and Electrical Engineering Departments. Within the curriculum students study all aspects of computer systems from electronic design through logic design, MSI, LSI, and VLSI concepts and device utilization, machine language design, implementation and programming, operating system concepts, systems programming, networking fundamentals, higher-level language skills, and application of these to systems. Students are prepared for employment in a wide spectrum of high-technology industries.

The computer science and engineering curriculum is also accredited by the Computing Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, (410) 347-7700.

Preparation for the Major

Required: Chemistry and Biochemistry 20A; Computer Science 1, 31, 32, 33, 35L, M51A (or Electrical Engineering M16); Electrical Engineering 1, 2, 10; Mathematics 31A, 31B, 32A, 32B, 33A, 33B, 61; Physics 1A, 1B, 4AL, 4BL.

The Major

The Major

Required: Computer Science 101, 111, 118, 130 (or 152B), 131, M151B (or Electrical Engineering M116C), M152A (or Electrical Engineering M116L), 180, 181, Statistics 110A, three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and three upper division computer science elective courses (12 units), one of which must be selected from Computer Science 143 or 161 or 174A. Electrical Engineering 103 may be substituted for one elective (credit is not given for both Computer Science 170A and Electrical Engineering 103), and either Computer Science 194 or one 4-unit 199 course may be applied as an elective by petition.

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/GE-EngrNew07-08.pdf.

Computer Science B.S.

The computer science curriculum is designed to accommodate students who want professional preparation in computer science but do not necessarily have a strong interest in computer systems hardware. The curriculum consists of component courses in computer science, a minor or technical support area, and a core of courses from the social sciences, life sciences, and humanities. Within the curriculum, students study subject matter in software engineering, principles of programming languages, data structures, computer architecture, theory of computation and formal languages, operating systems, distributed systems, computer modeling, computer networks, compiler construction, and artificial intelligence. Majors are prepared for employment in a wide range of industrial and business environments.

The computer science curriculum is accredited by the Computing Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, (410) 347-7700.

Preparation for the Major

Required: Chemistry and Biochemistry 20A; Computer Science 1, 31, 32, 33, 35L, M51A (or Electrical Engineering M16); Electrical Engineering 1, 2, 10; Mathematics 31A, 31B, 32A, 32B, 33A, 33B, 61; Physics 1A, 1B, 4AL, 4BL.

The Major

The Major

Required: Computer Science 101, 111, 118, 130 (or 152B), 131, M151B (or Electrical Engineering M116C), M152A (or Electrical Engineering M116L), 180, 181, Statistics 110A; three upper division science and technology courses (12 units) not used to satisfy other requirements, which may include three computer science courses, three courses to augment the technical breadth courses requirement, or three courses selected from one of the following: astronomy, atmospheric and oceanic sciences, biological chemistry, biomathematics, chemical and biomolecular engineering, chemistry and biochemistry, civil and environmental engineering, Earth and space sciences, economics, electrical engineering, information studies, linguistics, management, materials science and engineering, mathematics, mechanical and aerospace engineering, microbiology, immunology, and molecular genetics, molecular biology, molecular, cell, and developmental biology, physics—courses selected from outside the school must be approved by petition; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and six upper division computer science elective courses (24 units), two of which must be selected from Computer Science 143, 161, 174A and one of which must be from 112 or 170A or Electrical Engineering 103 (credit is not given for both Computer Science 170A and Electrical Engineering 103). Students who select Electrical Engineering 103 may not receive credit for Mathematics 151A under the science and technology electives; if students have not taken Computer Science 130, one elective course must be 132; and either Computer Science 194 or one 4-unit 199 course may be applied as an elective by petition.

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/GE-EngrNew07-08.pdf.

Graduate Study

For information on graduate admission, see Graduate Programs, page 23.

The following introductory information is based on the 2007-08 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnet.ucla.edu/gasaa/library/pgmrqintro.htm. Students are subject to the degree requirements as published in Program Requirements for the year in which they matriculate.

The Department of Computer Science offers Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Computer Science and participates in a concurrent degree program with the John E. Anderson Graduate School of Management.

Computer Science M.S.

Course Requirements

Course Requirement. A total of nine courses is required for the M.S. degree, including a minimum of five graduate courses. No specific courses are required, but a majority of both the total number of formal courses and the total number of graduate courses must consist of courses offered by the Computer Science Department.

Undergraduate Courses. No lower division courses may be applied toward graduate degrees. In addition, the following upper division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199; Civil and Environmental Engineering 106A, 108, 199; Computer Science M152A, 152B, 199; Electrical Engineering 170A and Engineering 103.
Engineering 100, 101, 102, 103, 110L, M116L, 199; Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 140, 141L, 150, 160, 161L, 199; Mechanical and Aerospace Engineering 102, 103, 105A, 105D, 199.

Breadth Requirement. Candidates for the M.S. degree in Computer Science must satisfy the computer science breadth requirement by the end of the fourth term in graduate residence at UCLA. The requirement is satisfied by mastering the contents of eight undergraduate courses or equivalent: Computer Science 111, 118, 143, M151B, 161, 180, 181, and one of 130, 131, or 132. A UCLA undergraduate course taken by graduate students may not be applied toward graduate degree requirements if students have already received a grade of B— or better for a course taken elsewhere that covers substantially the same material.

In addition, M.S. degree students must complete at least three terms of Computer Science 201 with grades of Satisfactory. Competence in any or all courses in breadth requirements may be demonstrated in one of three ways:

1. Satisfactory completion of the course at UCLA with a grade of B— or better
2. Satisfactory completion of an equivalent course at another university with a grade of B— or better
3. Satisfactory completion of a final examination in the course at UCLA

Comprehensive Examination Plan. In the comprehensive examination plan, at least five of the nine courses must be 200-series courses. The remaining four courses may be either 200-series or upper division courses. No units of 500-series courses may be applied toward the comprehensive examination plan requirements.

Thesis Plan. In the thesis plan, seven of the nine courses must be formal courses, including at least four from the 200 series. The remaining two courses must be 598 courses involving work on the thesis.

Comprehensive Examination Plan
Consult the department.

Thesis Plan
The thesis is a report on the results of student investigation of a problem in the major field of study under the supervision of the thesis committee, which approves the subject and plan of the thesis and reads and approves the complete manuscript. While the problem may be one of only limited scope, the thesis must exhibit a satisfactory style, organization, and depth of understanding of the subject. Students should normally start to plan the thesis at least one year before the award of the M.S. degree is expected. There is no examination under the thesis plan.

Computer Science M.S./Management M.B.A.
The Department of Computer Science and the John E. Anderson Graduate School of Management offer a concurrent degree program that enables students to complete the requirements for the M.S. in Computer Science and the M.B.A. (Master of Business Administration) in three academic years. Students should request application materials from both the M.B.A. Admissions Office, John E. Anderson Graduate School of Management, and the Department of Computer Science.

Computer Science Ph.D.

Major Fields or Subdisciplines
Artificial intelligence; computational systems biology (formerly biomedical systems/computational biology); computer networks; computer science theory; computer system architecture; information and data management; graphics and vision; and software systems.

Course Requirements
Normally, students take courses to acquire the knowledge needed to prepare for the written and oral qualifying examinations and for conducting Ph.D. research. The basic program of study for the Ph.D. degree is built around the fundamental examination, the major field requirement, and two minor fields. The major field and at least one minor field must be in computer science.

The fundamental examination is common for all Ph.D. candidates in the department and is also known as the written qualifying examination.

To satisfy the major field requirement, students are expected to attain a body of knowledge contained in six courses, as well as the current literature in the area of specialization. In particular, students are required to take a minimum of four graduate courses in the major field of Ph.D. research, selecting these courses in accordance with guidelines specific to the major field, which are available from the departmental Student Affairs Office. Grades of B— or better, with a grade-point average of at least 3.33 in all courses used to satisfy the major field requirement, are required. Students are required to satisfy the major field requirement within the first nine terms after enrolling in the graduate program.

Each minor field normally embraces a body of knowledge equivalent to three courses, at least two of which are graduate courses. Grades of B— or better with a grade-point average of at least 3.33 in all courses included in the minor field, are required. By petition and administrative approval, a minor field may be satisfied by examination.

Breadth Requirement. Candidates for the Ph.D. degree in Computer Science must satisfy the computer science breadth requirement by the end of the fourth term in graduate residence at UCLA. The requirement is satisfied by mastering the contents of eight undergraduate courses or equivalent: Computer Science 111, 118, 143, M151B, 161, 180, 181, and one of 130, 131, or 132. A UCLA undergraduate course taken by graduate students may not be applied toward graduate degree requirements if students have already received a grade of B— or better for a course taken elsewhere that covers substantially the same material.

In addition, Ph.D. degree students must complete at least three terms of Computer Science 201 with grades of Satisfactory in the three terms that may have been completed for the M.S. degree.

Competence in any or all courses may be demonstrated in one of three ways:

1. Satisfactory completion of the course at UCLA with a grade of B— or better
2. Satisfactory completion of an equivalent course at another university with a grade of B— or better
3. Satisfactory completion of a final examination in the course at UCLA

For requirements for the Graduate Certificate of Specialization, see Engineering Schoolwide Programs.

Written and Oral Qualifying Examinations
The written qualifying examination consists of a high-quality paper, solely authored by each student. This can be either a research paper containing an original contribution or a focused critical sur-
vey paper. The paper should demonstrate that the student understands and can integrate and communicate ideas clearly and concisely and should be approximately 10 pages, single-spaced. The style of the paper should be suitable for submission to a first-rate technical conference or journal. It must represent work that the student did as a graduate student at UCLA. Any contributions that are not the student’s own, including those of the adviser, must be explicitly acknowledged in detail. The paper must be approved by the student’s adviser prior to submission and must have a cover page with the adviser’s signature, indicating approval. After submission, the paper is reviewed and must be approved by at least two other members of the faculty. There are two deadlines a year for submission of papers.

After passing the preliminary examination and coursework for the major and minor fields, the student should form a doctoral committee and prepare to take the University Oral Qualifying Examination. A doctoral committee consists of a minimum of four members. Three members, including the chair, are “inside” members and must hold appointments in the Computer Science Department at UCLA. The “outside” member must be a UCLA faculty member outside the Computer Science Department. The nature and content of the examination are at the discretion of the doctoral committee but ordinarily include a broad inquiry into the student’s preparation for research. The doctoral committee also reviews the prospectus of the dissertation at the oral qualifying examination.

Fields of Study

Artificial Intelligence

Artificial intelligence (AI) is the study of intelligent behavior. While other fields such as philosophy, psychology, neuroscience, and linguistics are also concerned with the study of intelligence, the distinguishing feature of AI is that it deals primarily with information processing models. Thus the central scientific question of artificial intelligence is how intelligent behavior can be reduced to information processing. Since even the simplest computer is a completely general information processing device, the test of whether some behavior can be explained by information processing mechanisms is whether a computer can be programmed to produce the same behavior. Just as human intelligence involves gathering sensory input and producing physical action in the world, in addition to purely mental activity, the computer for AI purposes is extended to include sense organs such as cameras and microphones, and output devices such as wheels, robotic arms, and speakers.

The predominant research paradigm in artificial intelligence is to select some behavior which seems to require intelligence on the part of humans, to theorize about how the behavior might be accounted for, and to implement the theory in a computer program to produce the same behavior. If successful, such an experiment lends support to the claim that the selected behavior is reducible to information processing terms, and may suggest the program’s architecture as a candidate explanation of the corresponding human process.

The UCLA Computer Science Department has active research in the following major subfields of artificial intelligence:

1. **Problem Solving.** Analysis of tasks, such as playing chess or proving theorems, that require reasoning about relatively long sequences of primitive actions, deductions, or inferences
2. **Knowledge representation and qualitative reasoning.** Analysis of tasks such as commonsense reasoning and qualitative physics. Here the deductive chains are short, but the amount of knowledge that potentially may be brought to bear is very large
3. **Expert systems.** Study of large amounts of specialized or highly technical knowledge that is often probabilistic in nature. Typical domains include medical diagnosis and engineering design
4. **Natural language processing.** Symbolic, statistical, and artificial neural network approaches to text comprehension and generation
5. **Computer vision.** Processing of images, as from a TV camera, to infer spatial properties of the objects in the scene (three-dimensional shape), their dynamics (motion), their photometry (material and light), and their identity (recognition)
6. **Robotics.** Translation of a high-level command, such as picking up a particular object, into a sequence of low-level control signals that might move the joints of a robotic arm/hand combina-

Machine learning. Study of the means by which a computer can automatically improve its performance on a task by acquiring knowledge about the domain

Parallel architecture. Design and programming of a machine with thousands or even millions of simple processing elements to produce intelligent behavior; the human brain is an example of such a machine

Computational Systems Biology

This field can be selected as a major or minor field for the Ph.D. in Computer Science.

Subject Matter and Course Offerings

Emphasis is on integrative computational and mathematical modeling methodologies, algorithms, and quantitative methods for life sciences applications, both basic and applied. Integrative here puts the focus on biological (or medical) systems (systems biology), that is, computational mathematical modeling and simulation approaches to biological systems. Research topics typically involve one or more of the following areas:

1. Integrated computational and biological approaches to organismic, cellular, and mechanism-level studies of biological, including biomedical, systems. Modeling and simulation of cancer and other disease processes: neural, neuroendocrine, immune, and metabolic systems
2. Pharmacokinetics (PK), pharmacodynamics (PD), and physiologically-based PK modeling (PBPK)
3. Optimization of clinical therapy models
4. Modeling methodology for life science research, including experiment design simulation and optimization
5. Software development for modeling and model selection, and for kinetic analysis of biological systems, with emphasis on expert systems, user-friendly interfaces and universally available world wide web based software systems
6. Integrated modeling and experimental research in physiology, pharmacology, biochemistry, genomics, bioinformatics and related fields, developing the inter-
face between (theoretical) modeling and laboratory experimentation and data analysis.

7. Computational cardiology
8. Genomics, proteomics, metabolomics, and microarray data modeling

Computer Networks
The computer networks field involves the study of computer networks of different types, in different media (wired, wireless), and for different applications. Besides the study of network architectures and protocols, this field also emphasizes distributed algorithms, distributed systems, and the ability to evaluate system performance at various levels of granularity (but principally at the systems level). In order to understand and predict systems behavior, mathematical models are pursued that lead to the evaluation of system throughput, response time, utilization of devices, flow of jobs and messages, bottlenecks, speedup, power, etc. In addition, students are taught to design and implement computer networks using formal design methodologies subject to appropriate cost and objective functions. The tools required to carry out this design include probability theory, queueing theory, distributed systems theory, mathematical programming, control theory, operating systems design, simulation methods, measurement tools, and heuristic design procedures. The outcome of these studies is provide the following:

1. An appropriate model of the computer system under study
2. An adequate (exact or approximate) analysis of the behavior of this model
3. The validation of the model as compared to simulation and/or measurement of the system
4. Interpretation of the analytical results in order to obtain behavioral patterns and key parameters of the system
5. Design methodology

Resource Allocation
A central problem in the design and evaluation of computer networks deals with the allocation of resources among competing demands (e.g., wireless channel bandwidth allocation to backlogged stations). In fact, resource allocation is a significant element in most of the technical (and nontechnical) problems we face today.

Most of our resource allocation problems arise from the unpredictability of the

<table>
<thead>
<tr>
<th>AREAS INCLUDED IN THE COMPUTER NETWORKS FIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Systems Studied</td>
</tr>
<tr>
<td>- Computer networks</td>
</tr>
<tr>
<td>- Packet switching</td>
</tr>
<tr>
<td>- Multiprogramming systems</td>
</tr>
<tr>
<td>- Parallel processing systems</td>
</tr>
<tr>
<td>- High-performance computers</td>
</tr>
<tr>
<td>- Distributed processing systems</td>
</tr>
<tr>
<td>- Time-shared systems</td>
</tr>
<tr>
<td>- Satellite and ground radio</td>
</tr>
<tr>
<td>- Mobile radio systems</td>
</tr>
<tr>
<td>- Personal communication networks</td>
</tr>
<tr>
<td>- Local-area networks</td>
</tr>
<tr>
<td>- Communication processors</td>
</tr>
<tr>
<td>- High-speed networks</td>
</tr>
<tr>
<td>- Photonic networks</td>
</tr>
<tr>
<td>- Neural networks</td>
</tr>
<tr>
<td>- Communication protocols</td>
</tr>
<tr>
<td>- Network control procedures</td>
</tr>
<tr>
<td>- Mobile networks</td>
</tr>
</tbody>
</table>

| **Tools Used** |
| - Probability theory |
| - Queueing theory |
| - Queueing networks |
| - Graph theory |
| - Network flow theory |
| - Optimization theory |
| - Mathematical programming |
| - Heuristic design algorithms |
| - Simulation |
| - Distributed algorithms |
| - Measurement |
| - Information theory |
| - Control theory |

Computer Science Theory
Computer science is in large measure concerned with information processing systems, their applications, and the corresponding problems of representation, transformation, and communication. The computer science fields are concerned with different aspects of such systems, and each has its own "theoretical component" with appropriate models for description and analysis, algorithms for solving the related problems, and mathematical tools. Thus in a certain sense "computer science theory" involves all of computer science and participates in all disciplines.

The term theoretical computer science has come to be applied nationally and internationally to a certain body of knowledge emphasizing the interweaving themes of computability and algorithms, interpreted in the broadest sense. Under computability, one includes questions concerning which tasks can and cannot be performed by information systems of different types restricted in various ways, as well as the mathematical analysis of such systems, their computations, and the languages for communication with them. Under algorithms, one includes questions concerning (1) how a task can be performed efficiently under reasonable assumptions on available resources (e.g., time, storage, type of processor), (2) how efficiently a proposed system performs a task in terms of resources used, and (3) the limits on how efficiently a task can be performed. These questions are often addressed by first developing models of the relevant parts of an information processing system (e.g., the processors, their interconnections, their rules of operation, the means by which instructions are conveyed to the system, or the way the data is handled) or of the input/output behavior of the system as a whole. The properties of such models are studied both for their own interest and as tools for understanding the system and improving its performance or applications.

Computer System Architecture
Computer system architecture deals with
1. The study of the structure and behavior of computer systems
2. The development of new algorithms and computing structures to be imple-
mented in hardware, firmware, and software.

3. The development of tools to enable system designers to describe, model, fabricate, and test highly complex computer systems.

Computer systems are among the most complex systems ever developed and as such are the subject of intensive study. The computer architect must be able to define the functions to be provided by a computing system and the way in which they are implemented. Due to their complexity, computer systems must be decomposed into subsystems. This decomposition is carried out at several levels until the desired system can be composed from well-understood reusable hardware and software elements. One way to categorize these subsystems is by processor, memory, data transmission and interconnection, control, input/output, and operating system elements. The subsystems must be precisely specified and their interactions modeled and thoroughly understood before a system can be fabricated.

Properties of a well-engineered system include ease and efficiency of programming and behavior that is predictable to a user. Moreover, a well-engineered system is one that satisfies cost, performance, and reliability constraints.

A comprehensive set of courses is offered in the areas of advanced computer architecture, arithmetic processor systems, fault-tolerant systems, memory systems, operating systems, data communications, VLSI-based architectures, computer-aided design of VLSI circuits and systems, distributed computing, and parallel processing. The courses are intended to prepare students for advanced engineering and continuing research. Advanced courses are also offered to introduce students to research areas being pursued by the faculty.

The computer architecture field at UCLA offers strong emphasis on systems issues of design, performance modeling, and algorithms. Some of the areas of current interest are described below:

1. **Fault-tolerant computing** involves the design of systems that can continue operation in the presence of faults. This includes errors in specification, operator errors, software faults, and random failures of hardware components. Design techniques and modeling tools are being studied for several levels of system design, including specification, software fault-tolerance, and fault-tolerance techniques for VLSI.

2. **Novel architectures** encompass the study of computations which are performed in ways that are quite different than those used by conventional machines. Examples include various domain-specific architectures characterized by high computational rates, low power, and reconfigurable hardware implementations.

3. The study of **high-performance processing algorithms** deals with algorithms for very high-performance numerical processing. Techniques such as redundant-digit representations of number systems, fast arithmetic, and the use of highly parallel arrays of processing elements are studied with the goal of providing the extremely high processing speeds required in a number of upcoming computer applications.

4. The study of **computational algorithms and structures** deals with the relationship between computational algorithms and the physical structures which can be employed to carry them out. It includes the study of interconnection networks, and the way that algorithms can be formulated for efficient implementation where regularity of structure and simplicity of interconnections are required.

5. **Computer-aided design of VLSI circuits** is an active research area which develops techniques for the automated synthesis of large-scale systems. Topics include logic synthesis, physical design, testing, and yield enhancement for various VLSI technologies such as standard cells, gate arrays, field programmable gate arrays (FPGAs), and multichip modules (MCMs). Other areas of study include a structural theory of the large-scale global optimizations which arise in VLSI CAD.

6. **VLSI architectures and implementation** is an area of current interest and collaboration between the Electrical Engineering and Computer Science Departments that addresses the impact of large-scale integration on the issues of computer architecture. In addition to detailed studies of these issues there is an active program in the design of MOS large-scale integrated circuits.

Graphics and Vision

Information and Data Management

The information and data management field focuses on basic problems of modeling and managing data and knowledge, and their relation with other fundamental areas of computer science, such as operating systems and networking, programming languages, and human-computer interface design.

A data management system embodies a collection of data, devices in which the data are stored, and logic or programs used to manipulate that data. Information management is a generalization of data management in which the “data” being stored are permitted to be arbitrarily complex data structures, such as rules and trees. In addition, information management goes beyond simple data manipulation and query, and includes inference mechanisms, explanation facilities, and support for distributed and web-based access.

The need for rapid, accurate information is pervasive in all aspects of modern life. Modern systems are based on the coordination and integration of multiple levels of data representation, from characteristics of storage devices to conceptual and abstract levels. As human enterprises have become more complex, involving more complicated decisions and trade-offs among decisions, the need for sophisticated information and data management has become essential.

Software Systems

The programming languages and systems field is concerned with the study of theory and practice in the development of software systems. Well-engineered systems require appreciation of both principles and architectural trade-offs. Principles provide abstractions and rigor that lead to clean designs, while systems-level understanding is essential for effective design.

Principles here encompass the use of programming systems to achieve specified goals, the identification of useful programming abstractions or paradigms, the development of comprehensive models of software systems, and so forth. The thrust is to identify and clarify concepts that apply in many programming contexts.
Development of software systems requires an understanding of many methodological and architectural issues. The complex systems developed today rely on concepts and lessons that have been extracted from years of research on programming languages, operating systems, database systems, knowledge-based systems, real-time systems, and distributed and parallel systems.

Facilities

Departmental laboratory facilities for instruction and research include:

Artificial Intelligence Laboratories

Artificial Intelligence Laboratory
The Artificial Intelligence Laboratory is used for investigating knowledge representation systems, pattern recognition, expert systems, intelligent user agents, planning, problem solving, heuristic search, and related areas.

Computational Cardiology Laboratory
The Computational Cardiology Laboratory is a computational laboratory for mathematical modeling and computer simulation of cardiac systems in normal and pathological conditions. The goals of laboratory researchers are two-fold: to find the mechanism of heart fibrillation, the main cause of sudden cardiac death; and to improve the efficiency of computer simulation by using parallel computer architecture with specially-developed numerical algorithms. All research is carried out in collaboration with the UCLA Cardiology Department.

Human/Computer Interface Laboratory
The Human/Computer Interface Laboratory focuses on the use of cognitive science concepts to design more reliable user-friendly interfaces with computer and communication systems and the modeling and visualization of scientific data. See http://www.cs.ucla.edu/hcip/.

Biomedical Engineering Laboratory
The Biomedical Engineering Laboratory was established jointly by HSSEAS and the School of Medicine to support courses and research projects in health care information systems, covering issues in user requirement specifications, image data processing and retrieval, feature abstraction, simulation and analysis, visualization, and systems integration.

Biological Engineering Laboratory
The Biomedical Engineering Laboratory is used for solving complex biosystem problems from sparse biodata. See http://biocyb.cs.ucla.edu.

Computer Communications Laboratory
The Computer Communications Laboratory is used for investigating local-area networks, packet-switching networks, and packet-radio networks.

High-Performance Internet Laboratory
The High-Performance Internet Laboratory is used for investigating high-performance quality of service (QoS) techniques in the Internet, including QoS routing in Internet domains, QoS fault-tolerant multicast, TCP congestion control, and gigabit network measurements. See http://www.cs.ucla.edu/NRL/hpi/.

Internet Research Laboratory
The Internet Research Laboratory (IRL) is used for exploring the forefront of current Internet architecture and protocol development, including quantifying the dynamics in large-scale networks and securing large-scale systems such as the Internet routing infrastructure and Domain Name System (DNS). See http://irl.cs.ucla.edu.

Network Research Laboratory
The Network Research Laboratory is used for investigating wireless local-area networks (with specific interest in ad-hoc networks, vehicular networks, and personal-area networks) and the interaction between wired and wireless network layers, middleware, and applications. Activities include protocol development, protocol analysis and simulation, and wireless testbed experiments. See http://www.cs.ucla.edu/NRL/wireless/.

Computer Science Theory Laboratories

Center for Information and Computation Security (CICS)
The Center for Information and Computation Security (CICS) promotes all aspects of research and education in cryptography and computer security. See http://www.cs.ucla.edu/security/.

Theory Laboratory
The Theory Laboratory is used for developing theoretical foundations for all areas of computer science. Activities include fundamental research into algorithms, computational complexity, distributed computing, cryptography, hardware and software security, quantum computing, biological
computing, machine learning, and computational geometry.

Computer Systems Architecture Laboratories

Concurrent Systems Laboratory
The Concurrent Systems Laboratory is used for investigating the design, implementation, and evaluation of computer systems that use state-of-the-art technology to achieve high performance and high reliability. Projects involve both software and hardware, and often focus on parallel and distributed systems in the context of general-purpose as well as embedded applications. See http://www.cs.ucla.edu/csd/research/labs/csl/.

Digital Arithmetic and Reconfigurable Architecture Laboratory
The Digital Arithmetic and Reconfigurable Architecture Laboratory is used for fast digital arithmetic (theory, algorithms, and design) and numerically intensive computing on reconfigurable hardware. Research includes floating-point arithmetic, online arithmetic, application-specific architectures, and design tools. See http://arith.cs.ucla.edu

Embedded and Reconfigurable System Design Laboratory
The Embedded and Reconfigurable System Design Laboratory is used for studying reconfigurable cores in embedded systems that provide the required adaptability and reconfigurability, and the design and CAD aspects of low-power embedded systems. See http://er.cs.ucla.edu

VLSI CAD Laboratory
The VLSI CAD Laboratory is used for computer-aided design of VLSI circuits and systems. Areas include high-level and logic-level synthesis, technology mapping, physical design, interconnect modeling and optimization of various VLSI technologies such as full-custom designs, standard cells, programmable logic devices (PLDs), multichip modules (MCMs), system-on-a-chip (SOCs), system-in-a-package (SIPs), and design for nanotechnologies. See http://cadlab.cs.ucla.edu

Information and Data Management Laboratories

Data Mining Laboratory
The Data Mining Laboratory is used for extraction of patterns, anomalies, concepts, classification rules, and other forms of high-level relationships that are latent in large commercial and scientific databases. See http://dml.cs.ucla.edu/main.html.

Knowledge-Based Multimedia Medical Distributed Database Systems Laboratory
The Knowledge-Based Multimedia Medical Distributed Database Systems Laboratory is used for developing new methodologies to access multimedia (numeric, text, image/picture) data by content and feature rather than by artificial keys such as patient ID. See http://www.kmed.cs.ucla.edu.

Multimedia Stream System Laboratory
The Multimedia Stream System Laboratory is used for investigation and development of stream-based data model constructs and the corresponding querying facilities in response to the growing requirements of advanced multimedia database applications. See http://www.mmms.cs.ucla.edu.

Multimedia Systems Laboratory
The Multimedia Systems Laboratory is used for research on all aspects of multimedia: physical and logical modeling of multimedia objects, real-time delivery of continuous multimedia, operating systems and networking issues in multimedia systems, and development of multimedia courseware. See http://www.mmmsl.cs.ucla.edu.

UCLA Web Information Systems Laboratory
The UCLA Web Information Systems Laboratory is used for investigating Web-based information systems. The laboratory seeks to develop the enabling technology for such systems by integrating the Web with database systems. Current projects focus on the preservation and warehousing of XML and database information to support temporal queries on historical archives, and data systems management systems to support advanced queries and data mining applications on the massive streams of information that are continuously flowing through the Web. See http://wis.cs.ucla.edu.

Software Systems Laboratories

Compilers Laboratory
The Compilers Laboratory is used for research into compilers, embedded systems, and programming languages.

Distributed Simulation Laboratory
The Distributed Simulation Laboratory is used for research on operating system support and applications and utilization of special architectures such as the Intel Hypercube.

Laboratory for Advanced System Research
The Laboratory for Advanced System Research is used for developing advanced operating systems, distributed systems, and middleware and conducting research in systems security.

Parallel Computing Laboratory
The Parallel Computing Laboratory is used for research in scalable simulation, providing an efficient lightweight simulation language, as well as tools for large-scale parallel simulation on modern supercomputers. See http://pcl.cs.ucla.edu.

Software Systems Laboratory
The Software Systems Laboratory is used for research into the design, implementation, and evaluation of operating systems, networking systems, programming languages, and software engineering tools. Some of these research laboratories also provide support for upper division and/or graduate courses.

Computing Resources
In summarizing the resources now available to conduct experimentally based research in the UCLA Computer Science Department, it is useful to identify the major components of the research environment: the departmental computing facility, other hardware and software systems, administrative structure, and technical support staff.

Hardware
Computing facilities range from large campus-operated supercomputers to a major local network of servers and workstations that are administered by the department computing facilities (DCF) or school network (SEASnet).

The departmental research network includes Sun servers and shared workstations, on the school's own ethernet TCP/IP local network. A wide variety of peripheral equipment is also part of the facility, and many more research-group workstations share the network; the total number of machines exceeds 700, the majority running the UNIX operating system. The network consists of switched10/100/1000
ethernet to the desktop with a gigabit backbone connection. The department LAN is connected to the campus gigabit backbone. An 802.11g wireless network is also available to faculty, staff, and graduate students.

Administrative Structure

The central facilities and wide-area networking are operated by the campuswide Communications Technology Services. Access to the departmental and SEASnet machines is controlled so as to maximize the usefulness of these computers for education and research, but no direct charges are involved.

Technical Support Staff

The support staff consists of hardware and software specialists. The hardware laboratory supports network connections, configures routers, switches, and network monitoring tools. The software group administers the department UNIX servers, providing storage space and backup for department users.

Faculty Areas of Thesis Guidance

Professors

- Raijee L. Bagrodia, Ph.D. (U. Texas, 1987)
 Wireless networks, nomadic computing, parallel programming, performance evaluation of computer and communication systems

- Alfonso F. Cardenas, Ph.D. (UCLA, 1969)
 Database management, distributed heterogeneous and multimedia (text, image/ picture, video, voice) systems, information systems planning and development methodologies, software engineering, medical informatics, legal and intellectual property issues

- Tony F.C. Chan, Ph.D. (Stanford, 1978)
 Image processing and computer vision, multilevel techniques for VLSI physical design, computational techniques for brain mapping

- Wesley W. Chu, Ph.D. (Stanford, 1966)
 Distributed computing, distributed database, memory management, computer communications, performance measurement and evaluation for distributed systems and multiaccess packet-switched systems

- Jason (Jingqehng) Cong, Ph.D. (Illinois, 1990)
 Computer-aided design of VLSI circuits, fault-tolerant design of VLSI systems, design and analysis of algorithms, computer architecture, reconfigurable computing, design for nanotechnologies

- Adnan Y. Darwiche, Ph.D. (Stanford, 1993)
 Knowledge representation and automated reasoning (symbolic and probabilistic), applications to diagnosis, prediction, planning, and verification

Also Professor of Medicine

- Joseph J. DiStefano III, Ph.D. (UCLA, 1966)
 Biocybernetics; computational systems biology; dynamic biosystems modeling, simulation, clinical therapy and experimentation

- Michael G. Dyer, Ph.D. (Yale, 1962)
 Artificial intelligence; natural language processing; connectionist, cognitive, and animat-based modeling

- Milos D. Ercegovac, Ph.D. (Illinois, 1975)
 Application-specific architectures, digital computer arithmetic, digital design, low-power systems, reconfigurable systems

- Deborah L. Estrin, Ph.D. (MIT, 1985)
 Sensor networks, embedded network sensing, environmental monitoring, computer networks

- Eliezer M. Gafni, Ph.D. (MIT, 1982)
 Computer communication networks, mathematical programming algorithms

- Mario Gerla, Ph.D. (UCLA, 1973)
 Wireless ad-hoc networks: MAC, routing and transport protocols, vehicular communications, peer-to-peer mobile networks, personal-area networks (Bluetooth and Zigbee), underwater sensor networks, Internet transport protocols (TCP streaming), Internet path characterization, capacity and bandwidth estimates, analytic and simulation model for protocol performance evaluation

 Theoretical computer science, computational complexity, program schemes and semantics, formal languages, automata, computability

 Problem solving, heuristic search, planning in artificial intelligence

 Multimedia systems, database systems, data mining

- Rauli Ostrovsky, Ph.D. (MIT, 1992)
 Theoretical computer science, cryptography, complexity theory, randomized, network protocols, geometric algorithms, data mining

- Stanley J. Osher, Ph.D. (NYU, 1966)
 Scientific computing and applied mathematics

- Jens Palsberg, Ph.D. (Aarhus U., Denmark, 1992)
 Compilers, embedded systems, programming languages

- D. Stott Parker, Jr., Ph.D. (Illinois, 1978)
 Data mining, information modeling, scientific computing, bioinformatics, database and knowledge-based systems

- Miodrag Potkonjak, Ph.D. (UC Berkeley, 1991)
 Computer-aided analysis and synthesis of system level designs, behavioral synthesis, and interaction between high-performance application-specific computations and communications

- Majid Sarrafzadeh, Ph.D. (Illinois, 1987)
 Computer engineering, embedded systems, VLSI CAD, algorithms

- Stefano Soatto, Ph.D. (Cal Tech, 1996)
 Computer vision; shape analysis, motion analysis, texture analysis, 3-D reconstruction, visualization-based control, computer graphics: image-based modeling and rendering, medical imaging; registration, segmentation, statistical shape analysis; autonomous systems: sensor-based control, planning nonlinear filtering; human-computer interaction; vision-based interfaces, visibility, visualization

- Mani B. Srivastava, Ph.D. (UC Berkeley, 1992)
 Energy aware networking and computing, embedded networked sensing, embedded software, low-power wireless systems and applications of wireless and embedded technology

- Demetri Terzopoulos, Ph.D. (MIT, 1984)
 Computer graphics, computer vision, medical image analysis, computer-aided design, artificial life/intelligence

- Carlo Zaniolo, Ph.D. (UCLA, 1976)
 Knowledge bases and deductive databases, parallel execution of PROLOG programs, formal software specifications, distributed systems, artificial intelligence, and computational biology

- Lixia Zhang, Ph.D. (MIT, 1989)
 Computer network, data networking, network architectures, security and resiliency of large-scale systems

- Song Chun Zhu, Ph.D. (Harvard, 1996)
 Computer vision, statistical modeling and computing, vision and visual arts, machine learning

- Professors Emeriti

- Algirdas A. Avizienis, Ph.D. (Illinois, 1960)
 Digital computer architecture and design, fault tolerant computing, digital arithmetic

- Bertram Russell, Ph.D. (UCLA, 1962)
 Computer systems architecture, interactive computer graphics

- Jack W. Carlyle, Ph.D. (UC Berkeley, 1961)
 Communication, computation theory and practice, algorithms and complexity, discrete system theory, developmental and probabilistic systems

- Gerald Estrin, Ph.D. (Wisconsin, 1951)
 Computer systems architecture, methodology and supporting tools for design of concurrent systems, automating design teamwork, reconfigurable architectures

- Thelma Estrin, Ph.D. (Wisconsin, 1951)
 Biomedical engineering, application of technology and computers to health care, computer methods in neuroscience, engineering education

- Leonard Kleinrock, Ph.D. (MIT, 1963)
 Computer networks, computer-communication systems, resource sharing and allocation, computer systems modeling analysis and design, queuing systems theory and applications, performance evaluation of congestion-prone systems, performance evaluation and design of distributed multiaccess packet-switching systems, wireless networks, mobile computing, nomadic computing, and distributed and parallel processing systems

- Allen Klinger, Ph.D. (UC Berkeley, 1966)
 Pattern recognition, picture processing, biomedical applications, mathematical modeling

- Lawrence P. McNamee, Ph.D. (Pittsburgh, 1964)
 Computer graphics, discrete simulation, digital filtering, computer-aided design, LSI fabrication techniques, printed circuit board design

- Michel A. Melkanoff, Ph.D. (UCLA, 1955)
 Computer engineering, embedded systems, digital architectures, digital computer architecture and design, system theory, developmental and applications of wireless and embedded technology

- Song Chun Zhu, Ph.D. (Harvard, 1996)
 Computer vision, statistical modeling and computing, vision and visual arts, machine learning

- Mani B. Srivastava, Ph.D. (UC Berkeley, 1992)
 Energy aware networking and computing, embedded networked sensing, embedded software, low-power wireless systems and applications of wireless and embedded technology

- Demetri Terzopoulos, Ph.D. (MIT, 1984)
 Computer graphics, computer vision, medical image analysis, computer-aided design, artificial life/intelligence

- Carlo Zaniolo, Ph.D. (UCLA, 1976)
 Knowledge bases and deductive databases, parallel execution of PROLOG programs, formal software specifications, distributed systems, artificial intelligence, and computational biology

- Lixia Zhang, Ph.D. (MIT, 1989)
 Computer network, data networking, network architectures, security and resiliency of large-scale systems

- Song Chun Zhu, Ph.D. (Harvard, 1996)
 Computer vision, statistical modeling and computing, vision and visual arts, machine learning

- Professors Emeriti

- Algirdas A. Avizienis, Ph.D. (Illinois, 1960)
 Digital computer architecture and design, fault tolerant computing, digital arithmetic

- Bertram Russell, Ph.D. (UCLA, 1962)
 Computer systems architecture, interactive computer graphics

- Jack W. Carlyle, Ph.D. (UC Berkeley, 1961)
 Communication, computation theory and practice, algorithms and complexity, discrete system theory, developmental and probabilistic systems

- Gerald Estrin, Ph.D. (Wisconsin, 1951)
 Computer systems architecture, methodology and supporting tools for design of concurrent systems, automating design teamwork, reconfigurable architectures

- Thelma Estrin, Ph.D. (Wisconsin, 1951)
 Biomedical engineering, application of technology and computers to health care, computer methods in neuroscience, engineering education

- Leonard Kleinrock, Ph.D. (MIT, 1963)
 Computer networks, computer-communication systems, resource sharing and allocation, computer systems modeling analysis and design, queuing systems theory and applications, performance evaluation of congestion-prone systems, performance evaluation and design of distributed multiaccess packet-switching systems, wireless networks, mobile computing, nomadic computing, and distributed and parallel processing systems

- Allen Klinger, Ph.D. (UC Berkeley, 1966)
 Pattern recognition, picture processing, biomedical applications, mathematical modeling

- Lawrence P. McNamee, Ph.D. (Pittsburgh, 1964)
 Computer graphics, discrete simulation, digital filtering, computer-aided design, LSI fabrication techniques, printed circuit board design

- Michel A. Melkanoff, Ph.D. (UCLA, 1955)
 Computer engineering, embedded systems, digital architectures, digital computer architecture and design, system theory, developmental and
David A. Rennels, Ph.D. (UCLA, 1973)
Digital computer architecture and design, fault-tolerant computing, digital arithmetic

Information processing in biological systems, with emphasis on neuroscience, cybernetics, online laboratory computer systems, and pattern recognition, analog and hybrid systems/signaling processing

Associate Professors

David A. Smallberg, M.S. (UCLA, 1998)

Paul R. Eggert, Ph.D. (UCLA, 1980)

Leon Levine, M.S. (MIT, 1949), Senior Lecturer

Edward Kohler, Ph.D. (MIT, 2001)

Eleazar Eskin, Ph.D. (Columbia, 2002)

Song-Chun Zhu, Ph.D. (Harvard, 1996)

Songwu Lu, Ph.D. (Illinois, 1999)
Associate Professors

David A. Rennels, Ph.D. (UCLA, 1973)

Member of Brain Research Institute

Computer-aided verification of heterogeneous networks, e.g. mobile computing environments. Internet and Activeinet: networking and computing, wireless communications and networks, computer communication networks, dynamic game theory, dynamic neural networks, and information economics

Amir Sahai, Ph.D. (MIT, 2000)
Theoretical computer science, cryptography, computer security, algorithms, error-correcting codes and learning theory

Yuval Tamir, Ph.D. (UC Berkeley, 1985)
Computer systems, computer architecture, software systems, parallel and distributed systems, dependable systems; cluster computing, reliable network services, interconnection networks and switches, multi-core architectures, reconfigurable systems

Song-Chun Zhu, Ph.D. (Harvard, 1996)

Computer vision, statistical modeling and computing, vision and visual arts

Assistant Professors

Eleazar Eskin, Ph.D. (Columbia, 2002)
Bioinformatics, genomics, genetics, machine learning

Petros Faloutsos, Ph.D. (Toronto, 2002)
Computer graphics, computer animation

Edward Kohler, Ph.D. (MIT, 2001)
Operating systems, software systems, programming languages and systems, networking systems

Rupak Majumdar, Ph.D. (UC Berkeley, 2003)
Computer-aided verification of hardware and software systems; logic and automata theory; embedded, hybrid, and probabilistic systems

Programming language design, static type systems, formal methods, software model checking, compilers

Glenn D. Reinman, Ph.D. (UC San Diego, 2001)
Microprocessor architecture, exploitation of instruction/thread/memory-level parallelism, power-efficient design, hardware/software co-design, multicore and multiprocessor design

Senior Lecturer

Leon Levine, M.S. (MIT, 1949), Emeritus
Computer methodology

Lecturers P.S.O.E.

Paul R. Eggert, Ph.D. (UCLA, 1980)
Programming languages, operating systems principles, compilers, Internet

David A. Smallberg, M.S. (UCLA, 1998)
Programming languages, software development

Adjoint Professors

Alan Kay, Ph.D. (Utah, 1969)
Smalltalk programming language, object-oriented programming, GUI, computers and technology in general

Boris Kogan, Ph.D. (Moscow, Russia, 1962)
Mathematical modeling and computer simulation (using parallel supercomputers) of dynamic processes in excitable biological systems. Cardiac arrhythmias, fibrillation and defibrillation

Gerald J. Popek, Ph.D. (Harvard, 1973)
Privacy and security in information systems, operating system software design, representation for design and evaluation of databases

M. Yahya "Medy" Sanadidi, Ph.D. (UCLA, 1982)
Computer networking, path characteristics estimation and applications in flow control, adaptive streaming and overlays design, probability models of computing systems, algorithms and networks

Adjoint Associate Professors

Leon Alkalai, Ph.D. (UCLA, 1989)
Computer architecture

Peter L. Rehner, Ph.D. (UCLA, 1987)
Computer and network security, ubiquitous computing, file systems, distributed systems

Lower Division Courses

1. Freshman Computer Science Seminar. (1) Seminar, one hour. Introduces students to department resource and principal top and key ideas in computer science and computer engineering. Assignments given to bolster independent study and writing skills. Letter grading.

2. Great Ideas in Computer Science. (4) Lecture, four hours; outside study, eight hours. Broad coverage for liberal arts and social sciences students of computer science theory, technology, and implications, including artificial and neural machine intelligence, computability limits, virtual reality, cellular automata, artificial life, programming languages survey, and philosophical and societal implications. P/NP or letter grading.

19. Fiat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

31. Introduction to Computer Science I. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Introduction to computer science via theory, applications, and programming. Basic data types, operators and control structures, input/output, procedural and data abstraction, introduction to object-oriented software development. Functions, recursion. Arrays, strings, pointers. Abstract data types, object-oriented programming. Examples and exercises from computer science theory and applications. Letter grading.

Mr. Palsberg, Mr. Smallberg (F,W,Sp)

Mr. Palsberg, Mr. Smallberg (W,Sp)

33. Introduction to Computer Organization. (5) Lecture, four hours; discussion, two hours; outside study, nine hours. Enforced requisite: course 32. Introductory course on computer architecture, assembly language, and operating systems fundamentals. Number systems, machine language, and assembly language. Procedure calls, stacks, interrupts, and traps. Assemblers, loaders, and loaders. Operating systems concepts: processes and process management, input/output (I/O) programming, memory management, file systems. Letter grading.

Mr. Palsberg, Mr. Smallberg (F,Sp)

35L. Software Construction Laboratory. (2) (Formerly numbered 35.) Laboratory, four hours; outside study, two hours. Requisite: course 31. Fundamentals of commonly used software tools and environments, particularly open-source tools to be used in upper division computer science courses. Letter grading.

Mr. Eggert, Mr. Palsberg (F,W,Sp)

MS1A. Logic Design of Digital Systems. (4) (Same as Electrical Engineering M16.) Lecture, four hours; discussion, two hours; outside study, six hours. Introduction to digital systems. Specification and implementation of combinational and sequential systems. Standard logic modules and programmable logic arrays. Specification and implementation of arithmetic algorithms: data and control sections. Number systems and arithmetic algorithms. Error control codes for digital information. Letter grading.

Mr. Ereogovac, Mr. Potkonjak (F,W,Sp)

97. Variable Topics in Computer Science. (1 to 4) Lecture, one to four hours; discussion, zero to two hours. Designed for freshmen/sophomores. Variable topics in computer science not covered in regular computer science courses. May be repeated once for credit with topic or instructor change. Letter grading.

Mr. Smallberg

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.

Upper Division Courses

101. Upper Division Computer Science Seminar. (1) Seminar, one hour; discussion, one hour. Introduction to current research, trends, emerging areas, and contemporary issues in computer science and engineering. Assignments given to bolster independent study and writing skills. Letter grading.

Mr. Ereogovac (Sp)

Mr. Eggert, Mr. Kohler (F,W,Sp)
112. Computer System Modeling Fundamentals. (4) Lecture, four hours; outside study, eight hours. Requisite: Statistics 110A. Designed for juniors/semi-seniors. Probability and stochastic process models as applied in computer science. Basic methodological tools include random variables, conditional probability, expectation and higher moments, Bayes theorem, Markov processes, queues, and queueing models. Study of stochastic processes used in computer system modeling. Concepts include probability, statistics, and queuing theory. Emphasis on applications in computer science, including computer networks, operating systems, and distributed systems.

113. Introduction to Distributed Embedded Systems. (4) Lecture, four hours; laboratory, four hours; outside study, four hours. Requisites: courses 111, 118. Introduction to basic concepts needed to understand, design, and implement distributed embedded systems. Topics include design implications of energy and otherwise resource-constrained devices, network self-configuration and adaptation, localization and time synchronization, protocols, and usage issues such as human interfaces, safety, and security. Heavily project based. Letter grading.

Ms. Estrin

M117. Computer Networks: Physical Layer (Formerly numbered 117.) (Same as Electrical Engineering M117.) Lecture, four hours; discussion, four hours; outside study, 10 hours. Not open to students with credit for course M171L. Introduction to fundamental data communication concepts underlying and supporting modern networks, with focus on physical and media access layers of network protocol stack. Systems include high-speed LANs (e.g., fast and giga Ethernet), optical DWDM (dense wavelength division multiplexing), time division SONET networks, wireless LANs (IEEE802.11), and ad hoc wireless and personal area networks (e.g., Bluetooth). Experimental laboratory sessions included. Letter grading.

Mr. Gerla (W)

118. Computer Network Fundamentals. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 32, 33. Highly recommended: course 111. Designed for juniors/seniors. Introduction to design and performance evaluation of computer networks, including such topics as what protocols control network traffic, Internet protocol architecture, network applications, transport protocols, routing algorithms and protocols, internetworking, congestion control, and link layer protocols including Ethernet and wireless channels. Letter grading.

Mr. Gerla, Ms. Zhang (F,W,Sp)

CM124. Computational Genetics. (4) (Same as Human Genetics CM124.) Lecture, three hours; discussion, one hour; outside study, eight hours. Preparatory: one statistics course and familiarity with any programming language. Designed for undergraduate and graduate engineering students, as well as students from biological sciences and medical school. Introduction to current quantitative understanding of human genetics and computational interdisciplinary research in genetics. Topics include introduction to genetics, human population history, linkage analysis, association analysis, association study design, isolated and admixed populations, population substructure, human structural variation, model organisms, and genotyping technologies. Computational techniques include those from statistics and computer science. Concurrently scheduled with course CM224. Letter grading.

Mr. Eskin (Sp)

130. Software Engineering. (4) Lecture, four hours; laboratory, two hours; outside study, six hours. Requisite: course 32. Recommended: course 35L, and Engineering 183 or 185. Structured programming, program specification, program proving, modularity, abstraction, data structures, design tools, software control systems, program testing, team programming. Letter grading.

Mr. Eggert, Mr. Majumdar (W,Sp)

131. Programming Languages. (4) Lecture, four hours; laboratory, two hours; outside study, six hours. Requisites: courses 32, 33. Recommended: course 35L. Basic concepts in design and use of programming languages, including abstraction, modularity, control mechanisms, types, declarations, syntax, and semantics. Study of different language paradigms, including object-oriented, and logic programming. Letter grading.

Mr. Eggert, Mr. Millstein (F,W,Sp)

132. Compiler Construction. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 32, 131, 181. Recommended: course 35L. Compiler structure; lexical and syntactic analysis; semantic analysis and code generation; theory of parsing. Letter grading.

Mr. Eggert, Mr. Palisberg (F,Sp)

133. Parallel and Distributed Computing. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 111 (may be taken concurrently), 131. Distributed memory and shared memory parallel architectures; asynchronous parallel languages; MPI, Maisie; primitives for parallel computation: specification of parallelism, interprocess communication, and synchronization; design of parallel programs for shared-memory and distributed systems. Letter grading.

Mr. Bagrodia (W)

Mr. Cardenas, Mr. Zaniolo (F,W,Sp)

144. Web Applications. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Enforced requisite: course 143. Important concepts and theory for building effective and safe Web applications and first-hand experience with basic tools. Topics include basic Web architecture and protocol, XML and XML query language, mapping between XML and relational models, information retrieval model and theory, security and user model, Web services and distributed transactions. Letter grading.

Mr. Cho (W)

M151B. Computer Systems Architecture. (4) (Same as Electrical Engineering M118B.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 33, and M51A or Electrical Engineering M16B. Recommended: courses 111, and M152A or Electrical Engineering M118B. Computer systems architecture design; implementation of CPU datapath and control, instruction set design, memory hierarchy (caches, main memory, virtual memory) organization and management, input/output subsystems (bus structures, interrupts, DMA), performance evaluation, pipelined processors. Letter grading.

Mr. Reinman, Mr. Tamir (F,Sp)

Mr. Ercegovac (W, odd years)

M152A. Introductory Digital Design Laboratory. (2) (Same as Electrical Engineering M118L.) Laboratory, four hours; outside study, two hours. Requisite: course M51A or Electrical Engineering M16B. Hands-on design, implementation, and debugging of digital logic circuits, use of computer-aided design tools for schematic capture and simulation, implementation of complex circuits using programmed array logic, design projects. Letter grading.

Mr. Sarrafzadeh (F,W,Sp)

152B. Digital Design Project Laboratory. (4) (Formerly numbered M152B.) Laboratory, four hours; discussion, two hours; outside study, six hours. Requisite: course 32. Introduction to fundamental problem solving and knowledge representation paradigms of artificial intelligence. Introduction to LISP with an emphasis on using contemporary test instruments to generate and display signals in relevant laboratory setups. Use of oscilloscopes, pulse and function generators, baseband spectrum analyzers, desktop computers, terminals, modems, PCs, and workstations in experiments on pulse transmission impairments, waveforms and their spectra, modem and terminal characteristics, and interfaces. Letter grading.

Mr. Darwiche, Mr. Korf (F,W,Sp)

M171L. Data Communication Systems Laboratory. (2 to 4) (Same as Electrical Engineering M171L.) Laboratory, four to eight hours; outside study, two to four hours. Recommended preparation: course M152A. Limited to seniors. Interpretation of analog-signaling aspects of digital systems and data communication systems using interactive computer environments. Extensive coverage of methods for numeric and symbolic computation, matrix algebra, statistics, floating point, optimization, and spectral analysis. Emphasis on applications in simulation of physical systems. Letter grading.

Mr. Parker (F)

M171L. Data Communication Systems Laboratory. (2 to 4) (Same as Electrical Engineering M171L.) Laboratory, four to eight hours; outside study, two to four hours. Recommended preparation: course M152A. Limited to seniors. Interpretation of analog-signaling aspects of digital systems and data communication systems using interactive computer environments. Extensive coverage of methods for numeric and symbolic computation, matrix algebra, statistics, floating point, optimization, and spectral analysis. Emphasis on applications in simulation of physical systems. Letter grading.

Mr. Parker (F)

Mr. Parker (F)

174A. Introduction to Computer Graphics. (4) (Formerly numbered 174.) Lecture, four hours; discussion, two hours. Requisite: course 32. Basic principles behind modern two- and three-dimensional computer graphics systems, including complete set of steps that modern graphics pipelines use to create realistic images in real time. How to position and manipulate objects in scene using geometric and camera transformations. How to create final image using perspective and orthographic transformations. Basics of modeling primitives such as polygonal models and image and parameter spaces. Basic ideas behind color spaces, illumination models, shading, and texture mapping. Letter grading.

Mr. Faloutsos, Mr. Soatto (F,W,Sp)

Mr. Fabutkos, Mr. Soatto

174C. Computer Animation. (4) Lecture, four hours; discussion, two hours. Requisite: course 174A. Designed for juniors/seniors. Introduction to computer animation, including basic principles of character modeling, forward and inverse kinematics, forward and inverse dynamics, motion capture ani- mation techniques, physics-based animation of parti- cles and systems, and motor control. Concurrently scheduled with course C274C. Letter grading.

Mr. Fabutkos, Mr. Soatto

180. Introduction to Algorithms and Complexity. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 32, and Mathematics 104. Designed for juniors/seniors. Introduction to computer science majors. Introduction to design and analysis of algorithms. Design techniques: divide-and-conquer, greedy method, dynamic programming; selection of prototypical algorithms; choice of structure and representations; complexity mea- sures: time, space, upper, lower bounds, asymptotic complexity; NP-completeness. Letter grading

Ms. Greibach, Mr. Ostrovsky

181. Introduction to Formal Languages and Au- tomata Theory. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 32, and Mathematics 61 or 113. Designed for juniors/seniors. Introduction to computer science majors. Introduction to design and analysis of algorithms. Design techniques: divide-and-conquer, greedy method, dynamic programming; selection of prototypical algorithms; choice of structure and representations; complexity mea- sures: time, space, upper, lower bounds, asymptotic complexity; NP-completeness. Letter grading

Ms. Greibach, Mr. Ostrovsky

183. Introduction to Cryptography. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Preparation: knowledge of basic probability theory. Requisite: course 180. Introduction to cryptog- raphy, computer security, and basic concepts and techniques. Topics include notions of hardness, one-way functions, hard-core bits, pseudorandom genera- tors, pseudorandom functions and pseudorandom permutations, semantic security, public-key and priv- ivate-key encryption, key-agreement, homomorphic encryption, private information retrieval and voting protocols, message authentication, digital signatures, interactive proofs, zero-knowledge proofs, collision-resistant hash functions, commitment protocols, and two-party secure computation with static security. Letter grading.

Mr. Ostrovsky (W, odd years)

M186A. Introduction to Cybernetics, Biomodel- ing, and Biomedical Computing. (2) (Formerly numbered M196A.) (Same as Biomedical Engineer- ing 186A, and Computational and Systems Biology 186A.) Lecture, two hours. Requisites: Mathemat- ics 31A, 31B, Program in Computing 10A. Strongly recommended for students with potential interest in biomedical engineering/biocomputing fields or in Computational and Systems Biology as a major. In- troduction and survey of topics in cybernetics, bio- modeling, biocomputing, and related bioengineering disciplines. Lectures presented by faculty currently performing research in one of the areas; some ses- sions include laboratory tours. P/NP grading.

Mr. DiStefano (F)

CM186B. Computational Systems Biology: Mod- eling and Simulation of Biological Systems. (5) (Formerly numbered M186B.) (Same as Biomedical Engineering CM186B and Computational and Sys- tems Biology M186B.) Lecture, four hours; laboratory, three hours. Corequisite: Electrical Engineering 102. Dynamic biosystems modeling and computer simul- ation methods for studying biological/biomedical pro- cesses and systems at multiple levels of organiza- tion. Control system, multcompartmental, predator- prey, pharmacokinetic (PK), pharmacodynamic (PD), and other structural modeling methods applied to life sciences problems at molecular, cellular (biochemical pathways/networks), organ, and organismic levels. Both theory- and data-driven modeling, with focus on translating biomodeling goals and data into mathe- matics models and implementing them for simulation and analysis. Basics of numerical simulation algo- rithms, with modeling software exercises in class and PC laboratory assignments. Concurrently scheduled with course CM286B. Letter grading

Mr. DiStefano (F)

CM186C. Biomodeling Research and Research Communication Workshop. (2 to 4) (Formerly numbered CM186C.) (Same as Biomedical Engineer- ing CM186C and Computational and Systems Biolo- gy M186C.) Lecture, one hour; discussion, two hours; laboratory, one hour; outside study, eight hours. Requisite: course CM186B. Closely directed, interactive, and real research experience in active quantitative systems biology research laboratory. Di- rection on how to focus on topics of current interest in scientific community, appropriate to student interests and capabilities. Critiques of oral presentations and written progress reports explain how to proceed with search for research results. Major emphasis on effec- tive research reporting, both oral and written. Con- current with course CM286C. Letter grading

Mr. DiStefano (Sp)

188. Special Courses in Computer Science. (4) (Formerly numbered 198.) Lecture, four hours; outside study, eight hours. Special topics in computer science for undergraduate students that are taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated once for credit with topic or instructor change. Letter grading

Mr. Gerla (W)

194. Research Group Seminars: Computer Sci- ence. (4) Seminar, four hours; outside study, eight hours. Designed for undergraduate students who are part of research group. Discussion of research meth- ods and current literature in field of research of facul- ty members or students. May be repeated for credit. Letter grading

(F,W,Sp)

199. Directed Research in Computer Science. (2 to 8) Tutorial, to be arranged. Limited to juniors/sen- iors. Supervised individual research or investigation under guidance of faculty mentor. Culminating paper or project required. May be repeated for credit with school approval of contract requiring enrollment petitions available in Office of Academic and Student Affairs. Letter grading

(F,W,Sp)

219. Current Topics in Computer System Model- ing Analysis. (2 to 12) Lecture, four hours; outside study, eight hours. This course is a tutorial introduction in an area of computer system modeling analysis in which the instructor has developed special proficiency as a consequence of research interests. Students report on selected topics. May be repeated for credit with consent of instructor. Letter grading.

M220. Control and Coordination in Economics. (4) (Same as Economics M222A.) Lecture, three hours. Recommended preparation: appropriate mathematical coursework. Designed for graduate economists and engineering students. Stabilization policies, short- and long-run dynamics and stability analysis; decentralized coordination in teams; certainty equivalent and separation theorems; stochastic and learning models. Bayesian approach to price and output rate adjustment. S/U or letter grading.

CM224. Computational Genomics. (4) (Same as Human Genetics M232A.) Lecture, three hours; discussion, one hour; outside study, eight hours. Prepara- tion: one statistics course and familiarity with any programming language. Designed for undergraduate and graduate students in the life sciences as well as stu- dents from biological sciences and medical school. Introduction to current quantitative understanding of human genetics and computational interdisci- professional and technical cooperation amongst computer scientists and human geneticists. Introduction to genetics, human population history, linkage analysis, association analysis, association study design, isolated and admixed populations, population substruc- ture, analysis of large biological model organisms, and genotyping technologies. Computational tech- niques include those from statistics and computer science. Concurrently scheduled with course CM 124M. Letter grading.

230A. Models of Information and Computation. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 131, 181. Paradigms, models, frameworks, and problem solving; UNIL and meta- modeling; basic information and computation mod- els; axiomatic systems; domain theory; least fixed point theory; well-founded induction. Logical models: sentences, axioms and rules, normal forms, deriva- tion and proof, models and semantics, propositional logic, first-order logic, logic programming. Functional models: expressions, equations, evaluation; combi- nators; lambda calculus; functional programming. Program models: program derivation and verification using Hoare logic, object models, standard tem- plates, design patterns, frameworks. Letter grading. Mr. Bagrodia, Mr. Parker, Mr. Zaniolo

231. Types and Programming Languages. (4) Lec- ture, four hours; outside study, eight hours. Requisite: course 131. Introduction to static type systems and their usage in program- ming language design and software reliability. Opera- tional semantics, simply-typed lambda calculus, type soundness proofs, types for mutable references, types for exceptions. Parametric polymorphism, let- bound polymorphism, polymorphic type inference. Types for objects, subtyping, combining parametric polymorphism and subtyping. Types for modules, pa- rameterized modules. Formal specification and im- plementation of variety of type systems, as well as readings from recent research literature on modern applications of type systems. Letter grading. Mr. Millstein (F)

232. Static Program Analysis. (4) Lecture, four hours; outside study, eight hours. Requisite: course 132. Introduction to static analysis of object-oriented programs and its usage for optimization and bug find- ing. Class hierarchy analysis, rapid type analysis, equality-based analysis, subset-based analysis, flow- insensitive and flow-sensitive analysis, context-insen- sitive and context-sensitive checking, theorems, correctness proofs for static analyses. Efficient data structures for static analysis information such as directed graphs and binary decision diagrams. Flow-directed method inlining, type-safe method invocation, static analysis optimization, deadlock detection, security vulnerabi- lity detection. Formal specification and implementation of variety of static analyses, as well as readings from recent research literature on modern applications of static analysis. Letter grading. Mr. Palsberg (Sp)

233A. Parallel Programming. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 111, 131. Mutual exclusion and resource allocation in distributed systems; primitives for parallel computa- tion: specification of parallelism, interprocess commu- nication and synchronization, atomic actions, bi- nary and multivalued rendezvous; synchronous and asynchronous languages: CSP, VML, Linda, MAISIE, UC, and others; introduction to parallel program veri- fication. Letter grading. Mr. Bagrodia

233B. Verification of Concurrent Programs. (4) Lecture, four hours; outside study, eight hours. Requisite: course 233A. Formal techniques for verifica- tion of concurrent programs. Topics include safety, liveness, program and state assertion-based tech- niques, weakest precondition semantics, temporal logic, UNITY, and axiomatic semantics for selected parallel languages. Letter grading. Mr. Bagrodia

234. Computer-Aided Verification. (4) Lecture, four hours. Preparation: C or C++ programming expe- rience. Requisite: course 111. In-depth investigation of static analysis issues through construction of research operating system for PC ma- chines and consideration of recent literature. Memory management and protection, interrupts and traps, processes, interprocess communication, preemptive multitasking, file systems. Virtualization, networking, profiling, research operating systems. Series of labo- ratory projects, including extra challenge work. Letter grading. Mr. Majumdar (F)

235. Advanced Operating Systems. (4) Lecture, four hours. Preparation: C or C++ programming expe- rience. Requisite: course 181. Introduction to theory and practice of formal methods for design and analy- sis of concurrent and embedded systems, with focus on algorithmic techniques for checking logical proper- ties of hardware and software systems. Topics in- clude semantics of reactive systems, invariant veri- fication, temporal logic model checking, theory of omega automata, state-space reduction techniques, computational and hierarchical reasoning. Letter grading. Mr. Majumdar (F)

236. Computer Security. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 111, 118. Basic and research material on computer secu- rity. Topics include basic principles and goals of com- puter security, common security tools, use of crypto- graphic protocols for security, security tools (firewalls, virtual private networks, honeypots), virus and worm protection, security assurance and testing, design of secure programs, privacy, applying security princi- ples to realistic problems, and new and emerging threats and security tools. Letter grading. Mr. Kohler (W)

239. Current Topics in Computer Science: Pro- gramming Languages and Systems. (2 to 12) Lecture, four hours; outside study, eight hours. Review of current literature in an area of computer science programming languages and systems in which the instructor has developed special proficiency as a consequence of research interests. May be repeated for credit with topic change. Letter grading.
240A. Databases and Knowledge Bases. (4) Lecture, four hours; outside study, eight hours. Requisite: course 143. Theoretical and technological foundation of Intelligent Database Systems, which merge database technology, knowledge-based systems, and advanced programming environments. Rule-based knowledge representation, spatio-temporal reasoning, and logic-based declarative querying/programming are salient features of this technology. Other topics include object-relational systems and data mining techniques. Letter grading. Mr. Zanilo (W)

240B. Advanced Data and Knowledge Bases. (4) Lecture, four hours; outside study, eight hours. Requisite: course 143. Logical models for data and knowledge representations. Rule-based languages and nonmonotonic reasoning. Temporal queries, spatial queries by "lightweight" image, video, and audio content. Querying, visual languages, and object-oriented databases and object relational databases (ORDBs). Abstract data types and user-defined column functions in ORDBs. Data mining algorithms. Semistructured information. Letter grading. Mr. Munzt, Mr. Parker, Mr. Zanilo

241A. Object-Oriented and Semantic Database Systems. (4) Lecture, three and one-half hours; discussion, 30 minutes; laboratory, one hour; outside study, seven hours. Prerequisite: course 143. Multiuser database principles and requirements. Data models, accessing, and query languages. Object data management. Object-oriented databases. Object-oriented system design. Database systems architecture and functional components. Systems comparison. Commercial products, Database design, organization, indexing, and performance. Future directions. Other topics at discretion of instructor. Letter grading. Mr. Cardenas

241B. Pictorial and Multimedia Database Management. (4) Lecture, three and one-half hours; discussion, 30 minutes; laboratory, one hour; outside study, seven hours. Prerequisite: course 143. Multimodal multimedia databases, multimedia data management. Operating systems and strong weak concurrency control, commit protocols, semantic query answering, multimedia database systems, fault recovery techniques, network partitioning, synchronization, and trade-offs, and design experiences. Letter grading. Mr. Chu (F)

245A. Intelligent Information Systems. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 241A, 255A. Knowledge discovery in database, knowledge-base maintenance, knowledge-base and database integration architectures, and scale-up issues and applications to cooperative database systems, intelligent decision support systems, and intelligent planning and scheduling systems; computer architecture for processing large-scale knowledge-base/database systems. Letter grading. Mr. Chu

246. Web Information Management. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 112, 143, 180, 181. Designed for graduate students. Scale of Web data requires novel algorithms and data structures. Study of Web characteristics and new management techniques needed to build computer systems suitable for Web environment. Topics include Web information retrieval, large-scale document data mining algorithms, efficient page refresh techniques, Web search ranking algorithms, and query processing techniques on independent data sources. Letter grading. Mr. Cho (F)

249. Current Topics in Data Structures. (2 to 12) Lecture, four hours; outside study, eight hours. Review of current literature in an area of data structures in which instructor has developed special proficiency as a consequence of research interests. Students report on selected topics. May be repeated for credit with consent of instructor. Letter grading.

251A. Advanced Computer Architecture. (4) Lecture, four hours; outside study, eight hours. Requisite: course M151B. Recommended: course 111. Design and implementation of high-performance systems, advanced hardware hierarchy designs, static and dynamic scheduling, load balancing, dealing with element design, communication primitives, cache coherence, memory consistency models, synchronization primitives, state-of-the-art design examples. Letter grading.

251B. Parallel Computer Architectures. (4) Lecture, four hours; outside study, eight hours. Requisite: course M151B. Recommended: course 251A. SIMD and MIMD systems, symmetric multiprocessors, distributed-shared-memory systems, messages-passing systems, clusters, interconnection networks, user-level host-network interfaces, switching elements, and processor chips. Letter grading. Mr. Ercegovac, Mr. Tamir

252A. Arithmetic Algorithms and Processors. (4) Lecture, four hours; outside study, eight hours. Requisite: course 251A. Number systems; conventional, redundant, signed-digit, and residue. Types of algorithms and implementations. Complexity measures. Fast algorithms and implementations for two operand addition, multiplication, division, and square root. Evaluation of transcendent functions. Floating-point arithmetic and numerical error codes. Residue arithmetic. Examples of contemporary arithmetic ICs and processors. Letter grading. Mr. Ercegovac (W)

252A. Arithmetic Algorithms and Processors. (4) Lecture, four hours; outside study, eight hours. Requisite: course 251A. Number systems; conventional, redundant, signed-digit, and residue. Types of algorithms and implementations. Complexity measures. Fast algorithms and implementations for two operand addition, multiplication, division, and square root. Evaluation of transcendent functions. Floating-point arithmetic and numerical error codes. Residue arithmetic. Examples of contemporary arithmetic ICs and processors. Letter grading. Mr. Ercegovac (W)

253C. Testing and Testable Design of VLSI Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course M253A. An overview of various problems in testing and testable designs of VLSI systems, including fault modeling, fault simulation, testing for single stuck faults and multiple stuck faults, functional testing, testing for testability, compression techniques, and built-in self-test. Letter grading. Mr. Cong

254A. Computer Memories and Memory Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 251A. Generic types of memory systems; control, access modes, hierarchies, and allocation algorithms. Characteristics, system organization, and device considerations of ferrite memories, thin film memories, and semiconductor memories. Letter grading. Mr. Chu

255A. Distributed Processing Systems. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 215 and/or 251A. Task partitioning and allocation, interprocess communications, task response time model, process scheduling, modeling and experimental protocols, replicated file systems, interface, cache memory, actor model, fine grain multicomputers, distribution of computation, system recovery strategy, performance monitoring and measurement, scalability and maintainability, prototypes and commercial distributed systems. Letter grading.

M258A. Design of VLSI Circuits and Systems. (4) (Same as Electrical Engineering M258A) Lecture, four hours; laboratory, four hours. Requisites: courses M51A or Electrical Engineering M16, and Electrical Engineering 115A. Recommended: Electrical Engineering 115C. LSI/VLSI design and application in computer systems. Fundamental design techniques that can be used to implement complex integrated systems on a chip. Letter grading. Mr. Rennels

M258B-M258C. LSI in Computer System Design. (4-4) (Same as Electrical Engineering M216B-M216C) Lecture, four hours; laboratory, four hours. Requisite: course M258A. LSI/VLSI design and application in computer systems, clusters, interconnection networks, distributed-shared-memory systems, messages-passing systems, clusters, interconnection networks, user-level host-network interfaces, switching elements, and processor chips. Letter grading. Mr. Kahng

258F. Physical Design Automation of VLSI Systems. (4) Lecture, four hours; outside study, eight hours. Detailed study of various physical design automation problems of VLSI circuits, including logic partitioning, floorplanning, placement, global routing, channel and switchbox routing, planar routing and via minimization, compaction and performance-driven layout. Discussion of applications of a number of important optimization techniques, such as network flows, Steiner trees, simulated annealing, and genetic algorithms. Letter grading. Mr. Cong

258G. Logic Synthesis of Digital Systems. (4) Lecture, four hours; outside study, eight hours. Requisites: courses M51A, 180. Detailed study of various problems in logic synthesis of VLSI digital systems, including two-level Boolean network optimization; multilevel Boolean network optimization; technology mapping for standard cell designs and field-programmable gate-array (FPGA) designs; retiming for sequential circuits; and applications of binary decision diagrams (BDDs). Letter grading. Mr. Cong

259. Current Topics in Computer Science: System Design/Architecture. (2 to 12) Lecture, four hours; outside study, eight hours. Review of current literature in area of computer science system design in which instructor has developed special proficiency as a consequence of research interests. Students report on selected topics. May be repeated for credit with topic change. Letter grading.
261A. Problem Solving and Search. (4) Lecture, four hours; outside study, eight hours. Requisite: course 180. In-depth treatment of systematic problem-solving search algorithms in artificial intelligence, including problem spaces, brute-force search, heuristic search, linear-space algorithms, real-time search, heuristic evaluation functions, two-player games, and constraint-satisfaction problems. Letter grading. Mr. Korf (Sp)

262A. Reasoning with Partial Beliefs. (4) Lecture, four hours; outside study, eight hours. Requisite: course 112 or Electrical Engineering 131A. Review of several formalisms for representing and managing uncertainty in reasoning systems; presentation of comprehensive description of Bayesian inference using belief networks representation. Letter grading.

262B. Knowledge-Based Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 262A. Machine representation of judgmental knowledge and uncertain relationships. Inference on inexact knowledge bases. Rule-based systems — principles, advantages, and limitations. Signal understanding. Automated planning systems. Knowledge acquisition and explanation producing techniques. Letter grading. Mr. Pearl

M262C. Causal Inference. (4) (Same as Statistics M241.) Lecture, four hours; outside study, eight hours. Requisite: course 112 or equivalent probability theory course. Techniques of using computers to interpret, summarize, and form theories of empirical observations. Mathematical analysis of trade-offs between computational complexity, storage requirements, and precision of computerized models. Letter grading.

262Z. Current Topics in Cognitive Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 262A. Additional requisites for each offering announced in advance by department. Theory and implementation of systems which simulate or support human reasoning. Current literature and individual studies in artificial intelligence, knowledges-based systems, decision support systems, computational psychology, and heuristic programming theory. May be repeated for credit with topic change. Letter grading.

263A. Language and Thought. (4) Lecture, four hours; outside study, eight hours. Requisite: course 130 or 131 or 161. Introduction to natural language processing (NLP), with emphasis on semantics. Presentation of models for various NLP tasks, including question answering, paraphrasing, machine translation, word-sense disambiguation, narrative and editorial comprehension. Examination of both symbolic and statistical approaches to language processing and acquisition. Letter grading. Mr. Dyer

263B. Connectionist Natural Language Processing. (4) Lecture, four hours; outside study, eight hours. Requisite: course 161 or 263A. Examination of connectionist/ANN architectures designed for natural language processing. Issues include localist versus distributed representations, variable binding, instantiation and inference via spreading activation, acquisition of language and world knowledge (for instance, via back propagation in PDP networks and competitive learning in self-organizing feature maps), and grounding of symbols in sensory/motor experience. Letter grading. Mr. Dyer

263C. Animats-Based Modeling. (4) Lecture, four hours; outside study, eight hours. Requisite: course 130 or 131 or 161. Animats are mobile/sensing animal-like software agents embedded in simulated dynamic environments. Focus on modeling: goal-oriented behavior via neurocontrollers, adaptation via reinforcement learning, evolutionary programming. Animat-based tasks include foraging, mate finding, predation, and multi-agent cooperative activities: nest construction, communication, and parenting. Letter grading. Mr. Dyer (F)

264A. Automated Reasoning: Theory and Applications. (4) Lecture, four hours; laboratory, four hours; outside study, four hours. Requisite: course 161. Introduction to theory and practice of automated reasoning using propositional and first-order logic. Topics include syntax and semantics of formal logic; algorithms for logical reasoning, including satisfiability and entailment; syntactic and semantic restrictions on knowledge bases; effect of these restrictions on expressiveness, compactness, and computational tractability; applications of automated reasoning to diagnosis, planning, design, formal verification, and reliability analysis. Letter grading. Mr. Darwiche (F)

267A. Neural Models. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Review of major neurophysiological milestones in understanding brain architecture and processes. Emphasis on current work pertinent to computer science and, in particular, on models of sensory perception, sensory-motor coordination, and higher-level cognition and decision. Students required to prepare a paper analyzing research in one area of interest. Letter grading.

Mr. Vidal

267B. Artificial Neural Systems and Connectionist Computing. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Analysis of major connectionist computing paradigms and underlying models of biological and physical processes. Examination of past and current implementations of artificial neural networks along with their applications to associative knowledge processing, general sensor/motor pattern recognition including speed and vision, and adapting robot models. Students required to prepare a paper analyzing research in one area of interest. Letter grading.

Mr. Vidal

Mr. Dyer

268S. Seminar: Computational Neuroscience. (2) Seminar, two hours; outside study, six hours. Designed for students undertaking thesis research. Discussion of advanced topics and current research in computational neuroscience. Neural networks and connectionism as a paradigm for parallel and concurrent computation in application to problems of perception, vision, multimodal sensory integration, and robotics. May be repeated for credit. S/U grading.

269. Seminar: Current Topics in Artificial Intelligence. (2 to 4) Seminar, to be arranged. Review of current literature and research practicum in an area of artificial intelligence in which instructor has developed special proficiency as a consequence of research interests. Students report on selected topics. May be repeated for credit with topic change. Letter grading.

270A. Computer Methodology: Advanced Numerical Methods. (4) Lecture, four hours; outside study, eight hours. Requisite: Electrical Engineering 103 or Mathematics 151B or comparable experience with numerical computing. Designed for graduate computer science and engineering students. Principles of computer treatment of selected numerical problems in algebraic and differential systems, transforms and spectra, data acquisition and reduction; emphasis on concepts pertinent to modeling and simulation and the applicability of contemporary developments in numerical software. Computer exercises. Letter grading. Mr. Carlyle

271A. Modeling and Simulation of Lumped Parameter Systems. (4) Lecture, eight hours. Recommended preparation: course 270A. Characterization of electrical, electromechanical, and other engineer-
276B. Structured Computer Vision. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Methods for computer processing of image data. Systems, concepts, and algorithms for image analysis, radiologic and robotic applications. Letter grading. Mr. Klinger

276C. Speech and Language Communication in Artificial Intelligence. (4) Lecture, four hours; outside study, eight hours. Review of current research in areas of computer science methodology in which instructor has developed special proficiency as a consequence of research interests. Students report on selected topics. May be repeated for credit with topic change. Letter grading.

280A-280ZZ. Algorithms. (4 each) Lecture, four hours; outside study, eight hours. Requisite: course 210. Additional requisites for each offering announced in advance by department. Selections from design, analysis, optimization, and implementation of algorithms; computational complexity and general theory of algorithms; algorithms for particular application areas. Subtitles of some current sections: Principles of Design and Analysis (280A); Distributed Algorithms (280B); Approximation Algorithms (280C). May be repeated for credit with consent of instructor and with topic change. Letter grading.

280AP. Approximation Algorithms. (4) Lecture, four hours; outside study, eight hours. Requisite: course 210. Background in discrete mathematics helpful. Theoretically sound techniques for dealing with NP-hard problems. Inability to solve these problems efficiently means algorithmic techniques are based on approximation — finding solution that is near to best possible in efficient running time. Coverage of approximation techniques for number of different problems, with algorithm design techniques that include primal-dual method, linear program rounding, greedy algorithms, and local search. Letter grading. Mr. Meyerson (Sp)

281A. Computability and Complexity. (4) Lecture, four hours; outside study, eight hours. Requisite: course 180. Background in discrete mathematics helpful. Concepts fundamental to study of discrete information systems and theory of computing, with emphasis on regular sets of strings, Turing-recognizable (recursively enumerable) sets, closure properties, machine characterizations, nondeterminism, decidability, unsolvable problems, “easy” and “hard” problems, PTIME/NP/TIME. Letter grading. Ms. Greibach, Mr. Parker

281D. Discrete State Systems. (4) Lecture, four hours; outside study, eight hours. Recommended requisite: course 181. Finite-state machines, transducers, and their generalizations; regular expressions, transduction expressions, realizability, decomposition, synthesis, and design considerations; topics in state and system identification and fault diagnosis, linear machines, probabilistic machines, applications in coding, communication, computing, system modeling, and simulation. Letter grading. Mr. Carlyle

M282A. Cryptography. (4) (Formerly numbered 228A.) (Same as Mathematics M209A.) Lecture, four hours; outside study, eight hours. Introduction to the theory of cryptography; stressing rigorous definitions and proofs of security. Topics include notions of hardness, one-way functions, hard-core bits, pseudorandom generators, pseudorandom functions and pseudorandom permutations, public-key and private-key encryption, secret-sharing, message authentication, digital signatures, interactive proofs, zero-knowledge proofs, collision-resistant hash functions, certificateless cryptography, digital signature schemes, key agreement, contract signing, and two-party secure computation with static security. Letter grading.

Mr. Ostrovsky (W)

M282B. Cryptographic Protocols. (4) (Formerly numbered 228B.) (Same as Mathematics M209B.) Lecture, four hours; outside study, eight hours. Requisite: course M282A. Consideration of advanced cryptographic protocol design and analysis. Topics include noninteractive zero-knowledge proofs, zero-knowledge arguments, concurrent and non-oblivious implementations, broadcast encryption, detection and denial of service attacks, network security, symmetric encryption, and physical security. Letter grading. Mr. Ostrovsky (Sp)

M283A-M283B. Topics in Applied Number Theory. (4-4) (Same as Mathematics M208A-M208B.) Lecture, four hours; outside study, eight hours. Topics in number theory, including congruences and prime numbers. Cryptography: public-key and discrete log cryptosystems. Attacks on cryptosystems, Primality testing and factorization methods, elliptic curve methods. Topics from coding theory: Hamming codes, cyclic codes, Gilbert-Varshamov bounds, Shannon theorem. S/U or letter grading.

284A-284ZZ. Topics in Automata and Languages. (4 each) (Same as Mathematics M208A-M208B.) Lecture, four hours; outside study, eight hours. Requisite: course 181. Additional requisites for each offering announced in advance by department. Selections from families of formal languages, grammars: context-free, context-sensitive, pushdown automata, context-free languages and their generalizations, parsing; multidimensional grammars, developmental systems; machine-based complexity. Subtitles of some current and planned sections: Context-Free Languages (284A), Parsing Algorithms (284P). May be repeated for credit with consent of instructor and with topic change. Letter grading. Ms. Greibach, Mr. Parker

CM286B. Computational Systems Biology. Modeling and Simulation of Biological Systems. (5) (Same as Biomedical Engineering CM286B.) Lecture, four hours; laboratory, three hours. Corequisite: Electrical Engineering 102. Dynamic biosystems modeling and computer simulation methods for studying biological/biomedical processes and systems at multiple levels of organization. Control systems, multi-compartmental, predator-prey, pharmacokinetiic (PK), pharmacodynamic (PD), and other structural modeling methods applied to life sciences problems at molecular, cellular (biochemical pathways), organ, and organismic levels. Both theory- and data-driven modeling, with focus on translating biomodeling goals and data into mathematical models and implementing them for simulation and analysis. Basics of numerical simulation algorithms, with applications to software modules in course CM286B laboratory assignments. Concurrently scheduled with course CM188B. Letter grading.

Mr. DiStefano (F)

CM286C. Biomodeling Research and Research Communication Workshop. (2 to 4) (Formerly numbered CM286L.) (Same as Biomedical Engineering CM286L.) Lecture, two hours; outside study, eight hours. Laboratory, one hour; outside study, eight hours. Requisite: course CM286B. Closely directed, interactive, and real research experience in active qualitative biology research laboratory. Discussion and reflection on how to focus on topics of current interest in scientific community, appropriate to student interests and capabilities. Critiques of oral presentations and written progress reports, research writing and search for research results. Major emphasis on effective research reporting, both oral and written. Concurrently scheduled with course CM188C. Letter grading.

Mr. DiStefano (Sp)

287A. Theory of Program Structure. (4) Lecture, four hours; outside study, eight hours. Requisite: course 181. Models of computer programs and their syntax and semantics; emphasis on programs and recursion schemes; equivalence, optimization, correctness, and translatability of programs; expressive power of program constructs and data structures; selected current topics. Letter grading. Ms. Greibach

288S. Seminar: Theoretical Computer Science. (2) Seminar, two hours; outside study, two hours. Requisites: courses 280A, 281A. Intended for students undertaking thesis research. Discussion of advanced topics and current research on selected algorithms and complexity models for parallel and concurrent computation, and formal language and automata theory. May be repeated for credit. S/U grading.

Ms. Greibach, Mr. Ostrovsky (F,W,Sp)

289A-289ZZ. Current Topics in Computer Theory. (2 to 12 each) Lecture, four hours; outside study, eight hours. Review of current literature in an area of computer theory in which instructor has developed special proficiency as a consequence of research interests. Students report on selected topics. Letter grading.

289CO. Complexity Theory. (4) Lecture, four hours; outside study, eight hours. Diagonalization, polynomial-time hierarchy, PCP theorem, randomness and derandomization, circuit complexity, attempts and limitations to proving P does not equal NP, average-case complexity, one-way functions, hardness amplification. Problem sets and presentation of previous and original research related to course topics. Letter grading.

Mr. Sahai (Sp)

289OA. Online Algorithms. (4) Lecture, four hours; outside study, eight hours. Requisite: course 180. Introduction to decision making under uncertainty and competitive analysis. Review of current research in online algorithms for problems arising in many areas, such as data and memory management, searching and navigating in unknown terrains, and server systems. Letter grading.

Mr. Meyerson (Sp, alternate years)

289RA. Randomized Algorithms. (4) Lecture, four hours; outside study, eight hours. Basic concepts and design techniques for randomized algorithms, such as probability theory, Markov chains, random walks, and probabilistic method. Applications to randomized algorithms in data structures, graph theory, computational geometry, number theory, and parallel and distributed systems. Letter grading.

Mr. Meyerson

M296A. Advanced Modeling Methodology for Dynamic Biomedical Systems. (4) (Same as Biomedical Engineering M296A and Medicine M297C.) Lecture, four hours; outside study, eight hours. Requisite: Electrical Engineering 141 or 142 or Mathematics 115A or Mechanical and Aerospace Engineering 117A. Development of dynamic systems modeling methodology for physiological, biomedical, pharmacological, chemical, and related systems. Control system, multicompartamental, noncompartamental, and input/output models, linear and nonlinear. Emphasis on model applications, limitations, and relevance in biomedical sciences and other limited data environments. Problem solving in PC laboratory. Letter grading.

Mr. DiStefano (F)
M296B. Optimal Parameter Estimation and Experiment Design for Biomedical Systems. (4) (Same as Biomathematics M270, Biomedical Engineering M296B, and Medicine M270E) Lecture, four hours; outside study, eight hours. Requisite: course M296A or Biomathematics 220. Estimation methodology and model parameter estimation algorithms for fitting dynamic system models to biomedical data. Model discrimination methods. Theory and algorithms for designing optimal experiments for developing and quantifying models, with special focus on optimal sampling schedule design for kinetic models. Exploration of PC software for model building and optimal experiment design via applications in physiology and pharmacology. Letter grading. Mr. DiStefano

M296C. Advanced Topics and Research in Biomedical Systems Modeling and Computing. (4) (Same as Biomedical Engineering M296C and Medicine M270E) Lecture, four hours; outside study, eight hours. Requisite: course M296A. Recommended: course M296B. Research techniques and experience on special topics involving models, modeling methods, and model/computing in biological and medical sciences. Review and critique of literature. Research problem searching and formulation. Approaches to solutions. Individual M.S.- and Ph.D-level project training. Letter grading. Mr. DiStefano

298. Research Seminar: Computer Science. (2 to 4) Seminar, two to four hours; outside study, four to eight hours. Designed for graduate computer science students. Discussion of advanced topics and current research in algorithmic processes that describe and transform information: theory, analysis, design, efficiency, implementation, and application. May be repeated for credit. S/U grading. (F.W,Sp)

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: apprentice personnel employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. (F.W,W)

495. Teaching Assistant Training Seminar. (2) Seminar, two hours; outside study, six hours. Limited to graduate Computer Science Department students. Seminar on communication of computer science material in classroom; preparation, organization of material, presentation, use of visual aids, grading, advising, and rapport with students. S/U grading.

495B. Teaching with Technology. (2) Seminar, two hours; outside study, four hours. Limited to graduate Computer Science Department teaching assistants. Seminar for teaching assistants covering how technology can be used to aid instruction in and out of classroom. S/U grading. Mr. Korf

497D-497E. Field Projects in Computer Science. (4-4) Fieldwork, to be arranged. Students are divided into teams led by instructor; each team is assigned an external company or organization which they investigate as a candidate for possible computerization, submitting a team report of their findings and recommendations. In Progress (497D) and S/U or letter (497E) grading. Mr. Cardenas

596. Directed Individual or Tutorial Studies. (2 to 8) Tutorial, to be arranged. Limited to graduate computer science students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies. S/U grading.
Scope and Objectives

The Electrical Engineering Department fosters a dynamic academic environment that is committed to a tradition of excellence in teaching, research, and service. Departmental faculty members are engaged in creative research investigations and are pursuing new technologies across disciplines in order to serve the needs of industry, government, society, and the scientific community by expanding the body of knowledge in the field. The department has state-of-the-art research programs and facilities in a variety of fields, and faculty members are exploring exciting new concepts and developments. Interactions with other disciplines are strong. Faculty members regularly conduct collaborative research projects with colleagues in the Geffen School of Medicine, Graduate School of Education and Information Studies, School of Theater, Film, and Television, and College of Letters and Science.

There are three primary research areas in the department: circuits and embedded systems, physical and wave electronics, and signals and systems. These areas cover a broad spectrum of specializations in, for example, communications and telecommunications, control systems, electromagnetics, embedded computing systems, engineering optimization, integrated circuits and systems, microelectromechanical systems (MEMS), nanotechnology, photonics and optoelectronics, plasma electronics, signal processing, and solid-state electronics.

The program grants one undergraduate degree (Bachelor of Science in Electrical Engineering) and two graduate degrees (Master of Science and Doctor of Philosophy in Electrical Engineering). The graduate program provides students with an opportunity to pursue advanced coursework, in-depth training, and research investigations in several fields.

Department Mission

The education and research activities in the Electrical Engineering Department are strongly aligned with its mission statement. In partnership with its constituents, consisting of students, alumni, industry, and faculty members, the mission of the department is to (1) produce highly qualified, well-rounded, and motivated students employing two program educational objectives: (1) that graduates of the program have successful technical or professional careers and (2) that graduates of the program continue to learn and to lead. It also prepares them to achieve the following two program educational objectives: (1) that graduates of the program have successful technical or professional careers and (2) that graduates of the program continue to learn and to adapt in a world of constantly evolving technology.
Undergraduate Study

Electrical Engineering B.S.

The undergraduate curriculum allows Electrical Engineering majors to specialize in one of three emphasis areas or options. The three options are structured as an electrical engineering degree, and the only degree offered to undergraduate students by the department is the Bachelor of Science degree in Electrical Engineering. No distinction is made among the three options: (1) electrical engineering (EE) option is the regular option that provides students with preparation in electrical engineering with a range of required and elective courses across several disciplines; (2) computer engineering (CE) option provides students with preparation in embedded systems and software and hardware issues. Students replace some of the senior courses in the regular EE option with computer engineering-oriented courses or computer science courses; and (3) biomedical engineering (BE) option provides students with exposure to additional chemistry and life sciences courses and helps them meet most of the premedical preparation requirements so that they are prepared for careers in bioengineering, medicine, or electrical engineering.

Electrical Engineering Option

Preparation for the Major

Required: Chemistry and Biochemistry 20A; Computer Science 31, 32; Electrical Engineering 1, 2, 3, 10, M16 (or Computer Science M51A); Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 4AL, 4BL.

The Major

Required: Electrical Engineering 101, 102, 103, 110, 110L, 113, 115A, 115AL, 121B, 131A, 132A, 141, 161, Mathematics 132, Statistics 105; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and three major field elective courses (12 units), one design course (4 units), and one laboratory course (2 to 4 units) selected from one of the following pathways:

Antennas and Microwaves: Three major field elective courses from Electrical Engineering 162A, 163A, and 163B or 163C; one capstone design course from 164D or 164D; and one laboratory course from 164L (or by petition from 194 or 199)

Integrated Circuits: Three major field elective courses from Electrical Engineering 115B, 115C, and M116C; one capstone design course from 115D or 184D; and one laboratory course from 115BL (or by petition from 194 or 199)

Microelectromechanical (MEMS) Systems: Three major field elective courses from Electrical Engineering 115B or 123A or 124, CM150, and 163A or 173; one capstone design course from 129D; and one laboratory course from 122L or CM150L (or by petition from 194 or 199)

Photonics and Plasma Electronics: Three major field elective courses from Electrical Engineering 172, 173, and 174 or 175 or M185; one capstone design course from 173D; and one laboratory course from 172L (or by petition from 194 or 199)

Signals and Systems: Three major field elective courses from Electrical Engineering 114, 115B, 115C, 131B, 132B, 136, 142, 162A; one capstone design course from 113D, 173D, 180D, or 184D; and one laboratory course from 115BL or M116L or M171L (or by petition from 194 or 199)

Solid State: Three major field elective courses from Electrical Engineering 123A, 123B, and 124; one capstone design course from 129D; and one laboratory course from 122L (or by petition from 194 or 199)

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/GE-EngrNew 07-08.pdf.

Biomedical Engineering Option

Preparation for the Major

Required: Chemistry and Biochemistry 20A; Computer Science 31, 32, 33, 35L; Electrical Engineering 1, 2, 3, 10, M16 (or Computer Science M51A); Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 4AL, 4BL.

The Major

Required: Electrical Engineering 101, 102, 103, 110, 110L, 113, 115A, 115C, M116C (or Computer Science M151B), 131A, 132B or Computer Science 118, Mathematics 132, Statistics 105; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and three major field elective courses (12 units), one design course (4 units), and one laboratory course (2 to 4 units) selected from the computer engineering pathway as follows: three major field elective courses from Computer Science 111, M117 or Electrical Engineering 132A, and 131 or 132 or 180; one capstone design course from Electrical Engineering 113D or 180D or 184D; and one laboratory course from Electrical Engineering M116L (or by petition from 194 or 199).

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/GE-EngrNew 07-08.pdf.

Graduate Study

For information on graduate admission see Graduate Programs, page 23.

The following introductory information is based on the 2007-08 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnet.ucla.edu/gasaa/library/
Program Requirements

Students are subject to the degree requirements as published in Program Requirements for the year in which they matriculate.

The Department of Electrical Engineering offers Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Electrical Engineering.

Electrical Engineering M.S.

Areas of Study

Students may pursue specialization across three major areas of study: (1) circuits and embedded systems, (2) physical and wave electronics, and (3) signals and systems. These areas cover a broad spectrum of specializations in, for example, communications and telecommunications, control systems, electromagnetics, embedded computing systems, engineering optimization, integrated circuits and systems, microelectromechanical systems (MEMS), nanotechnology, photonics and optoelectronics, plasma electronics, signal processing, and solid-state electronics.

Students must select a number of formal graduate courses to serve as their major and minor fields of study according to the requirements listed below for the thesis (seven courses) and non-thesis (eight courses) options. The selected courses must be approved by the faculty adviser.

Course Requirements

Students may select either the thesis plan or the non-thesis (comprehensive examination) plan. The selection of courses is tailored to the professional objectives of the students and must meet the requirements stated below. The courses should be selected and approved in consultation with the faculty adviser. Departures from the stated requirements are considered only in exceptional cases and must be approved by the departmental graduate adviser.

The minimum requirements for the M.S. degree are as follows:

1. **Requisite.** B.S. degree in Electrical Engineering or a related field

2. All M.S. program requirements should be completed within two academic years from admission into the M.S. graduate program in the Henry Samueli School of Engineering and Applied Science

3. Students must maintain a minimum cumulative grade-point average of 3.0 every term and 3.0 in all graduate courses

4. **Thesis Option.** Students selecting the thesis option must complete at least the following requirements: (a) five formal graduate courses to serve as the major field of study, (b) two formal graduate courses to serve as the minor field of study, (c) Electrical Engineering 297, (d) two Electrical Engineering 598 courses involving work on the M.S. thesis, (e) no other 500-level courses, other seminar courses, nor Electrical Engineering 296 or 375 may be applied toward the course requirements, and (f) an M.S. thesis completed under the direction of the faculty adviser to a standard that is approved by a committee comprised of three faculty members.

 The thesis research must be conducted concurrently with the coursework

5. **Non-Thesis Option.** Students selecting the non-thesis option must complete at least the following requirements: (a) six formal graduate courses to serve as the major field of study, (b) two formal graduate courses to serve as the minor field of study, (c) Electrical Engineering 297, (d) Electrical Engineering 299 to serve as the M.S. comprehensive examination, which is evaluated by a committee of three faculty members appointed by the department. In case of failure, students may be reexamined only once with consent of the departmental graduate adviser, and (e) no 500-level courses, other seminar courses, nor Electrical Engineering 296 or 375 may be applied toward the course requirements

6. Students must select a number of formal graduate courses to serve as their major and minor fields of study according to the requirements listed above for the thesis (seven courses) and non-thesis (eight courses) options. The selection of the major and minor sequences of courses must be from different established tracks, or approved ad hoc tracks, or combinations thereof. The selected courses must be approved by the faculty adviser

7. For the thesis option at least four, and for the non-thesis option five, of the formal graduate courses used to satisfy the M.S. program requirements listed above must be in the Electrical Engineering Department

8. A formal graduate course is defined as any 200-level course, excluding seminar or tutorial courses

9. At most one upper division undergraduate course is allowed to replace one of the formal graduate courses covering the major and minor fields of study provided that (a) the undergraduate course is not required of undergraduate students in the Electrical Engineering Department and (b) the undergraduate course is approved by the faculty adviser

10. A track is a coherent set of courses in some general field of study. The department suggests lists of established tracks as a means to assist students in selecting their courses. Students are not required to adhere to the suggested courses in any specific track

Circuits and Embedded Systems Area Tracks

1. **Embedded Computing Track.** Courses deal with the engineering of computer systems as may be applied to embedded devices used for communications, multimedia, or other such restricted purposes. Courses include Computer Science 251A, Electrical Engineering 201A, 201C, M202A, M202B, 204A, 213A, M216A

2. **Integrated Circuits Track.** Courses deal with the analysis and design of analog and digital integrated circuits; architecture and integrated circuit implementations of large-scale digital processors for communications and signal processing; hardware-software codesign; and computer-aided design methodologies. Courses include Computer Science 251A, 252A, Electrical Engineering 213A, 215A through 215E, M216A, 221A, 221B

Physical and Wave Electronics Area Tracks

1. **Electromagnetics Track.** Courses deal with electromagnetic theory; propagation and scattering; antenna theory and design; microwave and millimeter wave circuits; printed circuit antennas; integrated and fiber optics; microwave-optical interaction, antenna measurement, and diagnostics; numerical and asymptotic techniques; satellite and personal communication antennas; periodic structures; genetic algorithms; and optimization techniques. Courses include Electrical Engineering 221C, 260A, 260B, 261, 262, 263, 266, 270

2. **Photonics and Plasma Electronics Track.** Courses deal with laser physics,

Signals and Systems Area Tracks

1. Communications Systems Track. Courses deal with communication and telecommunication principles and engineering applications; channel and source coding; spread spectrum communication; cryptography; estimation and detection; algorithms and processing in communication and radar; satellite communication systems; stochastic modeling in telecommunication engineering; mobile radio engineering; and telecommunication switching, queuing system, communication networks, local-area, metropolitan-area, and wide-area computer communication networks. Courses include Electrical Engineering 205A, 210A, 230A through 230D, 231A, 231E, 232A through 232E, 233A, 233B, 238, 241A.

Ad Hoc Tracks

In consultation with their faculty advisers, students may petition for an ad hoc track tailored to their professional objectives. This may comprise graduate courses from established tracks, from across areas, and even from outside electrical engineering. The petition must justify the selection of courses in the ad hoc track that forms a coherent set of courses, and how the proposed ad hoc track serves the professional objectives. The petition must be approved by the faculty adviser and the departmental graduate adviser.

Comprehensive Examination

For M.S. students following the non-thesis option, the M.S. comprehensive examination is satisfied by completion of Electrical Engineering 299 (project seminar) under the direction of a faculty member. Students are assigned some topic of independent study by the faculty member. The study culminates with a written report and an oral presentation. The M.S. project seminar covers the department and takes place once every year. In case of failure, students may be reexamined only once with consent of the departmental graduate adviser.

Electrical Engineering Ph.D.

Areas of Study

Students may pursue specialization across three major areas of study: (1) circuits and embedded systems, (2) physical and wave electronics, and (3) signals and systems. These areas cover a broad spectrum of specializations in, for example, communications and telecommunications, control systems, electromagnetics, embedded computing systems, engineering optimization, integrated circuits and systems, microelectromechanical systems (MEMS), nanotechnology, photonics and optoelectronics, plasma electronics, signal processing, and solid-state electronics.

Course Requirements

The selection of courses for the Ph.D. program is tailored to the professional objectives of the students and must meet the requirements stated below. The courses should be selected and approved in consultation with the faculty adviser. Departures from the stated requirements are considered only in exceptional cases and must be approved by the departmental graduate adviser. Normally, students take additional courses to acquire deeper and broader knowledge in preparation for the dissertation research.

The minimum requirements for the Ph.D. degree are as follows:

1. Requisite. M.S. degree in Electrical Engineering or a related field granted by UCLA or by an institution recognized by the UCLA Graduate Division.

2. All Ph.D. program requirements should be completed within five academic years from admission into the Ph.D. graduate program in the Henry Samueli School of Engineering and Applied Science.

3. Students must maintain a minimum cumulative grade-point average of 3.5 in the Ph.D. program.

4. Students must complete at least the following requirements: (a) four formal graduate courses selected in consultation with the faculty adviser, (b) Electrical Engineering 297, (c) one technical communications course such as Electrical Engineering 295, (d) no 500-level courses, other seminar courses, nor Electrical Engineering 296 or 375 may be applied toward the course requirements, (e) pass the Ph.D. preliminary examination which is administered by the department and takes place once every year. In case of failure, students may be reexamined only once with consent of the departmental graduate adviser, (i) pass the University Oral Qualifying Examination which is admin-
istered by the doctoral committee, (g) complete a Ph.D. dissertation under the direction of the faculty adviser, and (h) defend the Ph.D. dissertation in a public seminar with the doctoral committee.

5. A formal graduate course is defined as any 200-level course, excluding seminar or tutorial courses. Formal graduate courses taken to meet the M.S. degree requirements may not be applied toward the Ph.D. course requirements.

6. At least two of the formal graduate courses must be in electrical engineering.

7. Within two academic years from admission into the Ph.D. program, all courses should be completed and the Ph.D. preliminary examination should be passed. It is strongly recommended that students take the Ph.D. preliminary examination during their first academic year in the program.

8. The University Oral Qualifying Examination must be taken when all required courses are complete, and within one year after passing the Ph.D. preliminary examination.

9. Students admitted originally to the M.S. program in the Electrical Engineering Department must complete all M.S. program requirements with a grade-point average of at least 3.5 to be considered for admission into the Ph.D. program. Only after admission into the program can students take the Ph.D. preliminary examination.

10. Students must nominate a doctoral committee prior to taking the University Oral Qualifying Examination. A doctoral committee consists of a minimum of four members. Three members, including the chair, are “inside” members and must hold appointments in the Electrical Engineering Department at UCLA. The “outside” member must be a UCLA faculty member outside the Electrical Engineering Department. By petition, one of the four members may be a faculty member from another UC campus.

Written and Oral Qualifying Examinations

The written qualifying examination is known as the Ph.D. preliminary examination in the department. The purpose of the examination is to assess student competency in the discipline, knowledge of the fundamentals, and potential for independent research. Students admitted originally to the M.S. program in the Electrical Engineering Department must complete all M.S. program requirements with a grade-point average of at least 3.5 to be considered for admission into the Ph.D. program. Only after admission into the program can students take the Ph.D. preliminary examination, which is held once every year. Students are examined independently by a group of faculty members in their general area of study. The examination by each faculty member typically includes both oral and written components, and students pass the entire Ph.D. preliminary examination and not in parts. Students who fail the examination may repeat it once only with consent of the departmental graduate adviser. The preliminary examination, together with the course requirements for the Ph.D. program, should be completed within two years from admission into the program.

After passing the written qualifying examination described above, students are ready to take the University Oral Qualifying Examination. The nature and content of the examination are at the discretion of the doctoral committee, but ordinarily include a broad inquiry into the preparation for research. The doctoral committee also reviews the prospectus of the dissertation at the oral qualifying examination.

Students must nominate a doctoral committee prior to taking the University Oral Qualifying Examination. A doctoral committee consists of a minimum of four members. Three members, including the chair, are “inside” members and must hold appointments in the Electrical Engineering Department at UCLA. The “outside” member must be a UCLA faculty member outside the Electrical Engineering Department. By petition, one of the four members may be a faculty member from another UC campus.

Facilities and Programs

Computing Resources

Students and faculty have access to a modern networked computing environment that interconnects UNIX workstations as well as Windows and Linux PCs. These machines are provided by the Electrical Engineering Department; most of them operate in a client-server mode, but stand-alone configurations are supported as well. Furthermore, this network connects to mainframes and supercomputers provided by the Henry Samueli School of Engineering and Applied Science and the Office of Academic Computing, as well as off-campus supercomputers according to need. The rapidly growing department-wide network comprises about 500 computers. These include about 200 workstations from Sun, HP, and SGI, and about 300 PCs, all connected to a 100 Mbit/s network with multiple parallel T3 lines running to individual research laboratories and computer rooms. The server functions are performed by several high-speed, high-capacity RAID servers from Network Appliance and IBM which serve user directories and software applications in a unified transparent fashion. All this computing power is distributed in research laboratories, computer classrooms, and open-access computer rooms.

Research Centers and Laboratories

Center for High-Frequency Electronics

The Center for High-Frequency Electronics has been established with support from several governmental agencies and contributions from local industries, beginning with a $10 million grant from Hewlett-Packard.

The first major goal of the center is to combine, in a synergistic manner, five areas of research. These include (1) solid-state millimeter wave devices, (2) millimeter systems for imaging and communications, (3) millimeter wave high-power sources (gyrotrons), (4) GaAs gigabit logic systems, and (5) VLSI and LSI based on new materials and structures. The center supports work in these areas by providing the necessary advanced equipment and facilities and allows the University to play a major role in initiating and generating investigations into new electronic devices. Students, both graduate and undergraduate, receive training and instruction in a unique facility.

The second major goal of the center is to bring together the manpower and skills necessary to synthesize new areas of activity by stimulating interactions between different interdependent fields. The Electrical Engineering Department, other departments within UCLA, and local universities (such as Cal Tech and USC) have begun to combine and correlate certain research programs as a result of the formation of the center.

Circuits Laboratories

The Circuits Laboratories are equipped for measurements on high-speed analog and digital circuits and are used for the experi-
mental study of communication, signal processing, and instrumentation systems. A hybrid integrated circuit facility is available for rapid mounting, testing, and revision of miniature circuits. These include both discrete components and integrated circuit chips. The laboratory is available to advanced undergraduate and graduate students through faculty sponsorship on thesis topics, research grants, or special studies.

Electromagnetics Laboratories
The Electromagnetics Laboratories involve the disciplines of microwaves, millimeter waves, wireless electronics, and electromechanics. Students enrolled in microwave laboratory courses, such as Electrical Engineering 164D and 164L, special projects classes such as Electrical Engineering 199, and/or research projects, have the opportunity to obtain experimental and design experience in the following technology areas: (1) integrated microwave circuits and antennas, (2) integrated millimeter wave circuits and antennas, (3) numerical visualization of electromagnetic waves, (4) electromagnetic scattering and radar cross-section measurements, and (5) antenna near field and diagnostics measurements.

Nanoelectronics Research Facility
The state-of-the-art Nanoelectronics Research Facility for graduate research and teaching as well as the undergraduate microelectronics teaching laboratory are housed in an 8,500-square-foot class 100/ class 1000 clean room with a full complement of utilities, including high purity deionized water, high purity nitrogen, and exhaust scrubbers. The NRF supports research on nanometer-scale fabrication and on the study of fundamental quantum size effects, as well as exploration of innovative nanometer-scale device concepts. The laboratory also supports many other schoolwide programs in device fabrication, such as MEMS and optoelectronics. For more information, see http://www.nanolab.ucla.edu.

Photonics and Optoelectronics Laboratories
In the Laser Laboratory students study the properties of lasers and gain an understanding of the application of this modern technology to optics, communication, and holography.

The Photonics and Optoelectronics Laboratories include facilities for research in all of the basic areas of quantum electronics. Specific areas of experimental investigation include high-powered lasers, nonlinear optical processes, ultrashort lasers, parametric frequency conversion, electro-optics, infrared detection, and semiconductor lasers and detectors. Operating lasers include mode-locked and Q-switched Nd:YAG and Nd:YLF lasers, Ti:Al2O3 lasers, ultraviolet and visible wavelength argon lasers, wavelength-tunable dye lasers, as well as gallium arsenide, helium-neon, excimer, and high-powered continuous and pulsed carbon dioxide laser systems. Also available are equipment and facilities for research on semiconductor lasers, fiber optics, nonlinear optics, and ultrashort laser pulses. Facilities for mirror polishing and coating and high-vacuum gas handling systems are also available. These laboratories are open to undergraduate and graduate students who have faculty sponsorship for their thesis projects or special studies.

Plasma Electronics Facilities
Two laboratories are dedicated to the study of the effects of intense laser radiation on matter in the plasma state. One, located in Engineering IV, houses a state-of-the-art tabletop terawatt (T3) 400fs laser system that can be operated in either a single or dual frequency mode for laser-plasma interaction studies. Diagnostic equipment includes a ruby laser scattering system, a streak camera, and optical spectrographs and multichannel analyzer. Parametric instabilities such as stimulated Raman scattering have been studied, as well as the resonant excitation of plasma waves by optical mixing. The second laboratory, located in Boelter Hall, houses the MARS laser, currently the largest on-campus university CO2 laser in the U.S. It can produce 200J, 170ps pulses of CO2 radiation, focusable to 1016 W/cm2. The laser is used for testing new ideas for laser-driven particle accelerators and free-electron lasers. Several high-pressure, short-pulse drivers can be used on the MARS; other equipment includes a theta-pinch plasma generator, an electron linac injector, and electron detectors and analyzers.

A second group of laboratories is dedicated to basic research in plasma sources for basic experiments, plasma processing, and plasma heating.

Solid-State Electronics Facilities
Solid-state electronics equipment and facilities include (1) a modern integrated semiconductor device processing laboratory, (2) complete new Si and III-V compound molecular beam epitaxy systems, (3) CAD and mask-making facilities, (4) lasers for beam crystalization study, (5) thin film and characterization equipment, (6) deep-level transient spectroscopy instruments, (7) computerized capacitance-voltage and other characterization equipment, including doping density profiling systems, (8) low-temperature facilities for material and device physics studies in cryogenic temperatures, (9) optical equipment, including many different types of lasers for optical characterization of superlattice and quantum well devices, (10) characterization equipment for high-speed devices, including (11) high magnetic field facilities for magnetotransport measurement of heterostructures. The laboratory facilities are available to faculty, staff, and graduate students for their research.

Multidisciplinary Research Facilities
The department is also associated with several multi-disciplinary research centers including

- California NanoSystems Institute (CNSI)
- Center for Embedded Networked Sensing (CENS)
- Center for High-Frequency Electronics (CHFE)
- Center for Nanoscience Innovation for Defense (CNID)
- Functional Engineered Nano Architectonics Focus Center (FENA)
- Plasma Science and Technology Institute
- Western Institute for Nanoelectronics (WIN)

Faculty Groups and Laboratories
Department faculty members also lead a broad range of research groups and laboratories that cover a wide spectrum of specialties, including

- Adaptive Systems Laboratory (Sayed)
- Antenna Research, Analysis, and Measurement Laboratory (Rahmat-Samii)
- Autonomous Intelligent Networked Systems (Rubin)
- CMOS Research Laboratory (Woo)
- Communication Circuits Laboratory (Razavi)
- Complex Networks Group (Roychowdhury)
- Design Automation Laboratory (He)
- Device Research Laboratory (K. Wang)
- Digital Microwave Laboratory (E. Wang)
• Flight Systems Research Center (Balakrishnan)
• High-Performance Mixed Mode Circuit Design Group (Yang)
• High-Speed Electronics Laboratory (Chang)
• Image Communications Laboratory (Villasenor)
• Integrated Circuits and Systems Laboratory (Abidi)
• Laser-Plasma Group (Joshi)
• Microfabrication Laboratory (Judy)
• Microsystems Research Laboratory (Judy)
• Microwave Electronics Laboratory (Itoh)
• Millimeter Wave and Optoelectronics Laboratory (Fetterman)
• Nanoelectronics Research Center (Judy, Franz)
• Networked and Embedded Systems Laboratory (Srivastava)
• Neuroengineering Research Laboratory (Judy)
• Optoelectronics Circuits and Systems Laboratory (Jalali)
• Optoelectronics Group (Yablonovitch)
• Proactive Medianet Laboratory (van der Schaar)
• Speech Processing and Auditory Perception Laboratory (Alwan)
• Wireless Integrated Systems Research Group (Daneshrad)

Faculty Areas of Thesis Guidance

Professors

Asad A. Abidi, Ph.D. (UC Berkeley, 1981)
High-performance analog electronics, device modeling

Abeer A.H. Alwan, Ph.D. (MIT, 1992)
Speech processing, acoustic properties of speech sounds with applications to speech synthesis, recognition by machine and coding, hearing-aid design, and digital signal processing

A.V. Balakrishnan, Ph.D. (USC, 1954)
Control and communications, flight systems applications

Frank M.C. Chang, Ph.D. (National Chiao-Tung, Taiwan, 1979)
High-speed semiconductor (GaAs, InP, and Si) devices and integrated circuits for digital, analog, microwave, and optoelectronic integrated circuit applications

Panagiotis D. Christofilides, Ph.D. (Minnesota, 1966)
Process modeling, dynamics and control, computational and applied mathematics

Babak Daneshrad, Ph.D. (UCLA, 1993)
Digital VLSI circuits: wireless communication systems, high-performance communications integrated circuits for wireless applications

Deborah L. Estrin, Ph.D. (MIT, 1985)
Sensor networks, embedded network sensing, environmental monitoring, computer networks

Harold R. Fetterman, Ph.D. (Cornell, 1968)
Optical millimeter wave interactions, high-frequency optical polymer modulators and applications, solid-state millimeter wave structures and systems, biomedical applications of lasers

Warren S. Grundfest, M.D., FACS (Columbia U., 1980)
Development of lasers for medical applications, minimally invasive surgery, magnetic resonance-guided interventional procedures, laser lithotripsy, microendoscopy, spectroscopy, photodynamic therapy (PDT), optical technology, biologic feedback control mechanisms

Tatsuo Itoh, Ph.D. (Illinois, Urbana, 1969)
Microwave and millimeter wave electronics; guided wave structures, low-power wireless electronics; integrated passive components and antennas; photonic bandgap structures and meta materials applications; active integrated antennas, smart antennas; RF technologies for reconfigurable front-ends; sensors and transponders

Rajeev Jain, Ph.D. (Katholieke U., Leuven, Belgium, 1985)
Design of digital communications and digital signal processing circuits and systems

Bahram Jalali, Ph.D. (Columbia U., 1989)
RF photonics, integrated optics, fiber optic integrated circuits

Laser fusion, laser acceleration of particles, nonlinear optics, high-power lasers, plasma physics

William J. Kaiser, Ph.D. (Wayne State, 1983)
Research and development of new microsensor and microinstrument technology for industry, science, and biomedical applications; development and applications of new atomic-resolution scanning probe microscopy methods for microelectronic device research

Alan Laub, Ph.D. (Minnesota, 1974)
Numerical linear algebra, numerical analysis, condition estimation, computer-aided control system design, high-performance computing

Jia-Ming Liu, Ph.D. (Harvard, 1982)
Nonlinear optics, ultrastand optics, laser chaos, semiconductor lasers, optoelectronics, photonics, nonlinear and ultrastand processes

Warren B. Mori, Ph.D. (UCLA, 1987)
Laser and charged particle beam-plasma interactions, advanced accelerator concepts, advanced light sources, laser-fusion, high-energy density science, high-performance computing, plasma physics

Scientific computing, applied mathematics

Dee-Son Pan, Ph.D. (Cal Tech, 1977)
New semiconductor devices for millimeter and RF power generation and amplification, transport in small geometry semiconductor devices, generic device modeling

C. Kumar N. Patel, Ph.D. (Stanford, 1961)
Quantum electronics, non-linear optics, photoacoustics in gases, liquids, and solids; ultra-low level detection of trace gases; chemical and toxic gas sensors

Gregory J. Pottie, Ph.D. (McMaster, 1988)
Communication systems and theory with applications to wireless sensor networks

Yahya Rahmat-Samii, Ph.D. (Illinois, 1975)
Satellite communications antennas, personal communication antennas including human interactions, antennas for remote sensing and radio astronomy applications, advanced numerical and genetic optimization techniques in electromagnetics, frequency selective surfaces and photonic band gap structures, novel integrated and fractal antennas, near-field antenna measurements and diagnostic techniques, electromagnetic theory

Behzad Razavi, Ph.D. (Stanford, 1992)
Analog, RF, and mixed-signal integrated circuit design, dual-standard RF transceivers, phase-locked systems and frequency synthesizers, A/D and D/A converters, high-speed data communication circuits

* Also Professor of Mathematics
† Also Professor of Physics
Vvani P. Roychowdhury, Ph.D. (Stanford, 1989)
Models of computation including parallel and distributed processing systems, quantum computation, information processing, circuits, and computing paradigms for nano-electronics and molecular electronics, adaptive and learning algorithms, nonparametric methods and algorithms for large-scale information processing, combinatorics and complexity, and information theory

Izhak Rubin, Ph.D. (Princeton, 1970)
Telemunciations and computer communications systems and networks, mobile wireless networks, multimedia IP networks, UAV/UGV-aided networks, integrated system and network management, C4ISR systems and networks, optical networks, network simulations and analysis, traffic modeling and engineering

Henry Samueli, Ph.D. (UCLA, 1980)
Stochastic and deterministic optimal control, large-scale problems

Mani B. Srivastava, Ph.D. (UC Berkeley, 1992)
Adaptive systems, statistical and digital signal processing, estimation theory, fast algorithms for large-scale problems

Jason L. Speyer, Ph.D. (Harvard, 1968)
Stochastic and deterministic optimal control and estimation with application to aerospace systems; guidance, flight control, and flight mechanics

Ali H. Sayed, Ph.D. (Stanford, 1992)
Adaptive systems, statistical and digital signal processing, estimation theory, signal processing for communications, linear system theory, interplays between signal processing and control methodologies, fast algorithms for large-scale problems

Francis C. Chen, Ph.D. (Harvard, 1954)
Radiofrequency plasma sources and diagnostic, semiconductor processing

Robert S. Elliott, Ph.D. (Illinois, 1952)
Electromagnetics

Stephen E. Jacobsen, Ph.D. (UC Berkeley, 1968)
Operations research, mathematical programming, nonconvex programming, applications of mathematical programming to engineering and economics

Izhak Rubin, Ph.D. (Princeton, 1970)

Kung Yao, Ph.D. (Princeton, 1965)
Communication theory, signal and array processing, sensor system, wireless communication systems, VLSI and systolic algorithms

Frederick G. Allen, Ph.D. (Harvard, 1956)
Semiconductor physics, solid-state devices, surface physics

Francis C. Chen, Ph.D. (Harvard, 1954)
Radiofrequency plasma sources and diagnostic, semiconductor processing

Robert S. Elliott, Ph.D. (Illinois, 1952)
Electromagnetics

Gabor C. Temes, Ph.D. (Ottawa, 1961)
Analog MOS integrated circuits, signal processing, analog and digital filters

Chand R. Viswanathan, Ph.D. (UC, 1964)
Semiconductor electronics; VLSI devices and technology, thin oxides; reliability and failure physics of MOS devices; process-induced damage, low-frequency noise

Control systems, modeling and control of nonlinear distributed-parameter systems with applications to micro-opto-electromechanical systems, micro and nano manipulation systems, coordination and control of multiple microspacecraft in formation

Robert J. Wiseman, Ph.D. (Cal Tech, 1965)
Identification and control, especially of aerospace, biomedical, mechanical, and nuclear processes, modeling and simulation of signal processing

John D. Villasenor, Ph.D. (Stanford, 1989)
Communications, signal and image processing, configurable computing systems, and design environments

John D. Villasenor, Ph.D. (Stanford, 1989)
Communications, signal and image processing, configurable computing systems, and design environments

Nanoelectronics and optoelectronics, nano and molecular devices, MBE and superlattices, microwave and millimeter electronics, quantum information

Richard D. Wesel, Ph.D. (Stanford, 1996)
Communication theory and signal processing with particular interests in channel coding, including turbo codes and trellis codes, joint algorithms for distributed communication and detection

Alan N. Willson, Jr., Ph.D. (Syracuse, 1967)
Theory and application of digital signal processing including VLSI implementations, digital filter design, nonlinear circuit theory

Jason C. S. Woo, Ph.D. (Stanford, 1987)
Solid-state technology, CMOS and bipolar device/circuit optimization, novel device design, modeling of integrated circuits, VLSI fabrication

Elia Yablonovitch, Ph.D. (Harvard, 1972)
Optoelectronics, high-speed optical communications, photonic integrated circuits, photonic crystal materials, plasmonic optics, and plasmonic circuits, quantum computing and communication

C.-K. Ken Yang, Ph.D. (Stanford, 1998)
High-performance VLSI design, digital and mixed-signal circuit design

Ali H. Sayed, Ph.D. (Stanford, 1992)

Kung Yao, Ph.D. (Princeton, 1965)
Communication theory, signal and array processing, sensor system, wireless communication systems, VLSI and systolic algorithms

Professors Emeriti

Frederick W. Schott, Ph.D. (Stanford, 1949)
Electromagnetics

Francis C. Chen, Ph.D. (Harvard, 1954)
Radiofrequency plasma sources and diagnostic, semiconductor processing

Robert S. Elliott, Ph.D. (Illinois, 1952)
Electromagnetics

Nhan N. Levan, Ph.D. (Monash U., Australia, 1966)
Control systems, stability and controllability, errors in dynamic systems, signal analysis, wavelets, theory and applications

Allegheny University of the Sciences, 1964

Donald M. Wiberg, Ph.D. (Cal Tech, 1965)*

* Also Professor Emeritus of Anesthesiology

C. -K. Ken Yang, Ph.D. (Stanford, 1998)
High-performance VLSI design, digital and mixed-signal circuit design

Professor Emeriti

Benjamin Williams, Ph.D. (MIT, 2003)
Bio-imaging, nano-photonics, nonlinear optics

Derek T.-H. Cheung, Ph.D. (Stanford, 1975)
Nanoelectronic and optoelectronic devices and technology, heterostructure semiconductor devices, nanolithography, applications of mathematical programming to VLSI and combinatorial optimization, support vector machines, computer algorithms and complexity, and signal processing theory

Adjunct Professors

Nicoiaos G. Alexopoulos, Ph.D. (Michigan, 1988)
Integrated microwave and millimeter wave circuits and antennas, substrate materials and thin films, electromagnetic theory

Ezio Biglieri, Dr. Ing. (Politecnico di Torino, Italy, 1967)
Digital communication, wireless channels, modulation, error-control coding, signal processing in telecommunications

Derek T.-H. Cheung, Ph.D. (Stanford, 1975)
Semiconductor device physics, imaging devices, infrared imaging, R & D management, technology transfer, business building, history of electronic sciences, technology and business evolution

Assistant Professors

Daniele Cabeceiras, Ph.D. (UC Berkeley, 2007)
Wireless communication systems, system designs, cognitive radio networks, VLSI architectures of signal processing and digital communication algorithms, performance analysis and experiments on embedded system platforms

Nunet Gupta, Ph.D. (UC San Diego, 2007)
CAD for VLSI design and manufacturing, physical design, manufacturing-aware circuits and layouts, design-aware manufacturing

Dejan Markovic, Ph.D. (UC Berkeley, 2006)
Power/area-efficient digital integrated circuits, VLSI architectures for wireless communications, organization methods and supporting CAD flows

Christoph Niemann, Ph.D. (U. Technology, Darmstadt, Germany, 2002)
Plasma physics in the context of thermonuclear fusion, laser and charged particle beam-plasma interaction, high-energy density science, plasma- and particle-beam diagnostics

Adjunct Professors

Nicoiaos G. Alexopoulos, Ph.D. (Michigan, 1988)
Integrated microwave and millimeter wave circuits and antennas, substrate materials and thin films, electromagnetic theory

Ezio Biglieri, Dr. Ing. (Politecnico di Torino, Italy, 1967)
Digital communication, wireless channels, modulation, error-control coding, signal processing in telecommunications

Derek T.-H. Cheung, Ph.D. (Stanford, 1975)
Semiconductor device physics, imaging devices, infrared imaging, R & D management, technology transfer, business building, history of electronic sciences, technology and business evolution
Michael P. Fitz, Ph.D. (USC, 1989)
Physical layer communication theory and implementation with applications in wireless systems

Giorgio Franceschetti, Ph.D. (Higher Institute of Telecommunication, Rome, 1961)
Electromagnetic radiation and scattering, nonlinear propagation, synthetic aperture radar, and signal processing

Joel Schulman, Ph.D. (Cal Tech, 1979)
Semiconductor super lattices, solid-state physics

Mary Eshaghi-Wilner, Ph.D. (USC, 1998)
Nanoscale architectures, bioinformatics, networks, heterogeneous computing, mapping and scheduling paradigms, optical interconnects, VLSI and reconfigurable chips, parallel algorithms for image processing

Ming C. Wu, Ph.D. (UC Berkeley, 1988)
MEMS, micro-opto-electromechanical systems (MOEMS), optoelectronics, RF photonics, optical communications

Adjunct Associate Professors

Bijan Houshmand, Ph.D. (Illinois, Urbana, 1990)
Computational electromagnetics, microwave imaging, and neural sensing

Fernando G. Paganini, Ph.D. (Cal Tech, 1996)
Robust and optimal control, distributed control, communication networks, power systems

Ingrid M. Verbauwhede, Ph.D. (Katholieke U., Leuven, Belgium, 2001)
Embedded systems, VLSI architecture and circuit design and design methodologies for applications in wireless, real-time communications and signal processing

Adjunct Assistant Professor

Charles Chien, Ph.D. (UCLA, 1995)
End to end radio systems for high-speed adaptive multimedia communications, multiband adaptive radio front-end architecture, adaptive spread-spectrum transceiver architectures, and digital baseband transceiver integrated circuits for low-power high-performance applications

1. Electrical Engineering Physics I. (4)
Lecture, three hours; discussion, one hour; outside study, eight hours.
Requisites: Mathematics 32A, 32B, Physics 1A, 1B. Introduction to modern physics and electromagnetism with an engineering orientation. Emphasis on mathematical tools necessary to express and solve Maxwell equations. Relation of these concepts to waves propagating in free space, including dielectrics and optical systems. Letter grading.

2. Physics for Electrical Engineers. (4)
Lecture, four hours; discussion, one hour; outside study, seven hours.
Requisite: course 1. Introduction to concepts of modern physics necessary to understand solid-state devices, including elementary quantum theory, Fermi energies, and concepts of electrons in solids. Discussion of electrical properties of semiconductors leading to operation of junction devices. Letter grading.

3. Introduction to Electrical Engineering. (2)
Lecture, two hours. Introduction to field of electrical engineering; research and applications across several areas, such as communications, control, electromagnetics, embedded computing, engineering optimization, integrated circuits, MEMS, nanotechnology, photonics and optoelectronics, plasma electronics, signal processing, and solid-state electronics. Lab work.

10. Circuit Analysis I. (4)
Lecture, three hours; discussion, one hour; outside study, eight hours.

Mr. Daneshrad, Mr. Pan (F,W,S)

110. Circuit Analysis II. (4)
Lecture, three hours; discussion, one hour; outside study, eight hours.

Mr. Daneshrad, Mr. Pamarti (F,W,S)

110L. Circuit Measurements Laboratory. (2)
Laboratory, four hours; outside study, two hours. Requisite: course 100 or 110. Emphasis on experimentally driven learning focusing on circuits containing resistors, capacitors, inductors, and op-amps. Ohm’s law voltage and current division, Thévenin and Norton equivalents, superposition, transient, and steady state analysis, and frequency response principles. Letter grading.

Mr. Razavi (F,W,S)

113. Digital Signal Processing. (4)
Lecture, four hours; discussion, one hour; outside study, seven hours.

Ms. Alwan, Mr. Sayed (F,S)

113D. Digital Signal Processing Design. (4)
Corequisite: course 113D. Design principles of digital systems. Course project involving original design and implementation of digital processing systems. Experiments involving A/D and D/A conversion, aliasing, digital filtering, sinusaloid oscillators, Fourier transforms, and finite wordlength effects. Course project involving original design and implementation of signal processing systems for communications, speech, audio, or video using DSP chip. Letter grading.

Ms. Alwan, Mr. Villasenor (W)

114. Speech and Image Processing Systems Design. (4)
Formerly numbered 114D. Lecture, three hours; discussion, one hour; laboratory, two hours; outside study, six hours. Requisite: course 113. Design principles of speech and image processing systems. Speech production, analysis, and modeling in first half of course; design techniques for image enhancement, filtering, and transformation in second half. Lectures supplemented by laboratory implementation of speech and image processing tasks. Letter grading.

Ms. Alwan, Mr. Villasenor (W)

115A. Analog Electronic Circuits I. (4)
Lecture, four hours; discussion, one hour; outside study, seven hours.

Mr. C.K. Yang (F,W,S)

115AL. Analog Electronics Laboratory I. (2)
Lecture, four hours; outside study, two hours. Requisites: courses 110L, 115A. Experimental determination of device characteristics, resistive diode circuits, single-stage amplifiers, compound transistor stages, effect of feedback on single-stage amplifiers. Letter grading.

Mr. C.K. Yang (F,W,S)
115B. Analog Electronic Circuits II. (4) Lecture, four hours; discussion, one hour; outside study, eight hours. Requisites: course 115A. Analysis and design of differential amplifiers in bipolar and CMOS technologies. Current mirrors and active loads. Frequency response of amplifiers. Feedback and its properties. Stability issues and frequency compensation. Letter grading. Mr. Abidi, Mr. Razavi (W)

115BL. Analog Electronics Laboratory II. (4) Laboratory, four hours; outside study, eight hours. Requisites: courses 115AL, 115B. Experimental and computer studies of multistage, wideband, tuned, and power amplifier processes, and analog feedback amplifiers. Introduction to thick film hybrid techniques. Construction of amplifier using hybrid thick film techniques. Letter grading. Mr. Abidi (W,Sp)

115C. Digital Electronic Circuits. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 115A, Computer Science M51A. Recommended: course 115B. Transistor-level digital circuit analysis and design. Modern logic families (static CMOS, pass-transistor, dynamic logic), integrated circuit (IC) layout, digital circuits (logic gates, flipflops/latches, counters, etc.), computer-aided simulation of digital circuits. Letter grading. Mr. Gupta, Mr. Markovic (F,Sp)

115D. Design Studies in Electronic Circuits. (4) Lecture, four hours; discussion, four hours; outside study, four hours. Requisites: courses 115B, 115C. Application of design principles to actual circuit problems. Subject matter will vary each time course is offered. Letter grades. Mr. Fetterman, Mr. Przybyszewski (Sp)

116C. Computer Systems Architecture. (4) (Same as Computer Science M151B.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course M16 or Computer Science M51A, Computer Science 33. Recommended: course M16 or Computer Science M52A, Computer Science 111. Computer system organization and design, implementation of CPU datapath and control, instruction set design, memory hierarchy (caches, main memory, virtual memory) organization and management, input/output subsystems (bus structures, interrupts, DMA), performance evaluation, pipelined processors. Letter grading. Mr. Alam (Sp)

116L. Introductory Digital Design Laboratory. (2) (Same as Computer Science M152A.) Laboratory, four hours; outside study, two hours. Requisite: course M16 or Computer Science M51A. Hands-on design, implementation, and debugging of digital logic circuits, use of computer-aided design tools for schematic capture and simulation, implementation of complex circuits using programmed array logic, design projects. Letter grading. Mr. Srivastava (F,Sp)

M117. Computer Networks: Physical Layer. (6) (Same as Computer Science M117.) Lecture, four hours; discussion, four hours; outside study, 10 hours. Not open to students with credit for course M171L. Introduction to fundamental data communication concepts underlying and supporting modern networks, with focus on physical and media access layers of network protocol stack. Systems include high-speed LANs (e.g., fast and gigabit Ethernet), optical DWDM (dense wavelength division multiplexing), time division SONET networks, wireless LANs (IEEE802.11), slow and wireless area networks (e.g., Bluetooth). Experimental laboratory sessions included. Letter grading. Mr. Genta (W,Sp)

121B. Principles of Semiconductor Device Design. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 2. Introduction to principles of operation of bipolar and MOS transistors, equivalent circuits, high-frequency behavior, voltage limitation. Letter grading. Mr. K.L. Wang, Mr. Woo (W,Sp)

122L. Semiconductor Devices Laboratory. (4) (Formerly numbered 122AL.) Lecture, four hours; laboratory, four hours; outside study, four hours. Requisites: courses 121B, 121C, with laboratory participation. Design fabrication and characterization of p-n junction and transistors. Students perform various processing tasks such as wafer preparation, oxidation, diffusion, metallization, and photolithography. Letter grading. Mr. Chang, Mr. Fetterman (W,Sp)

123A. Fundamentals of Solid-State I. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 2 or Physics 1C. Limited to junior/senior engineering majors. Fundamentals of solid-state, introduction to quantum mechanics and quantum statistics applied to solid-state. Crystal structure, energy levels in solids, and band theory and semiconductor properties. Letter grading. Mr. Fetterman, Mr. Yablonovitch (F)

123B. Fundamentals of Solid-State II. (4) Lecture, three hours; outside study, nine hours. Requisite: course 123A. Discussion of solid-state properties, lattice vibrations, thermal properties, dielectric, magnetic, and superconducting properties. Letter grading. Mr. Stafsudd (W)

124. Semiconductor Physical Electronics. (4) Lecture, four hours; discussion, four hours; outside study, eight hours. Requisite: course 123A. Band structure of semiconductors, experimental probes of basic band structure parameters, statistics of carriers and heat transport, excess carrier transport properties, carrier recombination mechanisms, heterojunction properties. Letter grading. Ms. Huffaker, Mr. Pan (W)

128. Principles of Nanoelectronics. (4) Lecture, four hours; discussion, four hours; outside study, four hours. Requisites: course 1, or Physics 1A and 1B. Introduction to fundamentals of nanoscience for electronics nanosystems. Principles of fundamental quantities: electron charge, effective mass, Bohr magneton, and spin, as well as theoretical approaches. From these nanoscale components, discussion of basic behaviors of nanosystems such as analysis of dynamics, variability, and noise, contrasted with those of scaled CMOS. Incorporation of design project in which students are challenged to design electronics nanosystems. Letter grading. Mr. K. Wang (F,Sp)

129D. Semiconductor Processing and Device Design. (4) Lecture, two hours; laboratory, four hours; outside study, six hours. Requisite: course 121B. Introduction to CAD tools in integrated circuit processing and device design. Device structure optimization tool is based on PISCES; process integration tool is based on SUPREM. Course familiarizes students with the tools. Using CAD tools, a CMOS process integration is to be designed. Letter grading. Mr. Chui, Mr. Woo (Sp)

131A. Probability. (4) Lecture, four hours; discussion, one hour; outside study, 10 hours. Requisites: course 102, Mathematics 32B, 33B. Introduction to basic concepts of probability, including random variables and vectors, distributions and densities, moments, characteristic functions, and limit theorems. Applications to communication, control, and signal processing. Introduction to computer simulation and generation of random events. Letter grading. Mr. Roychowdhury (F,Sp)

131B. Introduction to Stochastic Processes. (4) Lecture, four hours; outside study, eight hours. Requisite: course 131A. Introduction to concepts of stochastic processes, emphasizing continuous- and discrete-time stationary processes, correlation function and spectral density, linear transformation, and mean-square estimation. Applications to communication, control, and signal processing. Introduction to computer simulation and analysis of stochastic processes. Letter grading. Mr. Balakrishnan, Mr. Yao (Sp)

132A. Introduction to Communication Systems. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 102, 113, 131A. Properties of signals and noise, baseband pulse and digital signaling, Bandpass signaling techniques. Communication systems: digital transmission, frequency-division multiplexing and telephone systems, satellite communication systems, performance of communication systems in presence of noise. Letter grading. Mr. Wesel (W,Sp)

142. Linear Systems: State-Space Approach. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 102. State-space methods of linear system analysis and synthesis, with application to problems in networks, control, and system modeling. Letter grading. Mr. Tabuada (Sp)

CM150. Introduction to Micromachining and Microelectromechanical Systems (MEMS). (4) (Formerly numbered 125.) (Same as Biomedical Engineering CM150 and Mechanical and Aerospace Engineering CM180.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Chemistry 20A, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Corequisite: course CM150L. Introduction to micro-machining technologies and microelectromechanical systems (MEMS). Methods of micromachining and how these methods can be used to produce variety of MEMS, including microstructures, microsensors, and microactuators. Students design microfabrication processes capable of achieving desired MEMS device. Concurrently scheduled with course CM250A. Letter grading. Mr. Jalali (not offered 2007-08)

150DL. Photonic Sensor Design Laboratory. (4) Lecture, two hours; laboratory, four hours; outside study, eight hours. Limited to seniors. Multidisciplinary course with lectures and laboratory experimenting on optical sensors, carrier transport in semiconductors, and diffusion, and temperature and interference-based transducers, polarimeters, multiplexing and sensor networks, physical and biomedical sensors. Design and implementation of optical gyroscopes, computer interfacing, and signal processing. Letter grading. Mr. Jalali (not offered 2007-08)
161. Electromagnetic Waves. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 101. Time-varying fields and Maxwell equations, plane wave propagation and interaction with media, energy flow and Poynting vector, guided waves in waveguides, phase and group velocity, radiation and antennas. Letter grading.

Mr. Rahmat-Samii (F; Sp)

162A. Wireless Communication Links and Antennas. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 161. Basic properties of transmitting and receiving antennas and array theory. Frequency synthesis, Adaptive arrays, Fris transmission formula, radar equations. Cell-site and mobile antennas, bandwidth budget. Noise in communication systems (transmission lines, antennas, atmospheric, etc.). Cell-site and mobile antennas, cell coverage for signal and traffic, interference, multpath fading, ray bending, and other propagation phenomena. Letter grading. Mr. Rahmat-Samii (Sp)

163A. Introductory Microwave Circuits. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 161. Transmission lines description of waveguides, impedance transformers, wave dividers, directional couplers, filters, hybrid junctions, nonreciprocal devices. Letter grading.

Mr. Itoh, Mr. Y.E. Wang (W)

163B. Microwave and Millimeter Wave Active Devices. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: course 121B. MESFET, HEMT, HBT, IMPATT. Gunn, small signal models, noise model, large signal model, loadpull method, parameter extraction technique. Letter grading.

Mr. Chang, Mr. Pan (not offered 2007-08)

163C. Active Microwave Circuits. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: courses 115A, 161. Theory and design of microwave transistor amplifiers and oscillators; stability, noise, distortion. Letter grading.

Mr. Itoh, Mr. Y.E. Wang (Sp)

164D. Microwave Wireless Design. (4) Formerly numbered 164DL) Lecture, one hour; laboratory, four hours; outside study, seven hours. Requisite: course 161. Microwave integrated circuit design from wireless system perspective, with focus on (1) use of microwave circuit simulation tools, (2) design of wireless front-end circuits including low noise amplifier, mixer, and power amplifier, (3) knowledge and skills required in wireless integrated circuit characterization and implementation. Letter grading.

Mr. Chang (Sp)

164L. Microwave Wireless Laboratory. (2) Formerly numbered 164AL) Lecture, one hour; laboratory, three hours; outside study, three hours. Requisite: course 161. Measurement techniques and instrumentation for active and passive microwave components: cavity resonators, waveguides, waveguides, slotted lines, directional couplers. Design, fabrication, and characterization of microwave circuits in microstrip and coaxial systems. Letter grading.

Mr. Itoh, Mr. Jalali (W)

M171L. Data Communication Systems Laboratory. (2 to 4) (Same as Computer Science M171L) Laboratory, four to eight hours; outside study, two to four hours. Recommended preparation: course M116L. Limited to seniors. Interpretation of analog- and digital-based design, microcontroller programming, feedback control, actuation, and motion control. Letter grading.

Mr. Yang (Sp)

180D. Systems Design. (4) (Formerly numbered 190D) Lecture, two hours; laboratory, two hours; outside study, eight hours. Limited to Senior Electrical Engineering majors. Advanced systems design integrating communications, control, and signal processing subsystems. Different project to be assigned yearly in which student teams create high-performance designs that manage trade-offs among subsystems. Letter grading.

Mr. Kaiser, Mr. Pottie (F; Sp)

184D. Independent Group Project Design. (4) Laboratory, 10 hours; discussion, two hours. Requisites: courses M161, 110, 110L. Course centered on group project that runs year long to give students intensive experience on hardware design, microcontroller programming, and project coordination. Several projects based on autonomous robots that traverse small mazes and courses are offered yearly and target regional competitions. Students may submit proposals that are evaluated and approved by faculty members. Topics include sensing circuits and amplifier-based design, microcontroller programming, feedback control, actuation, and motion control. Letter grading.

Graduate Courses

201A. VLSI Architectures and Design Methodologies. (4) Lecture, four hours; outside study, eight hours. Requisite: course M216A or Computer Science M288A. In-depth study of VLSI architectures and VLSI design methodologies for variety of applications in signal processing, communications, networking, embedded systems, etc. VLSI architectures choices range from ASICs, full custom approach, and special purpose processors to general purpose microprocessors. VLSI design methodologies take design specifications to implementation with aid of modern computer-aided design tools. Letter grading.

Mr. He (Sp)

Mr. He (F)
M202A. Embedded Systems. (4) (Formerly numbered 202A.) (Same as Computer Science M213A.) Lecture, four hours; outside study, eight hours. Designed for computer science and electrical engineering students. Methodologies and technologies for design of embedded systems. Topics include hardware and software platforms for embedded systems, testing and specification of system behavior, software organization, real-time operating system scheduling, real-time communication and packet scheduling, low-power battery and energy-aware system design and operation; real-time communications and control. Letter grading. Mr. Srivastava (F)

M202B. Distributed Embedded Systems. (4) (Formerly numbered 206A.) (Same as Computer Science M213B.) Lecture, four hours; outside study, eight hours. Requisites: course 128B or Computer Science 118, and Computer Science 111. Designed for graduate computer science and electrical engineering students. Interdisciplinary course with focus on study of distributed embedded systems concepts needed to realize scalable computer systems such as wireless sensor and actuator networks for monitoring and control of physical world. Topics include network self-configuration with localization and timing synchronization; energy-aware system design and operation; protocols for MAC, routing, transport, disruption tolerance; programming issues and models with language, OS, database, and middleware; in-network collaborative processing; fundamental characteristics such as coverage, connectivity, capacity, latency; techniques for exploitation and management of actuation and mobility; data and system integrity issues with calibration, faults, debugging, and security; and usage issues such as human interfaces and safety. S/U or letter grading. Mr. Srivastava (Sp)

204A. Advanced Compilers. (4) Lecture, four hours; outside study, eight hours. Mr. Srivastava: (F) Computer Science 132, 251A. Designed for graduate computer science and electrical engineering students. Efficient allocation of shared resources (buses, function units, register files) is one of most important areas of research in modern computer architecture and compilation research. Consideration of instruction selection and scheduling, register assignment, and low-level transformation in context of current microarchitecture (e.g., VLIW, superscalar, and most DSP). Topics include mapping to specific inetrposer communications buses, making effective use of hardware and targeting special-purpose function units. Letter grading. Mr. Srivastava (W)

205A. Matrix Analysis for Scientists and Engineers. (4) Lecture, four hours; outside study, eight hours. Preparation: one undergraduate linear algebra course. Designed for first-year graduate students in all branches of engineering, science, and related disciplines. Introduction to matrix theory and linear algebra, language in which virtually all of modern science and engineering is conducted. Review of matrices taught in undergraduate courses and introduction to graduate-level topics. Letter grading. Mr. Laub (F)

M208B. Functional Analysis for Applied Mathematics and Engineering. (4) (Formerly numbered 208B.) (Same as Mathematics M208A.) Lecture, four hours; outside study, eight hours. Requisites: course 208A (or Mathematics 115A and 115B), Mathematics 131A, 131B, 132. Topics may include L^p spaces, Hilbert, Banach, and separable spaces; Fourier transform and its applications; the spectral theory, linear operators and their adjoints; self-adjoint and compact operators. Spectral theory. Differential operators such as Laplacian and eigenvalue problems. Laplace inversion formula. Dissipative operators and contraction semigroups. Analytic semi-groups and spectral representation. Semigroups with compact resolvents. Parabolic and hyperbolic systems. Controllability and stabilizability. Spectral theory of differential operators, PDEs, generalized functions. S/U or letter grading. Mr. Balakrishnan (W)

209S. Special Topics in Embedded Computing Systems. (3-4) Lecture, four hours; outside study, eight hours. Current topics in embedded computing systems, including but not limited to processor and system architecture, real-time, low-power design. S/U or letter grading. Mr. Balakrishnan (Sp)

210B. Optimal Linear Estimation. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 113, 131B, 210A, Mathematics 115A. Unified treatment of fundamental concepts and basic notions in adaptive filtering, Wiener filtering, Kalman filtering, and H_oo filtering. Emphasis on geometric, equivalence, and duality aspects. Development of array methods and fast algorithms. Discussion of practical issues. Examples of applications from fields of signal processing, communications, biomedical engineering, finance, and control. Letter grading. Mr. Sayed (Sp)

211A. Digital Image Processing I. (4) Lecture, three hours; laboratory, four hours; outside study, five hours. Preparation: computer programming experience. Requisite: course 113. Fundamentals of digital image processing theory and techniques. Topics include two-dimensional linear system theory, image transforms, and enhancement. Concepts covered in lecture applied in computer laboratory assignments. Letter grading. Mr. Villasenor (F)

211B. Digital Image Processing II. (4) Lecture, three hours; laboratory, four hours; outside study, five hours. Requisite: course 211A. Advanced digital image processing theory and techniques. Topics include modeling, restoration, still-frame and video image compression, tomographic imaging, and multi-resolution analysis using wavelet transforms. Letter grading. Mr. Villasenor (W)

212B. Multirate Systems and Filter Banks. (4) Lecture, three hours; outside study, nine hours. Requisite: course 212A. Fundamentals of multirate systems: polyphase representation; multirate implementations; applications of multirate systems; maximally decimated filter banks; perfect reconstruction systems; paramutual filter banks; wavelet transform and its relation to multirate filter bank design. Letter grading. Mr. Willson (W)

213A. Advanced Digital Signal Processing Circuit Design. (4) Lecture, three hours; outside study, nine hours. Requisite: course 212A. Digital filter design and optimization tools, 40T and 40F digital signal processing circuits; integrated circuit modules for digital signal processing; programmable signal processors; CAD tools and cell libraries for application-specific integrated circuit design; case studies of speech and image processing circuits. Letter grading. Mr. Jain (W)

214A. Digital Speech Processing. (4) (Same as Biomedical Engineering M214A.) Lecture, three hours; laboratory, two hours; outside study, seven hours. Requisite: course 113. Theory and applications of digital processing of speech signals. Mathematical models of human speech production and perception mechanisms, speech analysis. Techniques include linear prediction, filter-bank models, and homomorphic filtering. Applications to speech recognition, automatic recognition of hearing aids. Letter grading. Ms. Alwan (W)

214B. Advanced Topics in Speech Processing. (4) Lecture, three hours; computer assignments, two hours; outside study, seven hours. Requisite: course 214A. Advanced techniques used in various speech-processing applications, with focus on speech recognition by humans and machine. Physiological and psychoacoustics of human perception. Dynamic models of automatic recognition of hearing aids. Letter grading. Mr. Razavi (W)

215A. Analog Integrated Circuit Design. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 115B. Analysis and design of analog integrated circuits. MOS and bipolar device structures and models, single-stage and differential amplifiers, noise, feedback, operational amplifiers, offset and distortion, sampling devices and discrete-time circuits, bangband references. Letter grading. Mr. Markovic (W)

215C. Analysis and Design of RF Circuits and Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 212A. Fundamentals of radar circuit and system design, with emphasis on monolithic implementation in VLSI technologies. Basic concepts, communications background, transceiver architectures, low-noise amplifiers and mixers, oscillators, frequency synthesizers, power amplifiers. Letter grading. Mr. Razavi (W)

215D. Analog Microsystem Design. (4) Lecture, four hours; outside study, eight hours. Requisite: course 215A. Analysis and design of data conversion interfaces and filters. Sampling circuits and architectures, D/A conversion techniques, A/D converter architectures, building blocks, precision techniques, discrete- and continuous-time filters. Letter grading. Mr. Abdil (Sp)
221E. Signal and Synchronization. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 215A, 216A. Analysis and design of circuits for synchronization and communication for VLSI systems. Use of both digital and analog design techniques to improve data rate of electronics between functional blocks, chips, and systems. Advanced clocking methodologies, phase-locked loop design for clock generation, and high-performance wire-line transmitters, receivers, and timing recovery circuits. Letter grading. Mr. C.K. Yang (Sp)

M216A. Design of VLSI Circuits and Systems. (4) (Same as Computer Science M258A.) Lecture, four hours; discussion, one hour; laboratory, four hours; outside study, seven hours. Requisites: courses 115C, LSI/VLSI design and application in computer systems. Fundamental design techniques that can be used to implement complex integrated systems on a chip. Letter grading. Mr. C.K. Yang (F)

M216B-M216C. LSI in Computer System Design. (4-4) (Same as Computer Science M258B-M258C.) Lecture, four hours; laboratory, four hours. Requisite: course M216A. LSI/VLSI design and application in complex computer system studies of VLSI architectures and VLSI design tools. In Progress (M216B) and S/U or letter (M216C) grading. Mr. Jain

M217. Biomedical Imaging. (4) (Same as Biomedical Engineering M209.) Lecture, three hours; laboratory, two hours; outside study, seven hours. Requisite: course 114 or 211A. Mathematical principles of medical imaging modalities: X-ray, computed tomography, positron-emission tomography, single photon emission computed tomography, magnetic resonance imaging. Topics include basic principles of each imaging system, image reconstruction algorithms, system configurations and their effects on reconstruction algorithms, specialized imaging techniques for specific applications such as flow imaging. Letter grading. Mr. Grundfest (Sp)

219A. Special Topics in Circuits and Signal Processing. (4) Lecture, three hours; outside study, nine hours. Advanced treatment of topics selected from research areas in circuit theory, integrated circuits, or signal processing. Letter grading. Mr. Villasenor, Mr. Yang (Sp)

221A. Physics of Semiconductor Devices I. (4) Lecture, four hours; outside study, eight hours. Physical principles and design considerations of junction devices: diode, transistor. Mr. K.L. Wang.

221B. Physics of Semiconductor Devices II. (4) Lecture, four hours; outside study, eight hours. Principles and design considerations of field effect devices and charge-coupled devices. Letter grading. Mr. Ettenberg, Mr. Pan (Sp)

221C. Microwave Semiconductor Devices. (4) Lecture, four hours; outside study, eight hours. Physical principles and design considerations of microwave solid-state devices: Schottky barrier diodes, IMPATT diodes, transferred electron devices, tunnel diodes, microwave transistors. Letter grading. Mr. Fetterman, Mr. Pan (Sp)

222. Integrated Circuits Fabrication Processes. (4) Lecture, four hours; outside study, eight hours. Requisite: course 2. Principles of integrated circuits fabrication processes. Technological limitations of integrated circuit designs. Topics include bulk crystal and epitaxial growth, thermal oxidation, diffusion, ion implantation, chemical vapor deposition, dry etching, lithography, and metallization. Introduction of advanced process simulation tools. Letter grading. Mr. Z. Chang, Mr. Woo (Sp, odd years)

223. Solid-State Electronics I. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 124, 227. Energy band theory, electronic band structure of various elementary, compound, and alloy semiconductor devices as in semiconductors. Recombination mechanisms, transport properties. Letter grading. Mr. Fetterman, Mr. Pan (F)

224. Solid-State Electronics II. (4) Lecture, four hours; outside study, eight hours. Requisite: course 223. Techniques to solve Boltzmann transport equation for various scattering mechanisms in semiconductors, high field transport properties in semiconductors, Monte Carlo method in transport. Optical properties. Letter grading.

225. Physics of Semiconductor Nanoscale Devices and Devices. (4) Lecture, four hours; outside study, eight hours. Requisite: course 223. Theoretical methods for calculating electronic and optical properties of semiconductor nanostructures. Quantum effects in low-dimensional systems. Application to semiconductor nanometer scale devices, including negative resistance diodes, transistors, and detectors. Letter grading. Mr. K.L. Wang (Sp, alternate years)

226. Seminar: Advanced Topics in Solid-State Electronics. (4) Seminar, four hours; outside study, eight hours. Requisites: courses 223, 224. Current research areas, such as quantum effects in semiconductor devices, diffusion in semiconductors, optical and microwave semiconductor devices, nonlinear optics, and electron emission. Letter grading.

229S. Advanced Electrical Engineering Seminar. (2) Lecture, two hours; outside study, seven hours. Preparation: successful completion of Ph.D. major field examination. Seminar on current research topics in solid-state and quantum electronics (Section 1) or in solid-state and quantum electronics (Section 2). Students report on a tutorial topic and on a research topic in their dissertation area. May be repeatable for credit. S/U grading. (F,Sp)

230A. Estimation and Detection in Communication and Radar Engineering. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 131A. Topics in estimation and detection. Techniques for synchronization and communication for VLSI circuits for synchronization and communication for VLSI systems. Use of both digital and analog design techniques to improve data rate of electronics between functional blocks, chips, and systems. Advanced clocking methodologies, phase-locked loop design for clock generation, and high-performance wire-line transmitters, receivers, and timing recovery circuits. Letter grading. Mr. C.K. Yang (Sp)

230B. Digital Communication Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: courses 132A, 230A. Basic concepts of digital communication systems; representation of bandpass waveforms; signal space analysis and optimum reception. Theory of linear and non-linear digital modulation methods; synchronization and adaptive equalization; applications to modern communication systems. Letter grading. Mr. Pottie (W)

230C. Algorithms and Processing in Communication and Radar Engineering. (4) Lecture, four hours; outside study, eight hours. Requisite: course 230A. Concepts and implementations of digital signal processing algorithms in communication and radar systems. Optimization of data algorithms for efficient implementation. Letter grading. Mr. Yao (W)

230D. Signal Processing in Communications. (4) Lecture, four hours; outside study, eight hours. Requisite: course 230C. Basic digital signal processing techniques for estimation and detection of signals in communication and radar systems. Optimization of dynamic range, quantization, and state constraints; DFT, convolution, FFT, NTT, Winograd DFT, systolic array; spectral analysis—windowing, AR, and ARMA; system applications. Letter grading. Mr. Yao (W)

231A. Information Theory; Channel and Source Coding. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 191A. Fundamentals of transmission and reception of information. Topics include limits and algorithms for lossless data compression, channel capacity, rate distortion theory in lossy compression, and information theory for multiple users. Letter grading. Mr. Poti, Mr. Wesel (F)

231E. Channel Coding Theory. (4) Lecture, four hours; outside study, eight hours. Requisite: course 131A. Fundamentals of error control codes and decoding algorithms. Topics include block codes, convolutional codes, trellis codes, and turbo codes. Letter grading. Mr. Wesel (Sp)

232A. Stochastic Modeling with Applications to Telecommunication Systems. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 131A. Introduction to stochastic processes as applied to study of telecommunications systems and traffic engineering. Renewal theory; discrete-time Markov chains; continuous-time Markov jump processes. Applications to traffic and queueing analysis of basic telecommunication system models. Letter grading. Mr. Wesel (F)

232B. Telecommunication Switching and Queueing Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 232A. Queue modeling and analysis with applications to space-time digital switching systems and to integrated-service telecommunication systems. Fundamentals of traffic engineering and queueing theory. Queue size, waiting time, busy period, blocking, and stochastic process analysis for Markovian and non-Markovian models. Letter grading. Mr. Rubinstein (W)

232C. Telecommunication Architecture and Networks. (4) Lecture, four hours; outside study, eight hours. Requisite: course 232B. Analysis and design of integrated-service telecommunication networks and multiple-access procedures. Statistical analysis of priority-based queueing system models. Queueing networks; network protocol architectures; error control; routing, flow, and access control. Applications to local-area, packet-radio, satellite, and computer communication networks. Letter grading. Mr. You (Sp)

232D. Telecommunication Networks and Multiple-Access Communications. (4) Lecture, four hours; outside study, eight hours. Requisite: course 131B. Performance analysis and design of telecommunication networks and multiple-access communication systems. Topics include architectures, multiplexing and multiple-access, signaling, MAC and spread spectrum modulation for wireless systems, flow control, switching, routing, protocols. Applications to local-area, packet-radio, local-distribution, computer and satellite communication networks. Letter grading. Mr. Raychowdhury, Mr. Rubin (W,Sp)

232E. Graphs and Network Flows. (4) Lecture, four hours; outside study, eight hours. Requisite: course 136. Solution to analysis and synthesis problems within the graphs and network. Networks; network protocol architectures; error control; routing, flow, and access control. Applications to local-area, packet-radio, local-distribution, computer and satellite communication networks. Letter grading. Mr. Raychowdhury, Mr. Rubin (Sp)

233A. Wireless Communication Theory. (4) Lecture, four hours, outside study, eight hours. Requisite: course 230B. Discussion of theory of physical layer and medium access design for wireless communications. Topics include wireless signal propagation and channel modeling, information theoretic studies of wireless models, performance analysis, single carrier and spread spectrum modulation for wireless systems, diversity techniques, multiple-access schemes. Letter grading. Mr. Daneshzar

233B. Wireless Communications Systems. (4) Lecture, four hours; outside study, eight hours. Requisite: course 230B. Various aspects of physical layer and medium access design for wireless communications systems. Topics include wireless signal propagation and channel modeling, single-carrier and spread spectrum modulation for wireless systems, diversity techniques, multiple-access schemes, transceiver design and effects of nonideal components, hardware partitioning issues. Course study highlights system level trade-offs. Ms. Cabric, Mr. Daneshgar (Sp)

237. Dynamic Programming. (4) Same as Mechanical and Aerospace Engineering M276.) Lecture, four hours; outside study, eight hours. Recommended requisite: course 232A or 236A or 236B. Introduction to optimization methods and the basic problems of dynamic programming. Finite horizon model in both deterministic and stochastic cases. Finite-state infinite horizon model. Methods of solution. Examples from inventory theory, financial planning, and optimal control problems. Numerical methods of dynamic and stochastic decision processes, combinatorial optimization, communications. Letter grading. Mr. Vandenberghe (W).

238. Multimedia Communications and Processing. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 113, 131A. Recommended: courses 114D, 231A. Key concepts, principles, and algorithms of real-time multimedia communications and processing across heterogeneous Internet and wireless channels. Due to flexible and low-cost infrastructure, new networks and communication channels enable variety of delay-sensitive multimedia transmission applications and provide varying resources with limited support for quality of service required by delay-sensitive, bandwidth-intensive, and loss-tolerant multimedia applications. Variability of resources does not significantly impact delay-insensitive applications (e.g., file transfers) but has consequences for multimedia applications and leads to new challenges. Concepts, theories, and solutions that have dominated information theory, communications, and signal processing areas are not entirely suited for time-varying channel characteristics, adaptive and delay-sensitive multimedia applications, and multuser transmission environments. Letter grading. Ms. von der Scharf (F).

239A. Topics in Communication. (4) Lecture, four hours; outside study, eight hours. Topics in one or more specialized aspects of communication systems, such as phase-coherent communication systems, optical channels, time-varying channels, feedback channels, broadcast channels, networks, coding and decoding techniques. May be repeated for credit with topic change. Letter grading.

239BS. Topics in Operations Research. (4) Lecture, four hours; outside study, eight hours. Treatment of one or more selected topics from areas such as integer programming; combinatorial optimization; network synthesis; scheduling, routing, location, and design problems; implementation considerations for mathematical programming algorithms; stochastic programming; applications in engineering, computing science, economics. May be repeated for credit with topic change. Letter grading.

240A. Linear Dynamic Systems. (4) Same as Chemical Engineering M280A and Mechanical and Aerospace Engineering M280B, Lecture, four hours; outside study, eight hours. Requisite: course 141 or Mechanical and Aerospace Engineering 171A. State-space description of linear time-invariant (LTI) and time-varying (LTV) systems in continuous and discrete time. Linear algebra concepts such as eigenvalues and eigenvectors, singular values, Cayley-Hamilton theorem, Jordan form; solution of state equations; stability, controllability, observability, realizability, and minimality. Stabilization design via state feedback and observers; separation principle. Connections with transfer function techniques. Letter grading.

240B. Linear Optimal Control. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 141, M240A. Introduction to optimal control, with emphasis on detailed study of LQR, or linear quadratic optimal control (LQG) with quadratic cost relationships. Extensions to classical control system design. Letter grading. Mr. Balakrishnan (W).

241C. Stochastic Control. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 240B, 241B. Linear quadratic Gaussian theory of optimal feedback control of linear time-invariant, discrete-time state-space models; sigma algebra equivalence and separation principle; dynamic programming; compensator design for time invariant systems; feedforward control and servomechanisms, extensions to non-linear, non-stationary, non-Markovian systems; applications to interconnection control, gust alleviation. Letter grading. Mr. Balakrishnan (Sp).

243. Robust and Optimal Control by Convex Methods. (4) Lecture, four hours; outside study, eight hours. Requisite: course M240A. Multivariable robust control, including H2 and H-infinity optimal control and robust performance analysis and synthesis against structured uncertainty. Emphasis on convex methods for analysis and design, in particular linear matrix inequality (LMI) approach to control. Letter grading.

248S. Seminar: Systems, Dynamics, and Control Topics. (2) (Same as Chemical Engineering M297 and Mechanical and Aerospace Engineering M299A.) Seminar, two hours; outside study, six hours. Treatment of advanced fields present their papers and results. SJ grading.

249S. Topics in Control. (4) Seminar, four hours; outside study, eight hours. Thorough treatment of one or more aspects of control theory and applications, such as computational methods of optimal control; stability of distributed systems; identification; adaptive control; nonlinear filtering; differential games; applications to tight control, nuclear reactors, process control, biomedical problems. May be repeated for credit with topic change. Letter grading. Mr. Tabuada (Sp).

CM250A. Introduction to Micromachining and Microelectromechanical Systems (MEMS). (4) (Formerly numbered M250A.) (Same as Biomedical Engineering CM250A and Mechanical and Aerospace Engineering CM280A.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Chemistry 20A, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Corequisite: course CM250L. Introduction to micromachining technologies and microelectromechanical systems (MEMS). Methods of micromachining and how these methods can be used to produce various MEMS, including MEMS sensors, and microactuators. Students design microfabrication processes capable of achieving desired MEMS device. Concurrently scheduled with course CM150L. Letter grading.

CM250B. Microelectromechanical Systems (MEMS) Fabrication. (4) (Same as Biomedical Engineering CM250B and Mechanical and Aerospace Engineering CM280B.) Lecture, three hours; discussion, one hour; outside study, eight hours. Enforced requisite: course CM150 or CM250A. Advanced discussion of micromachining processes used to construct MEMS. Coverage of many lithographic, deposition, and etching processes, as well as their combination in process integration. Materials issues such as chemical resistance, corrosion, mechanical properties, and residual stress. Letter grading. Mr. Judy (F).

CM250L. Introduction to Micromachining and Microelectromechanical Systems (MEMS) Laboratory. (2) (Same as Biomedical Engineering CM250L and Mechanical and Aerospace Engineering CM280L.) Lab, one hour; outside study, one hour. Requisites: Chemistry 20A, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Corequisite: course CM250A. Hands-on introduction to micromachining technologies and microelectromechanical systems (MEMS) laboratory. Methods of micromachining and how these methods can be used to produce various MEMS, including microstructures, microcomponents, and microactuators, through process of fabricating MEMS device. Concurrently scheduled with course CM150L. Letter grading.
252. Microelectromechanical Systems (MEMS) Device Physics and Design. (4) (Formerly numbered M250S.) (Same as Mechanical and Aerospace Engineering M252.) Lecture, four hours; outside study, eight hours. Introduction to MEMS design. Design methods, design rules, sensing and actuation mechanisms, microfabrication, microactuator design. Letter grading. Mr. Judy (Sp)

257. Nanoscale and Technology. (4) (Same as Mechanical and Aerospace Engineering M257.) Lecture, four hours; outside study, eight hours. Introduction to fundamentals of nanoscale science and technology. Basic physical principles, quantum mechanics, chemical bonding and nanostructures, top-down and bottom-up (self-assembly) nanofabrication; nanonanotechnology; nanomaterials, nanoelectronics, and nanobiotechnology. Introduction to new knowledge and techniques in nano areas to understand scientific principles behind nanotechnology and inspire students to create new ideas in multidisciplinary areas. Letter grading. Mr. Cheok (Alternate years)

259S. Seminar: Microelectromechanical Systems (MEMS). (2) Seminar, two hours; outside study, four hours. Seminar on microelectromechanical systems (MEMS). Letter grading. Mr. Amy

260A-260B. Advanced Engineering Electrodynamics. (4-4) Lecture, four hours; outside study, eight hours. Requisites: courses 161, 162A. Advanced treatment of concepts in electrodynamics and their applications to modern engineering problems. Waves in anisotropic, inhomogeneous, and dispersive media. Guided waves in bounded and unbounded regions. Radiation and diffraction, including optical phenomena. Partially coherent waves, statistical regions. Lecture. Mr. Rahmat-Samii (F, 260A; W, 260B)

261. Microwave and Millimeter Wave Circuits. (4) Lecture, four hours; outside study, eight hours. Requisites: course 163A. Rectangular and circular waveguides, microstrip, stripline, finline, and dielectric waveguide distributed circuits, with applications in microwave and millimeter wave integrated circuits. Substrate materials, surface wave phenomena. Analytical methods for discontinuity effects. Design of passive microwave and millimeter wave circuits. Letter grading. Mr. Rahmat-Samii (F, W)

266. Computational Methods for Electromagnetics. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 162A, 163A. Computational techniques for partial differential and integral equations: finite-difference, finite-element, method of moments. Applications include transmission lines, resonators, integrated circuits, solid-state device modeling, electromagnetic scattering, and antennas. Letter grading. Mr. Itoh (Sp)

270. Applied Quantum Mechanics. (4) Lecture, four hours; outside study, eight hours. Preparation: modern physics (or course 123A). Linear algebra, and ordinary differential equation techniques. Fundamentals of quantum mechanics for applications in lasers, solid-state physics, and nonlinear optics. Topics include eigenfunction expansions, observables, Schrödinger equation, uncertainty principle, central potential problems, Hilbert spaces, WKB approximation, many-body mechanics, density matrix formalism, and radiation theory. Letter grading. Mr. Stafsudd (Sp)

272. Dynamics of Lasers. (4) Lecture, four hours; outside study, eight hours. Requisite: course 271. Ultrafast laser pulse characteristics, generation, and measurement. Gain switching, Q switching, cavity dumping, active pulse mode locking. Pulse compression and soliton pulse formation. Nonlinear pulse generation: soliton laser, additive-pulse mode locking, and parametric oscillators. Pulse measurement techniques. Letter grading. Mr. Liu, Mr. Yablonovitch (Sp, alternate years)

274. Fiber Optic System Design. (4) Lecture, three hours; outside study, nine hours. Requisites: courses 173D and 174. Top-down introduction to physical layer design in fiber optic communication systems, including Telecom, Datacom, and CATV. Fundamentals of digital and analog optical communication systems, fiber transmission characteristics, and optical modulation techniques, including direct and external modulation and computer-aided design. Architectural-level design of fiber optic transceiver circuits, including preamplifier, quantizer, clock and data recovery, laser driver, and predistortion circuitry. Letter grading. Mr. Balakrishnan

275. Special Topics in Quantum Electronics. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 263S, 267S. Wave phenomena in plasma described by macroscopic fluid equations. Microwave propagation, plasma oscillations, ion acoustic waves, cyclotron waves, hydromagnetic waves, drift waves. Rayleigh/Taylor, Kelvin/Heinemoltz, universal, and streaming instabilities. Application to experiments in fully and partially ionized gases. Letter grading. Mr. Joshi, Mr. Mori (W)

285B. Advanced Plasma Waves and Instabilities. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 215S or Physics 212B. Advanced treatment of plasma waves and instabilities. Letter grading. Mr. Joshi, Mr. Yablonovitch (Sp, alternate years)

287. Plasma Waves and Instabilities. (4) Lecture, four hours; outside study, eight hours. Requisites: courses M215S or Physics 225A. Wave phenomena in plasmas described by macroscopic fluid equations. Microwave propagation, plasma oscillations, ion acoustic waves, cyclotron waves, hydromagnetic waves, drift waves. Rayleigh/Taylor, Kelvin/Heinemoltz, universal, and streaming instabilities. Application to experiments in fully and partially ionized gases. Letter grading. Mr. Joshi, Mr. Niemann (Sp)

287B. Plasma Physics and Analysis. (4) (Same as Mechanical and Aerospace Engineering M237B.) Lecture, four hours; outside study, eight hours. Requisite: course 285B. Behavior of plasmas at thermonuclear burning conditions. Fokker/Planck equation and applications to heating by neutral beams, RF, and fusion reaction products. Bombardment, thermal and radiation processes. Plasma surface interactions. Fluid description of burning plasma. Dynamics, stability, and control. Applications in tokamaks, tandem mirrors, and alternate concepts. Letter grading. Mr. Joshi, Mr. Niemann (W)

289. Seminar: Research Topics in Electrical Engineering. (2) Lecture, two hours. Designed for electrical engineering Ph.D. students. Opportunity for students to improve technical writing skills by reviewing conference, technical, and journal papers and practicing writing about their work for undergraduate audience (potential students), engineers outside their specific fields, and nonscientists (colleagues with less expertise in field and policymakers). Students write in various genres, all related to their professional development as electrical engineers. Emphasis on writing as vital way to communicate professional technical and professional information in distinct contexts, directly resulting in specific outcomes. S/U grading.

297. Seminar Series: Electrical Engineering. (1) Lecture, to be arranged. Seminars may be organized in advanced technical fields. If appropriate, field trips may be arranged. May be repeated with topic change. S/U or letter grading.

299. M.S. Project Seminar. (4) Seminar, to be arranged. Preparation: apprentice personnel employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member teaching course. May be repeated for credit. S/U grading.

477. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: apprentice personnel employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. (F,W,Sp)

478. Fusion Plasma Physics and Analysis. (4) (Same as Mechanical and Aerospace Engineering M237B.) Lecture, four hours; outside study, eight hours. Requisite: course 285B. Plasma waves and instabilities. Letter grading. Mr. Joshi, Mr. Niemann (Sp)

587-589. Directed Individual or Tutorial Studies. (2 to 8) Tutorial, to be arranged. Limited to graduate electrical engineering students. Petition forms to request enrollment may be obtained from assistant dean, Graduate Studies. Supervised investigation of advanced technical problems. S/U grading.
Materials Science and Engineering

UCLA
6532 Boelter Hall
Box 951595
Los Angeles, CA 90095-1595
(310) 825-5534
fax: (310) 206-7353
http://www.seas.ucla.edu/ms/

Mark S. Goorsky, Ph.D., Chair
Jenn-Ming Yang, Ph.D., Vice Chair
Ya-Hong Xie, Ph.D., Vice Chair

Professors
Russell E. Callisich, Ph.D.
Bruce S. Dunn, Ph.D., NSG Chair (Nippon Sheet Glass Company Professor of Materials Science)
Nasr M. Ghoniem, Ph.D.
Mark S. Goorsky, Ph.D.
Vijay Gupta, Ph.D.
H. Thomas Hahn, Ph.D. (Raytheon Company Professor of Manufacturing Engineering)
Richard B. Kaner, Ph.D.
Qibing Pei, Ph.D.
King-Ning Tu, Ph.D.
Fred Wudl, Ph.D.
Ya-Hong Xie, Ph.D.
Jenn-Ming Yang, Ph.D.
Yang Yang, Ph.D.

Professors Emeriti
Alan J. Ardell, Ph.D.
David L. Douglass, Ph.D.
William Clement, Jr., Ph.D.
John D. Mackenzie, Ph.D. (Nippon Sheet Glass Company Professor Emeritus of Materials Science)
Kanji Ono, Ph.D.
Aly H. Shabaik, Ph.D.
George H. Sines, Ph.D.
Christian N.J. Wagner, Dr.rer.nat.
Alfred S. Yue, Ph.D.

Associate Professors
Vidvuds Ozolins, Ph.D.
Benjamin Wu, D.D.S., Ph.D.

Assistant Professors
Yu Huang, Ph.D.
Ioanna Kakoulli, D.Phil.
Suneel Kodambaka, Ph.D.

Adjunct Professors
Eric P. Beschler, Ph.D.
Harry Patton Gillis, Ph.D.
John J. Gilman, Ph.D.
Marek A. Przystupa, Ph.D.

Scope and Objectives
At the heart of materials science is an understanding of the microstructure of solids. “Microstructure” is used broadly in reference to solids viewed at the subatomic (electronic) and atomic levels, and the nature of the defects at these levels. The microstructure of solids at various levels profoundly influences the mechanical, electronic, chemical, and biological properties of solids. The phenomenological and mechanistic relationships between microstructure and the macroscopic properties of solids are, in essence, what materials science is all about.

Materials engineering builds on the foundation of materials science and is concerned with the design, fabrication, and optimal selection of engineering materials that must simultaneously fulfill dimensional, property, quality control, and economic requirements.

The department also has a program in electronic materials that provides a broad-based background in materials science, with opportunity to specialize in the study of those materials used for electronic and optoelectronic applications. The program incorporates several courses in electrical engineering in addition to those in the materials science curriculum.

The undergraduate program leads to the B.S. degree in Materials Engineering. Students are introduced to the basic principles of metallurgy and ceramic and polymer science as part of the department’s Materials Engineering major.

A joint major field, Chemistry/Materials Science, is offered to students enrolled in the Department of Chemistry and Biochemistry (College of Letters and Science). The graduate program allows for specialization in one of the following fields: ceramic and ceramic processing, electronic and optical materials, and structural materials.

Department Mission
The Department of Materials Science and Engineering faculty members, students, and alumni foster a collegial atmosphere to produce (1) highly qualified students through an educational program that cultivates excellence, (2) novel and highly innovative research that advances basic and applied knowledge in materials, and (3) effective interactions with the external community through educational outreach, industrial collaborations, and service activities.

Undergraduate Program Objectives
The Materials Engineering major at UCLA prepares undergraduate students for employment or advanced studies with industry, the national laboratories, state and federal agencies, and academia. To meet the needs of these constituencies,
the objectives of the undergraduate program are to produce graduates who (1) possess a solid foundation in materials science and engineering, with emphasis on the fundamental scientific and engineering principles that govern the microstructure, properties, processing, and performance of all classes of engineering materials, (2) understand materials processes and the application of general natural science and engineering principles to the analysis and design of materials systems of current and/or future importance to society, (3) have strong skills in independent learning, analysis, and problem solving, with special emphasis on design of engineering materials and processes, communication, and an ability to work in teams, and (4) understand and are aware of the broad issues relevant to materials, including professional and ethical responsibilities, impact of materials engineering on society and environment, contemporary issues, and need for lifelong learning.

Undergraduate Study

Materials Engineering B.S.
The ABET-accredited materials engineering program is designed for students who wish to pursue a professional career in the materials field and desire a broad understanding of the relationship between microstructure and properties of materials. Metals, ceramics, and polymers, as well as the design, fabrication, and testing of metallic and other materials such as oxides, glasses, and fiber-reinforced composites, are included in the course contents.

Materials Engineering Option
Preparation for the Major
Required: Chemistry and Biochemistry 20A, 20B, 20L; Computer Science 31 (or another programming course approved by the Faculty Executive Committee); Materials Science and Engineering 10, 90L; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C (or Electrical Engineering 1).

The Major
Required: Chemical Engineering 102A (or Mechanical and Aerospace Engineering 105A), Electrical Engineering 101, 121B, Materials Science and Engineering 104, 110, 110L, 120, 130, 131, 131L, 132, 140, 143A, 150, 160, Mechanical and Aerospace Engineering 181A or 182A; two laboratory courses (4 units) from Materials Science and Engineering 121L, 141L, 143L, 161L; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and three major field elective courses (12 units) from Chemical Engineering C114, Civil and Environmental Engineering 130, 135A; Electrical Engineering 2, 123A, 123B, 124, Materials Science and Engineering 111, 121, 122, 151, 161, 162, Mechanical and Aerospace Engineering 156A, 166C, plus at least one elective course (4 units) from Chemical and Biochemistry 30A, 30AL, Electrical Engineering 131A, Materials Science and Engineering 170, 171, Mathematics 170A, or Statistics 100A.

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/GE-EngrNew07-08.pdf.

Electronics Materials Option
Preparation for the Major
Required: Chemistry and Biochemistry 20A, 20B, 20L; Computer Science 31 (or another programming course approved by the Faculty Executive Committee); Electrical Engineering 10; Materials Science and Engineering 10, 90L; Mathematics 31A, 31B, 32A, 32B, 33A, 33B; Physics 1A, 1B, 1C (or Electrical Engineering 1).

The Major
Required: Chemical Engineering 102A (or Mechanical and Aerospace Engineering 105A), Electrical Engineering 101, 121B, Materials Science and Engineering 104, 110, 110L, 120 (or Electrical Engineering 2), 121, 121L, 122, 130, 131, 131L, 140, Mechanical and Aerospace Engineering 101, and 181A or 182A; four courses (16 units) from Electrical Engineering 123A, 123B, Materials Science and Engineering 132, 150, 160; 4 laboratory units from Electrical Engineering 172L, Materials Science and Engineering 141L, 161L, 199; three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and one major field elective course (4 units) from Electrical Engineering 110, 124, 131A, 172, Materials Science and Engineering 111, 143A, 162.

For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/GE-EngrNew07-08.pdf.

Graduate Study
For information on graduate admission, see Graduate Programs, page 23.
The following introductory information is based on the 2007-08 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnet.ucla.edu/gasaa/library/pgmrqintro.htm. Students are subject to the degree requirements as published in Program Requirements for the year in which they matriculate.
The Department of Materials Science and Engineering offers Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Materials Science and Engineering.

Materials Science and Engineering M.S.
Areas of Study
There are three main areas in the M.S. program: ceramics and ceramic processing, electronic and optical materials, and structural materials. Students may specialize in any one of the three areas, although most students are more interested in a broader education and select a variety of courses. Basically, students select courses that serve their interests best in regard to thesis research and job prospects.

Course Requirements
Thesis Plan. Nine courses are required, of which six must be graduate courses. The courses are to be selected from the following lists, although suitable substitutions can be made from other engineering disciplines or from chemistry and physics with the approval of the departmental graduate adviser. Two of the six graduate courses may be Materials Science and Engineering 598 (thesis research).

Comprehensive Examination Plan. Nine courses are required, six of which must be graduate courses, selected from the following lists with the same provisions listed under the thesis plan. The remaining three courses in the total course requirement may be upper division courses.

Ceramics and ceramic processing: Materials Science and Engineering 111, 121,
Electronic and optical materials: Materials Science and Engineering 111, 121, 122, 143A, 151, 161, 162, 200, 201, 211, 246D, 298.

As long as a majority of the courses taken are offered by the department, substitutions may be made with the consent of the departmental graduate adviser.

Undergraduate Courses. No lower division courses may be applied toward graduate degrees. In addition, the following upper division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199; Civil and Environmental Engineering 106A, 108, 199; Computer Science M152A, 152B, M171L, 199; Electrical Engineering 100, 101, 102, 103, 110L, M116L, M171L, 199; Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 140, 141L, 150, 160, 161L, 199; Mechanical and Aerospace Engineering 102, 103, 105A, 105D, 199.

Thesis Plan
In addition to fulfilling the course requirements, under the thesis plan students are required to write a thesis on a research topic in materials science and engineering supervised by the thesis adviser. An M.S. thesis committee composed of three departmental faculty members, including the thesis chair, reviews and approves the thesis.

Comprehensive Examination Plan
Consult the graduate adviser for details. If the comprehensive examination is failed, students may be reexamined once with the consent of the graduate adviser.

Materials Science and Engineering Ph.D.

Major Fields or Subdisciplines
Ceramics and ceramic processing, electronic and optical materials, and structural materials.

Course Requirements
There is no formal course requirement for the Ph.D. degree, and students may substitute coursework by examinations. Normally, however, students take courses to acquire the knowledge needed to satisfy the written preliminary examination requirement. In this case, a grade-point average of at least 3.33 in all courses is required, with a grade of B—or better—in each course. The basic program of study for the Ph.D. degree is built around one major field and one minor field. The major field has a scope corresponding to a body of knowledge contained in nine courses, at least six of which must be graduate courses, plus the current literature in the area of specialization. Materials Science and Engineering 599 may not be applied toward the nine-course total. The major fields named above are described in a Ph.D. major field syllabus, each of which can be obtained in the department office.

The minor field normally embraces a body of knowledge equivalent to three courses, at least two of which are graduate courses. If students fail to satisfy the minor field requirements through coursework, a minor field examination may be taken (once only). The minor field is selected to support the major field and is usually a subset of the major field.

For information on completing the Engineer degree, see Schoolwide Programs, Courses, and Faculty.

Written and Oral Qualifying Examinations
During the first year of full-time enrollment in the Ph.D. program, students take the oral preliminary examination that encompasses the body of knowledge in materials science equivalent to that expected of a bachelor’s degree. If students opt not to take courses, a written preliminary examination in the major field is required. Students may not take an examination more than twice.

After passing both preliminary examinations, students take the University Oral Qualifying Examination. The nature and content of the examination are at the discretion of the doctoral committee but ordinarily include a broad inquiry into the student’s preparation for research. The doctoral committee also reviews the prospectus of the dissertation at the oral qualifying examination.

Note: Doctoral Committees. A doctoral committee consists of a minimum of four members. Three members, including the chair, are “inside” members and must hold appointments in the Materials Science and Engineering Department at UCLA. The “outside” member must be a UCLA faculty member outside the Materials Science and Engineering Department. Faculty members holding joint appointments with the department are considered “inside” members.

The X-ray Photoemission Spectrometer and UV Photoemission Spectrometer is equipped with a sample preparation chamber. The first of its kind at UCLA, it was awarded to Professor Yang Yang’s laboratory through an Air Force grant.
Fields of Study

Ceramics and Ceramic Processing
The ceramics and ceramic processing field is designed for students interested in ceramics and glasses, including electronic materials. As in the case of metallurgy, primary and secondary fabrication processes such as vapor deposition, sintering, melt forming, or extrusion strongly influence the microstructure and properties of ceramic components used in structural, electronic, or biological applications. Formal course and research programs emphasize the coupling of processing treatments, microstructure, and properties.

Electronic and Optical Materials
The electronic and optical materials field provides an area of study in the science and technology of electronic materials that includes semiconductors, optical ceramics, and thin films (metal, dielectric, and multilayer) for electronic and optoelectronic applications.

Course offerings emphasize fundamental issues such as solid-state electronic and optical phenomena, bulk and interface thermodynamics and kinetics, and applications that include growth, processing, and characterization techniques. Active research programs address the relationship between microstructure and nanostructure and electronic/optical properties in these materials systems.

Structural Materials
The structural materials field is designed primarily to provide broad understanding of the relationships between processing, microstructure, and performance of various structural materials, including metals, intermetallics, ceramics, and composite materials. Research programs include material synthesis and processing, ion implantation-induced strengthening and toughening, mechanisms and mechanics of fatigue, fracture and creep, structure/property characterization, nondestructive evaluation, high-temperature stability, and aging of materials.

Facilities
Facilities in the Materials Science and Engineering Department include:
- Ceramic Processing Laboratory
- Electron Microscopy Laboratories with a scanning transmission electron microscope (100 keV), a field emission trans-mission electron microscope (200 keV), and a scanning electron microscope, all equipped with a full quantitative analyzer, a stereo microscope, micro-cameras, and metallurgical microscopes
- Glass and Ceramics Research Laboratories
- Mechanical Testing Laboratory
- Metallographic Sample Preparation Laboratory
- Nano-Materials Laboratory
- Nondestructive Testing Laboratory
- Organic Electronic Materials Processing Laboratory
- Semiconductor and Optical Characterization Laboratory
- Thin Film Deposition Laboratory, including molecular beam epitaxy and wafer bonders
- X-Ray Diffraction Laboratory
- X-Ray Photoelectron Spectroscopy and Atomic Force Microscopy Facility

Faculty Areas of Thesis Guidance

Professors
Theory and numerical simulation for materials physics, epitaxial growth, nanoscale systems, semiconductor device properties and design in applications to quantum well devices, quantum dots, nanocrystals and quantum computing
Bruce S. Dunn, Ph.D. (UCLA, 1974)
Solid electrolytes, electronic properties of ceramics and glasses, ceramic-metal bonding, optical materials
Nasr M. Gholiemi, Ph.D. (Wisconsin, 1977)
Mechanical behavior of high-temperature materials, radiation interaction with material (e.g., laser, ions, plasma, electrons, and neutrons), material processing by plasma and beam sources, physics and mechanics of material defects, fusion energy
Mark S. Goorsky, Ph.D. (MIT, 1989)
Electronic materials processing, strain relaxation in epitaxial semiconductors and device structures, high-resolution X-ray diffraction of semiconductors, ceramics, and high-strength alloys
Vijay Gupta, Ph.D. (MIT, 1989)
Experimental mechanics, fracture of engineering solids, mechanics of thin film and interfaces, failure mechanisms and characterization of composite materials, ice mechanics
H. Thomas Hahn, Ph.D. (Pennsylvania State, 1971)
Nanocomposites, multifunctional composites, nanomechanics, rapid prototyping, information systems
Richard B. Kaner, Ph.D. (Pennsylvania, 1984)
Rapid synthesis of high-temperature materials, conducting polymers as separation membranes for enantiomers, synthesis of carbon nanotubes and composites
Qibing Pei, Ph.D. (Chinese Academy of Sciences, 1990)
Electroactive polymers through molecular design and nano-engineering for electronic devices and artificial muscles
King-Ning Tu, Ph.D. (Harvard, 1968)
Kinetic processes in thin films, metal-silicon interfaces, electromigration, Pb-free interconnects
Fred Wudl, Ph.D. (UCLA, 1967)
Organic materials synthesis, organic electronic devices, including field-effect transistors, light-emitting devices, organic metals and superconductors. Fullerene chemistry applied to these areas
Y-Cong Xie, Ph.D. (UCLA, 1986)
Hetero-epitaxial growth of semiconductor thin films: strained Si, self-assembled quantum dots, and other epitaxial nano-structures; Si substrate impedance engineering for mixed-signal integrated circuit technologies
Jenn-Ming Yang, Ph.D. (Delaware, 1986)
Mechanical behavior of polymer, metal, and ceramic matrix composites, electronics packaging
Yang Yang, Ph.D. (Massachusetts-Lowell, 1992)
Conjugated polymers and applications in optoelectronic devices such as light-emitting diodes, photodiodes, and field-effect transistors

Professors Emeriti
Alan J. Ardell, Ph.D. (Stanford, 1964)
Irradiation-induced precipitation, high-temperature deformation of solids, electron microscopy, physical metallurgy of aluminum/lithium alloys, precipitation hardening
David L. Douglass, Ph.D. (Ohio State, 1958)
Oxidation and sulfidation kinetics and mechanisms, materials compatibility, defect structures, diffusion
William Klemm, Jr., Ph.D. (Cal Tech, 1962)
Phase transformations in solids, high-pressure effects on solids
Glass science, ceramics, electrical properties of amorphous materials, materials recycling
Kanji Ono, Ph.D. (Northwestern, 1964)
Mechanical behavior and nondestructive testing of structural materials, acoustic emission, dislocations and strengthening mechanisms, microstructural effects, and ultrasonics
Ally Shabaik, Ph.D. (UC Berkeley, 1966)
Metal forming, metal cutting, mechanical properties, friction and wear, biomaterials, manufacturing processes
George H. Sines, Ph.D. (UCLA, 1953)
Fracture of ceramics, fatigue of metals, carbon-carbon composites, failure analysis
Christian N.J. Wagner, Dr rer. nat. (U. des Saarlandes, 1957)
X-ray and neutron diffraction, structure of liquid and amorphous alloys, and plastic deformation of metals; biomaterials; thin films; residual stresses
Alfred S. Yue, Ph.D. (Purdue, 1957)
Semiconductor eutectics; electronic materials for solar cell and detector applications, solidification and crystal growth

Associate Professors
Vidvuds Ozelins, Ph.D. (Kungliga Tekniska Hogskolan, Stockholm, 1998)
Theory of materials, first-principles modeling of phase transformations in bulk and surface systems, vibrational and electronic properties
Upper Division Courses

104. Science of Engineering Materials. (4) (Formerly numbered 14.) Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: Chemistry 20A, 20B, 20L, Physics 1A, 1B. General introduction to different types of materials used in engineering, crystal structure, optical, electronic, magnetic, and mechanical properties of solids. Free electron model, introduction to band theory and Schrödinger wave equation. Crystal bonding and lattice vibrations. Mechanisms and characterization of electrical conduction, magnetic behavior, dielectric properties, and p-n junctions. Letter grading. Mr. Dunn (W)

121. Materials Science of Semiconductors. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 120, Structure and properties of elemental and compound semiconductors. Electrical and optical properties, defect chemistry, and doping. Electronic materials analysis and characterization, including electrical, optical, and ion-beam techniques. Heterostructures, band-gap engineering, development of new materials for optical-electronic applications. Letter grading. Mr. Dunn (Sp)

121L. Materials Science of Semiconductors Laboratory. (2) Lecture, 30 minutes; discussion, 30 minutes; laboratory, two hours; outside study, three hours. Corequisite: course 121. Experiment conducted on materials characterization, including measurements of contact resistance, dielectric constant, and thin film biaxial modulus and CTE. Letter grading. Mr. Tu (W)

122. Principles of Electronic Materials Processing. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 104. Description of basic semiconductor materials for device processing; preparation and characterization of silicon, III-V compounds, and films. Discussion of principles of CVD, MOCVD, LPE, and MBE; metals and dielectrics. Letter grading. Mr. Goorsky (W)

130. Phase Relations in Solids. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 104, and Chemical Engineering 102A or Mechanical and Aerospace Engineering 105A. Summary of thermodynamic laws, equilibrium criteria, solution thermodynamics, mass action law, binary and ternary phase diagrams, glass transitions. Letter grading. Mr. Goorsky (F)

131. Diffusion and Diffusion-Controlled Reactions. (4) Lecture, four hours; outside study, eight hours. Requisite: course 130. Diffusion in metals and ionic solids, nucleation and growth theory; precipitation from solid solution, eutectoid decomposition, design of heat treatment processes for alloys, growth of intermediate phases, gas-solid reactions, design of oxidation-resistant alloys, recrystallization, and grain growth. Letter grading. Mr. Tu (W)

131L. Diffusion and Diffusion-Controlled Reactions Laboratory. (2) Laboratory, two hours; outside study, four hours. Corequisite: course 131. Design of heat-treating cycles and performing experiments to study interdiffusion, growth of intermediate phases, recrystallization, and grain growth in metals. Analysis of data. Comparison of results with theory. Letter grading. Mr. Tu (W)

132. Structure and Properties of Metallic Alloys. (4) Lecture, four hours; outside study, eight hours. Requisite: course 131. Physical metallurgy of steels, lightweight alloys (Al and Ti), and superalloys. Strengthening mechanisms, microstructural control methods for strength and toughness improvement. Grain boundary segregation. Letter grading. Mr. Ono (Sp)

140. Materials Selection and Engineering Design. (4) (Formerly numbered 190.) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: courses 132, 150. Evaluation among myriad materials available for design in engineering. Properties and applications of steels, nonferrous alloys, polymeric, ceramic, and composite materials, coatings. Materials selection, treatment, and serviceability emphasized as part of successful design. Design projects. Letter grading. Mr. Przystupa (Sp)
210. Diffraction Methods in Science of Materials. (4) (Formerly numbered 245C.) Lecture, four hours; outside study, eight hours. Requisite: course 110. Theory of diffraction of waves (X rays, electrons, and neutrions) in crystalline and noncrystalline materials. Long- and short-range order in crystals, structural effects of plastic deformation, solid-state transformations, arrangements of atoms in liquids and amorphous solids. Letter grading. Mr. Goorsky (Sp, odd years)

211. Electron Microscopy. (4) (Formerly numbered 244.) Lecture, four hours; outside study, eight hours. Requisite: course 111. Essential features of electron microscopy, geometry of electron diffraction, kinematical and dynamical theories of electron diffraction, including anomalous absorption, applications of theories to electron microanalysis of microstructural features, Lorentz microscopy, laboratory applica-
tions of contrast theory. Letter grading. Mr. Ardeli (Sp, even years)

CM212. Introduction to Archaeological Materials Science: Scientific Methodologies, Techniques, and Interpretation. (4) (Same as Conservation M210.) Lecture, three hours; laboratory, two hours. Recommended requisite: course 110. Several basic scientific techniques utilized for examination of archaeo-
cultural and cultural artifacts to answer questions of anthropological significance and their state of preservation. Theoretical aspects and practical aspects are emphasized. May be repeated for credit. Letter grading. M215. Materials and Techniques of Archaeologi-
cal Wall Paintings, Rock Art, and Mosaics. (4) (Same as Art History M203F and Conservation M250.) Seminar, two hours; laboratory, three hours. Designed for graduate conservation and art history students. Study of techniques and materials used for rock art and ancient wall paintings. Hands-on experience in replicating ancient paintings and pigments. Preparation required. Letter grading. M216. Science of Conservation Materials and Methods I. (4) (Same as Conservation M216.) Seminar, two hours; laboratory, two hours. Recommended requisite: course 104. Discussion of physical and chemical properties of materials, methods of applica-
State: course C112. Letter grading.

Graduate Courses

200. Principles of Materials Science I. (4) Lecture, four hours; outside study, eight hours. Requisite: course 120. Lattice dynamics and thermal properties of solids, classical and quantized free electron theory, electrons in a periodic potential, transport in semi-
conductors, dielectric and magnetic properties of sol-
s. Letter grading. Mr. Dunn (Sp)

201. Principles of Materials Science II. (4) Lecture, three hours; outside study, nine hours. Requisite: course 131. Kinetics of diffusional transforma-
tions in solids. Precipitation in solids. Nucleation the-

222. Growth and Processing of Electronic Materi-
als. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 120, 130, 131. Thermody-
amics and kinetics that affect semiconductor growth and device processing. Particular emphasis on funda-
mentals of growth (bulk and epitaxial), heteroepi-
axy, implantation, oxidation. Letter grading. Mr. Goorsky (W)

223. Materials Science of Thin Films. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 120, 131. Fabrication, structure, and proper-
ty correlations of thin films used in microelectronics for data and information processing. Topics include film deposition, interfacial and strain, electromigration, phase changes and kinetics, reliability. Letter grading. Mr. Tu
224. Deposition Technologies and Their Applications. (4) Lecture, three hours; outside study, nine hours. Designed for graduate engineering students. Deposition methods used in high-technology applications. Theory and experimental details of physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma-assisted vapor deposition processes, plasma sputtering, and ion implantation. Applications in semiconductor, chemical, optical, mechanical, and metallurgical industries. Letter grading. Mr. Xie

226. Si-CMOS Technology: Selected Topics in Materials Science. (4) Lecture, three hours; discussion, one hour; outside study, eight hours. Recommended preparation: Electrical Engineering 221B. Prerequisites: courses 130, 131, 200, 221, 222. Selected topics in materials science from modern Si-CMOS technology, including technological challenges in high-k metal gate stacks, strained Si FETs, SOI and three-dimensional FETs, source/drain engineering including transient-enhanced diffusion, nonvolatile memory, and metallization for on-chip contacts. Letter grading. Mr. Gillis, Mr. Goorsky (W)

423A. Fracture of Structural Materials. (4) Lecture, four hours; laboratory, two hours; outside study, four hours. Prerequisite: course 143A. Engineering and scientific aspects of crack nucleation, slow crack growth, fatigue, and environmentally assisted fracture mechanics. Analysis of fracture parameters. Dislocation models, fatigue, fracture in reactive environments, alloy development, fracture-safe design. Letter grading. Mr. Ono (W, even years)

243C. Dislocations and Strengthening Mechanisms in Solids. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course 143A. Elastic and plastic behavior of crystals, geometry, mechanics, and interaction of dislocations, mechanisms of yielding, hardening, and other strengthening. Letter grading. Mr. Ardel (F, odd years)

246B. Structure and Properties of Glass. (4) Lecture, four hours; outside study, eight hours. Prerequisite: course 160. Structure of amorphous solids and glasses. Conditions of glass formation and theories of glass structure. Mechanical, electrical, and optical properties of glass and relationship to structure. Letter grading. Mr. Dunn (W, even years)

246D. Electronic and Optical Properties of Ceramics. (4) Lecture, four hours; outside study, eight hours. Prerequisites: course 160. Principles governing electronic properties of ceramic single crystals and glasses and effects of processing and microstructure on these properties. Electronic conductance, ferroelectricity, and photochromism. Magnetic ceramics. Infrared, visible, and ultraviolet transmission. Unique application of ceramics. Letter grading. Mr. Dunn (Sp, even years)

250B. Advanced Composite Materials. (4) Lecture, four hours; outside study, eight hours. Prerequisites: B.S. in Materials Science and Engineering. Prerequisites: course 151. Fabrication methods, structural and properties of advanced composite materials. Fibers, resin-, metal-, and ceramic-matrix composites. Physical, mechanical, and nondestructive characterization techniques. Letter grading. Mr. Ono (W, odd years)

251. Chemistry of Soft Materials. (4) Lecture, four hours. Introduction to organic soft materials, including essential basic organic chemistry and polymer chemistry. Topics include three main categories of soft materials: organic molecules, synthetic polymers, and biomolecules and biomaterials. Extensive description and discussion of structure-property relationships, spectroscopic and experimental techniques, and preparation methods for various soft materials. Letter grading. Mr. Pei (F)

252. Organic Polymer Electronic Materials. (4) Lecture, four hours; outside study, eight hours. Preparation: knowledge of organic chemistry and polymer science. Introduction to organic electronic materials with emphasis on materials chemistry and processing. Topics include conjugated polymers and small molecules, and electrical properties of organic light-emitting diodes, solar cells, thin-film transistors. Introduction to emerging field of organic electronics. Letter grading. Mr. Pei (F)

270. Computer Simulations of Materials. (4) Lecture, four hours; outside study, eight hours. Introduction to modern methods of computer modeling in materials science. Topics include basic statistical mechanics, classical molecular dynamics, and Monte Carlo methods. Emphasis on understanding basic physical ideas and learning to design, run, and analyze computer simulations of materials. Use of examples from current literature to show how these methods can be used to study interesting phenomena in materials science. Hands-on computer experiments. Letter grading. Mr. Ozolins (F)

271. Electronic Structure of Materials. (4) Lecture, four hours; outside study, eight hours. Preparation: basic knowledge of quantum mechanics. Recommended prerequisite: course 200. Introduction to modern first-principles electronic structure calculations for various types of modern materials. Properties of electrons and interatomic bonding in molecules, crystals, and liquids, with emphasis on practical methods for solving Schrödinger equation and using it to calculate physical properties such as elastic constants, equilibrium structures, binding energies, vibrational frequencies, electronic band gaps and band structures, properties of defects, surfaces, interfaces, and magnetism. Extensive hands-on experience with modern density-functional theory code. Letter grading. Mr. Ozolins (W)

272. Theory of Nanomaterials. (4) Lecture, four hours; outside study, eight hours. Strongly recommended prerequisite: course 200. Introduction to properties and applications of nanoscale materials, with emphasis on understanding of basic principles that distinguish nanostructures (with feature size below 100 nm) from more common microstructured materials. Explanation of new phenomena that emerge only in very small systems, using simple concepts from quantum mechanics and thermodynamics. Topics include structure and electronic properties of quantum dots, wires, nanotubes, and multilayers, self-assembly on surfaces and in liquid solutions, mechanical properties of nanostructured metamaterials, molecular electronics, spin-based electronics, and proposed realizations of quantum computing. Discussion of current and future directions of this rapidly growing field using examples from modern scientific literature. Letter grading. Mr. Ozolins (F)

CM280. Introduction to Biomaterials. (4) (Same as Biomedical Engineering CM280) Lecture, three hours; discussion, two hours; outside study, seven hours. Prerequisites: course 104, or Chemistry 20A, 20B, and 20L. Engineering materials used in medicine and dentistry for repair and/or restoration of damaged natural tissues. Topics include relationships between material properties, suitability to task, surface chemistry, processing and treatment methods, and biocompatibility. Concurrently scheduled with course CM180. Letter grading. Mr. Wu (Sp)

296. Seminar: Advanced Topics in Materials Science and Engineering. (2) Seminar, two hours; outside study, four hours. Advanced study and analysis of current topics in materials science and engineering. Discussion of current research and literature in research specialty of faculty members teaching course. May be repeated for credit. S/U grading.

298. Seminar: Engineering. (2 to 4) Seminar, to be arranged. Limited to graduate materials science and engineering students. Seminars may be organized in advanced technical fields. If appropriate, field trips may be arranged. May be repeated with topic change. Letter grading.

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: apprentice personnel employment as teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. (F,W,Sp)

597A. Preparation for M.S. Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate materials science and engineering students. Preparation for qualifying examination, including preliminary research on dissertation. S/U grading.

599. Research for and Preparation of Ph.D. Dissertation. (2 to 16) Tutorial, to be arranged. Limited to graduate materials science and engineering students. Usually taken after students have been advanced to candidacy. S/U grading.
Mechanical and Aerospace Engineering

UCLA
48-121 Engineering IV
Box 951597
Los Angeles, CA 90095-1597

(310) 206-4830
http://www.mae.ucla.edu

Laurent Pilon, Ph.D.
Lecturers
Ravneesh Amar, Ph.D.
C.H. Chang, M.S., Emeritus
Amiya K. Chatterjee, Ph.D.
Rudolf X. Meyer, Dr.Engr., Emeritus
Carl F. Ruoff, Ph.D.
Alexander Samson, Ph.D., Emeritus

Adjunct Professors
Leslie M. Lackman, Ph.D.
Wilbur J. Marner, Ph.D.
Neil B. Morley, Ph.D.
Robert S. Shaefler, Ph.D.
Jeff S. Shamma, Ph.D.
Raymond Viskanta, Ph.D.
Xiang Zhang, Ph.D.

Adjunct Assistant Professor
Emilio Frazzoli, Ph.D.

Scope and Objectives
The Mechanical and Aerospace Engineering Department offers curricula in aerospace engineering and mechanical engineering at both the undergraduate and graduate levels. The scope of the departmental research and teaching program is broad, encompassing dynamics, fluid mechanics, heat and mass transfer, manufacturing and design, nanoelectromechanical and microelectromechanical systems, structural and solid mechanics, and systems and control. The applications of mechanical and aerospace engineering are quite diverse, including aircraft, spacecraft, automobiles, energy and propulsion systems, robotics, machinery, manufacturing and materials processing, microelectronics, biological systems, and more.

At the undergraduate level, the department offers accredited programs leading to B.S. degrees in Aerospace Engineering and in Mechanical Engineering. At the graduate level, the department offers programs leading to M.S. and Ph.D. degrees in Mechanical Engineering and in Aerospace Engineering. An M.S. in Manufacturing Engineering is also offered.

Department Mission
The mission of the Mechanical and Aerospace Engineering Department is to educate the nation’s future leaders in the science and art of mechanical and aerospace engineering. Further, the department seeks to expand the frontiers of engineering science and to encourage technological innovation while fostering academic excellence and scholarly learning in a collegial environment.

Undergraduate Program Objectives
In consultation with its constituents, the Mechanical and Aerospace Engineering Department has set its educational objectives as follows: (1) to teach students how to apply their rigorous undergraduate education to creatively solve technical problems facing society and (2) to prepare them for successful and productive careers or graduate study in mechanical or aerospace or other engineering fields and/or further study in other fields such as medicine, business, and law.

Aerospace Engineering B.S.
The ABET-accredited aerospace engineering program is concerned with the design and construction of various types of fixed-wing and rotary-wing (helicopters) aircraft used for air transportation and national defense. It is also concerned with the design and construction of spacecraft, the exploration and utilization of space, and related technological fields.

Aerospace engineering is characterized by a very high level of technology. The aerospace engineer is likely to operate at the forefront of scientific discoveries, often stimulating these discoveries and providing the inspiration for the creation of new scientific concepts. Meeting these demands requires the imaginative use of many disciplines, including fluid mechanics and aerodynamics, structural mechanics, materials and aeroelasticity, dynamics, control and guidance, propulsion, and energy conversion.

Preparation for the Major
Required: Chemistry and Biochemistry 20A, 20B, 20L; Computer Science 31; Mathematics 31A, 31B, 32A, 32B, 33A; 33B; Physics 1A, 1B, 1C, 4AL, 4BL.

The Major
Required: Mechanical and Aerospace Engineering 101, 102, 103, 105A, 107, 107L, 150A, 150B, 150P, 154A, 154B, 154S, 155 or 161A or 169A, 157A, 157S, 166A, 171A, 182A; two departmental breadth courses (Electrical Engineering 100 and Materials Science and Engineering 104 – if one or both of these courses are taken as part of the technical breadth requirement, students must select a replacement upper division course or courses that may be any technical course from within the school – except for Mechanical and Aerospace Engineering
156A – or , by petition, from outside the school); three technical breadth courses (12 units) selected from an approved list available in the Office of Academic and Student Affairs; and two major field elective courses (8 units) from Mechanical and Aerospace Engineering 105D, 131A, 131AL, 132A, 133A, 133AL, 150C, 150R, 153A, 155, 157A, 161A, 161B, 162C, 163A, 166C, M168, 169A, 171B, 172, 174, CM180, CM180L, 181A, 182B, 182C, 184, 185, 186. For information on University and general education requirements, see Requirements for B.S. Degrees on page 19 or http://www.registrar.ucla.edu/ge/GE-EngrNew07-08.pdf.

Graduate Study
For information on graduate admission, see Graduate Programs, page 23. The following introductory information is based on the 2007-08 edition of Program Requirements for UCLA Graduate Degrees. Complete annual editions of Program Requirements are available at http://www.gdnet.ucla.edu/gasaa/library/pgmrqintro.htm. Students are subject to the degree requirements as published in Program Requirements for the year in which they matriculate.

The Department of Mechanical and Aerospace Engineering offers the Master of Science (M.S.) degree in Manufacturing Engineering, Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Aerospace Engineering, and Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees in Mechanical Engineering.

Aerospace Engineering M.S. and Mechanical Engineering M.S.

Course Requirements
Students may select either the thesis plan or comprehensive examination plan. At least nine courses are required, of which at least five must be graduate courses. In the thesis plan, seven of the nine must be formal courses, including at least four from the 200 series. The remaining two may be 598 courses involving work on the thesis.

In the comprehensive examination plan, no units of 500-series courses may be applied toward the minimum course requirement. Courses taken before the award of the bachelor's degree may not be applied toward a graduate degree at UCLA. The
courses should be selected so that the breadth requirements and the requirements at the graduate level are met. The breadth requirements are only applicable to students who do not have a B.S. degree from an ABET-accredited aerospace or mechanical engineering program.

Undergraduate Courses. No lower division courses may be applied toward graduate degrees. In addition, the following upper division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199; Civil and Environmental Engineering 106A, 108, 199; Computer Science M152A, 152B, M171L, 199; Electrical Engineering 100, 101, 102, 103, 110L, M116L, M171L, 199; Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 140, 141L, 150, 160, 161L, 199; Mechanical and Aerospace Engineering 101, 102, 103, 105A, 105D, 107, 107L, 188, 194, 199.

Aerospace Engineering

Breadth Requirements. Students are required to take at least three courses from the following five categories: (1) Mechanical and Aerospace Engineering 154A or 154B or 154S, (2) 150B or 150P, (3) 155 or 166A or 169A, (4) 161A or 171A.

Graduate-Level Requirement. Students are required to take at least one course from the following: Mechanical and Aerospace Engineering 250C, 250D, 250F, 253B, 254A, 255B, 256F, 263B, 269D, or 271B. The remaining courses can be taken to gain depth in one or more of the several specialty areas covering the existing major fields in the department.

Mechanical Engineering

Breadth Requirements. Students are required to take at least three courses from the following five categories: (1) Mechanical and Aerospace Engineering 162A or 169A or 171A, (2) 150A or 150B, (3) 131A or 133A, (4) 156A, (5) 162B or 183.

Graduate-Level Requirement. Students are required to take at least one course from the following: Mechanical and Aerospace Engineering 231A, 231B, 231C, 250A, 255A, M256A, M256B, M269A, or 271A. The remaining courses can be taken to gain depth in one or more of the several specialty areas covering the existing major fields in the department.

Comprehensive Examination Plan

The comprehensive examination is required in either written or oral form. A committee of at least three faculty members, with at least two members from within the department, and chaired by the academic adviser, is established to administer the examination. Students may, in consultation with their adviser and the M.S. committee, select one of the following options for the comprehensive examination: (1) take and pass the first part of the Ph.D. written qualifying examination (formerly referred to as the preliminary examination) as the comprehensive examination, (2) conduct a research or design project and submit a final report to the M.S. committee, or (3) take and pass three comprehensive examination questions offered in association with three graduate courses. Contact the department Student Affairs Office for more information.

Thesis Plan

The thesis must describe some original piece of research that has been done under the supervision of the thesis committee. Students should normally start to plan the thesis at least one year before the award of the M.S. degree is expected. There is no examination under the thesis plan.

Manufacturing Engineering M.S.

Areas of Study

Consult the department.

Course Requirements

Students may select either the thesis plan or comprehensive examination plan. At least nine courses are required, of which at least five must be graduate courses. In the thesis plan, seven of the nine must be formal courses, including at least four from the 200 series. The remaining two may be 598 courses involving work on the thesis. In the comprehensive examination plan, no units of 500-series courses may be applied toward the minimum course requirement. Courses taken before the award of the bachelor's degree may not be applied toward a graduate degree at UCLA. Choices may be made from the following major areas:

Undergraduate Courses. No lower division courses may be applied toward graduate degrees. In addition, the following upper division courses are not applicable toward graduate degrees: Chemical Engineering 102A, 199; Civil and Environmental Engineering 106A, 108, 199; Computer Science M152A, 152B, M171L, 199; Electrical Engineering 100, 101, 102, 103, 110L, M116L, M171L, 199; Materials Science and Engineering 110, 120, 130, 131, 131L, 132, 140, 141L, 150, 160, 161L, 199; Mechanical and Aerospace Engineering 101, 102, 103, 105A, 105D, 107, 107L, 188, 194, 199.

Upper Division Courses. Students are required to take at least three courses from the following: Mechanical and Aerospace Engineering 163A, M168, 174, 183, 184, 185.

Graduate Courses. Students are required to take at least three courses from the following: Mechanical and Aerospace Engineering 263A, 263C, 263D, CM280A, 293, 294, 295A, 295B, 296A, 296B, 297.

Additional Courses. The remaining courses may be taken from other major fields of study in the department or from the following: Architecture and Urban Design M226B, M227B, 227D; Computer Science 241A, 241B; Management 240A, 240D, 241A, 241B, 242A, 242B, 243B, 243C; Mathematics 120A, 120B.

Comprehensive Examination Plan

The comprehensive examination is required in either written or oral form. A committee of at least three faculty members, with at least two members from within the department, and chaired by the academic adviser, is established to administer the examination. Students may, in consultation with their adviser and the M.S. committee, select one of the following options for the comprehensive examination: (1) take and pass the first part of the Ph.D. written qualifying examination (formerly referred to as the preliminary examination) as the comprehensive examination, (2) conduct a research or design project and submit a final report to the M.S. committee, or (3) take and pass three comprehensive examination questions offered in association with three graduate courses. Contact the department Student Affairs Office for more information.

Thesis Plan

The thesis must describe some original piece of research that has been done under the supervision of the thesis committee. Students would normally start to plan the thesis at least one year before the award of the M.S. degree is expected. There is no examination under the thesis plan.
Aerospace Engineering Ph.D. and Mechanical Engineering Ph.D.

Major Fields or Subdisciplines
Dynamics; fluid mechanics; heat and mass transfer; manufacturing and design (mechanical engineering only); nanoelectromechanical/microelectromechanical systems (NEMS/MEMS); structural and solid mechanics; systems and control.

Ph.D. students may propose ad hoc major fields, which must differ substantially from established major fields and satisfy one of the following two conditions: (1) the field is interdisciplinary in nature and (2) the field represents an important research area for which there is no established major field in the department (condition 2 most often applies to recently evolving research areas or to areas for which there are too few faculty members to maintain an established major field).

Students in an ad hoc major field must be sponsored by at least three faculty members, at least two of whom must be from the department.

Course Requirements
The basic program of study for the Ph.D. degree is built around major and minor fields. The established major fields are listed above, and a detailed syllabus describing each Ph.D. major field can be obtained from the Student Affairs Office.

The program of study for the Ph.D. requires students to perform original research leading to a doctoral dissertation and to master a body of knowledge that encompasses material from their major field and breadth material from outside the major field. The body of knowledge should include (1) six major field courses, at least four of which must be graduate courses, (2) one minor field, (3) any three additional courses, at least two of which must be graduate courses, that enhance the study of the major or minor field.

The major field syllabus advises students as to which courses contain the required knowledge, and students usually prepare for the written qualifying examination (formerly referred to as the preliminary examination) by taking these courses. However, students can acquire such knowledge by taking similar courses at other universities or even by self-study.

The minor field embraces a body of knowledge equivalent to three courses, at least two of which must be graduate courses. Minor fields are often subsets of major fields, and minor field requirements are then described in the syllabus of the appropriate major field. Established minor fields with no corresponding major field can also be used, such as applied mathematics and applied plasma physics and fusion engineering. Also, an ad hoc field can be used in exceptional circumstances, such as when certain knowledge is desirable for a program of study that is not available in established minor fields.

Grades of B— or better with a grade-point average of at least 3.33 in all courses included in the minor field, and the three additional courses mentioned above are required. If students fail to satisfy the minor field requirements through coursework, a minor field examination may be taken (once only).

Written and Oral Qualifying Examinations
After mastering the body of knowledge defined in the major field, students take a written qualifying (preliminary) examination covering this knowledge. Students must have been formally admitted to the Ph.D. program or admitted subject to completion of the M.S. degree by the end of the term following the term in which the examination is given. The examination must be taken within the first two calendar years from the time of admission into the Ph.D. program. Students must be registered during the term in which the examination is given and be in good academic standing (minimum GPA of 3.25). The student’s major field proposal must be completed prior to taking the examination. Students may not take an examination more than twice. Students in an ad hoc major field must pass a written qualifying examination that is approximately equivalent in scope, length, and level to the written qualifying examination for an established major field.

After passing the written qualifying examination, students take the University Oral Qualifying Examination within four calendar years from the time of admission into the Ph.D. program. The nature and content of the examination are at the discretion of the doctoral committee but include a review of the dissertation prospectus and may include a broad inquiry into the student’s preparation for research.

Note: Doctoral Committees. A doctoral committee consists of a minimum of four members. Three members, including the chair, are “inside” members and must hold appointments in the Mechanical and Aerospace Engineering Department at UCLA. The “outside” member must be a UCLA faculty member outside the Mechanical and Aerospace Engineering Department.

Fields of Study
Dynamics
Features of the dynamics field include dynamics and control of physical systems, including spacecraft, aircraft, helicopters, industrial manipulators; analytical studies of control of large space structures; experimental studies of electromechanical systems; and robotics.

Fluid Mechanics
The graduate program in fluid mechanics includes experimental, numerical, and theoretical studies related to a range of topics in fluid mechanics, such as turbulent flows, hypersonic flows, microscale and nanoscale flow phenomena, aeroacoustics, bio fluid mechanics, chemically reactive flows, chemical reaction kinetics, numerical methods for computational fluid dynamics (CFD), and experimental methods. The educational program for graduate students provides a strong foundational background in classical incompressible and compressible flows, while providing elective breadth courses in advanced specialty topics such as computational fluid dynamics, microfluidics, bio fluid mechanics, hypersonics, reactive flow, fluid stability, turbulence, and experimental methods.

Heat and Mass Transfer
The heat and mass transfer field includes studies of convection, radiation, conduction, evaporation, condensation, boiling and two-phase flow, chemically reacting and radiating flow, instability and turbulent flow, reactive flows in porous media, as well as transport phenomena in support of microscale and nanoscale thermosciences, energy, bioMEMS/NEMS, and microfabrication/nanofabrication.

Manufacturing and Design
The program is developed around an integrated approach to manufacturing and design. It includes study of manufacturing and design aspects of mechanical systems, material behavior and processing, robotics and manufacturing systems, CAD/CAM theory and applications, computational geometry and geometrical modeling,
composite materials and structures, automation and digital control systems, microdevices and nanodevices, radio frequency identification (RFID), and wireless systems.

Nanoelectromechanical/ Microelectromechanical Systems
The nanoelectromechanical/microelectromechanical systems (NEMS/MEMS) field focuses on science and engineering issues ranging in size from nanometers to millimeters and includes both experimental and theoretical studies covering fundamentals to applications. The study topics include microscience, top-down and bottom-up nanofabrication/microfabrication technologies, molecular fluidic phenomena, nanoscale/microscale material processing, biomolecular signatures, heat transfer at the nanoscale, and system integration. The program is highly interdisciplinary in nature.

Structural and Solid Mechanics
The solid mechanics program features theoretical, numerical, and experimental studies, including fracture mechanics and damage tolerance, micromechanics with emphasis on technical applications, wave propagation and nondestructive evaluation, mechanics of composite materials, mechanics of thin films and interfaces, analysis of coupled electro-magneto-thermomechanical material systems, and ferroelectric materials. The structural mechanics program includes structural dynamics with applications to aircraft and spacecraft, fixed-wing and rotary-wing aeroelasticity, fluid structure interaction, computational transonic aeroelasticity, structural optimization, finite element methods and related computational techniques, structural mechanics of composite material components, structural health monitoring, and analysis of adaptive structures.

Systems and Control
The program features systems engineering principles and applied mathematical methods of modeling, analysis, and design of continuous- and discrete-time control systems. Emphasis is on modern applications in engineering, systems concepts, feedback and control principles, stability concepts, applied optimal control, differential games, computational methods, simulation, and computer process control. Systems and control research and education in the department cover a broad spectrum of topics primarily based in aerospace and mechanical engineering applications. However, the Chemical and Biomolecular Engineering and Electrical Engineering Departments also have active programs in control systems, and collaboration across departments among faculty members and students in both teaching and research is common.

Ad Hoc Major Fields
The ad hoc major fields program has sufficient flexibility that students can form academic major fields in their area of interest if the proposals are supported by several faculty members. Previous fields of study included acoustics, system risk and reliability, and engineering thermodynamics. Nuclear science and engineering, a former active major field, is available on an ad hoc basis only.

Facilities
The Mechanical and Aerospace Engineering Department has a number of experimental facilities at which both fundamental and applied research is being conducted. More information is at http://www.mae.ucla.edu.

Active Materials Laboratory
The Active Materials Laboratory contains equipment to evaluate the coupled response of materials such as piezoelectric, magnetostrictive, shape memory alloys, and fiber optic sensors. The laboratory has manufacturing facilities to fabricate magnetostrictive composites and thin film shape memory alloys. Testing active material systems is performed on one of four servo-hydraulic load frames. All of the load frames are equipped with thermal chambers, solenoids, and electrical power supplies.

Autonomous Vehicle Systems Instrumentation Laboratory
The Autonomous Vehicle Systems Instrumentation Laboratory (AVSIL) is a testbed at UCLA for design, building, evaluation, and testing of hardware instrumentation and coordination algorithms for multiple vehicle autonomous systems. The AVSIL contains a hardware-in-the-loop (HIL) simulator designed and built at UCLA that allows for real-time, systems-level tests of two formation control computer systems in a laboratory environment, using the Interstate Electronics Corporation GPS Satellite Constellation Simulator. The UCLA flight control software can be modified to accommodate satellite-system experiments using real-time software, GPS receivers, and inter-vehicle modem communication.

Combustion Research Laboratory
The Combustion Research Laboratory includes a resonant dump combustor for the study of hazardous waste incineration, mixing and combustion tunnels for study of emissions reduction in fuel injection systems, and several flat flame burners and flow reactors. There are also extensive optical diagnostic capabilities. For flight testing, facilities at NASA Dryden Flight Research Center are used.

Computational Fluid Dynamics Laboratory
The Computational Fluid Dynamics Laboratory has several medium-size Beowulf linux clusters for numerical simulation of transitional, turbulent, and high-speed compressible flows, with and without reaction, as well as the sound that they produce. The laboratory has access to supercomputers (large clusters of parallel processors on various platforms) at NSF PACI Centers and DoD High-Performance Computing Centers.

Fluid Mechanics Research Laboratory
The Fluid Mechanics Research Laboratory includes a full line of water tunnels equipped with various advanced transducers (MEMS-based sensors and actuators, particle image anemometer, laser Doppler anemometer, hot-wire anemometers) and data acquisition systems.

Fusion Technology Center
The Fusion Technology Center includes a number of state-of-the-art experimental facilities for conducting research in fusion engineering. The center includes experimental facilities for (1) liquid metal magnetohydrodynamic fluid flow, (2) thick and thin liquid metal systems exposed to intense particle and heat flux loads, and (3) metallic and ceramic material thermomechanics.

Heat Transfer Laboratories
The Heat Transfer Laboratories are used for experimental research on heat transfer and thermal hydraulics. The laboratories are equipped with several flow loops, high-current power supplies, high-frequency induction power supplies, holography and
hot-wire anemometry setups, and state-of-the-art data acquisition systems.

Materials Degradation Characterization Laboratory
The Materials Degradation Characterization Laboratory is used for the characterization of the degradation of high-strength metallic alloys and advanced composites due to corrosion and fatigue, determination of adverse effects of materials degradation on the strength of structural components, and for research on fracture mechanics and ultrasonic nondestructive evaluation.

Micro-Manufacturing Laboratory
The Micro-Manufacturing Laboratory is equipped with a fume hood, a clean air bench, an optical table, a DI water generator, dicing saw, plating setup with Dynatronix power supply, Wentworth probe stations, various microscopes such as Endo View and Hirox 3-D High-Scope System, full video imaging capability such as a Sony Digital Camera system, as well as L-Edit mask layout software. It is used for MEMS research and complements the HSSEAS Nanoelectronics Research Facility, the 8,500-square-foot class 100/1000 clean room where most micromachining steps are carried out.

Microsciences Laboratory
The Microsciences Laboratory is equipped with advanced sensors and imaging processors for exploring fundamental physical mechanisms in MEMS-based sciences.

Multifunctional Composites Laboratory
The Multifunctional Composites Laboratory provides equipment necessary to develop multifunctional nanocomposites and explore their applications by integrating technologies involving composites, nanomaterials, information, functional materials, biomimetics, and concurrent engineering. Some of the equipment in the laboratory includes an autoclave, a filament winder, a resin transfer molding machine, a waterjet cutting machine, a stereo lithography machine, a laminated object manufacturing machine, a coordinate measuring machine, a field emission scanning electron microscope, a scanning probe microscope, an FTIR, a rheometer, a thermal analysis system, an RCL analyzer, a microdielectric analyzer, an X-ray radiography machine, and a variety of mechanical testing machines.

Nanoscale Heat Transfer and Thermoelectrics Laboratory
The Nanoscale Heat Transfer and Thermoelectrics Laboratory (Nano-HTTL) is equipped with a scanning probe microscope (atomic force, scanning tunneling, scanning thermal, and scanning laser), infrared microscope with 4mm resolution, gas and solid-state lasers (argon, T-Sapphire, and semiconductor lasers) and optical systems, vacuum systems for low- to high-temperature property measurement (4 K-800 K), a probe station, various thin-film thermal conductivity and Seebeck coefficient measurement systems, analytical equipment, various computers for data acquisition, and an HP workstation for computational work.

Plasma and Beam Assisted Manufacturing Laboratory
The Plasma and Beam Assisted Manufacturing Laboratory is an experimental facility for the purpose of processing and manufacturing advanced materials by high-energy means (plasma and beam sources). It is equipped with plasma diagnostics, two vortex gas tunnel plasma guns, powder feeder and exhaust systems, vacuum and cooling equipment, high-power D.C. supplies (400kw), vacuum chambers, and large electromagnets. Current research is focused on ceramic coatings and nano-phase clusters for applications in thermal insulation, wear resistance, and high-temperature oxidation resistance.

Subsonic Wind Tunnel
The 3 x 3-foot Subsonic Wind Tunnel is used for research on unsteady aerodynamics on oscillating airfoils and instruction.

Thin Films, Interfaces, Composites, Characterization Laboratory
The Thin Films, Interfaces, Composites, Characterization Laboratory consists of a Nd:YAG laser of 1 Joule capacity with three ns pulse widths, a state-of-the-art optical interferometer including an ultra high-speed digitizer, sputter deposition chamber, 56 Kip-capacity servohydraulic biaxial test frame, walk-in freezer, polishing and imaging equipment for microstructural characterization for measurement and control study of thin film interface strength, NDE using laser ultrasound, de-icing of structural surfaces, and characterization of composites under multiaxial stress state.

Faculty Areas of Thesis Guidance

Professors
Mohamed A. Abdou, Ph.D. (Wisconsin, 1973) Fusion, nuclear, and mechanical engineering design, testing, and system analysis, thermomechanics, thermal hydraulics; neutrinoic, plasma-material interactions; blankets and high heat flux components; experiments, modeling and analysis
Oddvar O. Bendiksen, Ph.D. (UCLA, 1980) Classical and computational aeroelasticity; structural dynamics and unsteady aerodynamics
Gregory P. Carman, Ph.D. (Virginia Tech, 1991) Electromagnetoelasticty models, fatigue characterization of piezoelectric ceramics, magnetostriuctive composites, characterizing shape memory alloys, fiber-optic sensors, design of damage detection systems, micromechanical analysis of composite materials, experimentally evaluating damage in composites
Albert Carnesale, Ph.D. (North Carolina State, 1966) Issues associated with nuclear weapons and other weapons of mass destruction, energy policy, American foreign policy
Ivan Calton, Ph.D. (UCLA, 1986) Heat transfer and fluid mechanics, transport phenomena in porous media, nucleonics heat transfer and thermal hydraulics, natural and forced convection, thermal/hydrodynamic stability, turbulence
Jiun-Shyan (J-S) Chen, Ph.D. (Northwestern, 1989) Finite element methods, mesh free methods, large deformation mechanics, inelasticity, contact problems, structural dynamics
Yong Chen, Ph.D. (UC Berkeley, 1996) Nanoscale science and engineering, micro-and nano-fabrication, self-assembly phenomena, micro- and nano-scale electronic, mechanical, optical, biological, and sensing devices, circuits and systems
Vijay K. Dhir, Ph.D. (Kentucky, 1972) Two-phase heat transfer, boiling and condensation, thermal hydraulics of nuclear reactors, microgravity heat transfer, soil remediation, high-power density electronic cooling
Rajat Gadhi, Ph.D. (Carnegie Mellon, 1991) Mobile Internet, web-based product design, wireless and collaborative engineering, CAD/visualization
Nasr M. Ghoniem, Ph.D. (Wisconsin, 1977) Mechanical behavior of high-temperature materials, radiation interaction with material (e.g., laser, ions, plasma, electrons, and neutrrons), material processing by plasma and beam sources, physics and mechanics of material defects, fusion energy
James S. Gibson, Ph.D. (U.Texas, Austin, 1975) Control and identification of dynamical systems; optimal and adaptive control of distributed systems, including flexible structures and fluid flows; adaptive filtering, identification, and noise cancellation
Vijay Gupta, Ph.D. (MIT, 1989) Experimental mechanics, fracture of engineering solids, mechanics of thin film and interfaces, failure mechanisms and characterization of composite materials, ice mechanics
H. Thomas Hahn, Ph.D. (Pennsylvania State, 1971) Nanocomposites, multifunctional composites, nanomechanics, rapid prototyping, information systems
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christopher S. Lynch</td>
<td>Ph.D. (UC Santa Barbara, 1984)</td>
</tr>
<tr>
<td>Adrienne Lavine</td>
<td>Ph.D. (UC Berkeley, 1984)</td>
</tr>
<tr>
<td>Anthony F. Mills</td>
<td>Ph.D. (UC Berkeley, 1965)</td>
</tr>
<tr>
<td>Owen I. Smith</td>
<td>Ph.D. (UC Berkeley, 1977)</td>
</tr>
<tr>
<td>Jason Speyer</td>
<td>Ph.D. (Harvard, 1968)</td>
</tr>
<tr>
<td>Tsu-Chin Tsao</td>
<td>Ph.D. (UC Berkeley, 1988)</td>
</tr>
<tr>
<td>Daniel C.H. Yang</td>
<td>Ph.D. (Rutgers, 1982)</td>
</tr>
<tr>
<td>Xiuling Zhang</td>
<td>Ph.D. (Stanford, 1991)</td>
</tr>
<tr>
<td>Andrew F. Chanwat</td>
<td>Ph.D. (UC Berkeley, 1952)</td>
</tr>
<tr>
<td>Ann R. Karagozian</td>
<td>Ph.D. (Cal Tech, 1982)</td>
</tr>
<tr>
<td>Andrew F. Charwat</td>
<td>Ph.D. (UC Berkeley, 2002)</td>
</tr>
<tr>
<td>Chih-Ming Ho</td>
<td>Ph.D. (Johns Hopkins, 1974)</td>
</tr>
<tr>
<td>J. John Kim</td>
<td>Ph.D. (Stanford, 1978)</td>
</tr>
<tr>
<td>Owen I. Smith</td>
<td>Dr. Engr. (Johns Hopkins, 1955)</td>
</tr>
<tr>
<td>Richard Stern</td>
<td>Ph.D. (UCLA, 1964)</td>
</tr>
<tr>
<td>Lucien A. Schmit</td>
<td>Ph.D. (MIT, 1950)</td>
</tr>
<tr>
<td>Russell A. Westmann</td>
<td>Ph.D. (UC Berkeley, 1962)</td>
</tr>
<tr>
<td>Pei-Yu Chiou</td>
<td>Ph.D. (UC Berkeley, 2005)</td>
</tr>
<tr>
<td>Jeff D. Eldredge</td>
<td>Ph.D. (Cal Tech, 2002)</td>
</tr>
<tr>
<td>Yu Chiu</td>
<td>Ph.D. (UC Berkeley, 2005)</td>
</tr>
<tr>
<td>Xiaolin Zhong</td>
<td>Ph.D. (Stanford, 2001)</td>
</tr>
</tbody>
</table>

Professors Emeriti

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann R. Karagozian</td>
<td>Ph.D. (Cal Tech, 1982)</td>
</tr>
<tr>
<td>J. John Kim</td>
<td>Ph.D. (Stanford, 1978)</td>
</tr>
<tr>
<td>Owen I. Smith</td>
<td>Dr. Engr. (Johns Hopkins, 1955)</td>
</tr>
<tr>
<td>Richard Stern</td>
<td>Ph.D. (UCLA, 1964)</td>
</tr>
<tr>
<td>Lucien A. Schmit</td>
<td>Ph.D. (MIT, 1950)</td>
</tr>
<tr>
<td>Russell A. Westmann</td>
<td>Ph.D. (UC Berkeley, 1962)</td>
</tr>
</tbody>
</table>

Assistant Professors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pei-Yu Chiu</td>
<td>Ph.D. (UC Berkeley, 2005)</td>
</tr>
<tr>
<td>Yu Chiu</td>
<td>Ph.D. (UC Berkeley, 2005)</td>
</tr>
<tr>
<td>Xiaolin Zhong</td>
<td>Ph.D. (Stanford, 2001)</td>
</tr>
</tbody>
</table>

Adjoint Professors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leslie M. Lackman</td>
<td>Ph.D. (UC Berkeley, 1967)</td>
</tr>
<tr>
<td>Neil B. Morley</td>
<td>Ph.D. (UCLA, 1994)</td>
</tr>
<tr>
<td>Raymond Viskanta</td>
<td>Ph.D. (Purdue, 1960)</td>
</tr>
<tr>
<td>Xiang Zhang</td>
<td>Ph.D. (UC Berkeley, 1996)</td>
</tr>
<tr>
<td>Emilio Frazzoli</td>
<td>Ph.D. (MIT, 2001)</td>
</tr>
</tbody>
</table>

Adjunct Assistant Professor

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew F. Chanwat</td>
<td>Ph.D. (UC Berkeley, 1952)</td>
</tr>
<tr>
<td>Ann R. Karagozian</td>
<td>Ph.D. (Cal Tech, 1982)</td>
</tr>
<tr>
<td>J. John Kim</td>
<td>Ph.D. (Stanford, 1978)</td>
</tr>
<tr>
<td>Owen I. Smith</td>
<td>Dr. Engr. (Johns Hopkins, 1955)</td>
</tr>
<tr>
<td>Richard Stern</td>
<td>Ph.D. (UCLA, 1964)</td>
</tr>
<tr>
<td>Lucien A. Schmit</td>
<td>Ph.D. (MIT, 1950)</td>
</tr>
<tr>
<td>Russell A. Westmann</td>
<td>Ph.D. (UC Berkeley, 1962)</td>
</tr>
<tr>
<td>Pei-Yu Chiou</td>
<td>Ph.D. (UC Berkeley, 2005)</td>
</tr>
<tr>
<td>Yu Chiu</td>
<td>Ph.D. (UC Berkeley, 2005)</td>
</tr>
<tr>
<td>Xiaolin Zhong</td>
<td>Ph.D. (Stanford, 2001)</td>
</tr>
</tbody>
</table>

Lecturers

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ravneesh Amar</td>
<td>Ph.D. (UCLA, 1974)</td>
</tr>
<tr>
<td>C.H. Chang</td>
<td>M.S. (UCLA, 1985)</td>
</tr>
<tr>
<td>Amy C. Chien</td>
<td>Ph.D. (UC Berkeley, 1977)</td>
</tr>
<tr>
<td>Wilbur J. Marner</td>
<td>Ph.D. (South Carolina, 1969)</td>
</tr>
<tr>
<td>Alexander Samson</td>
<td>Ph.D. (U. New South Wales, 1968)</td>
</tr>
</tbody>
</table>

Emeritus

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rudolf X. Meyer</td>
<td>Ph.D. (Johns Hopkins, 1955)</td>
</tr>
<tr>
<td>E. C. Smith</td>
<td>Ph.D. (UCLA, 1949)</td>
</tr>
<tr>
<td>David Okrent</td>
<td>Ph.D. (Harvard, 1951)</td>
</tr>
<tr>
<td>Philip F. O’Brien</td>
<td>M.S. (UCLA, 1949)</td>
</tr>
<tr>
<td>Richard Stern</td>
<td>Ph.D. (UCLA, 1964)</td>
</tr>
<tr>
<td>Russell A. Westmann</td>
<td>Ph.D. (UC Berkeley, 1962)</td>
</tr>
<tr>
<td>Pei-Yu Chiou</td>
<td>Ph.D. (UC Berkeley, 2005)</td>
</tr>
<tr>
<td>Yu Chiu</td>
<td>Ph.D. (UC Berkeley, 2005)</td>
</tr>
<tr>
<td>Xiaolin Zhong</td>
<td>Ph.D. (Stanford, 2001)</td>
</tr>
</tbody>
</table>

Adjunct Professors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leslie M. Lackman</td>
<td>Ph.D. (UC Berkeley, 1967)</td>
</tr>
<tr>
<td>Neil B. Morley</td>
<td>Ph.D. (UCLA, 1994)</td>
</tr>
<tr>
<td>Raymond Viskanta</td>
<td>Ph.D. (Purdue, 1960)</td>
</tr>
<tr>
<td>Xiang Zhang</td>
<td>Ph.D. (UC Berkeley, 1996)</td>
</tr>
<tr>
<td>Emilio Frazzoli</td>
<td>Ph.D. (MIT, 2001)</td>
</tr>
</tbody>
</table>

Adjunct Assistant Professor

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew F. Chanwat</td>
<td>Ph.D. (UC Berkeley, 1952)</td>
</tr>
<tr>
<td>Ann R. Karagozian</td>
<td>Ph.D. (Cal Tech, 1982)</td>
</tr>
<tr>
<td>J. John Kim</td>
<td>Ph.D. (Stanford, 1978)</td>
</tr>
<tr>
<td>Owen I. Smith</td>
<td>Dr. Engr. (Johns Hopkins, 1955)</td>
</tr>
<tr>
<td>Richard Stern</td>
<td>Ph.D. (UCLA, 1964)</td>
</tr>
<tr>
<td>Lucien A. Schmit</td>
<td>Ph.D. (MIT, 1950)</td>
</tr>
<tr>
<td>Russell A. Westmann</td>
<td>Ph.D. (UC Berkeley, 1962)</td>
</tr>
<tr>
<td>Pei-Yu Chiou</td>
<td>Ph.D. (UC Berkeley, 2005)</td>
</tr>
<tr>
<td>Yu Chiu</td>
<td>Ph.D. (UC Berkeley, 2005)</td>
</tr>
<tr>
<td>Xiaolin Zhong</td>
<td>Ph.D. (Stanford, 2001)</td>
</tr>
</tbody>
</table>
Upper Division Courses

101. Statics and Strength of Materials. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: Mathematics 31A, 31B, Physics 1A. Review of vector representation of forces, resultant force, moment of a force, concurrent and nonconcurrent forces. Determine and indeterminate force systems. Area moments and products of inertia. Support reactions and free-body diagrams for simple mechanisms and aerospace structures. Students use one or more online computer systems to design and display various objects. Letter grading. Ms. Yang (F,Sp)

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower division students under guidance of faculty mentor. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.

Lower Division Courses

10. Introduction to Mechanical and Aerospace Engineering (101AL), lecture, two hours; tutorial or lab, two hours; outside study, six hours. Requisites: Mathematics 32B, 33A, Physics 1A. Fundamentals of Newtonian mechanics. Kinematics and kinetics of particles and rigid bodies in two and three dimensions. Impulse-momentum and work-energy relationships. Applications. Letter grading. Mr. Klug (F,W,Sp)

102. Dynamics of Particles and Rigid Bodies. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course 101, Mathematics 33A, Physics 1A. Fundamental concepts of Newtonian mechanics. Kinematics and kinetics of particles and rigid bodies in two and three dimensions. Impulse-momentum and work-energy relationships. Applications. Letter grading. Mr. Mal (F,W,Sp)

133AL. Power Conversion Thermodynamics Laboratory. (4) Laboratory, eight hours; outside study, four hours. Requisites: courses 133A, 133AL. Thermal hydraulic design, maintenance, and operation of power systems, steam turbines, centrifugal refrigeration units, absorption refrigeration units, compressors, valves and piping systems and instrumentation and control systems. Letter grading. Mr. Catton (Sp)

1.335. Fundamentals of Nuclear Science and Engineering. (4) Lecture, four hours; outside study, eight hours. Requisites: Chemistry 33A, Mathematics 33B. Review of nuclear physics, radioactivity and decay, and radiation interaction with matter. Nuclear fission and fusion processes and mass defect, chain reactions, criticality, and reactor calculations. Letter grading. Mr. Morley (F)

136. Energy and Environment. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 105D, 133A. Global energy use and supply, electric power generation, fossil fuel and nuclear power plants, renewable energy such as hydropower, biomass, geothermal, solar, wind, and ocean, fuel cells, transportation, energy conservation, air and water pollution, control systems. Letter grading. Mr. Mills (W)

CM140. Introduction to Biomechanics. (4) (Same as Biomedical Engineering CM140). Lecture, four hours; outside study, two hours; outside study, six hours. Requisites: courses 101, 102, 156A. Introduction to the mechanical functions of human body; skeletal adaptations to optimize load transfer, mobility, and function. Dynamics and kinematics. Fluid mechanics applications. Heat and mass transfer. Power generation. Laboratory simulations and tests. Concurrently scheduled with course CM240. Letter grading. Mr. Gupta (W)

150B. Aerodynamics. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 103, 150A. Advanced aspects of potential flow theories. Incompressible flow around thin aerofoil (lift and moment coefficients) and wings (lift, induced drag). Gas dynamics: oblique shocks, Prandtl/Meyer expansion. Linearized subsonic and supersonic flow around thin aerofoil and wings. Wave drag. Transonic flow. Letter grading. Mr. Zhong (Sp)

102.

Mr. M. Closkey (FW, Sp)

Mr. M. Closkey (FW, Sp)

Mr. T. Tsao (Sp)

172. Control System Design Laboratory. (4) Laboratory, eight hours; outside study, four hours. Requisite: course 171A. Application of frequency domain design techniques for control of mechanical systems. Successful control designer requires students to formulate performance measures for control problem, experimentally identify mechanical systems, and develop uncertainty descriptions for design models. Exploration of issues concerning model uncertainty and sensor/actuator placement. Students implement control designs on flexible structures, rate gyroscope, and inverted pendulum. Detailed reports required. Letter grading.

Mr. M. Closkey (W)

174. Probability and Its Applications to Risk, Reliability, and Quality Control. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Introduction to probability theory; random variables, distributions, functions of random variables, models of failure of components, reliability, redundancy, complex systems, stress-strength models, fault tree analysis, statistical quality control by variables and by attributes, acceptance sampling. Letter grading.

Ms. Lavine (W)

181A. Complex Analysis and Integral Transforms. (4) Formerly numbered 191A.) Lecture, four hours; outside study, eight hours. Requisite: course 182A. Complex variables, analytic functions, conformal mappings, integral transforms, applications. Letter grading.

Mr. C. J. Kim (F)

Mr. W. Golshani (W)

Mr. Eldredge, Mr. J. Kim (Sp)

Mr. Zhong (F)

Mr. Hahn, Mr. C. J. Kim (F, Sp)

184. Introduction to Geometry Modeling. (4) Formerly numbered 194.) Laboratory, eight hours; outside study, four hours. Recommended: M180L. Fundamentals in parametric curve and surface modeling, parametric spaces, blending functions, conics, splines and Bezier curve, coordinate transformations, affine and projective forms. Surface analysis. Geometric properties of curve and surface, hands-on experience with CAD/CAM systems design and implementation. Letter grading.

Mr. Gadh (W)

185. Computer Numerical Control: Self-Applications. (4) Formerly numbered 195.) Laboratory, eight hours; outside study, four hours. Designed for juniors/seniors. Fundamentals of numerical control (NC) technology. Programming of computer-numerical-control (CNC) machine tools, the use of an NC part program in an APT language and with CAD/CAM systems. NC postprocessors and distributed numerical control. Operation of NC lathe and milling machines, programming and machining of complex engineering parts. Letter grading.

Mr. Yang (Sp)

Mr. Chiou (F)

C187L. Nanoscale Fabrication, Characterization, and Biodetection Laboratory. (4) Lecture, two hours; laboratory, two hours; outside study, eight hours. Multidisciplinary course introduces laboratory techniques of nanoscale fabrication, characterization, and biodetection. Basic physical, chemical, and biological principles related to these techniques, top-down and bottom-up (self-assembly) nanofabrication, nanocharacterization (AEM, SEM, etc.), and optical and electrochemical biosensors. Students encouraged to create and build their own ideas in self-designed experiments. Concurrently scheduled with course C287L. Letter grading.

Mr. Chen (Sp)

188. Special Courses in Mechanical and Aerospace Engineering. (2 to 4) (Formerly numbered 188.) Lecture, two to four hours; outside study, four to eight hours. Special topics in mechanical and aerospace engineering for undergraduate students that are taught on experimental or temporary basis, such as: Fatigue, failure by resistance. May be repeated once for credit with topic or instructor change. P/NC or letter grading.

194. Research Group Seminars: Mechanical and Aerospace Engineering. (2 to 4) Seminar, two hours. Designed for undergraduate students who are part of research group. Discussion of research methods and current literature in field. Student presentation of projects in research specialty. May be repeated for credit. P/NC or letter grading.
Graduate Courses

231B. Radiation Heat Transfer. (4) Lecture, four hours; outside study, eight hours. Requisite: course 105D. Radiative properties of materials and radiative energy transfer. Emphasis on fundamental concepts, including energy levels and electromagnetic waves as well as analytical methods for calculating radiative properties and radiation transfer in absorbing, emitting, and scattering media. Applications of laser-material interactions in addition to traditional areas such as combustion and thermal insulation. Letter grading. Mr. Pilon (W)

231C. Phase Change Heat Transfer and Two-Phase Flow. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 131A, 150A. Two-phase flow, boiling, and condensation. Generalized constitutive equations for two-phase flow. Phenomenological theories of boiling and condensation, including forced flow effects. Letter grading. Mr. Catton (F)

231G. Microscopic Energy Transport. (4) Lecture, four hours; outside study, eight hours. Requisite: course 105D. Heat carriers (photons, electronics, phonons, molecules) and their energy characteristics, statistical properties of heat carriers, scattering and propagation of heat carriers, Boltzmann transport equations, derivation of classical laws from Boltzmann transport equations, deviation from classical laws at small scale. Letter grading. Mr. Ju (Sp)

235A. Nuclear Reactor Theory. (4) Lecture, four hours; outside study, eight hours. Requisite: course 182A. Underlying physics and mathematics of nuclear reactor (fission) core design. Diffusion theory, reactor kinetics, slowing down and thermalization, multigroup methods, introduction to transport theory. Letter grading. Mr. Abdou (W)

239B. Seminar: Current Topics in Transport Phenomena. (2 to 4) Seminar, two to four hours; outside study, four to eight hours. Designed for graduate mechanical and aerospace engineering students. Lectures, discussions, student presentations, and projects in areas of current interest in transport phenomena. May be repeated for credit. S/U grading.

239F. Special Topics in Transport Phenomena. (2 to 4) Lecture, two to four hours; outside study, four to eight hours. Designed for graduate mechanical and aerospace engineering students. Advanced and current study of one or more aspects of heat and mass transfer, such as turbulence, stability and transition, buoyancy effects, variational methods, and measurement techniques. May be repeated for credit with topical change. S/U grading.

239G. Special Topics in Nuclear Engineering. (2 to 4) Lecture, two to four hours; outside study, four to eight hours. Designed for graduate mechanical and aerospace engineering students. Advanced and current study of one or more aspects of heat and mass transfer, such as reactor safety, risk-benefit trade-offs, nuclear materials, and reactor design. May be repeated for credit with topical change. S/U grading.

239H. Special Topics in Fusion Physics, Engineering, and Technology. (2 to 4) Seminar, two to four hours; outside study, four to eight hours. Designed for graduate mechanical and aerospace engineering students. Advanced and current study of one or more aspects of heat and mass transfer, such as reactor safety, risk-benefit trade-offs, nuclear materials, and reactor design. May be repeated for credit with topical change. S/U grading.

CM240. Introduction to Biomechanics. (4) (Same as Biomedical Engineering CM240.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: courses 101, 102, 156A. Introduction to mechanical functions of human body; skeletal adaptations to optimize load transfer, mobility, and function. Dynamics and kinematics. Fluid mechanics applications. Heat and mass transfer. Power generation. Laboratory simulations and tests. Concurrently scheduled with course CM140. Letter grade only. Mr. Gupta (W)

250A. Foundations of Fluid Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 150A. Corequisite: course 182B. Development and application of fundamental principles of fluid mechanics at graduate level, with emphasis on incompressible flow. Flow kinematics, basic equations, constitutive relations, exact solutions on the Navier/Stokes equations, vorticity dynamics, decomposition of flow fields, potential flow. Letter grading. Mr. Eldredge, Mr. J. Kim (F)

250B. Viscous and Turbulent Flows. (4) Lecture, four hours; outside study, eight hours. Requisite: course 150A. Fundamental principles of fluid dynamics applied to study of fluid resistance. States of fluid motion discussed in order of advancing Reynolds number; wakes, boundary layers, instability, transition, and turbulent shear layers. Letter grading. Ms. Karagozian, Mr. J. Kim (W)

250C. Compressible Flows. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 150A, 150B. Effects of compressibility in viscous and inviscid flows. Steady and unsteady inviscid subsonic and supersonic flows; method of characteristics; small disturbance theories (linearized and hypersonic); shock dynamics. Letter grading.

Mr. Karagozian, Mr. Zhong (Sp)

250E. Spectral Methods in Fluid Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 182A, 182B, 250A, 250B. Introduction to basic concepts and techniques of various spectral methods applied to solving partial differential equations. Particular emphasis on techniques of solving unsteady three-dimensional Navier/Stokes equations. Topics include spectral representation of functions, discrete Fourier transform, etc. Letter grading.

Mr. J. Kim (Sp, alternate years)

250F. Hypersonic and High-Temperature Gas Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisites: course 250C. Molecular and chemical description of equilibrium and nonequilibrium hypersonic flows. Chemical thermodynamics of real gases, chemical thermodynamics and statistical thermodynamics for calculation of gas properties, equilibrium of real gases, vibrational and chemical rate processes, nonequilibrium flows of real gases, and computational fluid dynamics methods for nonequilibrium hypersonic flows. Letter grading. Mr. Zhong (W)

252A. Stability of Fluid Motion. (4) Lecture, four hours; outside study, eight hours. Requisite: course 150A. Mechanisms by which laminar flows can become unstable and lead to turbulence of secondary motions. Linear stability theory; thermal, centrifugal, and shear instabilities; boundary layer instability. Nonlinear aspects: sufficient criteria for stability, subcritical instabilities, supercritical transition to turbulence. Letter grading. Mr. Zhong (W, odd years)

252B. Turbulence. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 250A, 250B. Characteristics of turbulent flows, conservation and transport equations, statistical description of turbulent flows, scales of turbulent motion, simple turbulent flows, free-shear flows, wall-bounded flows, turbulence modeling, numerical simulations of turbulent flows, and turbulence control. Letter grading. Mr. J. Kim (Sp)

252D. Combustion Rate Processes. (4) Lecture, four hours; outside study, eight hours. Requisite: course 252C. Basic concepts in chemical kinetics: molecular reaction mechanisms; reaction coordinates; activation energy, temperature dependence, and entropy; chemical equilibrium; numerical methods for calculation of reaction rate constants.

253A. Advanced Engineering Acoustics. (4) Lecture, four hours; outside study, eight hours. Advanced studies in engineering acoustics, including three-dimensional wave propagation; propagation in bounded media; Ray acoustics; attenuation mechanisms in fluids. Letter grading. Mr. Eildridge

254A. Special Topics in Aerodynamics. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 150A, 150B, 182A, 182B, 182C. Special topics of current interest in advanced aerodynamics. Examples include transonic flow, hypersonic flow, sonic booms, and unsteady aerodynamics. Letter grading. Mr. Zhong

255A. Advanced Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 155, 169A. Variational principles and Lagrange equations. Kinematics and dynamics of rigid bodies; process and rotation of spinning bodies. Letter grading. Mr. Gibson (W)

255B. Mathematical Methods in Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 255A. Concepts of stability; state-space interpretation; stability determination by simulation, linearization, and Lyapunov direct method; the Hamiltonian as a Lyapunov function; nonautonomous systems; averaging and perturbation methods of nonlinear analysis; parametric excitation and nonlinear resonance. Application to mechanical systems. Letter grading. Mr. M'Closkey (Sp, odd years)

M256A. Linear Elasticity. (4) (Same as Civil Engineering M230A.) Lecture, four hours; outside study, eight hours. Requisite: course 156A or 166A. Linear elastostatics. Constitutive relations; infinitesimal strain tensor; Cauchy stress tensor; strain energy; equilibrium equations; linear constitutive relations; plane elastostatic problems, holes, corners, inclusions, cracks; three-dimensional problems of Kelvin, Boussinesq, and Cerruti. Introduction to boundary integral equation method. Letter grading. Mr. Mal (F)

M256B. Nonlinear Elasticity. (4) (Same as Civil Engineering M230B.) Lecture, four hours; outside study, eight hours. Requisite: course M256A. Kinematics of deformation, material and spatial coordinates, deformation gradient tensor, nonlinear and linear strain tensors, strain displacement relations; balance laws, Cauchy and Piola stresses, Cauchy equations of motion, balance of energy, stored energy; constitutive relations, elasticity, hyperelasticity, thermoelasticity; linearization of field equations; solution of selected problems. Letter grading. Mr. Dong, Mr. Mal (W)

256F. Analytical Fracture Mechanics. (4) Lecture, four hours; outside study, eight hours. Requisite: course M256A. Review of modern fracture mechanics, elementary stress analyses; analytical and numerical methods for calculation of crack tip stress intensity factors; engineering applications in stiffened structures, pressure vessels, plates, and shells. Letter grading. Mr. Gupta (Sp)

M257A. Elastodynamics. (4) (Same as Earth and Space Sciences M224A.) Lecture, four hours; outside study, eight hours. Requisites: courses M256A, M256B. Equations of linear elasticity, Cauchy equation of motion, constitutive relations, boundary and initial conditions, principle of energy. Sources and waves in unbounded isotropic, anisotropic, and dissipative solids. Half-space problems. Guided waves in layered media. Applications to dynamic fracture, nondestructive evaluation (NDE), and mechanics of earthquakes. Letter grading. Mr. Mal (Sp)

258A. Nanomechanics and Micromechanics. (4) Lecture, four hours; outside study, eight hours. Requisite: course M256A. Analytical and computational modeling methods to describe mechanics of materials at scales ranging from atomic to microstructure and transitional and up to continuum. Discussion of classical mechanics, molecular dynamics, Langevin dynamics, and kinetic Monte Carlo and their applications at nanoscale. Development of application of dislocation dynamics and statistical mechanics methods in areas of nanostructure and microstructure self-organization, heterogeneous plastic deformation, material instabilities, and failure phenomena. Presentation of existing applications of these emerging modeling techniques to surfaces and interfaces, grain boundaries, dislocations and defects, surface growth, quantum dots, nanotubes, nanocounters, thin films (e.g., optical thermal barrier coatings and ultrasonar nanolayer materials), nano-identification, smart, active materials, nanobonding and microbonding, and torsion. Letter grading. Mr. Ghoniem (F)

259A. Seminar: Advanced Topics in Fluid Mechanics. (4) Seminar, four hours; outside study, eight hours. Advanced study of topics in fluid mechanics, with intensive student participation involving assignments in research problems leading to term paper or oral presentation (possible help from guest lecturers). Letter grading. Mr. Smith (Sp)

259B. Seminar: Advanced Topics in Solid Mechanics. (4) Seminar, four hours; outside study, eight hours. Advanced study of topics in solid mechanics, with intensive student participation involving assignments in research problems leading to term paper or oral presentation (possible help from guest lecturers). Letter grading. Mr. Smith (Sp)

260. Current Topics in Mechanical Engineering. (2 to 4) Seminar, two to four hours; outside study, four to eight hours. Designed for graduate mechanical and aerospace engineering students. Lectures, discussions, and student presentations and projects in areas of current interest in mechanical engineering. May be repeated for credit. S/U grading.

262. Mechanics of Intelligent Material Systems. (4) Lecture, four hours; outside study, eight hours. Recommended requisite: course 166C. Constitutive relations for electro-magneto-mechanical materials. Fiber-optic sensor technology. Micro/macro analysis, including classical lamé, Fzlotzky, Ko-theory, concentric cylinder analysis, hexagonal models, and homogenization techniques as they apply to active materials. Active systems design, inch-worm, and biomorph. Letter grading. Mr. Carman (W)

263A. Analytical Foundations of Motion Controllers. (4) Lecture, four hours; outside study, eight hours. Recommended requisite: courses 163A, 294. Theory of motion control for modern computer- controlled machines; multiaxis computer-aided design (CAD) and computer-aided manufacturing (CAM); dynamics, kinematics, and multiaxis motion coordination; coordinated motion with desired speed and acceleration; jerk analysis; motor speed command generation; theory and design of controller interpolators; motion trajectory design and analysis; geometric-speed-sampling time relationships. Letter grading. Mr. Yang (W)

263B. Spacecraft Dynamics. (4) Lecture, four hours; outside study, eight hours. Requisite: course 255A. Recommended: course 255B. Modeling, dynamics, and stability of spacecraft; spinning and dual-spacecraft dynamics, Lagrange equations, resonances, spinning rocket dynamics; environmental torques in space, modeling and model reduction of flexible space structures. Letter grading. Mr. Yang (W)

265C. Mechanics and Trajectory Planning of Industrial Robots. (4) Lecture, four hours; outside study, eight hours. Requisite: course 163A. Theory and implementation of industrial robots. Design considerations. Kinematic structure modeling, trajectory planning, and system dynamics. Differential motion and static forces. Individual student study projects. Letter grading. Mr. Yang (W)

265D. Advanced Robotics. (4) Lecture, four hours; outside study, eight hours. Recommended preparation: courses 155, 171A, 263C. Motion planning and control of articulated dynamic systems: nonlinear joint control, experiments in joint control and multiaxes coordination, multibody dynamics, trajectory planning, motion optimization, dynamic performance and manipulator design, kinematic redundancies, motion planning of manipulators in space, obstacle avoidance. Letter grading. Mr. Hahn (Sp)

269B. Advanced Dynamics of Structures. (4) Lecture, four hours; outside study, eight hours. Requisite: course M269A. Analysis of linear and nonlinear response of structures to dynamic loadings. Stresses and deflections in structures. Structural damping and self-induced vibrations. Letter grading. Mr. Bendiksen (Sp, alternate years)
M270A. Linear Dynamic Systems. (4) (Same as Chemical Engineering M280A and Electrical Engineering M240A.) Lecture, four hours; outside study, eight hours. Requisite: course M270A or Chemical Engineering M280A or Electrical Engineering M240A. Existence and uniqueness of solutions to linear quadratic (LQ) optimal control problems for continuous-time and discrete-time linear systems; finite-time and infinite-time problems; Hamiltonian systems and optimal control; algebraic and differential Riccati equations; implications of controllability, observability, and detectability for stability and response of structural systems. Letter grading. Mr. Bendiksen (F, alternate years)

M270C. Optimal Control. (4) (Same as Chemical Engineering M280C and Electrical Engineering M240C.) Lecture, four hours; outside study, eight hours. Requisite: course 270B. Applications of variational methods, Pontryagin maximum principle, Hamilton/Jacobi/Bellman equation (dynamic programming) to optimal control of dynamic systems modeled by nonlinear ordinary differential equations. Letter grading. Mr. Gibson (F)

M271B. Stochastic Estimation. (4) Lecture, four hours; outside study, eight hours. Requisite: course 271A. Linear and nonlinear estimation theory, orthogonal projection lemma, Bayesian filtering theory, conditional mean and risk estimators. Letter grading. Mr. Spyer (W)

M271C. Stochastic Optimal Control. (4) Lecture, four hours; outside study, eight hours. Requisite: course 271B. Stochastic dynamic programming, certainty equivalence principle, separation theorem, information statistics; linear-quadratic-Gaussian problem, linear-exponential-Gaussian problem. Relationship between stochastic control and robust control. Letter grading. Mr. Spyer (Sp)

M271D. Seminar: Special Topics in Dynamic Systems Control. (4) Seminar, four hours; outside study, eight hours. Seminar on current research topics in dynamic systems modeling, control, and applications. Topics selected from process control, differential games, nonlinear estimation, adaptive filtering, industrial and aerospace applications, etc. Letter grading. Mr. Spyer

M272A. Nonlinear Dynamic Systems. (4) (Same as Chemical Engineering M282A and Electrical Engineering M242A.) Lecture, four hours; outside study, eight hours. Requisite: course M270A or Chemical Engineering M280A or Electrical Engineering M240A. State-space techniques for studying solutions of time-invariant and time-varying nonlinear dynamic systems with emphasis on stability, Lyapunov theory (including converse theorems), invariance, center manifold theorem, input-to-state stability and small-gain theorem. Letter grading. Mr. Gibson (F)

273A. Robust Control System Analysis and Design. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 171A, M270A. Graduate-level introduction to analysis and design of multi-variable control systems. Multivariable loop-shaping, performance/robustness analysis, model uncertainty, realizations and robustness covered in detail from frequency-domain perspective. Structured singular value and its application to controller synthesis. Letter grading. Mr. M’Closkey (Sp)

275A. System Identification. (4) Lecture, four hours; outside study, eight hours. Methods for identification of dynamical systems from input/output data, with emphasis on identification of discrete-time (digital) models. Use of digital conversion of continuous-time system models. Development of software to perform identification of flexible structures, microelectromechanical systems (MEMS) devices, and acoustic ducts. Letter grading. Mr. C-chun (Sp)

M276. Dynamic Programming. (4) (Same as Electrical Engineering M237.) Lecture, four hours; outside study, eight hours. Recommended requisite: Electrical Engineering 232A or 236A or 236B. Introduction to multi-objective optimization, control synthesis, Markov decision processes, combinatorial optimization, communications. Letter grading. Mr. M’Closkey (Sp)

277. Advanced Digital Control for Mechatronic Systems. (4) Lecture, four hours; laboratory, two hours; outside study, six hours. Requisites: courses 171B, M270A. Digital signal processing and control analysis of mechatronic systems. System inversion-based digital control algorithms and robustness properties, Yosida parameterization of stabilizing controllers, previewed optimal feedforward compensator, repetitive and learning control, and adaptive control. Real-time control investigation of topics to selected mechatronic systems. Letter grading. Mr. Tsao (W)

CM280A. Introduction to Micromachining and Microelectromechanical Systems (MEMS). (4) (Formerly numbered M280B.) (Same as Biomedical Engineering CM250A and Electrical Engineering M252.) Lecture, four hours; outside study, eight hours. Introduction to MEMS design. Design methods, design rules, sensing and actuation mechanisms, and stress analysis of MEMS to be produced with both foundry and nonfoundry processes. Computer-aided design for MEMS. Design project required. Letter grading. Mr. Chou (Sp)

M282B. Microelectromechanical Systems (MEMS) Device Physics and Design. (4) (Same as Biomedical Engineering CM252B and Electrical Engineering M252L.) Lecture, four hours; outside study, eight hours. Introduction to MEMS design. Design methods, design rules, sensing and actuation mechanisms, and stress analysis of MEMS to be produced with both foundry and nonfoundry processes. Computer-aided design for MEMS. Design project required. Letter grading. Mr. Ho, M’Closkey (Sp)

M282B. Microelectromechanical Systems (MEMS) Fabrication. (4) (Same as Biomedical Engineering M250B and Electrical Engineering M250L.) Lecture, three hours; discussion, one hour; outside study, eight hours. Enforced requisite: course CM180 or CM280A. Advanced discussion of micromachining processes used to construct MEMS. Coverage of materials, lithographic, deposition, and etch processes, as well as their combination in process integration. Materials issues such as chemical resistance, corrosion, mechanical properties, and residual/intrinsic stress. Letter grading. Mr. C-J. Kim (Sp)

CM280L. Introduction to Micromachining and Microelectromechanical Systems (MEMS) Laboratory. (2) (Formerly numbered 280L.) (Same as Biomedical Engineering CM250L and Electrical Engineering M252L.) Lecture, four hours; outside study, one hour. Requisites: Chemistry 20A, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Corequisite: course CM280A. Hands-on introduction to micromachining technologies and microelectromechanical systems (MEMS) laboratory. Methods of micromachining and how these methods can be used to produce variety of MEMS, including microstructures, microsensors, and microactuators. Students go through process of fabricating MEMS device. Concurrently scheduled with course CM180L. Letter grading. Mr. C-J. Kim (F)

281. Microsciences. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 131A, 150A. Basic science issues in micro domain. Topics include micro fluid science, microscale heat transfer, mechanical behavior of microstructure, as well as dynamics and control of micro devices. Letter grading. Mr. Ho, M’Closkey (Sp, alternate years)

283. Experimental Mechanics for Microelectromechanical Systems (MEMS). (4) Lecture, four hours; outside study, eight hours. Methods, techniques, and philosophies being used to characterize microelectromechanical systems and applications. Material characterization, mechanical/material properties, mechanical characterization. Topics include fundamentals of crystallography, anisotropic material properties, and mechanical behavior of microstructure (e.g. strength/ fracture/fatigue) as they relate to microscale. Considerable emphasis on emerging experimental approaches to assess design-relevant mechanical properties. Letter grading. Mr. Carman (Sp, alternate years)

284. Sensors, Actuators, and Signal Processing. (4) Lecture, four hours; outside study, eight hours. Principles and performance of micro transducers. Applications of using unique properties of micro transducers for distributed and real-time control of engineering problems. Associated signal processing requirements for these applications. Letter grading. Mr. Ho (W, alternate years)

285. Interfacial Phenomena. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 103, 105A, 105D, 182A. Introduction to fundamental physical phenomena occurring at interfaces and application of their knowledge to engineering problems. Fundamental concepts of interfacial phenomena, including surface tension, surfactants, interfacial thermodynamics, interfacial hydrodynamics, and dynamics of triple line. Presentation of various applications, including wetting, change of phase (boiling and condensation), forms and emulsions, microelectromechanical systems and biological systems. Letter grading. Mr. Milon (F)

269D. Aeroelastic Effects in Structures. (4) Lecture, four hours; outside study, eight hours. Requisite: course M269A. Presentation of field of aeroelasticity from applied fluid mechanics to flight-structure-suspension bridges, buildings, and other structures. Derivation of aeroelastic operators and unsteady airloads from governing variational principles. Flow-induced instability and response of structural systems. Letter grading. Mr. Bendiksen (F, alternate years)

270B. Linear Optimal Control. (4) Lecture, four hours; outside study, eight hours. Requisite: course M270A or Electrical Engineering M240A. Existence and uniqueness of solutions to linear quadratic (LQ) optimal control problems for continuous-time and discrete-time linear systems; finite-time and infinite-time problems; Hamiltonian systems and optimal control; algebraic and differential Riccati equations; implications of controllability, observability, and detectability for stability and response of structural systems. Letter grading. Mr. Gibson (F)

271B. Stochastic Estimation. (4) Lecture, four hours; outside study, eight hours. Requisite: course 271A. Linear and nonlinear estimation theory, orthogonal projection lemma, Bayesian filtering theory, conditional mean and risk estimators. Letter grading. Mr. Spyer (W)

271C. Stochastic Optimal Control. (4) Lecture, four hours; outside study, eight hours. Requisite: course 271B. Stochastic dynamic programming, certainty equivalence principle, separation theorem, information statistics; linear-quadratic-Gaussian, linear-exponential-Gaussian problem. Relationship between stochastic control and robust control. Letter grading. Mr. Spyer (Sp)

271D. Seminar: Special Topics in Dynamic Systems Control. (4) Seminar, four hours; outside study, eight hours. Seminar on current research topics in dynamic systems modeling, control, and applications. Topics selected from process control, differential games, nonlinear estimation, adaptive filtering, industrial and aerospace applications, etc. Letter grading. Mr. Spyer

CM250A. Fundamentals of Crystallography, Anisotropic Material Properties. (4) Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: Chemistry 20A, 20L, Physics 1A, 1B, 1C, 4AL, 4BL. Corequisite: course CM280L. Introduction to micromachining technologies and microelectromechanical systems (MEMS). Methods of micromachining and how these methods can be used to produce variety of MEMS, including microstructures, microsensors, and microactuators. Students design fabrication process capable of achieving desired MEMS device. Concurrently scheduled with course CM180L. Letter grading. Mr. C-J. Kim (W)
286. Molecular Dynamics Simulation. (4) Lecture, four hours; outside study, eight hours. Preparation: computer programming experience. Requisites: courses 182A, 182C. Introduction to basic concepts and methodologies of molecular dynamics simulation. Advantages and disadvantages of this approach for various situations. Emphasis on systems of engineering interest, especially microelectronics, heat transfer, and solid mechanics problems. Letter grading. Mr. Kavehpour (W)

M287. Nanoscience and Technology. (4) (Same as Electrical Engineering M257.) Lecture, four hours; outside study, eight hours. Introduction to fundamentals of nanoscale science and technology. Basic physical principles, quantum mechanics, chemical bonding and nanostructures, top-down and bottom-up (self-assembled) fabrication, nanomaterialization; nanomaterials, nanoelectronics, and nanobiotechnology. Introduction to new knowledge and techniques in nano areas to understand scientific principles behind nanotechnology and inspire students to create new ideas in multidisciplinary nano areas. Letter grading. Mr. Y. Chen (W)

C287L. Nanoscale Fabrication, Characterization, and Biodetection Laboratory. (4) Lecture, two hours; laboratory, two hours; outside study, eight hours. Multidisciplinary course that introduces laboratory techniques of nanoscale fabrication, characterization, and biodetection. Basic physical, chemical, and biological principles related to these techniques, top-down and bottom-up (self-assembly) nanofabrication, nanocharacterization (AEM, SEM, etc.), and optical and electrochemical microscopy. Students are encouraged to create their own ideas in self-designed experiments. Concurrently scheduled with course C187L. Letter grading. Mr. Y. Chen (Sp)

288. Laser Microfabrication. (4) Lecture, four hours; outside study, eight hours. Requisites: Materials Science 104, Physics 17. Science and engineering of laser microscopic fabrication of advanced materials, including semiconductors, metals, and insulators. Topics include lasers in laser microfabrication, applications such as rapid prototyping, surface modifications (physical/chemical), micro-machines for three-dimensional MEMS (microelectromechanical systems) and data storage, up-to-date research activities. Student term projects. Letter grading. (Sp)

294. Computational Geometry for Design and Manufacturing. (4) Lecture, four hours; outside study, eight hours. Requisite: course 184. Computational geometry for design and manufacturing, with special emphasis on curve and surface theory, geometric modeling of curves and surfaces, B-splines and NURBS, composite curves and surfaces, computer graphics for design and manufacture, and current research topics in computational geometry for CAD/CAM systems. Letter grading. Mr. Yang (W)

295B. Internet-Based Collaborative Design. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 94, 184. Exploration of advanced state-of-the-art concepts in Internet-based collaborative design, including software environments to connect designers over Internet, networked variable media, graphics environments such as high-end virtual reality systems, mid-range graphics, and low-end mobile device-based systems, and multifunctional design collaboration and software tools to support it. Letter grading. Mr. Gadh (W)

295C. Radio Frequency Identification Systems: Analysis, Design, and Applications. (4) Lecture, four hours; outside study, eight hours. Designed for graduate engineering students. Examination of emerging discipline of radio frequency identification (RFID), including basics of RFID, how RFID systems function, and design and analysis of RFID systems, and applications to fields such as supply chain management, retail, and homeland security. Letter grading. Mr. Yang (W)

296A. Damage and Failure of Materials in Mechanical Design. (4) Lecture, four hours; outside study, eight hours. Requisites: course 156A, Materials Science 143A. Role of failure prevention in mechanical design and case studies. Mechanics and physics of material imperfections: voids, dislocations, cracks, and inclusions. Statistical and deterministic design methods. Plastic, fatigue, and creep damage. Letter grading. Mr. Gadh (F)

296B. Thermochemical Processing of Materials. (4) Lecture, four hours; outside study, eight hours. Requisites: courses 131A, 183. Thermodynamics, heat and mass transfer, principles of material processing: phase equilibria and transitions, transport mechanisms of heat and mass, moving interfaces and heat sources, natural convection, nucleation and growth of microstructure, etc. Applications with chemical vapor deposition, infiltration, etc. Letter grading. Mr. Ghoniem, Ms. Lavine (Sp)

297. Composites Manufacturing. (4) Lecture, four hours; outside study, eight hours. Requisites: course 166C, Materials Science 151. Matrix materials, fibers, fiber preforms, elements of processing, autoclave/compression molding, filament winding, pultrusion, resin transfer molding, automation, material removal and assembly, metal and ceramic matrix composites, quality assurance. Letter grading. Mr. Hahn (Sp)

298. Seminar: Engineering. (2 to 4) Seminar, to be arranged. Limited to graduate mechanical and aerospace engineering students. Seminars to present enrollment may be obtained from assistant dean, Graduate Studies. Supervised investigation of advanced technical problems. S/U grading.

297A. Preparation for M.S. Comprehensive Examination. (2 to 12) Tutorial, to be arranged. Limited to graduate mechanical and aerospace engineering students. Reading and preparation for M.S. comprehensive examination. S/U grading.

297B. Preparation for Ph.D. Preliminary Examination. (2 to 16) Tutorial, to be arranged. Limited to graduate mechanical and aerospace engineering students. Preparation for oral qualifying examination, including preliminary research on dissertation. S/U grading.

298. Research for and Preparation of M.S. Thesis. (2 to 12) Tutorial, to be arranged. Limited to graduate mechanical and aerospace engineering students. Supervised independent research for M.S. candidates, including thesis prospectus. S/U grading.

299. Research for and Preparation of Ph.D. Dissertation. (2 to 16) Tutorial, to be arranged. Limited to graduate mechanical and aerospace engineering students. Usually taken after students have been advanced to candidacy. S/U grading.
Schoolwide Programs, Courses, and Faculty

UCLA
6426 Boelter Hall
Box 951601
Los Angeles, CA 90095-1601
(310) 825-2826
http://www.engineer.ucla.edu

Professors Emeriti
Edward P. Coleman, Ph.D.
Allen B. Rosenstein, Ph.D.
Bonham Spence-Campbell, E.E.

Graduate Study
For information on graduate admission to the schoolwide engineering programs and requirements for the Engineer degree and certificate of specialization, see Graduate Programs, page 23.

Faculty Areas of Thesis Guidance

Professors Emeriti
Edward P. Coleman, Ph.D. (Columbia U., 1951)
Design of experimentation; operations management; environment; process of product reliability and quality
Allen B. Rosenstein, Ph.D. (UCLA, 1958)
Educational delivery systems, computer-aided design, design, automatic controls, magnetic controls, nonlinear electronics
Bonham Spence-Campbell, E.E. (Cornell, 1939)
Development of interdisciplinary engineering/social science teams and their use in planning and management of projects and systems

Lower Division Courses
19. Fiat Lux Freshman Seminars. (1) Seminar, one hour. Discussion of and critical thinking about topics of current intellectual importance, taught by faculty members in their areas of expertise and illuminating many paths of discovery at UCLA. P/NP grading.

87. Introduction to Engineering Disciplines. (4) Lecture, four hours; discussion, four hours; outside study, four hours. Introductions to engineering as professional opportunity for freshmen students by exploring difference between engineering disciplines and functions engineers perform. Development of skills and techniques for academic excellence through team process. Investigation of national need underlying current effort to increase participation of historically underrepresented groups in the U.S. technological work force. Letter grading. Mr. Wesel (F)

95. Ethical and Professional Issues in Engineering and Computer Science. (4) Lecture, four hours; discussion, one hour. Selected lectures, discussions, and oral and written reports related to profession of engineering. Lectures by practicing engineers, case studies, and small group projects on issues that involve conflicting demands on society. Letter grading. Mr. O'Neill

99. Student Research Program. (1 to 2) Tutorial (supervised research or other scholarly work), three hours per week per unit. Entry-level research for lower division students and research on a fundamental nature. Students must be in good academic standing and enrolled in minimum of 12 units (excluding this course). Individual contract required; consult Undergraduate Research Center. May be repeated. P/NP grading.

Upper Division Courses

M101. Principles of Nanoscience and Nanotechnology. (4) (Same as Materials Science M105.) Lecture, four hours; discussion, one hour; outside study, seven hours. Enrolled in 5010 nanoscience 1. Introduction to understanding underlying science encompassing structure, properties, and fabrication of technologically important nanoscale systems. New phenomena that emerge in very small systems (typically with feature sizes below 300 nanometers) revealed using basic concepts of physics, chemistry, and electronic properties; electron transport, structural stability, self-assembly, templated assembly and applications of various nanostructures such as quantum dots, nanowires, quantum wells, and carbon nanotubes. Letter grading. Mr. Ozolins (F)

102. Synthetic Biosystems and Nanosystems Design. (4) Lecture, four hours; discussion, two hours. Requisites: course M101, Life Sciences 3. Introduction to current progress in engineering to integrate biosciences and nanosciences into synthetic systems, where biological components are reengineered and required to perform desired functions in both intracellular and cell-free environments. Discussion of basic technologies and systems in analyzing dealt with dynamic behavior, noise, and uncertainties. Design project in which students are challenged to design novel biosystems and nanosystems for non-trivial task required. Letter grading. Mr. Liao (W)

103. Environmental Nanotechnology: Implications and Applications. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Requisite required: course M101. Introduction to potential implications of nanotechnology to environmental materials, (2) and toxicity of nanoscale materials in natural environmental systems, and (3) use of nanotechnology for energy and water production, plus environmental protection, monitoring, and remediation. Letter grading. Mr. Hoek (Sp)

110. Introduction to Technology Management and Economics for Engineers. (4) Lecture, four hours; outside study, eight hours. Fundamental principles of micro-level (individual, firm, and industry) and macro-level (government, international) economics as they relate to technology management. How individuals, firms, and governments impact successful commercialization of high technology products and services. Letter grading. Mr. Monboquette (F)

111. Introduction to Finance and Marketing for Engineers. (4) Lecture, four hours; outside study, eight hours. Critical components of finance and marketing research and practice as they impact management of technology commercialization. Internal (with firm) and external (in marketplace) marketing and financing of high-technology innovation. Concepts include present value, future value, discounted cash flow, internal rate of return, return on assets, return on equity, return on investment, interest rates, cost of capital, and procedures for promotion and distribution. Use of market research, segmentation, and forecasting in management of technological innovation. Letter grading. Mr. Monboquette (W)

112. Laboratory to Market, Entrepreneurship for Engineers. (4) Lecture, four hours; outside study, eight hours. Critical components of entrepreneurship, finance, marketing, human resources, and accounting disciplines as they impact management of technology commercialization. Topics include intellectual property management, team building, market forecasting, and entrepreneurial finance. Students work in small teams studying technology management plans to bring new technologies to market. Students select from set of available technology concepts, many generated at UCLA, that are in need of plans for movement from laboratory to market. Letter grading. Mr. Monboquette (Sp)

180. Engineering of Complex Systems. (4) Lecture, four hours; discussion, two hours; outside study, six hours. Design Lecture, tutorial; discussion, two hours; outside study, six hours. Limited to junior/senior engineering students. Professional and ethical considerations in practice of engineering. Impact of technology on society on development of moral and ethical values. Contemporary environmental, biological, legal, and other issues created by new technologies. Letter grading. Mr. Wesel (F)

185. Art of Engineering Endeavors. (4) Formerly numbered 195.) Lecture, four hours; discussion, two hours; outside study, six hours. Designed for seniors. Importance of group dynamics in engineering practice. Teamwork and effective group skills in engineering environments. Organization and control of multidisciplinary complex engineering projects. Forms of leadership and qualities and characteristics of effective leaders. How engineering, computer sciences, and technology relate to major ethical and social issues. Societal demands on practice of engineering. Letter grading. Mr. Wesel (F)

188. Special Courses in Engineering. (4) Seminar, four hours; outside study, eight hours. Special topics in engineering for undergraduate students that are taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated for credit with topic or instructor change. Letter grading.

195. Internship Studies in Engineering. (4) Formerly numbered 195.) Tutorial, four hours. Limited to juniors/seniors. Internship studies course supervised by associate dean or designated faculty members. Further supervision to be provided by organization for which students are doing internship. Students may be required to meet on regular basis with instructor and provide periodic reports of their experience. May not be applied toward major requirements. Normally, only 4 units of internship are allowed. Individual contract with associate dean required. P/NP grading. Mr. Wesel (F)

199. Directed Research in Engineering. (2 to 8) Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation under guidance of faculty mentor. Culminating paper or project required. May be repeated for credit with school approval. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading. (F, W, Sp)
Graduate Courses

200. Program Management Principles for Engineers and Professionals. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Practical review of necessary processes and procedures to successfully manage technology programs. Review of fundamentals of program planning, organizational structure, implementation, and performance tracking methods to provide program manager with necessary information to support decision-making process that provides high-quality products on time and within budget. Letter grading. Mr. Wesel

201. Systems Engineering. (4) Lecture, four hours; outside study, eight hours. Designed for graduate students. Practical review of major elements of system engineering process. Coverage of key elements: system requirements and flow down, product development cycle, functional analysis, system synthesis and trade studies, budget allocations, risk management metrics, review and audit activities and documentation. Letter grading.

210. Entrepreneurship for Engineers. (4) Lecture, three hours. Limited to graduate engineering students. Topics in starting and developing high-tech enterprises and intended for students who wish to complement their technical education with introduction to entrepreneurship. Letter grading.

Mr. Abe, Mr. Cong, Mr. Wesel (W)

375. Teaching Apprentice Practicum. (1 to 4) Seminar, to be arranged. Preparation: appointment as a teaching assistant, associate, or fellow. Teaching apprenticeship under active guidance and supervision of regular faculty member responsible for curriculum and instruction at UCLA. May be repeated for credit. S/U grading. (FW,Sp)

471A-471B-471C. The Engineer in the General Environment. (3-3-1.5) Lecture, three hours (courses 471A, 471B) and 90 minutes (course 471C). Limited to Engineering Executive Program students. Influences of human relations, laws, social sciences, humanities, and fine arts on development and utilization of natural and human resources. Interaction of technology and society past, present, and future. Change agents and resistance to change. S/U or letter (471A) grading; In Progress (471B) and S/U or letter (471C) grading.

472A-472D. The Engineer in the Business Environment. (3-3-3-1.5) Lecture, three hours (courses 472A, 472B, 472C) and 90 minutes (course 472D). Limited to Engineering Executive Program students. Language of business for the engineering executive. Accounting, finance, business economics, business law, and marketing. Laboratory in organization and management problem solving. Analysis of actual business problems of firm, community, and nation, provided through cooperation and participation with California business corporations and government agencies. In Progress (472A, 472C) and S/U or letter grading (credit to be given on completion of courses 472B and 472D).

473A-473B. Analysis and Synthesis of a Large-Scale System. (3-3) Lecture, two and one-half hours. Limited to Engineering Executive Program students. Problem area of modern industry or government is selected as class project, and its solution is synthesized using quantitative tools and methods. Project also serves as laboratory in organization for a goal-oriented technical group. In Progress (473A) and S/U (473B) grading.

495. Teaching Assistant Training Seminar. (4) Seminar, four hours; outside study, eight hours. Preparation: appointment as a teaching assistant. Limited to graduate engineering students. Seminar on communication of engineering principles, concepts, and methods, preparation, organization of material, presentation, use of visual aids, grading, advising, and rapport with students. S/U grading.

495. Cooperative Program. (2 to 8) Tutorial, to be arranged. Preparation: consent of UCLA graduate adviser and graduate dean, and host campus instructor, department chair, and graduate dean. Used to record enrollment of UCLA students in courses taken under cooperative arrangements with USC. S/U grading.
A cell consists of millions of intracellular molecules, which serve as building blocks for its structure and functions. Interactions among these building blocks display the property of self-organization, which serves as the foundation of signaling networks and regulatory pathways. Through these interconnected networks, a cell—the basic unit of life—senses, responds, and adapts to its environment. These three characteristics are commonly observed in all complex systems. The goal of the Center for Cell Control (CCC) at UCLA is to apply an unprecedented approach toward efficiently searching for a potent drug cocktail for guiding biological systems to a directed phenotype. Nanoscale modalities and molecular sensors are used to understand the signal pathway responses under the influence of the drugs. This introduces engineering systems that can be applied toward regulation of a spectrum of cellular functions, such as cancer eradication, viral infection onset control, and stem cell differentiation.

This highly interdisciplinary approach demands strong synergetic collaboration between engineers, biologists, and clinical doctors at UCLA and UC Berkeley. Projects important to the goals of the NIH nanomedicine program are development of a smart petri-dish platform with advanced nanoscale modalities, capable of studying signal pathways at the network interaction level; and demonstration of the unique capability to determine optimal multiple drug combinations and apply the resulting drug cocktail as potential therapeutics in pathogenic diseases and cancer.

Three biological systems—stem cell, cancer, and viral infection—have been proposed. Because stem cells have interesting features closely mirroring circuit reprogramming, they are used as the first system for monitoring and interrogating reactions in the network of pathways. Viral infection and cancer cells will be used in drug combinatorial studies. As the program becomes more mature, networks of all three systems will be interrogated by nano tools under the potent drug cocktails.
Center for Scalable and Integrated Nanomanufacturing

National Science Foundation Nanoscale Science and Engineering Center
Xiang Zhang, Director (UC Berkeley); Eli Yablonovitch, (Electrical Engineering), Co-Director; http://www.sinam.ucla.edu

The promise that nanotechnology holds for industries ranging from semiconductors to health care to national defense has largely been held back by the lack of manufacturing platforms that allow complex nanoengineered products and systems to be adopted on a mass scale. UCLA’s Center for Scalable and Integrated Nanomanufacturing (SINAM) is bridging the gap between scientific research and economically feasible manufacturing solutions.

SINAM researchers will combine fundamental science and nanomanufacturing technology in new ways, transforming laboratory science into industrial applications in nanoelectronics and biomedicine. A multidisciplinary team of researchers will devise commercial nanomanufacturing tool designs and build them into systems that will enable cost-effective nanomanufacturing. A better understanding of the nano world will lead to more powerful microscopes, groundbreaking nanofabrication technologies, and exciting new applications in information technology and medicine.

Center for Nanoscience Innovation for Defense

Defense Advanced Research Project Agency/Defense MicroElectronics Activity
Eli Yablonovitch (Electrical Engineering), Director

The Center for Nanoscience Innovation for Defense (CNID) was established to facilitate the rapid transition of research innovation in the nanosciences into applications for the defense sector. With nationally renowned faculty employing interdisciplinary approaches, the center brings discovery and innovation in nanoscience and nanoengineering to America’s industries for the purpose of defense.

The center’s research program seeks to understand and thereby control nanometer-scale systems for advanced technology. Research at UCLA focuses on four areas: quantum telecommunication nanodevices, development of a single-electron-spin microscope, photonic crystal nanooptical structures and circuits, and molecular level electronic and mechanical devices.

Funding through CNID will help equip the California NanoSystems Institute with state-of-the-art high-tech instrumentation, and also support graduate fellowships that will attract the best graduate students worldwide to advance nanoscience and nanotechnology research. Those students will be not only the nanoscience university researchers of the future, but also the nanotechnology talent for high-tech American businesses.

Functional Engineered Nano Architectonics Focus Center

Microelectronic Advanced Research Corporation Focus Center
Kang L. Wang (Electrical Engineering), Director; Bruce Dunn (Materials Science and Engineering), Co-Director; http://www.fena.org

Dramatic advances in nanotechnology, molecular electronics, and quantum computing are creating the potential for significant expansion of current semiconductor technologies. Researchers at UCLA will make pioneering contributions to these fields through the Functional Engineered Nano Architectonics Focus Center (FENA) funded by the Semiconductor Research Corporation and the Department of Defense.

The term “architectonics” is derived from a Greek word meaning master builder—an apt description of the center’s researchers as they build a new generation of nanoscale materials, structures, and devices for the electronics industry.

The FENA team will explore the challenges facing the semiconductor industry as the electronic devices and circuits that power today’s computers grow ever smaller. With more and more transistors and other components squeezed onto a single chip, manufacturers are rapidly approaching the
physical limits posed by current chip-making processes. Researchers seek to resolve a number of issues related to post-CMOS technologies that will allow them to extend semiconductor technology further into the realm of the nanoscale.

Institute for Cell Mimetic Space Exploration

A NASA University Research, Engineering, and Technology Institute
Chih-Ming Ho (Mechanical and Aerospace Engineering), Director; http://www.cmise.ucla.edu

The Institute for Cell Mimetic Space Exploration (CMISE) is realizing a unique approach by fusing biotechnology, nanotechnology, and information science to enrich the development of revolutionary application-specific technologies. For example, a cell fuses genetic processes with nanoscale sensors and actuators to result in an efficient, autonomous micro “factory.” The basic processes that occur at the molecular level have opened up a world where the integration of individual components can eventually derive higher-order functionalities or emergent properties.

The Institute for Cell Mimetic Space Exploration (CMISE) is organized into four interdisciplinary research groups: energetics, metabolics, systematics, and CMISESat. The energetics group harnesses and transforms energy across a range of disciplines, while the metabolics team develops nano/micro systems for single-cell metabolism study and network reconstruction of radiation damage to cells. The systematics group enables intelligent cell mimetic systems, and monitors and controls artificial and biological subsystems. The CMISESat team provides the space testbed environment for validation and demonstration of emerging CMISE technologies.

Western Institute of Nanoelectronics

A Nanoelectronics Research Initiative National Institute of Excellence
Kang L. Wang (Electrical Engineering), Director; http://win-nano.org

The Western Institute of Nanoelectronics (WIN), one of the world’s largest joint research programs focusing on spintronics, brings together nearly 30 eminent researchers to explore critically-needed innovations in semiconductor technology. A National Institute of Excellence, WIN leverages what are considered the best interdisciplinary nanoelectronics talents in the world to explore and develop advanced research devices, circuits, and nanosystems with performance beyond conventional CMOS devices. The pioneering new technology of spintronics relies on the spin of an electron to carry information, and holds promise in minimizing power consumption for next-generation electronics.

As rapid progress in the miniaturization of semiconductor electronic devices leads toward chip features smaller than 100 nanometers in size, researchers have had to begin exploring new ways to make electronics more efficient. Today’s devices, based on CMOS standards, cannot get much smaller and still function effectively. Information-processing technology has so far relied on charge-based devices, ranging from vacuum tubes to million-transistor microchips. Conventional electronic devices simply move these electric charges around, ignoring the spin on each electron. Spintronics aims to put that extra spin action to work—effectively corralling electrons into one smooth chain of motion.
B.S. in Aerospace Engineering Curriculum

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A – Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>English Composition 3 – English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 31A – Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B/20L – Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>Mathematics 31B – Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A – Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mathematics 32A – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B – Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
<tr>
<td>Physics 4AL – Mechanics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Mathematics 32B – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C – Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
<tr>
<td>Physics 4BL – Electricity and Magnetism Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 104 – Science of Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A – Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 105A – Introduction to Engineering Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 31 – Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33B – Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 101 – Statics and Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 103 – Elementary Fluid Mechanics</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering 100 – Electrical and Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 102 – Dynamics of Particles and Rigid Bodies</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 182A – Mathematics of Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 107/107L – Introduction to Modeling and Analysis of Dynamic Systems/Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 150A – Intermediate Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 157S – Basic Aerospace Engineering Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 150B – Aerodynamics</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 171A – Introduction to Feedback and Control Systems</td>
<td>4</td>
</tr>
<tr>
<td>Aerospace Engineering Elective†</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 150P – Aircraft Propulsion Systems</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 154S – Flight Mechanics, Stability, and Control of Aircraft</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 155 (Intermediate Dynamics) or 161A (Introduction to Astronautics) or 169A (Introduction to Mechanical Vibrations)</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 166A – Analysis of Flight Structures</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 154A – Preliminary Design of Aircraft</td>
<td>4</td>
</tr>
<tr>
<td>Aerospace Engineering Elective†</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 154B – Design of Aerospace Structures</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 157A – Fluid Mechanics and Aerodynamics Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

TOTAL 187

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 19 for details).
†A total of 8 units of aerospace engineering electives (two courses) is required.
B.S. in Bioengineering Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemistry and Biochemistry 20A – Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3 – English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A – Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Bioengineering 10 (Introduction to Bioengineering) or HSSEAS GE Elective*</td>
<td>2 or 5</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 20B – Chemical Energetics and Change</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B – Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A or 1AH – Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Bioengineering 10 (Introduction to Bioengineering) or HSSEAS GE Elective*</td>
<td>2 or 5</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 20L – General Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B or 1BH – Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemistry and Biochemistry 30A – Chemical Dynamics and Reactivity: Introduction to Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1C or 1CH – Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Physics 4AL – Mechanics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science 31 – Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Life Sciences 2 – Cells, Tissues, and Organs</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A – Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 4BL – Electricity and Magnetism Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Chemistry and Biochemistry 30AL – General Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30B – Organic Chemistry: Reactivity and Synthesis, Part I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B – Differential Equations</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Bioengineering 120 – Biomedical Transducers</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 153A – Biochemistry: Introduction to Structure, Enzymes, and Metabolism</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Life Sciences 3 – Introduction to Molecular Biology</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Bioengineering 100 – Bioengineering Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Bioengineering 165** – Bioethics and Regulatory Policies in Bioengineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biochemistry 30BL – Organic Chemistry Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Bioengineering 110 – Biotransport and Bioreaction Processes</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Life Sciences 4 – Genetics</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Biomedical Engineering Elective*</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Bioengineering 176 – Principles of Biocompatibility</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Bioengineering 180/180L – System Integration in Biology, Engineering, and Medicine I/Laboratory</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Bioengineering 182A – Bioengineering Capstone Design I</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Bioengineering 181/181L – System Integration in Biology, Engineering, and Medicine II/Laboratory</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Bioengineering 182B – Bioengineering Capstone Design II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Bioengineering 182C – Bioengineering Capstone Design III</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Biomedical Engineering Elective*</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>185</td>
</tr>
</tbody>
</table>

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 19 for details).
**Satisfies the HSSEAS ethics requirement.
†Electives include Biomedical Engineering C101, CM102, CM103, CM145, CM150, CM150L, C170, C171, CM180, C181, C185, C187.
B.S. in Chemical Engineering Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemical Engineering 10 – Introduction to Chemical and Biomolecular Engineering</td>
<td>1</td>
</tr>
<tr>
<td>1st</td>
<td>Chemistry and Biochemistry 20A – Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>1st</td>
<td>English Composition 3 – English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>1st</td>
<td>Mathematics 31A – Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemistry and Biochemistry 20B – Chemical Energetics and Change</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Computer Science 31 – Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Mathematics 31B – Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Physics 1A – Mechanics</td>
<td>5</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemical Engineering 100 – Fundamentals of Chemical and Biomolecular Engineering</td>
<td>4</td>
</tr>
<tr>
<td>1st</td>
<td>Chemistry and Biochemistry 30AL – General Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>1st</td>
<td>Chemistry and Biochemistry 30A – Chemical Dynamics and Reactivity: Introduction to Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>1st</td>
<td>Mathematics 32A – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>1st</td>
<td>Physics 1B/4AL – Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemical Engineering 102A – Thermodynamics I</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemistry and Biochemistry 30B – Organic Chemistry: Reactivity and Synthesis, Part I</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Mathematics 33A – Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Chemical Engineering 102B – Thermodynamics II</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Mathematics 33B – Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemical Engineering 101A – Transport Phenomena I</td>
<td>4</td>
</tr>
<tr>
<td>1st</td>
<td>Chemical Engineering 109 – Numerical and Mathematical Methods in Chemical and Biological Engineering</td>
<td>4</td>
</tr>
<tr>
<td>1st</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemical Engineering 101B – Transport Phenomena II: Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemistry and Biochemistry 113A – Physical Chemistry: Introduction to Quantum Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Chemical Engineering 101C – Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Chemical Engineering 103 – Separation Processes</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Chemical Engineering 104AL – Chemical and Biomolecular Engineering Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td>3rd</td>
<td>Chemistry and Biochemistry 153A – Biochemistry: Introduction to Structure, Enzymes, and Metabolism</td>
<td>4</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemical Engineering 104B – Chemical and Biomolecular Engineering Laboratory II</td>
<td>6</td>
</tr>
<tr>
<td>1st</td>
<td>Chemical Engineering 106 – Chemical Reaction Engineering</td>
<td>4</td>
</tr>
<tr>
<td>1st</td>
<td>Chemical Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemical Engineering 107 – Process Dynamics and Control</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemical Engineering 108A – Process Economics and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Chemical Engineering 108B – Chemical Process Computer-Aided Design and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Chemical Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL

185

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 19 for details).
B.S. in Chemical Engineering

Biomedical Engineering Option Curriculum

Freshman Year

1st Quarter
- Chemical Engineering 10 – Introduction to Chemical and Biomolecular Engineering 1
- Chemistry and Biochemistry 20A – Chemical Structure ... 4
- English Composition 3 – English Composition, Rhetoric, and Language ... 5
- Mathematics 31A – Differential and Integral Calculus ... 4

2nd Quarter
- Chemistry and Biochemistry 20B – Chemical Energetics and Change ... 4
- Computer Science 31 – Introduction to Computer Science .. 4
- Mathematics 31B – Integration and Infinite Series .. 4
- Physics 1A – Mechanics .. 5

3rd Quarter
- Chemistry and Biochemistry 20L – General Chemistry Laboratory .. 3
- Chemistry and Biochemistry 30A – Chemical Dynamics and Reactivity: Introduction to Organic Chemistry ... 2
- Mathematics 32A – Calculus of Several Variables .. 4
- Physics 1B/4AL – Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory 7

JUNIOR YEAR

1st Quarter
- Chemical Engineering 101A – Transport Phenomena I .. 4
- Chemical Engineering 109 – Numerical and Mathematical Methods in Chemical and Biological Engineering ... 4
- Life Sciences 2 – Cells, Tissues, and Organs .. 5

2nd Quarter
- Chemical Engineering 101B – Transport Phenomena II: Heat Transfer 4
- Chemistry and Biochemistry 113A – Physical Chemistry: Introduction to Quantum Mechanics ... 4
- Life Sciences 3 – Introduction to Molecular Biology .. 5

3rd Quarter
- Chemical Engineering 101C – Mass Transfer .. 4
- Chemical Engineering 103 – Separation Processes .. 4
- Chemical Engineering 104AL – Chemical and Biomolecular Engineering Laboratory I 3
- Chemistry and Biochemistry 153A – Biochemistry: Introduction to Structure, Enzymes, and Metabolism ... 4

SENIOR YEAR

1st Quarter
- Chemical Engineering 104B – Chemical and Biomolecular Engineering Laboratory II 6
- Chemical Engineering 106 – Chemical Reaction Engineering ... 4
- Chemical Engineering Elective ... 4
- Technical Breadth Course* .. 4

2nd Quarter
- Chemical Engineering 107 – Process Dynamics and Control ... 4
- Chemical Engineering 108A – Process Economics and Analysis .. 4
- HSSEAS GE Elective* .. 5
- Technical Breadth Course* .. 4

3rd Quarter
- Chemical Engineering 108B – Chemical Process Computer-Aided Design and Analysis 4
- HSSEAS GE Electives (2)* ... 9
- Technical Breadth Course* .. 4

TOTAL 189

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 19 for details).
B.S. in Chemical Engineering
Biomolecular Engineering Option Curriculum

FRESHMAN YEAR

1st Quarter
- Chemical Engineering 10 – Introduction to Chemical and Biomolecular Engineering .. 1
- Chemistry and Biochemistry 20A – Chemical Structure .. 4
- English Composition 3 – English Composition, Rhetoric, and Language .. 5
- Mathematics 31A – Differential and Integral Calculus .. 4

2nd Quarter
- Chemistry and Biochemistry 20B – Chemical Energetics and Change .. 4
- Computer Science 31 – Introduction to Computer Science I .. 4
- Mathematics 31B – Integration and Infinite Series .. 4
- Physics 1A – Mechanics .. 5

3rd Quarter
- Chemistry and Biochemistry 20L – General Chemistry Laboratory .. 3
- Chemistry and Biochemistry 30A – Chemical Dynamics and Reactivity: Introduction to Organic Chemistry .. 4
- Mathematics 32A – Calculus of Several Variables .. 4
- Physics 1B/4AL – Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory .. 7

SOPHOMORE YEAR

1st Quarter
- Chemical Engineering 100 – Fundamentals of Chemical and Biomolecular Engineering .. 4
- Chemistry and Biochemistry 30AL – General Chemistry Laboratory II .. 4
- Mathematics 32B – Calculus of Several Variables .. 4
- Physics 1C – Electrodynamics, Optics, and Special Relativity .. 5

2nd Quarter
- Chemical Engineering 102A – Thermodynamics I .. 4
- Chemistry and Biochemistry 30B – Organic Chemistry: Reactivity and Synthesis, Part I .. 4
- Mathematics 33A – Linear Algebra and Applications .. 4
- HSSEAS GE Elective* .. 5

3rd Quarter
- Chemical Engineering 102B – Thermodynamics II .. 4
- Mathematics 33B – Differential Equations .. 4
- HSSEAS GE Elective* .. 5

JUNIOR YEAR

1st Quarter
- Chemical Engineering 101A – Transport Phenomena I .. 4
- Chemical Engineering 109 – Numerical and Mathematical Methods in Chemical and Biological Engineering .. 4
- Life Sciences 2 – Cells, Tissues, and Organs .. 5

2nd Quarter
- Chemical Engineering 101B – Transport Phenomena II: Heat Transfer .. 4
- Chemistry and Biochemistry 113A – Physical Chemistry: Introduction to Quantum Mechanics .. 4
- Life Sciences 3 – Introduction to Molecular Biology .. 5

3rd Quarter
- Chemical Engineering 101C – Mass Transfer .. 4
- Chemical Engineering 104AL – Chemical and Biomolecular Engineering Laboratory I .. 4
- Chemical Engineering C125 – Bioseparations and Bioprocess Engineering .. 4
- Chemistry and Biochemistry 153A – Biochemistry: Introduction to Structure, Enzymes, and Metabolism .. 4

SENIOR YEAR

1st Quarter
- Chemical Engineering 104D/104DL – Molecular Biotechnology Lecture/Laboratory: From Gene to Product .. 6
- Chemical Engineering C115 – Biochemical Reaction Engineering .. 4
- Chemical Engineering CM145 – Molecular Biotechnology for Engineers .. 4
- Technical Breadth Course* .. 4

2nd Quarter
- Chemical Engineering 107 – Process Dynamics and Control .. 4
- Chemical Engineering 108A – Process Economics and Analysis .. 4
- HSSEAS GE Elective* .. 5
- Technical Breadth Course* .. 4

3rd Quarter
- Chemical Engineering 108B – Chemical Process Computer-Aided Design and Analysis .. 4
- HSSEAS GE Electives (2)* .. 9
- Technical Breadth Course* .. 4

TOTAL .. 189

Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 19 for details).
B.S. in Chemical Engineering

Environmental Engineering Option Curriculum

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 10 – Introduction to Chemical and Biomolecular Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A – Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>English Composition 3 – English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 31A – Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B – Chemical Energetics and Change</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science 31 – Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 31B – Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A – Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20L – General Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30A – Chemical Dynamics and Reactivity: Introduction to Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32A – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B/4BL – Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 100 – Fundamentals of Chemical and Biomolecular Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30AL – General Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32B – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C/4BL – Electrodynamics, Optics, and Special Relativity/Electricity and Magnetism Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 102A – Thermodynamics I</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30B – Organic Chemistry: Reactivity and Synthesis, Part I</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A – Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 102B – Thermodynamics II</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33B – Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Atmospheric and Oceanic Sciences 104 – Fundamentals of Air and Water Pollution</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 101A – Transport Phenomena I</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 109 – Numerical and Mathematical Methods in Chemical and Biological Engineering</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101B – Transport Phenomena II: Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 113A – Physical Chemistry: Introduction to Quantum Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 101C – Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 103 – Separation Processes</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 104AL – Chemical and Biomolecular Engineering Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 153A – Biochemistry: Introduction to Structure, Enzymes, and Metabolism</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 104B – Chemical and Biomolecular Engineering Laboratory II</td>
<td>6</td>
</tr>
<tr>
<td>Chemical Engineering 106 – Chemical Reaction Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 107 – Process Dynamics and Control</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering 108A – Process Economics and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 108B – Chemical Process Computer-Aided Design and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL 189

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 19 for details).
B.S. in Chemical Engineering

Semiconductor Manufacturing Engineering Option Curriculum

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 10 – Introduction to Chemical and Biomolecular Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A – Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>English Composition 3 – English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 31A – Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B – Chemical Energetics and Change</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science 31 – Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 31B – Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A – Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20L – General Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30A – Chemical Dynamics and Reactivity: Introduction to Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32A – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B/4AL – Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>4th Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 10 – Introduction to Chemical and Biomolecular Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 30AL – General Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32B – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C/4BL – Electrodynamics, Optics, and Special Relativity/Electricity and Magnetism Laboratory</td>
<td>7</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR	
1st Quarter	
Chemical Engineering 100 – Fundamentals of Chemical and Biomolecular Engineering	4
Computer Science 31 – Introduction to Computer Science I	4
Mathematics 33A – Linear Algebra and Applications	4
HSSEAS GE Elective*	5
2nd Quarter	
Chemical Engineering 102A – Thermodynamics I	4
Chemistry and Biochemistry 30B – Organic Chemistry: Reactivity and Synthesis, Part I	4
Mathematics 33A – Linear Algebra and Applications	4
HSSEAS GE Elective*	5
3rd Quarter	
Chemical Engineering 102B – Thermodynamics II	4
Mathematics 33B – Differential Equations	4
HSSEAS GE Elective*	5
4th Quarter	
Chemical Engineering 101C – Mass Transfer	4
Chemical Engineering 103 – Separation Processes	4
Chemical Engineering 104AL – Chemical and Biomolecular Engineering Laboratory I	3
Chemistry and Biochemistry 153A – Biochemistry: Introduction to Structure, Enzymes, and Metabolism	4

JUNIOR YEAR	
1st Quarter	
Chemical Engineering 101A – Transport Phenomena I	4
Chemical Engineering 109 – Numerical and Mathematical Methods in Chemical and Biological Engineering	4
HSSEAS GE Elective*	5
2nd Quarter	
Chemical Engineering 101B – Transport Phenomena II: Heat Transfer	4
Chemistry and Biochemistry 113A – Physical Chemistry: Introduction to Quantum Mechanics	4
HSSEAS GE Elective*	5
3rd Quarter	
Chemical Engineering 101C – Mass Transfer	4
Chemical Engineering 103 – Separation Processes	4
Chemical Engineering 104AL – Chemical and Biomolecular Engineering Laboratory I	3
Chemistry and Biochemistry 153A – Biochemistry: Introduction to Structure, Enzymes, and Metabolism	4

SENIOR YEAR	
1st Quarter	
Chemical Engineering 106 – Chemical Reaction Engineering	4
Chemical Engineering C116 – Surface and Interface Engineering	4
Electrical Engineering or Materials Science and Engineering Elective	4
Technical Breadth Course*	4
2nd Quarter	
Chemical Engineering 107 – Process Dynamics and Control	4
Chemical Engineering 108A – Process Economics and Analysis	4
HSSEAS GE Elective*	4
Technical Breadth Course*	4
3rd Quarter	
Chemical Engineering 104C/104CL – Semiconductor Processing/Laboratory	6
Chemical Engineering 108B – Chemical Process Computer-Aided Design and Analysis	4
Electrical Engineering or Materials Science and Engineering Elective	4
Technical Breadth Course*	4
4th Quarter	

TOTAL 189

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 19 for details).
B.S. in Civil Engineering Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemistry and Biochemistry 20A – Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Civil and Environmental Engineering 1 – Introduction to Civil Engineering</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>English Composition 3 – English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A – Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemistry and Biochemistry 20B/20L – Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B – Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A – Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Mathematics 32A – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B – Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Physics 4AL – Mechanics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td></td>
</tr>
</tbody>
</table>

SOPHOMOROE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Civil and Environmental Engineering 101 – Statics and Dynamics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1C (Electrodynamics, Optics, and Special Relativity) or Electrical Engineering 1 (Electrical Engineering Physics I)</td>
<td>5 or 4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>Civil and Environmental Engineering 15 – Introduction to Computing for Civil Engineers</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Civil and Environmental Engineering 108 – Introduction to Mechanics of Deformable Solids</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 31 – Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A – Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Civil and Environmental Engineering 103 – Applied Numerical Computing and Modeling in Civil and Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Materials Science and Engineering 104 – Science of Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B – Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 103 – Elementary Fluid Mechanics</td>
<td>4</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Civil and Environmental Engineering 120 – Principles of Soil Mechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Civil and Environmental Engineering 135A – Elementary Structural Analysis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Civil and Environmental Engineering 153 – Introduction to Environmental Engineering Science</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 182A – Mathematics of Engineering</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemical Engineering 102A (Thermodynamics I) or Mechanical and Aerospace Engineering 105A (Introduction to Engineering Thermodynamics)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Civil and Environmental Engineering 151 – Introduction to Water Resources Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Major Field Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Major Field Electives (2)*</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Major Field Electives (2)*</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Major Field Electives (2)*</td>
<td>8</td>
</tr>
</tbody>
</table>

TOTAL 188, 189, or 190

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 19 for details).
†Must include required courses for two of the major field areas listed on page 46.
B.S. in Computer Science Curriculum

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>14</td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A – Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science 1 – freshman computer science seminar</td>
<td>1</td>
</tr>
<tr>
<td>Computer Science 31 – Introduction to computer science I</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 31A – Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>15</td>
</tr>
<tr>
<td>Computer Science 32 – Introduction to computer science II</td>
<td>4</td>
</tr>
<tr>
<td>English Composition 3 – English Composition, Rhetoric, and Language</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 31B – Integration and Infinite Series</td>
<td>5</td>
</tr>
<tr>
<td>Physics 1A – Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>15</td>
</tr>
<tr>
<td>Computer Science 33 – Introduction to computer organization</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 32A – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B – Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
<tr>
<td>Physics 4AL – Mechanics Laboratory</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>13</td>
</tr>
<tr>
<td>Computer Science 35L – Software Construction Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>Electrical Engineering 1 – Electrical Engineering Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32B – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 4BL – Electricity and Magnetism Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>15</td>
</tr>
<tr>
<td>Computer Science M51A or Electrical Engineering M16 – Logic Design of Digital Systems</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A – Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 61 – Introduction to Discrete Structures</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>14</td>
</tr>
<tr>
<td>Computer Science 101 – Upper Division Computer Science Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Computer Science 131 – Programming Languages</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science M152A or Electrical Engineering M116L – Introductory Digital Design Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics 33B – Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>14</td>
</tr>
<tr>
<td>Computer Science M151B or Electrical Engineering M116C – Computer Systems Architecture</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science 180 – Introduction to Algorithms and Complexity</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>14</td>
</tr>
<tr>
<td>Computer Science 130 (Software Engineering) or 152B (Digital Design Project Laboratory)</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>Science and Technology Elective</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>14</td>
</tr>
<tr>
<td>Computer Science 111 – Operating Systems Principles</td>
<td>4</td>
</tr>
<tr>
<td>Statistics 110A – Applied Statistics</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>14</td>
</tr>
<tr>
<td>Computer Science 118 – Computer Network Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science 181 – Introduction to Formal Languages and Automata Theory</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>14</td>
</tr>
<tr>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td>Science and Technology Elective</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>14</td>
</tr>
<tr>
<td>Computer Science Electives (2)</td>
<td>8</td>
</tr>
<tr>
<td>Science and Technology Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL 186

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 19 for details).
B.S. in Computer Science and Engineering Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemistry and Biochemistry 20A – Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Computer Science 1 – Freshman Computer Science Seminar.</td>
<td>1</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Computer Science 31 – Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Mathematics 31A – Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science 32 – Introduction to Computer Science II</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>English Composition 3 – English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Mathematics 31B – Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Physics 1A – Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Computer Science 33 – Introduction to Computer Organization.</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Physics 1B – Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Physics 4AL – Mechanics Laboratory</td>
<td>2</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Computer Science 35L – Software Construction Laboratory.</td>
<td>2</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering 1 – Electrical Engineering Physics I.</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Mathematics 32B – Calculus of Several Variables.</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Physics 4BL – Electricity and Magnetism Laboratory.</td>
<td>2</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science M51A or Electrical Engineering M16 – Logic Design of Digital Systems</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Mathematics 33A – Linear Algebra and Applications.</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mathematics 61 – Introduction to Discrete Structures.</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Computer Science 101 – Upper Division Computer Science Seminar.</td>
<td>1</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Computer Science M152A or Electrical Engineering M116L – Introductory Digital Design Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electrical Engineering 2 – Physics for Engineers.</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mathematics 33B – Differential Equations.</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Statistics 110A – Applied Statistics</td>
<td>4</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Computer Science 131 – Programming Languages</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Computer Science M151B or Electrical Engineering M116C – Computer Systems Architecture</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering 10 – Circuit Analysis I.</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science 111 – Operating Systems Principles.</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science 180 – Introduction to Algorithms and Complexity.</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electrical Engineering 102 – Systems and Signals.</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electrical Engineering 110 – Circuit Analysis I.</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Computer Science 181 – Introduction to Formal Languages and Automata Theory</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electrical Engineering 110L – Circuit Measurements Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electrical Engineering 115A – Analog Electronic Circuits I.</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Computer Science 118 – Computer Network Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Computer Science 152B – Digital Design Project Laboratory.</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering 115C – Digital Electronic Circuits.</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL 188

Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 19 for details).
B.S. in Electrical Engineering Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemistry and Biochemistry 20A – Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 31 – Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A – Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Computer Science 32 – Introduction to Computer Science II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3 – English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B – Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A – Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electrical Engineering 3 – Introduction to Electrical Engineering</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B – Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering M16 or Computer Science M51A – Logic Design of Digital Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A – Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electrical Engineering 1 – Electrical Engineering Physics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 103 – Applied Numerical Computing</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B – Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 4BL – Electricity and Magnetism Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electrical Engineering 2 – Physics for Electrical Engineers</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 10 – Circuit Analysis I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 102 – Systems and Signals</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering 110 – Circuit Analysis II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 113 – Digital Signal Processing</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 131A – Probability</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electrical Engineering 101 – Engineering Electromagnetics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 110L – Circuit Measurements Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 115A – Analog Electronic Circuits I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 132 – Complex Analysis for Applications</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electrical Engineering 115AL – Analog Electronics Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 121B – Principles of Semiconductor Device Design</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 132A – Introduction to Communication Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 161 – Electromagnetic Waves</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering 141– Principles of Feedback Control</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pathway Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Statistics 105 – Statistics for Engineers</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Pathway Elective†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Pathway Design Course†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*†</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>8</td>
</tr>
</tbody>
</table>

TOTAL

187

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 19 for details).
†See page 74 for a list of approved pathways.
B.S. in Electrical Engineering

Biomedical Engineering Option Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Chemistry and Biochemistry 20A – Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Computer Science 31 – Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Mathematics 31A – Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Chemistry and Biochemistry 20B/20L – Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>English Composition 3 – English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Mathematics 31B – Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Chemistry and Biochemistry 30A – Chemical Dynamics and Reactivity: Introduction to Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Chemistry and Biochemistry 30AL – General Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mathematics 32A – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Physics 1A – Mechanics</td>
<td>5</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering M16 or Computer Science M51A – Logic Design of Digital Systems</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Mathematics 33A – Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Physics 1B/4AL – Oscillations, Waves, Electric and Magnetic Fields/Mechanics Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electrical Engineering 1 – Electrical Engineering Physics I</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electrical Engineering 3 – Introduction to Electrical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Life Sciences 2 – Cells, Tissues, and Organs</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Mathematics 32B – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Physics 4BL – Electricity and Magnetism Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electrical Engineering 2 – Physics for Electrical Engineers</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Electrical Engineering 102 – Systems and Signals</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Life Sciences 3 – Introduction to Molecular Biology</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Mathematics 33B – Differential Equations</td>
<td>4</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering 10 – Circuit Analysis I</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering 103 – Applied Numerical Computing</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering 113 – Digital Signal Processing</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Electrical Engineering 131A – Probability</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electrical Engineering 110 – Circuit Analysis II</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electrical Engineering 110L – Circuit Measurements Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Pathway Course (Electrical Engineering 132A – Introduction to Communication Systems) †</td>
<td>4</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Pathway Course (Electrical Engineering 141– Principles of Feedback Control) †</td>
<td>4</td>
</tr>
<tr>
<td>1st Quarter</td>
<td>Pathway Laboratory Course†</td>
<td>2</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Electrical Engineering 101 – Engineering Electromagnetics</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Statistics 105 – Statistics for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Pathway Course (Electrical Engineering 176 – Lasers in Biomedical Applications or Mechanical and Aerospace Engineering 105A – Introduction to Engineering Thermodynamics) †</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Pathway Design Course†</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL 188

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 19 for details).
†See page 74 for the biomedical engineering pathway.
FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemistry and Biochemistry 20A – Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 31 – Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A – Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Computer Science 32 – Introduction to Computer Science II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3 – English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B – Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A – Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Computer Science 33 – Introduction to Computer Organization</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 3 – Introduction to Electrical Engineering</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32A – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B – Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Electrical Engineering M16 or Computer Science M51A – Logic Design of Digital Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 32B – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A – Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 4AL – Mechanics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>2nd</td>
<td>Electrical Engineering 1 – Electrical Engineering Physics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33B – Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 4BL – Electricity and Magnetism Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Electrical Engineering 2 – Physics for Electrical Engineers</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 10 – Circuit Analysis I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 102 – Systems and Signals</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Computer Science 35L – Software Construction Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 101 – Engineering Electromagnetics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 110 – Circuit Analysis II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 131A – Probability</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Electrical Engineering 103 – Applied Numerical Computing</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 110L – Circuit Measurements Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 115A – Analog Electronic Circuits I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Statistics 105 – Statistics for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Electrical Engineering 113 – Digital Signal Processing</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering 115C – Digital Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Pathway Course (Electrical Engineering 132A – Introduction to Communication Systems or Computer Science M117 – Computer Networks: Physical Layer)</td>
<td>4</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Electrical Engineering M116C or Computer Science M151B – Computer Systems Architecture</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pathway Course (Computer Science 111 – Operating Systems Principles)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course* / Pathway Laboratory Course*</td>
<td>6</td>
</tr>
<tr>
<td>2nd</td>
<td>Mathematics 132 – Complex Analysis for Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pathway Course (Computer Science 131 – Programming Languages or 132 – Compiler Construction or 180 – Introduction to Algorithms and Complexity)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course* / HSSEAS GE Elective*</td>
<td>9</td>
</tr>
<tr>
<td>3rd</td>
<td>Electrical Engineering 132B (Data Communications and Telecommunication Networks) or Computer Science 118 (Computer Network Fundamentals)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pathway Design Course*</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course* / HSSEAS GE Elective*</td>
<td>8</td>
</tr>
</tbody>
</table>

TOTAL: 188

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 19 for details).
†See page 74 for the computer engineering pathway.
B.S. in Materials Engineering Curriculum

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A – Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>English Composition 3 – English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Materials Science and Engineering 10 – Freshman Seminar: New Materials</td>
<td>1</td>
</tr>
<tr>
<td>Mathematics 31A – Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B/20L – Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>Mathematics 31B – Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A – Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Mathematics 32A – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B – Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>SOPHOMORE YEAR</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 104 – Science of Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32B – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C (Electrodynamics, Optics, and Special Relativity) or Electrical Engineering 1 (Electrical Engineering Physics I)</td>
<td>5 or 4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 102A (Thermodynamics I) or Mechanical and Aerospace Engineering 105A (Introduction to Engineering Thermodynamics)</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science 31 – Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A – Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering 101 (Statics and Dynamics) or Mechanical and Aerospace Engineering 101 (Statics and Strength of Materials)</td>
<td>4</td>
</tr>
<tr>
<td>Materials Science and Engineering 90L – Physical Measurement in Materials Engineering</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics 33B – Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering 108 – Introduction to Mechanics of Deformable Solids</td>
<td>4</td>
</tr>
<tr>
<td>Electrical Engineering 100 – Electrical and Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td>Materials Science and Engineering 110/110L – Introduction to Materials Characterization A/Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>Materials Science and Engineering 130 – Phase Relations in Solids</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 120 – Physics of Materials</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics Science and Engineering 131/131L – Diffusion and Diffusion-Controlled Reactions/Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>Materials Science and Engineering 143A – Mechanical Behavior of Materials</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 132 – Structure and Properties of Metallic Alloys</td>
<td>4</td>
</tr>
<tr>
<td>Elective†</td>
<td>4</td>
</tr>
<tr>
<td>Materials Engineering Elective†</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
</tr>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 160 – Introduction to Ceramics and Glasses</td>
<td>4</td>
</tr>
<tr>
<td>Materials Engineering Elective†</td>
<td>4</td>
</tr>
<tr>
<td>Upper Division Mathematics Elective†</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 150 – Introduction to Polymers</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>Materials Engineering Elective†</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 140 – Materials Selection and Engineering Design</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>Materials Engineering Laboratory Course†</td>
<td>2</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>185 or 186</td>
</tr>
</tbody>
</table>

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 19 for details).
†See counselor in 6426 Boelter Hall for details.
B.S. in Materials Engineering

Electronic Materials Option Curriculum

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20A – Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td>English Composition 3 – English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td>Materials Science and Engineering 10 – Freshman Seminar: New Materials</td>
<td>1</td>
</tr>
<tr>
<td>Mathematics 31A – Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemistry and Biochemistry 20B/20L – Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td>Mathematics 31B – Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A – Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Computer Science 31 – Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32A – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1B – Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 104 – Science of Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 32B – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering 102A (Thermodynamics I) or Mechanical and Aerospace Engineering 105A (Introduction to Engineering Thermodynamics)</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 33A – Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1C (Electrodynamics, Optics, and Special Relativity) or Electrical Engineering 1 (Electrical Engineering Physics I)</td>
<td>5 or 4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 90L – Physical Measurement in Materials Engineering</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics 33B – Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering 101 – Statics and Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering 10 – Circuit Analysis I</td>
<td>4</td>
</tr>
<tr>
<td>Materials Science and Engineering 110/110L – Introduction to Materials Characterization A/Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>Materials Science and Engineering 130 – Phase Relations in Solids</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering 101 – Engineering Electromagnetics</td>
<td>4</td>
</tr>
<tr>
<td>Materials Science and Engineering 120 (Physics of Materials) or Electrical Engineering 2 (Physics for Electrical Engineers)</td>
<td>4</td>
</tr>
<tr>
<td>Materials Science and Engineering 122 – Principles of Electronic Materials Processing</td>
<td>4</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering 121B – Principles of Semiconductor Device Design</td>
<td>4</td>
</tr>
<tr>
<td>Materials Science and Engineering 121/121L – Materials Science of Semiconductors/Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>Electronic Materials Elective†</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quarter</td>
<td></td>
</tr>
<tr>
<td>Electronic Materials Elective†</td>
<td>4</td>
</tr>
<tr>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>Upper Division Mathematics Elective†</td>
<td>4</td>
</tr>
<tr>
<td>2nd Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 131/131L – Diffusion and Diffusion-Controlled Reactions/Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>Electronic Materials Elective†</td>
<td>4</td>
</tr>
<tr>
<td>Electronic Materials Laboratory Course†</td>
<td>2</td>
</tr>
<tr>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
<tr>
<td>3rd Quarter</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering 140 – Materials Selection and Engineering Design Elective†</td>
<td>4</td>
</tr>
<tr>
<td>Electronic Materials Elective†</td>
<td>4</td>
</tr>
<tr>
<td>Electronic Materials Laboratory Course†</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
</tr>
<tr>
<td>187 or 188</td>
<td></td>
</tr>
</tbody>
</table>

*Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 19 for details).
†See counselor in 6426 Boelter Hall for details.
B.S. in Mechanical Engineering Curriculum

Freshman Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Chemistry and Biochemistry 20A – Chemical Structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>English Composition 3 – English Composition, Rhetoric, and Language</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31A – Differential and Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemistry and Biochemistry 20B/20L – Chemical Energetics and Change/General Chemistry Laboratory</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Mathematics 31B – Integration and Infinite Series</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1A – Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>Mathematics 32A – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1B – Oscillations, Waves, Electric and Magnetic Fields</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Physics 4AL – Mechanics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Mathematics 32B – Calculus of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 94 – Introduction to Computer Aided Design and Drafting</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics 1C – Electrodynamics, Optics, and Special Relativity</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Physics 4BL – Electricity and Magnetism Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>2nd</td>
<td>Computer Science 31 – Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Materials Science and Engineering 104 – Science of Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics 33A – Linear Algebra and Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 105A – Introduction to Engineering Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Mathematics 33B – Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 101 – Statics and Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 103 – Elementary Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Electrical Engineering 100 – Electrical and Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 102 – Dynamics of Particles and Rigid Bodies</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 105D – Transport Phenomena</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 182A – Mathematics of Engineering</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Mechanical and Aerospace Engineering 107/107L – Introduction to Modeling and Analysis of Dynamic Systems/Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 131A (Intermediate Heat Transfer) or 133A (Engineering Thermodynamics)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 157 – Basic Mechanical Engineering Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>Mechanical and Aerospace Engineering 156A – Advanced Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 171A – Introduction to Feedback and Control Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 183 – Introduction to Manufacturing Processes</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Electrical Engineering 110L – Circuit Measurements Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Aerospace Engineering 162A – Introduction to Mechanisms and Mechanical Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>Mechanical and Aerospace Engineering 162B – Mechanical Product Design</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Courses (2)*</td>
<td>8</td>
</tr>
<tr>
<td>3rd</td>
<td>Mechanical and Aerospace Engineering 162M – Senior Mechanical Engineering Design</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HSSEAS GE Elective*</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Technical Breadth Course*</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Units: 185

Students should contact the Office of Academic and Student Affairs for approved lists in the categories of technical breadth and HSSEAS GE (see page 19 for details).
Academic Calendar

<table>
<thead>
<tr>
<th>Event</th>
<th>Fall 2007</th>
<th>Winter 2008</th>
<th>Spring 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First day for continuing students to check URSA</td>
<td>June 13, 2007</td>
<td>October 13, 2007</td>
<td>February 6, 2008</td>
</tr>
<tr>
<td>URSA enrollment appointments begin</td>
<td>June 25</td>
<td>November 15</td>
<td>February 19</td>
</tr>
<tr>
<td>Registration fee payment deadline</td>
<td>September 20</td>
<td>December 20</td>
<td>March 20</td>
</tr>
<tr>
<td>QUARTER BEGINS</td>
<td>September 24</td>
<td>January 2, 2007</td>
<td>March 26</td>
</tr>
<tr>
<td>Instruction begins</td>
<td>September 27</td>
<td>January 2</td>
<td>March 27</td>
</tr>
<tr>
<td>Last day for undergraduates to ADD courses with per-course fee through URSA</td>
<td>October 19</td>
<td>January 25</td>
<td>April 18</td>
</tr>
<tr>
<td>Last day for undergraduates to DROP nonimpacted courses</td>
<td>October 26</td>
<td>February 1</td>
<td>April 25</td>
</tr>
<tr>
<td>(without transcript notation) with per-transaction fee through URSA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last day for undergraduates to change grading basis (optional P/NP)</td>
<td>November 9</td>
<td>February 15</td>
<td>May 9</td>
</tr>
<tr>
<td>(with per-transaction fee through URSA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instruction ends</td>
<td>December 7</td>
<td>March 14</td>
<td>June 6</td>
</tr>
<tr>
<td>Final examinations</td>
<td>December 10-14</td>
<td>March 17-21</td>
<td>June 9-13</td>
</tr>
<tr>
<td>QUARTER ENDS</td>
<td>December 14</td>
<td>March 21</td>
<td>June 13</td>
</tr>
<tr>
<td>HSSEAS Commencement</td>
<td>—</td>
<td>—</td>
<td>June 14</td>
</tr>
<tr>
<td>Academic and administrative holidays</td>
<td>November 12</td>
<td>January 21</td>
<td>March 28</td>
</tr>
<tr>
<td></td>
<td>November 22-23</td>
<td>February 18</td>
<td>May 26</td>
</tr>
<tr>
<td></td>
<td>December 24-25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>December 31-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>January 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Admission Calendar

<table>
<thead>
<tr>
<th>Event</th>
<th>Fall 2007</th>
<th>Winter 2008</th>
<th>Spring 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filing period for undergraduate applications (file with UC Undergraduate Application Processing Service, P.O. Box 23460, Oakland, CA 94623-0460)</td>
<td>November 1-30, 2006</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Last day to file application for graduate admission or readmission with complete credentials and application fee, with Graduate Admissions/Student and Academic Affairs, 1255 Murphy Hall, UCLA, Los Angeles, CA 90024-1428</td>
<td>Consult department</td>
<td>Consult department</td>
<td>Consult department</td>
</tr>
<tr>
<td>Reentering students eligible to enroll begin to receive URSA notification letter at their mailing address</td>
<td>June 16, 2007</td>
<td>November 7</td>
<td>February 13</td>
</tr>
<tr>
<td>Last day to file Undergraduate Application for Readmission form at 1113 Murphy Hall (late applicants pay a late fee)</td>
<td>August 15</td>
<td>November 25</td>
<td>February 25</td>
</tr>
</tbody>
</table>